ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ"

Transkript

1 İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI

2 Yorumlama süreci Tahmiler ve testler Populasyo Örek İstatistikleri (, ps) Örek

3 Örek Tipleri Örek Tipi Olasılık Dışı Olasılık Basit Şas Sistematik Tabakalı Kümeli Yargı Kota Kitle 3

4 Niçi Örek? Aakütle parametrelerii örek değerleri(örek istatistikleri) yardımıyla tahmi edilmesie imka sağlamak moder istatistiği öemli bir görevidir. Aakütlei tamamı icelemez. Aakütlede bir şas öreği alıır. Elde edile örek değerlerii aakütle parametresi yerie kullaılması içi iki şart vardır: a. Örek şas öreği olmalı. Aakütledeki her birimi öreğe girme şası eşit olmalı b. Örek yeterice büyük olmalı 4

5 Örekleme; İadeli örekleme:çekile birimi aakütleye tekrar iade edilmesidir. İadesiz örekleme:çekile birim aakütleye iade edilmez. Bir aakütlede alıa şas öreklerii her birisi içi örek istatistikleri hesapladığıda örekleme dağılımları ortaya çıkar: Bir öreği ortalaması hesaplamışsa elde edile dağılımı ortalamaları örekleme dağılımı, i Her örek içi p oraları hesapladığıda oraları örek dağılımı elde edilir. 5

6 İki ayrı aakütlei karşılaştırılması yapılıyorsa farklarla ilgili örekleme dağılımı ortaya çıkar: Her iki aakütlede alıa A ve B büyüklüğüdeki örekleri ortalamaları hesaplamış ve bu A ve B değerleri arasıdaki farklar belirlemişse elde edile dağılım ortalamalar arası farkları örekleme dağılımıdır. Aakütlelerde alıa örekler içi oralar hesaplamış ve bu oraları aakütleler itibariyle gösterdikleri farklılıklar ortaya koulmuşsa elde edile dağılım oralar arası farkları örekleme dağılımıdır. 6

7 Bir populasyo parametresii tahmilemek içi şas değişkeleri kullaılır: Örek ortalaması, örek oraı, örek medyaı Örek hacmi arttıkça ( 30)... Merkezi Limit Teoremi Örekleme dağılışı ormal dağılıma yaklaşır. 7

8 ORTALAMALARIN ÖRNEKLEME DAĞILIMI Ortalamaları örekleme dağılımı aakütle ortalamasıı iyi bir tahmicisidir. Her biri hacimli çok sayıda öreğe ait ortalamaları gösterdiği dağımı değişkeliği tek öreği değişkeliğide daha azdır. Stadart sapma bir öreği değişkeliği hakkıda bilgi verirke, Ortalamaları örekleme dağılımıı değişkeliği stadart hatayla gösterilir. 8

9 Aşırı değerleri etkisii öemli ölçüde yok edilmesi, ortalamaları örekleme dağılımıı değişkeliğii azaltıcı bir faktördür. Aa kütle stadart sapması bilidiğide stadart hata x x eşitliğiyle hesaplaır. Stadart z değerleri Z x formulüyle hesaplaır. Ortalamaları örekleme dağılımıda x x yerii alır. x x 9

10 Herhagi bir Z değerii stadart Z değerie döüştürmeside x Z x x eşitliği kullaılır. Örekleme dağılımı Stadart ormal dağılım z = Z = 0 Z 0

11 Normal populasyoda örekleme Merkezi eğilim Yayılım yerie koyarak örekleme = 4 = 5 Populasyo dağılımı 50 = 0 Örekleme dağılımı =6 =.5 50

12 Alıştırma Türk telekomda çalışa bir operatörsüüz. Uzu mesafeli telefo görüşmeleri = 8 dk. & = dk. İle ormal dağılmakta. Eğer 5 aramalık örekler seçerseiz örek ortalamalarıı % kaçı 7.8 & 8. dk. arasıda olacaktır?

13 Çözüm Z Örekleme dağılımı =.4 Z Stadart ormal dağılım Z = Z 3

14 ORANLARIN ÖRNEKLEME DAĞILIMI Oraları örek dağılımıı ortalaması aakütle oraıa eşittir. P P Z P P P p P ÖRNEK: Büyük bir alışveriş merkezide 5000 YTL de fazla alışveriş yapa müşterileri %30 uu kredi kartı kulladığı tespit edilmiştir YTL de fazla alışveriş yapa 00 müşteri içi oraları öreklem dağılımıı stadart hatası edir? P P P

15 ORANLARIN ÖRNEKLEME DAĞILIMI Ayı örek içi 5000 YTL de fazla alışveriş yapa 00 müşteride %0 ile %5 ii kredi kartı kullaması ihtimalii hesaplayıız. p P p P Z.09 P P 0.30( 0.30) P P 0.30( 0.30) Z P(0.0 P 0.5) P(.8 Z.09) P(0.0 P 0.5)

16 ORTALAMALAR ARASI FARKLARIN ÖRNEKLEME DAĞILIMI Ortalamalar arası farkı örek dağılımıı ortalaması μ μ ve stadart hatası da - ile gösterilir. Z 6

