Hamel Taban ve Boyut Teoremi

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Hamel Taban ve Boyut Teoremi"

Transkript

1 Hamel Taban ve Boyut Teoremi Mert ÇAĞLAR 1 VE Zafer ERCAN 2 1 Amaç Baştan söyleyelim: vektör uzay, vektör altuzay, doğrusal dönüşüm, izomorfik (eş yapılı) vektör uzaylar kavramlarına başlangıç seviyesinde de olsa, konuya yabancı olmadığını varsayıyoruz. Bu konuda türkçe yazılmış olan [7] kitabı öneririz. Bu yazıda seçme beliti kabul edilmiştir. Matematik Dünyası Dergisinin 2014-I ve 2014-II sayılarının kapak konuları vektör uzaylarıydı. Bu kapak konularında eksik olan ya da yeterince yer verilmeyen, bir vektör uzaylarda tanımlı olan boyut kavramı ve onun "büyüklüğü" idi. Bu yazının temel amacı, vektör uzaylarında boyut kavramı olacak ve "Boyut Teoremi 3 " olarak bilinen teoremi kanıtıyla birlikte vermek olacak. Bir vektör uzay, bir E kümesi üzerinde belirli özellikleri sağlayan toplama (+) ve skalerle çarma (.)işlemleri tanımlanmış olan bir (E, +,.) üçlüdür. Bu üçlü, bir yanlış anlama durumu yok ise, sadece E ile gösterilir. Vektör uzayının temel örneği R vektör uzayıdır. R vektör uzayı üzerinde tanımlı toplama ve skalerle çarpma işlemleri "bildiğimiz" işlemlerdir. R vektör uzayından üretilen doğal vektör uzay örneklerinden biri, R X, boş kümeden farklı bir X kümesinden R ye tanımlı fonksiyonlar ve her f, g R X ve α R için, (f + g)(x) := f(x) + g(x) ve (αf)(x) := αf(x) olarak tanımlanmak üzere, (R X, +,.) üçlüsüdür. Bu vektör uzayın direk toplam vektör uzayı olarak adlandırılan vektör altuzayı aşağıdaki gibi tanımlanır ve gösterilir: X R = {f R X : f 1 (R {0}) sonlu}. Her x X için χ x (y) = 1 ; x = y 0 ; x y olarak tanımlanan, x nin karakteristik fonksiyonu χ x R X, X R vektör uzayının da bir elemanı olduğu açıktır. Belli anlamlarda, X R vektör uzayını anlamak, R X vektör uzayını anlamaktan daha kolaydır. Nedeni: {χ x : x X} kümesinin doğrusal bağımsız (tanımı aşağıda verilecek) ve X R nin her elemanının sonlu tane αχ x (α R, x X) türündeki elamanlaın toplamı olarak yazılabilmesidir. Gerçekten, her f X R için, dir. Bu yaklaşımla şu soruları sorabiliriz: f = x {x X:f(x) 0} f(x)χ x (i) X boşkümeden farklı bir küme olmak üzere, R X vektör uzayını I R uzayına izomorfizma olacak biçimde I kümesi var mıdır? 1 İstanbul Kültür Üniversitesi, Matematik-Bilgisayar Bölümü, Ataköy Kampüsü, Bakırköy 34156, İstanbul 2 Abant İzzet Baysal Üniversitesi, Matematik Bölümü, Gölköy Kampüsü 14280, Bolu 3 ingilizcesi Dimension Theorem. 1

2 (ii) I R ve J R vektör uzayları izomorfik iseler, I ve J nin kardinaliteleri arasında eşitlik ilişkisi var mıdır? (iii) I ve J kümelerinin kardinaliteleri eşit ise, yani I dan J ye tanımlı birebir ve örten fonksiyon var ise, I R ve J R vektör uzayları izomorfik midirler? (iv) (i) nin yanıtı evet ise, soruyu genelleybiliriz: Her E vektör uzayı, bir direk toplam vektör uzayına izomorfik midir?". Bu yazıda yukarıdaki soruların yanıtlarının evet olduğu gösterilecektir. Yazıyı ayrıcalıklı yapan ve yayınlanmasının "yararlı" olabileceğinin nedeni, Hamel tabanların kardinalitelerinin aynı olduğunun yaygın olarak bilinmiyen bir kanıtının verilmesi olacak. Bu kanıt J. T. Moore [6] ye aittir. 2 Hamel Tabanı Her şeyin bir omurgası vardır. Vektör uzayın da omurgası vardır ama biz ona "taban" ya da "baz" diyeceğiz. Tanımı aşağıda. Tanım 2.1. E, sıfırdan farklı bir vektör uzayı olmak üzere, S E {0} kümesi s i S, α i R, α 1 s α 1 s 1 = 0 = α 1 =... = α n = 0 özelliğindeyse, S, kümesine doğrusal bağımsız denir. Yukarıdaki gerektirme ifadesinde i j için s i s j olduğunu varsayıldığına okuyucu dikkat etmeli! Tanım 2.2. E, sıfırdan farklı bir vektör uzayı olmak üzere, S E için < S >:= { n i=1 α i s i : n N, α R, s i S} olarak tanımlanan E nin vektör altuzayına, S tarafından üretilen vektör altuzay denir. Bir E vektör uzayında her S X için, < S > vektör alyuzayının, S yo kapsayan bütün vektör altuzayların arakesiti olduğunu kolayca gösterebilir. Vektör uzayında taban kavramını tanımlamaya hazırız. Tanım 2.3. E sıfırdan farklı bir vektör uzayı olsun. B E kümesi doğrusal bağımsız ve S tarafından üretilen vektör altuzay E ye eşitse, yani < B >= E ise, B ye E vektör uzayının Hamel tabanı denir. Yukarıda tanıma göre sıfırdan farklı bir vektör uzayın tabanı boş küme olamaz. Ama kavram bütünlemesi açısından sıfır vektör uzayının Hamel tabanını boş küme olarak tanımlayabiliriz. Örnek 2.4. X sonsuz bir küme olmak üzere, H := {χ x : x X} diyelim. H R X doğrual bağımsız fakat Hamel taban değildir. Buna karşılık H, X R vektör uzayının bir Hamel tabanıdır. 2