17 ORTALAMALAR ARASI FARKLARIN ÖRNEKLEME DAĞILIMI Örek: İki farklı u fabrikasıda paketlee stadart kg lık u paketleri test edilmiş ve birici fabrikada alıa 00 paketi ortalaması.03 kg, stadart sapması 0.04kg; ikici fabrikada alıa 0 paketi ortalaması 0.99 kg, stadart sapması 0.05 kg bulumuştur. Aakütle stadart sapmaları bilimediği içi örek stadart sapmalarıda hareketle ortalamalar arası farkı stadart hatası, s s (0.04) (0.05) = 00 0 =

18 ORANLAR ARASI FARKLARIN ÖRNEKLEME DAĞILIMI Oralar arası farkı örek dağılımıı ortalaması P P ve stadart hatası da - ile gösterilir. P P P P P P Z p p P P P P P P 8

19 ORANLAR ARASI FARKLARIN ÖRNEKLEME DAĞILIMI Örek: Birici fabrikadaki kusurlu mamul oraıı 0.08 ve ikici fabrikadaki kusurlu mamul oraıı 0.05 olduğu bilimektedir. Tesadüfi olarak birici fabrikada 00, ikici fabrikada 50 mamul seçilmiş ve birici örekteki kusurlu mamul oraı 0.09, ikici örekteki kusurlu mamul oraı 0.06 olarak gözlemiştir. Bua göre kusur oraları arasıdaki farkı stadart hatası: P P P P P P P P P P

20 İstatistiksel metotlar İstatistiksel metotlar Taımlayıcı istatistikler Yorumlayıcı istatistikler Tahmileme Hipotez Testi 0

21 Yorumlayıcı İstatistikler Aralık tahmileme ve hipotez testlerii içerir. Amacı populasyo karakteristikleri hakkıda karar vermektir. Populasyo?

22 Tahmi süreci Populasyo Ortalama,, bilimiyor Şas öreği Ortalama = 50 %95 emiim ki,, 40 ile 60 arasıdadır.

23 Bilimeye populasyo parametreleri tahmileir... Ortalama Populasyo parametresii Örek istatistiğiyle Tahmile! Ora P p Varyas s Farklar 3

24 P() Tahmileyicileri Özellikleri Sapmasız A. Sapmasızlık Sapmalı B N birimlik ayı aakütlede farklı sayıda öreklem seçilebileceği içi tahmi edicii değeri de seçile örekleme göre değişmektedir. Bu durumda öreklem sayısı kadar elde edile tahmi edici, bir rassal değişke olup, ortalaması ve varyası ola bir olasılık dağılımıa sahiptir. Bu dağılımı beklee değerii aakütle parametresie eşit olmasıa, diğer bir ifadeyle bir istatistiği beklee değeri ile bilimeye aakütle parametresi arasıdaki farkı sıfıra eşit olmasıa sapmasızlık deir. E() E() 0 4

25 Tahmileyicileri Özellikleri. Tutarlılık (Kararlılık) P() Büyük örek hacmi A B Küçük örek hacmi Öreklemdeki birim sayısı sosuza doğru arttırıldığıda, tahmi edicii değerii aakütle değerie yaklaşması ve =N olması durumuda aralarıdaki farkı sıfıra imesi özelliğie tutarlılık deir. lim P ˆ, ı tutarlı tahmicisidir. 5

26 3. Etkilik P() Tahmileyicileri Özellikleri A B Etki Tahmici Birde fazla sapmasız ve tutarlı tahmici olması durumuda, bir tahmicii varyasıı, ayı aakütle parametresii başka bir tahmicisii varyasıda daha küçük olması durumuda elde edile tahmicilere etki tahmici adı verilmektedir. 6

27 İstatistiksel Tahmileme Nokta Tahmii Populasyo parametresii tek bir tahmi değerii verir s p σˆ Pˆ μˆ Aralık Tahmii Populasyo parametresii tahmi aralığıı verir. Nokta tahmii kullaılarak hesaplaır μ σ P

28 Bir değer aralığı verir. Güve Aralığı Tahmii Populasyo parametresie yakılık hakkıda bilgi verir. Olasılık terimleriyle ifade edilir. Güve Aralığı Tahmiii Elemaları Populasyo parametresii aralık içide bir yere düşmesii olasılığı Örek istatistiği Güve aralığı Alt güve sıırı 8 Üst güve sıırı 8

29 Güve aralığı Z Z _ x Örekleri 90% Örekleri 95% Örekleri 99% 9

30 Güve Seviyesi Bilimeye populasyo parametresii aralık içie düşme olasılığıdır. %( - güve seviyesi : Parametrei aralık içide olmaması olasılığıdır. Tipik değerler %99, %95, %90 30

31 Aralıklar ve güve seviyesi Ortalamaı örekleme dağılımı aralık / Z ' da Z ' a kadaruzair - / x = _ x Çok sayıda aralık _ Aralıkları %( - ) ı yü kapsar. % sı kapsamaz. 3

32 Aralık geişliğii etkileye faktörler Verileri yayılımı ( Örek hacmi = / Güve seviyesi ( - ) Aralık Z 'da 'yauzair. Z T/Maker Co. 3

33 33 Populasyo ortalamasıı güve aralığıı hesaplaması x x x x Z Z Hata Hata Z yada Hata Hata (5) (4) (3) () () Parametre= istatistik ±hata

34 Güve Aralığı Tahmileri Güve Aralıkları Ortalama Ora Varyas biliiyor 30 bilimiyor <30 Z dağılımı t dağılımı 34

35 ORTALAMALAR İÇİN GÜVEN ARALIĞI P z z _ x Örekleri 90% Örekleri 95% Örekleri 99% 35

36 ORTALAMALAR İÇİN GÜVEN ARALIĞI Örek: Bir fabrikada üretile 00 mamulü ortalama ağırlığı 040 gr stadart sapması 5 gr bulumuştur. Bu imalat proseside üretile mamulleri ortalama ağırlığı %95 güvele hagi aralıktadır? %95 içi z değeri ± /=0.05/=0.05 z=-.96 = 0 z=.96 Z 36

37 ORTALAMALAR İÇİN GÜVEN ARALIĞI P z z 5 5 P P

38 Örek = 5 hacimli bir şas öreğii ortalaması = 50 dir. Populasyou stadart sapmasıı = 0 olduğu bilidiğie göre içi 95% lik güve aralığıı oluşturuuz x x P( Zα/ μ Z α/ ) α P( )= P( )=

39 Populasyou St.Sapması Bilimediğide ve 30 Olduğuda Ortalama İçi Güve Aralığı. Varsayımlar: POPULASYONUN stadart sapması bilimiyor Populasyo Normal dağılımlıdır.. Merkezi limit teoremi kullaılarak Z Dağılımı kullaılır. 3. Güve aralığı tahmii: Öreği st.sapması S x x P( Zα/ μ Z α/ ) α S 39

40 Populasyo st.sapması bilimediğide ve 30 olduğuda ortalama içi güve aralığı öreği Bir ampul şirketi yei bir ampul geliştirerek piyasaya sürüyor. Üretim badıda 00 taesi rassal olarak seçiliyor ve buları stadart sapması 40 saat, kulaım süreleri de ortalama olarak 80 saat buluuyor. =0.05 içi populasyo ortalamasıı güve aralığıı buluuz. Sx Sx P( Zα/ μ Zα/ ) α P( )= P( ) 0.95 Yorum: Şirketi ürettiği ampulleri ortalama ömrü, 0.95 olasılıkla 5.56 ile saat arasıdadır. 40

41 Bir Oraı Güve Aralığı. Varsayımları İki kategorik çıktı vardır. Populasyo Biom dağılımı gösterir.. Güve aralığı tahmii: P( pˆ pˆ pˆ Z.S P pˆ Z.S ) α/ α/ α pˆ x Özellikli birim sayısı Örek hacmi S p ˆ pˆ. qˆ 4

42 ÖRNEK: Bir Oraı Güve Aralığı 400 lise öğreciside oluşa bir örekte 3 öğreci üiversite sıavıı kazamıştır. Üiversite öğrecilerii sıavı kazama oraı içi %95 lik güve aralığıı buluuz. pˆ P( pˆ pˆ pˆ Zα/.S P pˆ Zα/.S ) α P P P P

43 43 İki Ortalamaı Farkı İçi Güve Aralığı Populasyo Varyasları Biliiyorsa: Z Z P / / α S S Z μ μ S S Z P α/, α/, Populasyo Varyasları Bilimiyor fakat > 30 olduğuda:

44 Populasyo st.sapması bilimediğide ve >30 olduğuda iki ortalama farkı içi güve aralığı öreği Bir yabacı dil kursuu A sııfıda bilgisayar destekli ve B sııfıda klasik yötemlerle eğitim verilmektedir. Kursu başlagıcıda 6 hafta sora her iki sııfa da ayı test uygulaarak souçlar karşılaştırılmıştır. A sııfıda rassal olarak seçile 40 öğrecii test soucuda elde ettiği ortalama başarı otu 86 ve stadart sapması, B sııfıda rassal olarak seçile 35 öğrecii ortalama başarı otu 7 ve stadart sapması 4 tür. Her iki sııftaki öğrecileri ortalama başarı otları arasıdaki farkı güve aralığıı %99 olasılıkla belirleyiiz. 86 S 40 7 S

45 Populasyo st.sapması bilimediğide ve >30 olduğuda iki ortalama farkı içi güve aralığı öreği 86 S 40 7 S 4 35 P P S S S S α/, α/, Z μ μ Z α μ μ μ μ P 45

46 İki Ora Farkıı Güve Aralığı. Varsayımları İki kategorik çıktı vardır. Populasyolar Biom dağılımı gösterir.. Güve aralığı tahmii: pˆ pˆ Z S P P pˆ pˆ Z S Pr α/ pˆ pˆ α/ pˆ pˆ S pˆ pˆ pˆ.ˆ q pˆ.ˆ q İki ora farkıı stadart sapması 46

47 İki Ora Farkıı Güve Aralığıa Örek İki farklı ilacı bir hastalığı tedavi etme oralarıı farklı olup olmadığı kotrol edilmek istemektedir. Bu amaçla 000 er adet hasta üzeride A ve B ilaçları deesi. Tedavi souda A ve B ilaçlarıı uyguladığı hastaları sırasıyla 85 ve 760 ıı iyileştiği gözlediğie göre ilaçları hastalığı tedavi etme oralarıı farkıı %95 lik güve aralığıı buluuz = 000, = 000 pˆ 0,85 ˆ p 0, S pˆ pˆ pˆ.qˆ pˆ.qˆ 0.85.( 0.85) ( 0.760)

48 İki Ora Farkıı Güve Aralığıa Örek pˆ pˆ Z S P P pˆ pˆ Z S Pr α/ pˆ pˆ α/ pˆ pˆ P P r 0.09 P P Pr 48