3 3 Her Vektör Uzayın Hamel Tabanı vardır "Her vektör uzayın tabanı var mıdır?" sorusunun yanıtını, Zorn Önsavı kullanarak olumlu olarak yanıtlayabileceğiz. Teorem 3.1. (Zorn Önsavı) Her zinicirinin bir üst sınırı olan kısmı sıralı kümenin bir maksimal elemanı vardır. Yukarıdaki teoremini bir kanıtı [4] de bulunabilir. Teorem 3.2. ( Löwig[5] 4 )Her vektör uzayın bir Hamel tabanı vardır 5. Kanıt. E vektör uzay olsun. E = {0} olma durumunda E nin Hamel tabanını boş küme olarak tanımlamıştık. E {0} olduğunu varsayalım. Bu durumda E nin boşkümeden farklı doğrusal bağımsız bir B alt kümesi vardır. (Örneğin, 0 x E olmak üzere B = {x} alabiliriz. ) P = {A E : B A ve doğrusal bağımsız} kümesi, B yi içerdiğinden boş kümeden farklıdır. P, kapsama sıralamasına göre, yani A B : A B sıralaması ye göre kısmı sıralı bir kümedir. C P bir zincir ise, B = C kümesi P nin bir elemanı ve C zincirinin bir üst sınırıdır. Zorn Önsavı gereği P nin bir maksimal elemanı vardır, bunu B ile gösterelim. x E olmasına karşın, x < B > olduğunu varsaydığımızda, B {x} P, B < B elde edilirki, bu B nin maksimal olmasıyla çelişr. O halde < B >= E dir. Böylece B, E vektör uzayının bir Hamel tabanıdır. Yukarıdaki teoremin bir uygulaması olarak, yukarıdaki sorulan sorulardan (iv) nin yanıtını aşağıdaki gibi verebiliriz. Sonuç 3.3. E sıfırdan farklı bir vektör uzay ise, E ve B R vektör uzaylarını izomorfik yapan B kümesi vardır. Kanıt. B E kümesini, E nin Hamel tabanı olarak almak yeterlidir. Bunun bir sonucu olarak aşağıdaki ifadeyi yazabiliriz. Sonuç 3.4. X boş kümeden farklı ise, R X ve I R vektör uzaylarını izomorfik yapan bir I kümesi vardır. Bu yukarıda sorulan (i) nin yanıtıdır. Bir vektör uzayından R ye tanımlı her doğrusal dönüşüme fonksiyonel denir. E de tanımlı fonksiyonellerin kümesi, noktasal toplama ve noktasal skalerler çarpma işlemleri altında, yani fonksiyoneller f, g E ve α R için, 4 [2] de Löwig için "unutulmuş matematikçi" diye yazar. 5 Her vektör uzayın Hamel tabanının var olması seçme belitine denktir. Bunun kanıtı MD de bir başka yazının konusu olmalı! 3

4 (f + g)(x) = f(x) + g(x), (αf)(x) := αf(x) f + g ve αf ler fonksiyonellerdir ve bu işlemlere göre fonksiyoneller kümesi vektör uzaydır ve E nin cebirsel duali denir. E nin cebirsel dualini E ile gösterelim. E, R E vektör uzayının altuzayıdır. Alıştırma 3.5. Bir E vektör uzayın cebirsel duali E nın sıfırdan farklı olması için gerekli ve yeterli koşulun E nin sıfırdan farklı olması olduğunu gösteriniz. Bir vektör uzayın Hamel tabanının varlığını gösteren yöntem kullanılarak aşağıdaki problem çözülebilir. Alıştırma 3.6. H R için, H Q = {f Q H : f 1 (Q {0}) olarak tanımlansın. α Q, f, f H Q için sonlu} (f + g)(x) = f(x) + g(x) ve (αf)(x) = αf(x) olarak tanımlanmak üzere f + g, αf H Q olduğu bariz. Aşağıdakilerin doğruluğunu gösteriniz: (i) Her x, y R ve α Q için T (x + y) = T (x) + T (y) ve T (αx) = αt (x) özelliğini sağlayan H R ve birebir ve örten T : R H Q fonksiyonu vardır. (ii) R den kendisine tanımlı ve her x, y R için f(x + y) = f(x) + f(y) eçitliğini sağlayan ve doğrusal olmayan f fonksiyon vardır. F ve G, E vektör uzayın alt uzayları ise F + G = {x + y : x F, y G} bir vektör altuzaydır. F G = {0} olması durumunda F + G yerine F G yazarız. Bu durumda F G ye E ve F nin direk toplamı denir. Ayrıca F G vektör uzayı E F çarpım vektör uzayına izomorfiktir. Alıştırma 3.7. W, F ve G, E vektör uzayının, E = W G = W F özelliğinde vektör altuzayları ise, G ve F alt uzaylarının izomorfik olduklarını gösteriniz. Aşağıdaki teoremin kanıtı kolay ve okuyucuya bırakılmıştır. Teorem 3.8. F, E vekör uzayının altvektör uzayı ve B, F nin bir tabanı olsun. B yi kapsayan E nin bir S tabanı vardır ve dir. E = F < S B > 4

5 4 Boyut Teoremi E vektör uzayının sonlu bir A tabanı var ise, diğer bütün tabanların eleman sayısı, A kümesinin eleman sayılarına eşittir. Konuyla ilgili bütün kitaplarda bu sonuçlar vardır ve üniversite lisans öğrencilerine kanıtıyla verilir. Aslında bu sonuç bütün vektör uzayları için doğru olsa da, bu yazıda yer alacak "klasik" olan kanıtda kullanılan yöntem nedeniyle olsa gerek, matematik lisans öğrencilerine ö gretilmez. Buna karşın, bu yazıda vereceğimiz, J. T. Moore [6] ye ait olan kanıt, lisans öğrencilerine okutulabilcek niteliktedir. A bir küme ise, A nin kardinalitesi A ile gösterilir. A kümesinden B kümesinin tanımlı birebir fonksiyon var ise, A B yazarız. A = B olması ise, A dan B ye tanımlı birebir ve örten fonksiyonun olması anlamındadır. A B ve B A ise, A = B dir. Bu sonuç Cantor-Schröder-Bernstein Teoremi olarak bilinir ve bir kanıt [3] de bulunabilir. Aşağıda ifadesi verilen Boyut Teoremi nin klasik kanıtında bu teorem kullanılır. Bu yazıda verilecek olan kanıtta ise kullanılmayacaktır. A ve B iki küme olsun. A = B ise, A R ve B R vektör uzaylarının izomorfik olduğunu göstermek kolaydır. Peki, A R ve B R vektör uzayları eş yapılı ise A = B mi dir? Bunun yanıtı evettir ve yukarıdaki sonuç kullanılarak, bir vektör uzayın Hamel tabanlarının kardinalitelerinin eşit olduğunu söyler. Bir E vektör uzayından kendisine tanımlı doğrusal dönüşümlerin kümesini L(E) ile gösterelim. Teorem 4.1. (Löwig [5],Boyut Teoremi) A ve B, E vektör uzayının Hamel tabanları ise A = B dir. Kanıt. (Moore[6]) W, A W ve B W kümeleri Hamel tabanı olan, E vektör uzayının alt vektör uzay W lerin kümesini göstersin. W W olmak üzere, T A W : A W B W birebir ve örten özelliğinde olan T L(W ) doğrusal dönüşümlerin kümesini P ile gösterelim. W = {0} W ve sıfır liner dönüşümü P de olduğundan, P boş kümeden farklıdır. W W ve P de verilen bir T L(W ) için W = dom(t ) yazalım. T, S P için, S T : dom(s) dom(t ) ve T dom(s) = S olarak tanımlanan ilişkisine göre (P, ) kısmi sıralı bir kümedir. P de her zincirin bir üst sınırı vardır: C P bir zincir olsun. olarak tanımlıyalım. Her S C için W = S C dom(s) T : W W, T dom(s) = S özelliğinde T fonksiyonunu tanımlıyalım. Gerçekten, C nin bir zincir olması nedeniyle bu özellikte bir fonksiyon tanımlanabilir. Üstelik W W ve T P dir. T nin C zincirinin bir üst sınırı olduğu da bariz. Zorn Önsavı gereği, P nin bir maksimal elemanı T vardır. T nin tanım kümesini W ile gösterelim. E = W V = W < A (A B) >= W < B (A B) > özelliğinde V vektör altuzayı vardır. Iki durum sözkonusu: Birinci Durum. V sonlu boyutlu: 5