49 STANDART SAPMA İÇİN GÜVEN ARALIĞI Örek stadart sapması s,aakütle stadart sapması ı okta tahmiidir. Nokta tahmiide hareketle aakütle stadart sapmasıı güve aralığı, s s Z s Z s / - / Z Z s Z s s Z s s 49

50 Stadart Sapmalar içi Güve Aralığıa Örek Bir makiada, bir hafta içerside yapıla 00 bilyeli yatağı çapları ölçülmüş ve ortalama.09 cm, stadart sapma ise 0. cm bulumuştur. Bütü bilyeli yatakları çaplarıa ait stadart sapmaı güve sıırlarıı buluuz. = s (00) (

İstatistiksel Tahminleme. Güven Seviyesi. Verilerin yayılımı ( Örnek hacmi X = X / n Güven seviyesi (1 - )

İstatistiksel Tahminleme. Güven Seviyesi. Verilerin yayılımı ( Örnek hacmi X = X / n Güven seviyesi (1 - ) 04.05.0 İtatitikel Tahmileme İTATİTİKEL TAHMİNLEME VE YORUMLAMA ÜRECİ GÜVEN ARALIĞI Nokta Tahmii Populayo parametreii tek bir tahmi değerii verir μˆ σˆ p Pˆ Aralık Tahmii Populayo parametreii tahmi aralığıı

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin

4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin 4/16/013 Ders 9: Kitle Ortalaması ve Varyası içi Tahmi Kitle ve Öreklem Öreklem Dağılımı Nokta Tahmii Tahmi Edicileri Özellikleri Kitle ortalaması içi Aralık Tahmii Kitle Stadart Sapması içi Aralık Tahmii

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ 1 TEMEL KAVRAMLAR PARAMETRE: Populasyou sayısal açıklayıcı bir ölçüsüdür ve aakütledeki tüm elemalar dikkate alıarak hesaplaabilir. Aakütledeki tek bir elema dahi işlemi

Detaylı

İSTATİSTİKSEL TAHMİN. Prof. Dr. Levent ŞENYAY VIII - 1 İSTATİSTİK II

İSTATİSTİKSEL TAHMİN. Prof. Dr. Levent ŞENYAY VIII - 1 İSTATİSTİK II 8 İSTATİSTİKSEL TAHMİN 8.. İstatistiksel tahmileyiciler 8.. Tahmileyicileri Öellikleri 8... Sapmasılık 8... Miimum Varyaslılık 8..3. Etkilik 8.3. Aralık Tahmii 8.4. Tchebysheff teoremi Prof. Dr. Levet

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ TEMEL KAVRAMLAR PARAMETRE: Populasyou sayısal açıklayıcı bir ölçüsüdür ve aakütledeki tüm elemalar dikkate alıarak hesaplaabilir. Aakütledeki tek bir elema dahi işlemi

Detaylı

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı) 3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda

Detaylı

İSTATİSTİK TAHMİN TEORİSİ

İSTATİSTİK TAHMİN TEORİSİ İSTATİSTİK TAHMİN TEORİSİ Yrd. Doç. Dr. Bület İ. GONCALOĞLU Geellikle iki tür tahmide yararlaılmakta Nokta tahmii (Tek değer tahmii) Aa kitle parametreleri bilimediği hallerde öreklerde elde edilmiş değerlerde

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

ˆp x p p(1 p)/n. Ancak anakütle oranı p bilinmediğinden bu ilişki doğrudan kullanılamaz.

ˆp x p p(1 p)/n. Ancak anakütle oranı p bilinmediğinden bu ilişki doğrudan kullanılamaz. YTÜ-İktisat İstatistik II Aralık Tahmii II 1 ANAKÜTLE ORANININ (p GÜVEN ARALIKLARI (BÜYÜK ÖRNEKLEMLERDE Her birii başarı olasılığı p ola birbiride bağımsız Beroulli deemeside öreklemdeki başarı oraıı ˆp

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testlerine Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testlerine Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK İstatistiksel Tahmileme ve Hipotez Testlerie Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üiversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre

Detaylı

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise YTÜ-İktisat İstatistik II Örekleme ve Öreklem Dağılımları BASİT RASSAL ÖRNEKLEME N tae ese arasıda taelik bir öreklem seçilmesii istediğii düşüelim. eseli olaaklı her öreklemi seçilme şasıı eşit kıla seçim

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

NİÇİN ÖRNEKLEME YAPILIR?

NİÇİN ÖRNEKLEME YAPILIR? İÇİ ÖREKEME YAPIIR? Zama Kısıdı Maliyeti Azaltma Hata Oraıı Azaltma Souca Ulaşma Hızı Doç.Dr. Ali Kemal ŞEHİRİOĞU Araş.Gör. Efe SARIBAY Örekleme Teorisi kousuu içide, Örekleme Tipleri populasyoda örek

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

ÖRNEKLEME VE ÖRNEKLEME DAĞILIŞLARI

ÖRNEKLEME VE ÖRNEKLEME DAĞILIŞLARI 7 ÖRNEKLEME VE ÖRNEKLEME DAĞILIŞLARI 7.. Niçi Örekleme Yapılır 7.. Olasılıklı Örekleme 7... Basit Şas Öreklemesi 7... Tabakalı Örekleme 7... Küme Öreklemesi 7..4. Sistematik Örekleme 7.. Olasılıklı Olmaya