6 E = W < A (A B) >= W < B (A B) > olacağından V, < A (A B) > ve < B (A B) > vektör altuzayları izomorfik ve sonlu boyutludur. Sonlu boyutlar için Boyut Teoremi (sonlu boyutlar için bildiğimizi varsayıyoruz!) gereği, dir. Ayrıca, olmasından elde edilir. A (A W ) = B (B W ) A W = B W A = B Ikinci Durum. V sonsuz boyutlu: Bu durumda E = W + F özelliğinde sonlu boyutlu E nin vektör altuzayı F yoktur. Bunun sonucu olarak, aşağıdaki özellikte A W nin sonlu altkümelerinin (A n ) dizisi ve B W nin sonlu alt kümelerinin dizisi (B n ) vardır. Her n N için: - A n A n+1 ve B n B n+1. - A n A n+1. - A n < B n >. - B n < A n+1 >. Bu iki dizinin inşasına şöyle başlayabiliriz: x E W verilsin. x < A 1 > oözelliğinde sonlu A 1 A vardır. Her a A 1 için a < C a > özelliğinde sonlu C a B seçebiliriz. b B C a, b A B elemanı da seçebiliriz. B 1 = {b} a A1 C a alabiliriz. B 1 W olmadığı bariz. Bu yöntemle devam ederek, tümevarımla istenilen özellikte diziler elde edilir. ve A = ( i=1a i ) W B = ( i=1b i ) W olarak tanımlansın. A ve B kümeleri sayılabilir sonsuz kümelerdir. olduğu bariz. W =< W A >=< W B > f : A B birebir örten fonksiyon olmak üzere, T doğrusal dönüşümü, W vektör altuzayına her a A için T (a) = f(a) özelliğini sağlayacak biçimde genişletilebilir. Ayrıca olduğundan, T (W (A B)) = T (W (A B)) = T (W (A B)) 6

7 T A B : W (A B) W (A B) birebir ve örtendir. Dolayısıyla (T, W ) P ve (T, W ) < (T, W ) olur ki, bu (T, W ) nin maksimal olmasıyla çelişir. Ve Kanıtı tamamlanır. Yukarıdaki teoremin sonucu olarak aşağıdaki tanımı verebiliriz. Tanım 4.2. E bir vektör uzayı ve H, E nin Hamel tabanı olsun. B ye E nin boyutu denir ve dim(e) ile gösterilir. 5 Klasik Kanıt Her ne kadar yukarıda verilen kanıtın klasik kanıttan daha analşılır ve kolay olduğunu ve lisans öğrencilerinin anlayabiliceği seviyede de olduğunu, yazarlar olarak ifade etmiş olsak da, bazı okuyucular aynı görüşte olmayabilirler. Karşılaştırma imkanı vermek aşından, Boyut Teoreminin klasik kanıtı olarak bilinen kanıtını detaya girmeden bahsedilmesi yazıyı daha bütün yapacaktır. Kanıt. (Klasik Kanıt 6 ) Aşağıdaki adımları takip edelim: - S sayılabilir bir küme ise S N = S dir: f : N N N, f(k, n) = 2 k 3 n olarak tanımlanan fonksiyonun birebir ve dolayısıyla N N N dir. N N N olduğu bariz. İstenilen elde edilir. - Aşğıdaki kümeyi tanımlayalım. A = {(S, f) : S A, sayılabilir ve f : S N S birebir ve örten}. A sonsuz olduğundan, A nın sayılabilir sonsuz alt kümesi vardır. Dolayısıyla A. Üstelik, A, (S, f) (T, g) : S T ve g S = f sıralamsına göre A, kısmı sıralı bir küme ve her zincirin bir üst sınırı vardır. Dolayısıyla Zorn Önsavı gereği, A nın (R, ϕ) maksimal elemanı vardır. - A R sonludur: Varsayalım ki sonsuz. S A R sayılabilir sonsuz küme seçebiliriz. R = R S diyelim. g : S N S birebir ve örten fonksiyon olsun. π : R N R π(r, n) = ϕ(r, n) ; (r, n) R N g(r, n) ; (r, n) S N π birebir ve örten olduğundan (R, π) A ve (R, ϕ) < (R, π) dir ki, bu (R, ϕ) nin maksimal olmasıyla çelişir. - Y R sayılabilir sonsuz bir küme olsun. 6 Bu kanıt [1] den alınmıştır. 7

8 olduğundan birebir ve örten fonksiyonu vardır. [(A R) Y ] N = [ϕ(y N) (A R)] h : [(A R) Y ] N [ϕ(y N) (A R)] - A N = A : σ : A N A fonksiyonu σ(x, n) = ϕ(x, n) ; (x, n) (R Y ) N h(x, n) ; (x, n) [(A R) Y ] N σ birebir ve örten fonksiyon olduğundan, istenilen elde edilir. - Her x X için özelliğunde tek bir tane kümesi vardır. - B = x A B(x) dir. - B A N : α : A N B fonksiyonu x = y B(x) α y y B(x) = {y x 1,..., y x k x } B y x α(x, n) = 1 ; n > k x yn x ; 1 n k x eşitliğiyle tanımlansın. α fonksiyonu örtendir. Dolayısıyla B A N dir. - A = B : B A N = A olduğunu yukarıda gösterildi. Benzer biçimde A B. Cantor-Schröder-Bernstein Teoreminden A = B elde edilir. 6 Temel Örnekler E bir vektör uzayı ve E > R ise dim(e) = E olduğunun [5] de kanıtlandığını bir bilgi olarak söyleyelim. Bunun bir sonucu olarak dim(r R ) = R R. Bunun yanında E = R durumu için dim(e) = E eşitliği olabilir de, olmayabilir de. Örneğin dim(r N ) = R N, dim(r) R. 8

9 Bu kısımda R N ve R R vektör uzaylarının boyutlarının sırasıyla R ve R R olduklarını göstereceğiz. Bu umarim yazıyı bütünler. Aşağıda verilen teoremlerin kanıtlarinda geçen kardinal sayılarla ilgili işlemler için MD öneririlir. Teorem 6.1. dim(r N ) = R dir. Kanıt. Her r R için, Q de r ye terimleri birbirinden farklı ve artarak yakınsayan (r n ) dizisi seçelim. Elemanları bu dizinin terimleri olan kümeyi Q r ile gösterelim. diyelim. r s özelliğindeki her r, s R için olduğu da barizdir. Böylece, A r = {n N : r n Q r } A r A s ve A r A s < A = {A r : r R} olmak üzere R = A dır. A nin doğrusal bağımsız olduğunu gösterelim: Varsayalım ki değil. Bu surumda χ A = i I c i χ Ai özelliğinde sonlu F kümesi ve A, A i A lar vardır. diyelim. P kümesi sonsuzdur. n P için P = A ( i F (A A i )) 1 = χ A (n) = i I c i χ Ai (n) = 0 çelişkisi elde edilir. Böylece A nın doğrusal bağımsız olduğu gösterilmiş olur. R = A dim(e) E = N R = R eşitsizliğinden dim(e) = R olduğu gösterilmiş olur. Teorem 6.2. dim(r R ) = R R. Kanıt. E = R R diyelim. D = {χ x : x R}, E nin doğrusal bağımsız kümesi olduğundan, D yi kapsayan bir B Hamel tabanı vardır. Her n, m için olduğundan D = R B. (B R) n = (B R) m = B R E n N (B R) n ) = N (B R) n = N B R = N ( B R ) = N B = B E. Buradan elde edilir. dim(e) = E 9

10 Kaynaklar [1] C. D. Aliprantis, K. C. Border, Infinite dimensional analysis, A hitchhiker s guide. Third edition. Springer, Berlin, [2] M. Becvarova, The foggotten Mathematician Henry Lowig, Dejiny Matematiky/History of Mathematics, 52. Matfyzpress, Prague, [3] Cantor-Schröder-Bernstein Teoremi, Matematik Dünyası, 2006-III, [4] T. Karayayla, Hausdorff Zincir Teoremi ve Zonn Önsavı, MD 2006-II, [5] H. Löwig, Über die Dimension linearer Röume, Studia Mathematica, vol. 5(1934), p [6] J. T. Moore, A Zorn s lemma proof of the dimension theorem for vector spaces, Amer. Math. Monthly 121(1014), no. 3, [7] T. Terzioğlu, Fonksiyonel Analizin Yöntemleri, Matematik Vakfı, Istanbul,

Gerçel Sayılar Grubunda Tanımlı Grup Topolojilerin Sayısı. Zafer ERCAN 1

Gerçel Sayılar Grubunda Tanımlı Grup Topolojilerin Sayısı. Zafer ERCAN 1 Gerçel Sayılar Grubunda Tanımlı Grup Topolojilerin Sayısı Zafer ERCAN 1 Doğal sayılar kümesi, tamsayılar kümesi, rasyonel sayılar kümesi ve gerçel sayılar kümesi, her zaman olduğu gibi, sırasıyla, N, Z,

Detaylı

1.4 Tam Metrik Uzay ve Tamlaması

1.4 Tam Metrik Uzay ve Tamlaması 1.4. Tam Metrik Uzay ve Tamlaması 15 1.4 Tam Metrik Uzay ve Tamlaması Öncelikle şunu not edelim: (X, d) bir metrik uzay, (x n ), X de bir dizi ve x X ise lim n d(x n, x) = 0 = lim n,m d(x n, x m ) = 0

Detaylı

6. Ders. Mahir Bilen Can. Mayıs 16, 2016

6. Ders. Mahir Bilen Can. Mayıs 16, 2016 6. Ders Mahir Bilen Can Mayıs 16, 2016 Bu derste lineer cebirdeki bazı fikirleri gözden geçirip Lie teorisine uygulamalarını inceleyeceğiz. Bütün Lie cebirlerinin cebirsel olarak kapalı ve karakteristiği

Detaylı

1. Metrik Uzaylar ve Topolojisi

1. Metrik Uzaylar ve Topolojisi 1. Metrik Uzaylar ve Topolojisi Euclidean R uzayının tabanının B = {(a, b) : a, b R} olduğunu biliyoruz. Demek ki bu uzayda belirleyiçi unsur açık aralıklar. Her açık aralık (a, b) için, olmak üzere, d

Detaylı

Ders 8: Konikler - Doğrularla kesişim

Ders 8: Konikler - Doğrularla kesişim Ders 8: Konikler - Doğrularla kesişim Geçen ders RP 2 de tekil olmayan her koniğin bir dönüşümün ardından tek bir koniğe dönüştüğü sonucuna vardık; o da {[x : y : z x 2 + y 2 z 2 = 0]} idi. Bu derste bu

Detaylı

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ DERS: CEBİRDEN SEÇME KONULAR KONU: KARDİNAL SAYILAR ÖĞRETİM GÖREVLİLERİ: PROF.DR. NEŞET AYDIN AR.GÖR. DİDEM YEŞİL HAZIRLAYANLAR: DİRENCAN DAĞDEVİREN ELFİYE ESEN

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 İyi Sıralama 5 Bibliography 13 1 İyi Sıralama Well Ordering İyi sıralama kavramı, doğal sayıların

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve

Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve düzlem Geçen ders doğrusal cebir aracılığıyla izdüşümsel geometri için bir model kurduk. Şimdi bu modeli daha somut bir şekle sokalım, F = R durumunda kurduğumuz