Detaylı

x 2$, X nın bir tahminidir. Bu durumda x ile X arasındaki farka bu örnek için örnekleme hatası x nın örnekleme hatasıdır. X = x - (örnekleme hatası)

x 2$, X nın bir tahminidir. Bu durumda x ile X arasındaki farka bu örnek için örnekleme hatası x nın örnekleme hatasıdır. X = x - (örnekleme hatası) 4 ÖRNEKLEME HATASI 4.1 Duyarlılık 4. Güveilirik 4.3 Örek hacmi ve uyarlılık arasıaki ilişki 4.4 Örek hacmi ve göreceli terimler ile uyarlılık arasıaki ilişki 4.5 Hata kareler ortalaması Örekte ele eile

Detaylı

AKT202 MATEMATİKSEL İSTATİSTİK II ÖDEV 2 ÇÖZÜMLERİ. için gerekli en küçük örneklem büyüklüğünü Neyman-Pearson teoremi yardımıyla saptayınız.

AKT202 MATEMATİKSEL İSTATİSTİK II ÖDEV 2 ÇÖZÜMLERİ. için gerekli en küçük örneklem büyüklüğünü Neyman-Pearson teoremi yardımıyla saptayınız. AKT0 MATEMATİKSEL İSTATİSTİK II ÖDEV ÇÖZÜMLERİ 1. σ = 4 varyası ile ormal dağılıma sahip bir kitlede büyüklüğüde bir rasgele öreklem seçilsi. H 0 : μ = 14 ve H s : μ = 16 hipotezleri içi 1. tür hata α

Detaylı

İstatistik Ders Notları 2018 Cenap Erdemir BÖLÜM 5 ÖRNEKLME DAĞILIMLARI. 5.1 Giriş

İstatistik Ders Notları 2018 Cenap Erdemir BÖLÜM 5 ÖRNEKLME DAĞILIMLARI. 5.1 Giriş İstatistik Ders Notları 08 Ceap Erdemir BÖLÜM 5 ÖRNEKLME DAĞILIMLARI 5. Giriş Öreklem istatistikleri kullaılarak kitle parametreleri hakkıda çıkarsamalar yapmak istatistik yötemleri öemli bir bölümüü oluşturur.gülük

Detaylı

: Boş hipotez, sıfır hipotezi : Alternatif hipotez

: Boş hipotez, sıfır hipotezi : Alternatif hipotez İOTEZ TESTLERİ iotez Nedir? İOTEZ, arametre hakkıdaki bir iaıştır. arametre hakkıdaki iaışı test etmek içi hiotez testi yaılır. iotez testleri sayeside örekde elde edile istatistikler aracılığıyla aakütle

Detaylı

Yrd.Doç.Dr.İstem Köymen KESER

Yrd.Doç.Dr.İstem Köymen KESER Yr.Doç.Dr.İstem Köyme KESER Güve Aralıkları Ortalama yaa iki ortalama farkı içi biliiyor bilimiyor 30

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

4/4/2013. Ders 8: Verilerin Düzenlenmesi ve Analizi. Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler

4/4/2013. Ders 8: Verilerin Düzenlenmesi ve Analizi. Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler Ders 8: Verileri Düzelemesi ve Aalizi Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler Bir kitlei tamamıı, ya da kitlede alıa bir öreklemi özetlemekle (betimlemekle)

Detaylı

İSTATİSTİKSEL HİPOTEZ TESTLERİ (t z testleri)

İSTATİSTİKSEL HİPOTEZ TESTLERİ (t z testleri) İSTATİSTİKSEL İOTEZ TESTLERİ (t z testleri) iotez Nedir? İOTEZ, arametre hakkıdaki bir iaıştır. Bu sııfı ot ortalamasıı 75 olduğua iaıyorum. arametre hakkıdaki iaışımızı test etmek içi hiotez testi yaarız.

Detaylı

t Dağılımı ve t testi

t Dağılımı ve t testi t Dağılımı ve t teti Studet t Dağılımı Küçük öreklerde (

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE

İSTATİSTİKSEL TAHMİNLEME VE 1 ölüm maçları İSTTİSTİKSEL THMİLEME VE YORUMLM SÜRECİ ÖREKLEME VE ÖREKLEME DĞILIMLRI u bölümde öğreeceklerz. Örekleme gereksm ve yötemler celemek. Örekleme hatası kavramıı taımlamak Örekleme dağılışı

Detaylı

Hipotez Testleri. Parametrik Testler

Hipotez Testleri. Parametrik Testler Hipotez Testleri Parametrik Testler Hipotez Testide Adımlar Bir araştırma sorusuu belirlemesi Araştırma sorusua dayaa istatistiki hipotezleri oluşturulması (H 0 ve H A ) Hedef populasyoda öreklemi elde

Detaylı

ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ

ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ TEMEL KAVRAMLAR PARAMETRE: Populasyonun sayısal açıklayıcı bir ölçüsüdür ve anakütledeki tüm elemanlar dikkate alınarak hesaplanabilir. Ana kütledeki

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08 1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

EME 3117 SİSTEM SIMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9

EME 3117 SİSTEM SIMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9 ..7 EME 37 Girdi Aalizi Prosedürü SİSTEM SIMÜLASYONU Modelleecek sistemi (prosesi) dokümate et Veri toplamak içi bir pla geliştir Veri topla Verileri grafiksel ve istatistiksel aalizii yap Girdi Aalizi-II