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

Modül Teori. Modüller. Prof. Dr. Neşet AYDIN. [01/07] Mart Prof. Dr. Neşet AYDIN (ÇOMÜ - Matematik Bölümü) Modül Teori [01/07] Mart / 50

Modül Teori. Modüller. Prof. Dr. Neşet AYDIN. [01/07] Mart Prof. Dr. Neşet AYDIN (ÇOMÜ - Matematik Bölümü) Modül Teori [01/07] Mart / 50 Modül Teori Modüller Prof. Dr. Neşet AYDIN ÇOMÜ - Matematik Bölümü [01/07] Mart 2012 Prof. Dr. Neşet AYDIN (ÇOMÜ - Matematik Bölümü) Modül Teori [01/07] Mart 2012 1 / 50 Giriş M bir toplamsal değişmeli

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocm.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocm.mit.edu/terms veya http://tuba.açık ders.org.tr adresini ziyaret

Detaylı

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR 8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: ve iki grup ve f : G H bir fonksiyon

Detaylı

Egzersizler MATH 111

Egzersizler MATH 111 Egzersizler MATH 111 29 Aralık, 1998 Ali Nesin 1. x ve y iki küme olsun. x = y ancak ve ancak z (x z y z) olduğunu gösterin. 2. Eğer X aşağıdaki özellikleri sağlıyorsa X e ilişkisi tarafından yarısıralı

Detaylı

1 Vektör Uzayları 2. Lineer Cebir. David Pierce. Matematik Bölümü, MSGSÜ mat.msgsu.edu.tr/~dpierce/

1 Vektör Uzayları 2. Lineer Cebir. David Pierce. Matematik Bölümü, MSGSÜ mat.msgsu.edu.tr/~dpierce/ Vektör Uzayları Lineer Cebir David Pierce 5 Mayıs 2017 Matematik Bölümü, MSGSÜ dpierce@msgsu.edu.tr mat.msgsu.edu.tr/~dpierce/ Bu notlarda, alıştırma olarak her teorem, sonuç, ve örnek kanıtlanabilir;

Detaylı

DEĞİŞMELİ BANACH CEBİRLERİNİN GELFAND SPEKTRUMLARI ÜZERİNE

DEĞİŞMELİ BANACH CEBİRLERİNİN GELFAND SPEKTRUMLARI ÜZERİNE Ekim 25 Cilt:3 No:2 Kastamonu Eğitim Dergisi 547-554 DEĞİŞMELİ BANACH CEBİRLERİNİN GELFAND SPEKRUMLARI ÜZERİNE Hayri AKAY, Ziya ARGÜN Gazi Üniversitesi, Gazi Eğitim Fakültesi, Matematik Eğitimi Bölümü,

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

10. DİREKT ÇARPIMLAR

10. DİREKT ÇARPIMLAR 10. DİREKT ÇARPIMLAR Teorem 10.1. H 1,H 2,, H n bir G grubunun alt gruplarının bir ailesi ve H = H 1 H 2 H n olsun. Aşağıdaki ifadeler denktir. a ) dönüşümü altında dır. b) ve olmak üzere her yi tek türlü

Detaylı

12. Ders. Mahir Bilen Can. Mayıs 24, Son dersten hatırlayacağınız üzere simetrikleştirme operasyonundan elde ettiğimiz fonksiyon.

12. Ders. Mahir Bilen Can. Mayıs 24, Son dersten hatırlayacağınız üzere simetrikleştirme operasyonundan elde ettiğimiz fonksiyon. 12. Ders Mahir Bilen Can Mayıs 24, 2016 1 Yerel Kaldırma Özellikleri Son dersten hatırlayacağınız üzere simetrikleştirme operasyonundan elde ettiğimiz fonksiyon ι : Sym(g) n 0 U n /U n+1 bize bir derecelendirilmiş

Detaylı

Cebir 1. MIT Açık Ders Malzemeleri

Cebir 1. MIT Açık Ders Malzemeleri MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

7. Ders. Mahir Bilen Can. Mayıs 17, 2016

7. Ders. Mahir Bilen Can. Mayıs 17, 2016 7. Ders Mahir Bilen Can Mayıs 17, 2016 Bu derste bütün Lie cebirlerinin cebirsel olarak kapalı ve karakteristiği sıfır olan k cismi üzerine tanımlı olduğunu varsayıyoruz. 1 Tekrar Gözden Geçirme: Basitlik,

Detaylı

9. Ders. Mahir Bilen Can. Mayıs 19, 2016

9. Ders. Mahir Bilen Can. Mayıs 19, 2016 9. Ders Mahir Bilen Can Mayıs 19, 2016 1 Yarıbasit Bir Lie Cebirinin Yapısı Bu derste bütün Lie cebirlerinin cebirsel olarak kapalı ve karakteristiği sıfır olan k cismi üzerine tanımlı olduğunu varsayıyoruz.

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri   Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR 8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: G, ve H, iki grup ve f : G H

Detaylı

9.Konu Lineer bağımsızlık, taban, boyut Germe. 9.1.Tanım: V vektör uzayının her bir elemanı

9.Konu Lineer bağımsızlık, taban, boyut Germe. 9.1.Tanım: V vektör uzayının her bir elemanı 9.Konu Lineer bağımsızlık, taban, boyut 9.1. Germe 9.1.Tanım: V vektör uzayının her bir elemanı vektörlerin lineer birleşimi olarak ifade ediliyorsa vektörleri V yi geriyor ya da V yi gerer denir. Üstelik,

Detaylı

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1 SOYUT CEBÝR ( Genel Tekrar Testi-1) 1. A = { k k Z, < k 4 } 4. N tam sayılar kümesinde i N için, k 1 B = { k Z, 1 k < 1 } k 1 A = 1 i,i 1 i ( ] kümeleri verildiğine göre, aşağıdakilerden hangisi doğrudur?

Detaylı

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI Reel sayılar kümesinin "küçük ya da eşit", bağıntısı ile sıralanmış olduğunu biliyoruz. Bu bağıntı herhangi bir X kümesine aşağıdaki şekilde genelleştirilebilir. Bir X kümesi üzerinde aşağıdaki yansıma,

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b Bölüm 1 Temel Kavramlar Bu bölümde bağıntı ve fonksiyon gibi bazı temel kavramlar üzerinde durulacak, tamsayıların bazı özellikleri ele alınacaktır. Bu çalışma boyunca kullanılacak bazı kümelerin gösterimleri

Detaylı

Grup Homomorfizmaları ve

Grup Homomorfizmaları ve Bölüm 7 Grup Homomorfizmaları ve İzomorfizmalar Bu bölümde verilen gruplar arasında grup işlemlerini koruyan fonksiyonları ele alacağız. Bu fonksiyonlar yardımıyla verilen grupların cebirsel yapılarının

Detaylı

X normlu bir uzay olsun.x üzerindeki tüm gerçel veya karmaşık değerli sürekli (sınırlı) fonksiyoneller,x deki x ve α sayıları için

X normlu bir uzay olsun.x üzerindeki tüm gerçel veya karmaşık değerli sürekli (sınırlı) fonksiyoneller,x deki x ve α sayıları için HAHN-BANACH TEOREMİ VE SONUÇLARI G.F.Simmons 1963 tarihli Introduction to Topology and Modern Analysis adlı mükemmel kitabında soyut bir matematisel yapıyı anlamanın en iyi yollarından biri olarak o matematiksel

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz.

Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz. 1 BİR İŞLEMLİ SİSTEMLER Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz. 1.1 İŞLEMLER Bir kümeden kendisine tanımlı olan her fonksiyona birli işlem denir. Örneğin Z

Detaylı

Sezgisel Kümeler Kuramı (Math 111) Birinci Vize Sorular ve Cevaplar

Sezgisel Kümeler Kuramı (Math 111) Birinci Vize Sorular ve Cevaplar Sezgisel Kümeler Kuramı (Math 111) Birinci Vize Sorular ve Cevaplar Sonbahar 2002 Ali Nesin 10 Ekim 2010 1. a) Verilen bir X kümesi için X şöyle tanımlansın: y X ancak ve ancak öyle bir x X var ki y x.

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri   Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

13. Ders. Mahir Bilen Can. Mayı 25, : α nın eş-kökü

13. Ders. Mahir Bilen Can. Mayı 25, : α nın eş-kökü 13. Ders Mahir Bilen Can Mayı 25, 2016 1 Kök Sistemlerine Bir Örnek Hatırlayacağımız üzere basit kökler kümesi = {α 1,..., α l } Φ ya karşılık gelen temel baskın kökler olan ω 1,..., ω l leri aşağıdaki

Detaylı

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2 SERBEST LİE CEBİRLERİNİN ALT MERKEZİ VE POLİSENTRAL SERİLERİNİN TERİMLERİNİN KESİŞİMLERİ * Intersections of Terms of Polycentral Series and Lower Central Series of Free Lie Algebras Zeynep KÜÇÜKAKÇALI

Detaylı

FONKSİYONLAR. Örnek: (2x-2,y-3)=(10,-3) olduğuna göre x ve y sayılarını bulunuz.

FONKSİYONLAR. Örnek: (2x-2,y-3)=(10,-3) olduğuna göre x ve y sayılarını bulunuz. 1 FONKSİYONLAR Sıralı İkili: A ve B boş olmayan iki küme olmak üzere, aa ve bb iken (a, b) ifadesine bir sıralı ikili denir. Burada a ya, sıralı ikilinin birinci bileşeni, b ye de ikinci bileşeni denir.

Detaylı

HOMOLOJİ CEBİRE GİRİŞ ARA SINAV CEVAP ANAHTARI

HOMOLOJİ CEBİRE GİRİŞ ARA SINAV CEVAP ANAHTARI 12.04.2011 HOMOLOJİ CEBİRE GİRİŞ ARA SINAV CEVAP ANAHTARI 1. f : A B modül homomorfizması, i : Ker f A kapsama homomorfizması ve p : B B/Im f doğal epimorfizma olmak üzere 0 Ker f A B B/Im f 0 dizisinin

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Bibliography 11 CONTENTS 5 0.1 Kartezyen Çarpım 0.2 Sıralı İkililer Şimdiye kadar sıra ya da

Detaylı

Lineer Bağımlılık ve Lineer Bağımsızlık

Lineer Bağımlılık ve Lineer Bağımsızlık Lineer Bağımlılık ve Lineer Bağımsızlık Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayı ve alt uzay yapısını daha iyi tanıyacak, Bir vektör uzayındaki vektörlerin

Detaylı

sonlu altörtüsü varsa bu topolojik uzaya tıkız diyoruz.

sonlu altörtüsü varsa bu topolojik uzaya tıkız diyoruz. Ders 1: Önbilgiler Bu derste türev fonksiyonunun geometrik anlamını tartışıp, yalnız R n nin bir açık altkümesinde değil, daha genel uzaylarda tanımlı bir fonksiyonun türevi ve özel noktalarının nasıl

Detaylı

PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TOPLANABİLEN VEYA SINIRLI OLAN DİZİ UZAYLARI ARASINDAKİ DÖNÜŞÜMLERİN ÖZELLİKLERİ

PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TOPLANABİLEN VEYA SINIRLI OLAN DİZİ UZAYLARI ARASINDAKİ DÖNÜŞÜMLERİN ÖZELLİKLERİ PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TOPLANABİLEN VEYA SINIRLI OLAN DİZİ UZAYLARI ARASINDAKİ DÖNÜŞÜMLERİN ÖZELLİKLERİ YÜKSEK LİSANS TEZİ İnci BİRGİN Anabilim Dalı : Matematik Programı : Matematik

Detaylı

Soru Toplam Puanlama Alınan Puan

Soru Toplam Puanlama Alınan Puan 18.11.2013 No: Ad-Soyad: İmza: Soru 1. 2. 3. 4. 5. 6. 7. 8. Toplam Puanlama 20 20 20 20 20 20 20 20 100 Alınan Puan 405024142006.1 CEBİRSEL TOPOLOJİ ARASINAVI CEVAP ANAHTARI (ÖRGÜN ÖĞRETİM) Not: Süre 90

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

FONKSĠYON DĠZĠLERĠNĠN ĠDEAL Eġ YAKINSAKLIĞI. Samet BEKAR

FONKSĠYON DĠZĠLERĠNĠN ĠDEAL Eġ YAKINSAKLIĞI. Samet BEKAR T.C. ORDU ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ FONKSĠYON DĠZĠLERĠNĠN ĠDEAL Eġ YAKNSAKLĞ Samet BEKAR YÜKSEK LĠSANS ORDU 2018 ÖZET FONKSİYON DİZİLERİNİN İDEAL EŞ YAKNSAKLĞ Samet BEKAR Ordu Üniversitesi

Detaylı

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz.