Detaylı

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI ÖRNEKLEME YÖNTEMLERİ Prof. Dr. Ergu Karaağaoğlu H.Ü. Tıp Fakültesi Biyoistatistik ABD ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır. Bu anlamda, anakütleden çekilen

Detaylı

Tahmin teorisinde amaç örneklem (sample) bilgisine dayanarak anakütleye. (population) ilişkin çıkarsamalar yapmaktır. Bu çıkarsamalar örneklem

Tahmin teorisinde amaç örneklem (sample) bilgisine dayanarak anakütleye. (population) ilişkin çıkarsamalar yapmaktır. Bu çıkarsamalar örneklem YTÜ-İktisat İstatistik II Nokta Tahmii 1 Tahmi teoriside amaç öreklem (sample) bilgisie dayaarak aakütleye (populatio) ilişki çıkarsamalar yapmaktır. Bu çıkarsamalar aakütlei dağılımıı belirleye bilimeye

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY Süleyma Demirel Üiversitesi Vizyoer Dergisi Suleyma Demirel Uiversity The Joural of Visioary İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA ÖZET Yrd. Doç. Dr. Halil ÖZDAMAR 1 İstatistiksel kalite kotrol

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

Ders 9: Kitle Ortalaması ve Varyansı için Tahmin

Ders 9: Kitle Ortalaması ve Varyansı için Tahmin Ders 9: Kitle Ortalaması ve Varyansı için Tahmin Kitle ve Örneklem Örneklem Dağılımı Nokta Tahmini Tahmin Edicilerin Özellikleri Kitle ortalaması için Aralık Tahmini Kitle Standart Sapması için Aralık

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

2016 YILI I.DÖNEM AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME. aşağıdaki seçeneklerden hangisinde verilmiştir? n exp 1.

2016 YILI I.DÖNEM AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME. aşağıdaki seçeneklerden hangisinde verilmiştir? n exp 1. 06 YILI I.DÖNEM AKTÜERLİK SINAVLARI Soru Toplam hasar miktarı S i olasılık ürete foksiyou X x i PS ( t) = E( t ) = exp λi( t ) ise P S(0) aşağıdaki seçeeklerde hagiside verilmiştir? A) 0 B) C) exp λ i

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ ÖRNEKLEME TEORİSİ 1 Bir popülasyonu istatistiksel açıdan incelemek ve işlemler yapabilmek için popülasyon içerisinden seçilen örneklemlerden yararlandığımızı söylemiştik. Peki popülasyonun istatistiksel

Detaylı

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkaı : Yrd.Doç.Dr. İsmail YILDIZ ARAŞTIRMADA PLANLAMA VE ÇÖZÜMLEME (03-09 Ocak 014 Y.ÇELİK) Araştırma Süreci (The research

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL İSTATİSTİKSEL TAHMİN Örnekten anakütle parametrelerinin tahmin edilmesidir. İki tür tahminleme yöntemi vardır:

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

ÖRNEKLEME TEORİSİ 1/30

ÖRNEKLEME TEORİSİ 1/30 ÖRNEKLEME TEORİSİ 1/30 NİÇİN ÖRNEKLEME Zaman Kısıdı Maliyeti Azaltma YAPILIR? Hata Oranını Azaltma Sonuca Ulaşma Hızı /30 Örnekleme Teorisi konusunun içinde, populasyondan örnek alınma şekli, örneklerin

Detaylı

AKT201 MATEMATİKSEL İSTATİSTİK I ÖDEV 6 ÇÖZÜMLERİ

AKT201 MATEMATİKSEL İSTATİSTİK I ÖDEV 6 ÇÖZÜMLERİ AKT MATEMATİKSEL İSTATİSTİK I ÖDEV 6 ÇÖZÜMLERİ KESİKLİ RASLANTI DEĞİŞKENLERİ & KESİKLİ DAĞILIMLAR. X aşağıdaki olasılık foksiyoua sahip kesikli bir r.d. olsu. Bua göre;. ; x =.. ; x =. 4. ; x =. 5 p X

Detaylı

İSTATİSTİKSEL FORMÜLLER VE TABLOLAR

İSTATİSTİKSEL FORMÜLLER VE TABLOLAR BAŞKENT ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İSTATİSTİKSEL FORMÜLLER VE TABLOLAR Yayıa Hazırlayalar: Kürşad Demirutku, MS N. Ca Okay, BA Ayşegül Yama F. Efe Kıvaç Bahar Muratoğlu Zuhal Yeiçeri,

Detaylı

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler...