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz. Bölüm 3 Gruplar Bu bölümde ilk olarak bir küme üzerinde tanımlı işlem kavramını ele alıp işlemlerin bazı özelliklerini inceleyeceğiz. Daha sonra kümeler ve üzerinde tanımlı işlemlerden oluşan cebirsel

Detaylı

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c 0. Küme Cebri Bu bölümde verilen keyfikümeler üzerinde birleşim, kesişim, fark, tümleyen,...gibi özellikleri sağlayan eşitliklerle ilgilenceğiz. İlk olarak De Morgan kurallarıdiye bilinen bir Teoremi ifade

Detaylı

Ders 9: Bézout teoremi

Ders 9: Bézout teoremi Ders 9: Bézout teoremi Konikler doğrularla en fazla iki noktada kesişir. Şimdi iki koniğin kaç noktada kesiştiğini saptayalım. Bunu, çok kolay gözlemlerle başlayıp temel ve ünlü Bézout teoremini kanıtlayarak

Detaylı

1 BAĞINTILAR VE FONKSİYONLAR

1 BAĞINTILAR VE FONKSİYONLAR 1 BAĞINTILAR VE FONKSİYONLAR Bu bölümde ilk olarak Matematikte çok önemli bir yere sahip olan Bağıntı kavramnı verip daha sonra ise Fonksiyon tanımı verip genel özelliklerini inceleyeceğiz. Tanım 1 A B

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri   Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir.

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir. 2. SİMETRİK GRUPLAR Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir. Tanım 2.2. X boş olmayan bir küme olsun. S X ile X den X e tüm birebir örten fonksiyonlar

Detaylı

Kuantum Grupları. Orta Doğu Teknik Üniversitesi, Ankara. Münevver Çelik. Feza Gürsey Enstitüsü, İstanbul 10 Şubat, 2010

Kuantum Grupları. Orta Doğu Teknik Üniversitesi, Ankara. Münevver Çelik. Feza Gürsey Enstitüsü, İstanbul 10 Şubat, 2010 Orta Doğu Teknik Üniversitesi, Ankara Feza Gürsey Enstitüsü, İstanbul 10 Şubat, 2010 Kuantum grubu örgülü bir Hopf cebridir. Cebir Tanım Bir k-vektör uzayı A için, µ : A A A ve η : k A birer k-doğrusal

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır. 1. GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir., ) cebirsel 1) a b cg,, için a( bc) ( ab) c (Birleşme özelliği)

Detaylı

Normal Alt Gruplar ve Bölüm Grupları...37

Normal Alt Gruplar ve Bölüm Grupları...37 İÇİNDEKİLER Ön Söz...2 Gruplar...3 Alt Gruplar...9 Simetrik Gruplar...13 Devirli Alt Gruplar...23 Sol ve Sağ Yan Kümeler (Kosetler)...32 Normal Alt Gruplar ve Bölüm Grupları...37 Grup Homomorfizmaları...41

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Kombinatoryal Olasılık 5. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Olaylar ve Olasılıklar Kombinatoryal Olasılık Olaylar

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri Ders izlence Formu Dersin Kodu ve İsmi Dersin Sorumlusu Dersin Düzeyi MAT407 REEL ANALİZ Prof. Dr. Ertan İBİKLİ ve

Detaylı

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 206 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 1 Fonksiyonlar Yük. Müh. Köksal GÜNDOĞDU 2 Fonksiyonlar Tanım: A ve B boş olmayan kümeler. A dan B ye bir f fonksiyonu f: A B ile gösterilir ve A nın her

Detaylı

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n, DİZİLER Tamamen belirli bir kurala göre sıralanmış sayılar topluluğuna veya kümeye Dizi denir. Belirli bir kurala göre birbiri ardınca gelen bu sayıların her birine dizinin terimi ve hepsine birden dizinin

Detaylı

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE ÖZEL EGE LİSESİ GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE HAZIRLAYAN ÖĞRENCİ: Berk KORKUT DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI 3.33 2. GİRİŞ... 3 3. YÖNTEM 3 4.

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

14.Konu Reel sayılarının topolojisi. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir.

14.Konu Reel sayılarının topolojisi. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir. 14.Konu Reel sayılarının topolojisi 1.Teorem: cismi tamdır. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir. 2.Tanım: ve verilsin. nın her komşuluğunda

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 Operatörler 5 Bibliography 19 Index 23 1 Operatörler İşlemler 1.1 Operatör Nedir? İlkokulden

Detaylı

Normal Altgruplar ve Bölüm Grupları

Normal Altgruplar ve Bölüm Grupları Bölüm 9 Normal Altgruplar ve Bölüm Grupları Bu bölümde verilen bir grupta belirli bir altgrubun sol ve sağ kosetlerinin birbirine eşit olması durumu ele alınacaktır. Bu durumda söz konusu altgruba normal

Detaylı

için Örnek 7.1. simetri grubunu göz önüne alalım. Şu halde dür. Şimdi kalan sınıflarını göz önüne alalım. Eğer ve olarak alırsak işlemini kullanarak

için Örnek 7.1. simetri grubunu göz önüne alalım. Şu halde dür. Şimdi kalan sınıflarını göz önüne alalım. Eğer ve olarak alırsak işlemini kullanarak 7. Bölüm Grupları olmak üzere grubunu nasıl inşa ettiğimizi hatırlayalım. grubunun alt grubu grubu tüm olacak şekilde tüm sınıflardan oluşmuştur. Sınıfların toplamını ile, yani ile tanımlamıştık. Şimdi

Detaylı

3 Altuzaylar, altuzaylar için toplama ve direkt toplama 4 Span, lineer bağımsızlık, taban

3 Altuzaylar, altuzaylar için toplama ve direkt toplama 4 Span, lineer bağımsızlık, taban Konular Hafta İşlenen Konular 1 Karmaşık sayılar 2 Vektör uzayı tanımı, vektör uzayı özellikleri 3 Altuzaylar, altuzaylar için toplama ve direkt toplama 4 Span, lineer bağımsızlık, taban 5 Boyut, lineer

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

B Ö L Ü M. ve kitaplar yayınlamış olan bir bilim adamıdır. 2 JULIUS WILHELM RICHARD DEDEKIND ( ), Gauss un öğrencilerinden biridir.