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler... ÜİTE KAVRAMSAL ADIM Sayfa o.... 8 9 İstatistik, Veri ve Grafikler.... 8 Merkezi, Eğilim ve Yayılım Ölçüleri... 8 Açıklık, Çeyrekler Açıklığı........................................................ 8 Varyas

Detaylı

İSTATİSTİK II. Hipotez Testleri 1

İSTATİSTİK II. Hipotez Testleri 1 İSTATİSTİK II Hipotez Testleri 1 1 Hipotez Testleri 1 1. Hipotez Testlerinin Esasları 2. Ortalama ile ilgili bir iddianın testi: Büyük örnekler 3. Ortalama ile ilgili bir iddianın testi: Küçük örnekler

Detaylı

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler 3. Ders Parametre Tahmii Tahmi Edicilerde Araa Özellikler Gerçek düyada rasgelelik olgusu içere bir özellik ile ilgili ölçme işlemie karş l k gele X rasgele de¼gişkeii olas l k (yo¼guluk) foksiyou, F ff(;

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

t Dağılımı ve t testi

t Dağılımı ve t testi r. Mehme Akaraylı ağılımı ve ei oç. r. Mehme AKSARAYLI.E.Ü. İ.İ.B.F. EKONOMETRİ BÖLÜMÜ mehme.akarayli@deu.edu.r Sude ağılımı Küçük öreklerde (

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2014) S-1) Standart normal dağılıma sahip Z değişkeni için aşağıda istenilen olasılıkları hesaplayınız. S-2) 50 müşteriye yeni bir ürün tattırılır.

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 Prof. Dr. Ali ŞEN İki Populasyonun Karşılaştırılması: Eşleştirilmiş Örnekler için Wilcoxon İşaretli Mertebe Testi -BÜYÜK ÖRNEK Bağımsız populasyonlara uygulanan

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık - I Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kes1rim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmak7r. ü Bu anlamda, anakütleden çekilen

Detaylı

HİPOTEZ TESTLERİ VE GÜVEN ARALIKLARI

HİPOTEZ TESTLERİ VE GÜVEN ARALIKLARI 9 İPOTEZ TETLERİ VE GÜVEN ARALIKLARI 9.. İsaisiksel Yorumlama 9... ipoez esii aşamaları 9... Güve Aralığı aşamaları 9.3. Populasyo oralaması ve orai içi büyük örek esleri 9.3.. Populasyo oralaması( ) içi

Detaylı

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2 LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ SABİT NOKTA İTERASYONU YÖNTEMİ Bu yötemde çözüme gitmek içi f( olarak verile deklem =g( şeklie getirilir. Bir başlagıç değeri seçilir ve g ( ardışık

Detaylı

Tek Bir Sistem için Çıktı Analizi

Tek Bir Sistem için Çıktı Analizi Tek Bir Sistem içi Çıktı Aalizi Bezetim ile üretile verile icelemesie Çıktı Aalizi deir. Çıktı Aalizi, bir sistemi performasıı tahmi etmek veya iki veya daha fazla alteratif sistem tasarımıı karşılaştırmaktır.

Detaylı

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer.

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer. SORU : AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI X raslat deikeii olas l k youluk foksiyou 8x, x f(x) = 0, ö.d olarak verilmitir. Bua göre 0< y içi Y = raslat deikeii X olaslk youluk

Detaylı

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2 Açıklama Sorusu : V kayışlar, ayı mekaizma büyüklükleride düz kayışlara göre daha yüksek dödürme mometlerii taşıyabildikleri bilimektedir. V kayışları düz kayışlara göre gözlee bu üstülüğü sebebi "kama

Detaylı

5. Ders Yeterlilik. f(x 1 ; x 2 ; :::; x n ; ) = g (T (x 1 ; x 2 ; :::; x n ); ) h(x 1 ; x 2 ; :::; x n )

5. Ders Yeterlilik. f(x 1 ; x 2 ; :::; x n ; ) = g (T (x 1 ; x 2 ; :::; x n ); ) h(x 1 ; x 2 ; :::; x n ) 5. Ders Yeterlilik Yeterlilik Ilkesi: Bir T(X ; X ; :::; X ) istatisti¼gi, hakk da yeterli bir istatistik olacaksa hakk da herhagi bir souç ç kar m T arac l ¼g ile (X ; X,...,X ) öreklemie ba¼gl olmal

Detaylı

Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I

Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I S1. Cep telefonu üreten bir fabrikada toplam üretimin % 30 u A, % 30 u B ve % 40 ı C makineleri tarafından yapılmaktadır. Bu makinelerin

Detaylı

Hipotez Testi ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 4 Minitab da İstatiksel Çıkarım-I. Hipotez Testi. Hipotez Testi

Hipotez Testi ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 4 Minitab da İstatiksel Çıkarım-I. Hipotez Testi. Hipotez Testi ENM 52 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 4 Minitab da İstatiksel Çıkarım-I (Ortalamalar ve Oranlar İçin ) İstatistiksel Hipotezler İstatistiksel hipotez testi ve parametrelerin güven aralığı tahmini,

Detaylı

NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. HAFTA 1 İST 418 EKONOMETRİ

NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. HAFTA 1 İST 418 EKONOMETRİ NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. KULLANILAN ŞEKİLLERİN VE NOTLARIN TELİF HAKKI KİTABIN YAZARI VE BASIM EVİNE AİTTİR. HAFTA 1 İST 418 EKONOMETRİ Ekoometri: Sözcük

Detaylı

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir.