B Ö L Ü M. ve kitaplar yayınlamış olan bir bilim adamıdır. 2 JULIUS WILHELM RICHARD DEDEKIND ( ), Gauss un öğrencilerinden biridir. B Ö L Ü M 2 DOĞAL SAYILAR En basit ve temel sayılar doğal sayılardır, sayı kelimesine anlam veren saymak eylemi bu sayılarla başlamıştır. Fakat insanoğlunun var oluşundan beri kullanılan bu sayıların açık

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Osman UYAR EVRENSEL GROBNER BAZININ VARLIĞININ BİR TOPOLOJİK İSPATI MATEMATİK ANABİLİM DALI ADANA, 2013 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

3. Ders. Mahir Bilen Can. Mayıs 11, Önceki Dersteki Sorular ile İlgili Açıklamalar

3. Ders. Mahir Bilen Can. Mayıs 11, Önceki Dersteki Sorular ile İlgili Açıklamalar 3. Ders Mahir Bilen Can Mayıs 11, 2016 1 Önceki Dersteki Sorular ile İlgili Açıklamalar Lie nin üçüncü teoremi oarak bilinen ve Cartan tarafından asağıdaki gibi güçlendirilmiş bir teorem ile başlayalım:

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 Denklik Bağıntıları 5 Bibliography 13 1 Denklik Bağıntıları 1 1denklik 1.1 Eşitlik Günlük

Detaylı

ab H bulunur. Şu halde önceki önermenin i) koşulu da sağlanır ve H G bulunur.

ab H bulunur. Şu halde önceki önermenin i) koşulu da sağlanır ve H G bulunur. 3.ALT GRUPLAR HG, Tanım 3.. (G, ) bir grup ve nin boş olmayan bir alt kümesi olsun. Eğer (H, ) bir grup ise H ye G nin bir alt grubu denir ve H G ile gösterilir. Not 3.. a)(h, ), (G, ) grubunun alt grubu

Detaylı

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde

Detaylı

SORU 1: En az iki elemana sahip bir X kümesi ile bunun P (X) kuvvet. kümesi veriliyor. P (X) üzerinde 0 ; A = 1 ; A

SORU 1: En az iki elemana sahip bir X kümesi ile bunun P (X) kuvvet. kümesi veriliyor. P (X) üzerinde 0 ; A = 1 ; A 2.2 Ölçüler SORU 1: En az iki elemana sahip bir X kümesi ile bunun P (X kuvvet kümesi veriliyor. P (X üzerinde 0 ; A (A : 1 ; A şeklinde tanımlanan dönüşümü ölçü müdür? ÇÖZÜM 1: (i Tanımdan ( 0. (ii A

Detaylı

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir.

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir. 2. SİMETRİK GRUPLAR Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir. Tanım 2.2. boş olmayan bir küme olsun. ile den üzerine bire-bir fonksiyonlar kümesini

Detaylı

10. Ders. Mahir Bilen Can. Mayıs 20, Yarıbasit bir Lie cebirinin yapısını analiz etmeye devam ediyoruz. hatırlayınız:

10. Ders. Mahir Bilen Can. Mayıs 20, Yarıbasit bir Lie cebirinin yapısını analiz etmeye devam ediyoruz. hatırlayınız: 10. Ders Mahir Bilen Can Mayıs 20, 2016 1 Yarıbasit Bir Lie Cebirinin Yapısı Hakkında Yarıbasit bir Lie cebirinin yapısını analiz etmeye devam ediyoruz. hatırlayınız: Kök uzay ayrışımını g = h χ Φ g χ.

Detaylı

7. BAZI MATEMATİKSEL TEMELLER:

7. BAZI MATEMATİKSEL TEMELLER: 7. BAZI MATEMATİKSEL TEMELLER: Bilindiği üzere, matematikte ortaya konan her yeni kavram, kendinden önceki tanımlanmış kavramlar cinsinden, herhangi bir tereddüt veya muğlâklığa mahal bırakmayacak resmî

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Lineer Cebir Ünite 6. 7. 8. 9. 10 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

SORU 1: Herbir A R kümesi için A G ve λ (A) = λ (G) olacak şekilde. ÇÖZÜM 1: B sayılabilir bir küme olsun. Bu durumda λ (B) = 0 gerçeklenir.

SORU 1: Herbir A R kümesi için A G ve λ (A) = λ (G) olacak şekilde. ÇÖZÜM 1: B sayılabilir bir küme olsun. Bu durumda λ (B) = 0 gerçeklenir. 2.4 Lebesgue Dış Ölçüsü ve Lebesgue Ölçüsü SORU : Herbir A R kümesi için A G ve λ (A) = λ (G) olacak şekilde G R kümesinin varlığınıgösteriniz? ÇÖZÜM : B sayılabilir bir küme olsun. Bu durumda λ (B) =

Detaylı

Lecture 2. Mahir Bilen Can. Mayıs 10, 2016

Lecture 2. Mahir Bilen Can. Mayıs 10, 2016 Lecture 2 Mahir Bilen Can Mayıs 10, 2016 1 Klasik Lie Cebirleri Klasik Lie cebirlerinin hepsi içinde son derece büyük öneme sahip dört sonsuz aile vardır. Bunlar A, B, C, D harfleri ile indekslenmekte

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

1956 da... Ali Nesin

1956 da... Ali Nesin 1956 da... Ali Nesin Nesin Yayıncılık Ltd. Şti. künye... Ali Nesin Analiz IV İçindekiler Üçüncü Basıma Önsöz.......................... 1 İkinci Basıma Önsöz........................... 1 Önsöz...................................

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

1956 da... Ali Nesin

1956 da... Ali Nesin 1956 da... Ali Nesin Nesin Yayıncılık Ltd. Şti. künye... Ali Nesin Aksiyomatik Kümeler Kuramı İçindekiler Önsöz................................... 1 I Sıralamalar 3 1 Sıralama 5 1.1 Daha Matematiksel

Detaylı

MAT 302 SOYUT CEBİR II SORULAR. (b) = ise =

MAT 302 SOYUT CEBİR II SORULAR. (b) = ise = MAT 302 SOYUT CEBİR II SORULAR 1. : bir dönüşüm, olsunlar. a) ( ) = ( ) ( ) b) ( ) ( ) ( ) olduğunu c) ( ) nin eşitliğinin sağlanması için gerekli ve yeterli bir koşulun nin 1 1 olması ile mümkün olduğunu

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 Kümeler Cebiri 5 1 Kümeler Cebiri 1 Doğa olaylarının ya da sosyal olayların açıklanması için,

Detaylı

Geçen bölümde, Zorn Önsav varsay larak yis ralama Teoremi

Geçen bölümde, Zorn Önsav varsay larak yis ralama Teoremi 25. Hausdorff Zincir Teoremi ve Zorn Önsav n n Kan t Tolga Karayayla Geçen bölümde, Zorn Önsav varsay larak yis ralama Teoremi ve yis ralama Teoremi varsay larak Seçim Aksiyomu kan tland. Bu bölümde önce

Detaylı