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. İSTATİSTİKSEL TAHMİNLEME Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. 1 ŞEKİL: Evren uzay-örneklem uzay İstatistiksel tahmin

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 Prof. Dr. Nihal ERGİNEL 2 ÖRNEKLEME Anakütleden n birimlik örnek alınması ve anakütle parametrelerinin örnekten tahmin edilmesidir. 3 ÖRNEKLEME ALMANIN NEDENLERİ Anakütleye

Detaylı

Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar

Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar Ders 2: üme Teorisi, Örek Uzay, Permütasyolar ve ombiasyolar üme avramı üme İşlemleri Deey, Örek Uzay, Örek Nokta ve Olay avramları Örek Noktaları Sayma Permütasyolar ombiasyolar Parçalamalar (Partitio)

Detaylı

4. Ders Fisher informasyonu s f rdan büyük ve sonlu, yani 0 < I() < 1; R f(x; )dx (kesikli da¼g l mlarda R yerine P.

4. Ders Fisher informasyonu s f rdan büyük ve sonlu, yani 0 < I() < 1; R f(x; )dx (kesikli da¼g l mlarda R yerine P. 4. Ders tkilik Küçük varyasl olmak, tahmi edicileri vazgeçilmez bir özelli¼gidir. Bir tahmi edicii, yal veya yas z, küçük varyasl olmas isteir. Parametrei kedisi () veya bir foksiyou (g()) ile ilgili tahmi

Detaylı

İstatistik Nedir? Sistem-Model Kavramı

İstatistik Nedir? Sistem-Model Kavramı İstatistik Nedir? İstatistik rasgelelik içere olaylar, süreçler, sistemler hakkıda modeller kurmada, gözlemlere dayaarak bu modelleri geçerliğii sıamada ve bu modellerde souç çıkarmada gerekli bazı bilgi

Detaylı

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı

Detaylı

İSTATİSTİK HAFTA. ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ

İSTATİSTİK HAFTA. ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ HEDEFLER Bu üniteyi çalıştıktan sonra; Örneklemenin niçin ve nasıl yapılacağını öğreneceksiniz. Temel Örnekleme metotlarını öğreneceksiniz. Örneklem

Detaylı

AÇIK ĐŞLETME BASAMAKLARI TENÖR KONTROLÜNDE JEOĐSTATĐSTĐKSEL TAHMĐN MODELĐ SEÇĐMĐ

AÇIK ĐŞLETME BASAMAKLARI TENÖR KONTROLÜNDE JEOĐSTATĐSTĐKSEL TAHMĐN MODELĐ SEÇĐMĐ Eskişehir Osmagazi Üiversitesi Müh.Mim.Fak.Dergisi C.XXI, S., 2008 Eg&Arch.Fac. Eskişehir Osmagazi Uiversity, Vol..XXI, No:, 2008 Makalei Geliş Tarihi : 2.02.2007 Makalei Kabul Tarihi : 23.03.2007 AÇIK

Detaylı

Burçin Gonca OKATAN YÜKSEK LİSANS TEZİ İSTATİSTİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AĞUSTOS 2007 ANKARA

Burçin Gonca OKATAN YÜKSEK LİSANS TEZİ İSTATİSTİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AĞUSTOS 2007 ANKARA UYUM İYİLİĞİ İÇİN AMICO TEK-ÖRNEK TESTİ VE İĞER UYUM İYİLİĞİ TESTLERİ İLE KARŞILAŞTIRILMASI Burçi Goca OKATAN YÜKSEK LİSANS TEZİ İSTATİSTİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AĞUSTOS 7 ANKARA TEZ

Detaylı

TEMEL KAVRAMLAR GİRİŞ

TEMEL KAVRAMLAR GİRİŞ TEMEL KAVRAMLAR GİRİŞ İstatistik kelimesii kökei Almaca olup devlet alamıa gelmektedir. İstatistik kelimesi gülük hayatta farklı alamlarda kullaılmaktadır. Televizyoda bir futbol müsabakasıı izleye bir

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I BAHAR DÖNEMİ ARASINAV SORULARI

LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I BAHAR DÖNEMİ ARASINAV SORULARI LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I 2015-2016 BAHAR DÖNEMİ ARASINAV SORULARI Tarih: 22/04/2016 Istructor: Prof. Dr. Hüseyi Oğuz Saat: 11:00-12:30

Detaylı

MAK312 ÖLÇME ve DEĞERLENDİRME OTOMATİK KONTROL LABORATUARI 1. Elektriksel Ölçümler ve İşlemsel Kuvvetlendiriciler

MAK312 ÖLÇME ve DEĞERLENDİRME OTOMATİK KONTROL LABORATUARI 1. Elektriksel Ölçümler ve İşlemsel Kuvvetlendiriciler MAK32 ÖLÇME ve DEĞELENDİME OTOMATİK KONTOL LABOATUAI Elektriksel Ölçümler ve İşlemsel Kuvvetlediriciler AMAÇLA:. Multimetre ile direç, gerilim ve akım ölçümleri, 2. Direç ölçümüde belirsizlik aalizii yapılması

Detaylı

Appendix C: İstatistiksel Çıkarsama

Appendix C: İstatistiksel Çıkarsama Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama Doç.

Detaylı

6 (saatte 6 müşteri aramaktadır), servis hızı ise. 0.6e

6 (saatte 6 müşteri aramaktadır), servis hızı ise. 0.6e İST KUYRUK TEORİSİ ARASIAV SORULARI ( MAYIS ). Bir baaı müşteri hizmetleride te işi hizmet vermetedir. Müşteriler ortalama daiada bir arama yapmatadır bua arşı ortalama servis süresi ise daia sürmetedir.

Detaylı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı Damızlık Değeri, geotipik değer, allel frekasları Aki Pala, aki@comu.edu.tr ttp://members.comu.edu.tr/aki/ Damızlık değeri esabı µ Ökkeş =800 gr gülük calı ağırlık Sürü A Sürü µ Döller µ 500gr 700 DD esabı

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı