ÖRNEK : x. y = 1 biçiminde verilen fonksiyonun grafiğini. çiziniz. Çizim : x. y = 1 olması ancak x =1ve y =1 yada x =-1ve. x =1ve x =-1ve ÖRNEK :

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ÖRNEK : x. y = 1 biçiminde verilen fonksiyonun grafiğini. çiziniz. Çizim : x. y = 1 olması ancak x =1ve y =1 yada x =-1ve. x =1ve x =-1ve ÖRNEK :"

Transkript

1 MC 6 Cebir Notları Gökhan DEMĐR, Özel Tanımlı Fonksionlar. Tam değer fonksionu: Tanım: Tamsaı ise kendisi, tamsaı değilse kendinden önce gelen ilk tamsaı (kendinden küçük en küçük tam saı) olarak tanımlanır ve û ô biçiminde gösterilir.. = biçiminde verilen fonksionun grafiğini çiziniz. Örneğin = û ô fonksionunu aralığında inceleelim ve grafiğini çizelim; tanımlanan aralıklar ve fonksion değerleri < ise û ô = = < " û ô = = < " û ô = = < " û ô = = ve = " û ô = = dir. Grafiğini çizersek aşağıdaki gibi olur. Çizim :. = olması ancak =ve = ada =-ve olması ile mümkündür. O halde =ve =-ve olması gerekir. Grafiğini çizelim. =- = <, ve < =- < ; ve < Taralı bölge grafiği bulunur. = û ô fonksionu < < aralığında grafiğini çiziniz. Đncelenecek aralıkları alalım. < < = + < = + < = + < = < = bulunur. Bunların grafiklerini çizersek + aralığında = û ô fonksionu grafiğini çiziniz. Đnceleme aralığını bölelim. / / görüldüğü gibi, bu aralık incelenmek için 6 parçaa arılarak incelenmesi ve grafiğinin çizilmesi gerekir. / grafiği bulunur.

2 < / f() = 4 / 4 / f() = + + fonksionunu inceleiniz ve grafiğini çiziniz. f() = + + = + ( +) Grafiği = -= bulunur. < f() = < f() = < f() = =f() < f() = = f() = grafiği çizilmiş olur. bulunur. < arasında = û grafiğini çiziniz. Đnceleme aralığını bölelim. ô tamdeğer fonksionunun görüldüğü gibi verilen aralık için inceleme dört aralıkla apılacaktır. < f() = û ô = < f() = û ô = < f() = û ô = < f() = û ô = dir. Grafiğini çizelim. (Eşitliğin bulunmadığı noktaların grafiğe dahil olmadığını görünüz.) Đşaret Fonksionu: Tanım: Đşaret fonksionu; fonksionun başına Sgn getirilir ve anlamı ; f() > ise Sgn f()= ; f() = ise ; f() < ise Örneğin = Sgn ( ) fonksionu; > ani > ise = + = ani = ise = < ani < ise = O halde grafik =f() iki arı doğru ve = noktası olur. =sgn() Not: Sgn (işaret) fonksionları için fonksionun işaretini inceler ve pozitif olduğu erler + negatif olduğu erler dir. olduğu erlerde olarak alınır.

3 = Sgn + 9 grafiğini çiziniz. < < + aralığında = û ô + Sgn ( + ) grafiğini çiziniz. Önce verilen fonksionun işaretini inceleriz. + 9 f() = Sgn f() Tan ms z Grafik, aşağıdaki gibi çizilmiş olur. Tan ms z Aralıklara göre fonksionunu değerlerini bulalım. < < = = = = < = < = + < = Grafik = Sgn( ) grafiğini çiziniz. = + Sgn ( ) fonksionunun grafiğini çiziniz. Önce işaret fonksionunu alalım. Sgn( ) in değeri < ise Sgn( ) = ; = ve Sgn ( ) = > ise Sgn ( ) + olduğunda verilen fonksion: < f() = = f() = f() = > f() = + olur. Bunların verilen aralıklarda grafiklerini çizelim. Aralıkları bulalım. > Sgn ( ) = + den = = Sgn ( ) = tanımsız < Sgn ( ) = den = bulunur. Bu aralıklara göre grafik çizilirse; = = + = = + = +Sg() = sgn ( ) grafiği

4 = Sgn (sin) grafiğini çiziniz. [, π ] aralığı için = sin = ve = Sgn (sin) = < < π sin > ve = Sgn (sin) = + = π sin = ; = Sgn (sin) = π < < π sin < ; = Sgn (sin) = bulunur. O halde grafik: + Not : = grafiğinin andaki biçimde olduğunu biliorsunuz. = grafiği için, bu grafiğin ekseninin altında bulunan kısmının üst kısma simetriğinin çizildiğine dikkat ediniz. š š = Sgn (Sgn( + ) ) grafiğini çiziniz. Sgn (Sgn ( + ) ) = Sgn ( + ) olacağına dikkat ediniz. O halde < = ; = = ve > için = + bulunur. = + fonksionunun grafiğini çiziniz. + fonksionunun işaretini inceleelim. + dan ararlanarak ; > ve < + ise + = ; = ve = ise ( + ) ; +< < ise Grafik: Pratikte = + grafiği içizilir. ekseni altındaki kısmın üste simetriği alınır. = + =I +I MUTLAK DEĞER FONKSĐYONU: Tanım: f() ; f() > ise f() = ; f() = ise f() ; f() < ise Örneğin f() = ise = f() ani = fonksionu ; > ise = ; = ise ( ) ; < ise grafiğini çizelim. = + = = + [ + fonksionunu grafiğini çiziniz. Grafik çizimi: Fonksionun her bir mutlak değerinin işaretini inceleerek, fonksionu belirleelim

5 tablosuna göre > = ( ) ( + ) = + = = + + = < < = ( ) + ( + ) = =, = + + = > = + + = + Grafiği = + fonksionunun grafiğini çiziniz. Önce mutlak değerlerin işaretini inceleelim. = Sgn Grafiğini çiziniz. Çizim önce = Sgn Grafiğini çizeriz. > = < = + dir. Bu grafiğin ekseninin altında kalan kısmının, eksenine göre simetriğini alırız. = Sgn grafiği = ( ) + ( + ) = +4 < < + = ( ) ( + ) = + = = 4 > = ( ) ( + ) = 4 Buna göre grafik = Sgn frafiği aşağıdaki gibidir. 4 =I I I+I + = fonksionunun grafiğini çiziniz. I) >, > + = II) <, > + = III) <, < = IV) >, < = Grafik çizersek Mutlak değerlerin grafiği için pratik kural: ) Eğer fonksion tek mutlak değer içerisinde ise önce fonksionun grafiği çizilir. Sonra ekseninin altında kalan kısmın eksenine göre simetriği alınır. (Yukarıdaki örneği inceleiniz.) ) Eğer fonksion birinci dereceden ve bir kaç tane mutlak değer toplamından a da farkından oluşuorsa; her bir mutlak değer içerisini sıfır apan değerleri için fonksionun alacağı değerler bulunur. Bulunan bu değerlerinden en küçüğünden küçük bir ile en büüğünden büük bir değeri için fonksionların değerleri bulunur. Bir koordinat sisteminde bulunan bu noktalar işaretlenir. Đşaretlenen bu noktalar birleştirilince grafik çizilmiş olur.

6 = + 5 grafiğini çiziniz. KONU TESTĐ + 5 = = 5 için = 7 = = için = +7 5 den küçük = 6 için = 8 = 7 den büük = için = 8 = +7 Bu noktalar bir koordinat sisteminde gösterilerek aşağıdaki grafik çizilmiş olur. +7. f() = + Sgn + 8. f() = ise f( ) değeri nedir? A) iken f( ) değeri nedir? A) f() = iken f(, ) nedir? A) Tanımsız 7 4. f() ise f(4,8) in değeri nedir? R f R f() = + + grafiğini çiziniz. A) Tanımsız 5 =, = f() = + = (, ) (A) X + =, = f() = + 4 (, )( =, = + f(+) = + 4 = 7 (, 7) ( < f( ) = + 5 = (, )( < 4 = 4 f(4) = = 8 (, 8) ( +8 C E R f R : f() = fonksionunun grafiği hangisidir? A) D B A O 4 5 in en küçük değerine karşı gelen D noktasından başlaarak in sıra ile (bulunan teğerlerinden oluşan) noktaları birleştirilerek grafik çizilmiş olur. 6. f() = fonksionunda f( ) nin değeri nedir? A)

7 7. R f R : f() = Sgn + hangisidir? A) grafiği aşağıdakilerden. R f hangisidir? A) R : f() = Sgn + fonksionunun grafiği 8. R f R : f() = + + grafiği hangisidir? A) O O O. R f R : f() = + Sgn + fonksionunun grafiği hangisidir? A) O O R : f() 4 fonksionunun grafiği hangi- 9. R f sidir? A) 4. = Sgn ( ) grafiği hangisidir? O O O 4 A) 4 4 O O 4

8 . R R : f() = grafiği hangisidir? A) 4 5., ise f() =, < < ise, ise fonksionunun grafiği hangisidir? A) 4 4. Yandaki fonksion grafiğıi aşağıdakilerden hangisi olabilir? 4 A) f() = Sgn ( 4) f() = Sgn ( 5 + 4) f() = f() = 5 4 f() = R R e tanımlı : f() = + + Sgn ( ) g() = Sgn ( ) ise (gof) () in değeri nedir? A)

9 7. f() = + grafiği hangisidir? A)

Cebir Notları. Özel Tanımlı Fonksiyonlar TEST I. Gökhan DEMĐR, 2006

Cebir Notları. Özel Tanımlı Fonksiyonlar TEST I. Gökhan DEMĐR,  2006 MC www.matematikclub.com, Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Özel Tanımlı Fonksionlar TEST I. f() = + 4 + fonksionunun alabileceği en büük 8 9. f() = + + ifadesinin alabileceği en küçük 4 5.

Detaylı

9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K

9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K M A T E M A T İ K www.akademitemellisesi.com ÇİFT VE TEK FONKSİYONLAR: f:ar (A R) fonksionu için, 9. BÖLÜM ) Her A için f( ) = f() ise f e çift fonksion denir. olduğundan ne tek nede çifttir. MUTL AK DEĞER

Detaylı

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56 , 006 MC Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Türev TEST I 7. f() = sin cos fonksionunun. f()= sin( + )cos( ) için f'() nin eşiti nedir? A) B) C) 0 D) E) için erel minimum değeri nedir? A) B)

Detaylı

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir?

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir? MC www.matematikclub.com, 006 Cebir Notları Gökhan DEMĐR, gdemir3@ahoo.com.tr. Dereceden Denklem ve Eşitsizlikler- TEST I A) 1 B) C) 3 D) 4 E) 5 1. 1/ = 0 denkleminin köklerinin toplamı aşağıdakilerden

Detaylı

ÖZEL TANIMLI FONKSİYONLAR

ÖZEL TANIMLI FONKSİYONLAR ÖZEL TANIMLI FONKSİYONLAR Fonksionlar ve Özel Tanımlı Fonksionlar Özel tanımlı fonksionlar konusu fonksionların alt bir dalıdır. Bu konuu daha ii anlaabilmemiz için fonksionlar ile ilgili bilgilerimizi

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

Fonksiyonlar ve Grafikleri

Fonksiyonlar ve Grafikleri Fonksionlar ve Grafikleri Isınma Hareketleri Aşağıda verilenleri inceleiniz. A f f(a) 7 çocuk baan f: Çocukları annelerine götürüor. Fonksion olma şartı: Her çocuğun annesi olmalı ve bir tane olmalı. (

Detaylı

Örnek...1 : ÖZEL TANIMLI FONKSİYONLAR 14 ( FONKSİYONLARDA ÖTELEME VE SİMETRİ ) 2. X EKSENİNDE ÖTELEMELER FONKSİYONLAR BÖLÜM 14 FONKSİYONLARDA ÖTELEME

Örnek...1 : ÖZEL TANIMLI FONKSİYONLAR 14 ( FONKSİYONLARDA ÖTELEME VE SİMETRİ ) 2. X EKSENİNDE ÖTELEMELER FONKSİYONLAR BÖLÜM 14 FONKSİYONLARDA ÖTELEME ÖZEL TANIMLI FONKSİYONLAR FONKSİYONLAR BÖLÜM FONKSİYONLARDA ÖTELEME VE SİMETRİ FONKSİYONLARDA ÖTELEME. Y EKSENİNDE ÖTELEMELER a) =f() fonksionu verildiğinde k R + olmak üzere, =f()+k fonksionunu çizmek

Detaylı

Fonksiyonlar ve Grafikleri

Fonksiyonlar ve Grafikleri Fonksionlar ve Grafikleri Isınma Hareketleri Aşağıda verilenleri inceleiniz. A f f(a) 7 f: Çocukları annelerine götürüor. Fonksion olma şartı: Her çocuğun annesi olmalı ve bir tane olmalı. ( çocuk annenin

Detaylı

Örnek...1 : Örnek...2 : Örnek...3 : A={0,1,2} kümesinden reel sayılara tanımlı f(x)=x² x fonksiyonu bire bir midir? Örnek...4 :

Örnek...1 : Örnek...2 : Örnek...3 : A={0,1,2} kümesinden reel sayılara tanımlı f(x)=x² x fonksiyonu bire bir midir? Örnek...4 : FONKSİYONLAR BÖLÜM 4 FONKSİYON TÜRLERİ: BİRE BİR FONKSİYON Bir fonksionun grafiğinden bire bir olup olmadığını anlamak için verilen tanım aralığında çizilen ata doğruların sadece bir defa grafiği kesmesini

Detaylı

Örnek...3 : f(2x 3)=4 3x ise f(1) kaçtır? Örnek...4 : f(x)=3x+1 ise f(2x) fonksiyonu nedir?

Örnek...3 : f(2x 3)=4 3x ise f(1) kaçtır? Örnek...4 : f(x)=3x+1 ise f(2x) fonksiyonu nedir? FONKSİYON HATIRLATMA ( FONKSİYON TANIMI ) A dan B e tanımlı f kuralının fonksion olm ası için; Örnek... : f( )= ise f() kaçtır? ) A daki her elemanın görüntüsü olmalı ( A da açıkta eleman kalmamalı) )A

Detaylı

FONKSİYONLAR BÖLÜM 8. Örnek...3 : Örnek...1 : f(x)=2x+5 fonksiyonu artan mıdır? Örnek...4 :

FONKSİYONLAR BÖLÜM 8. Örnek...3 : Örnek...1 : f(x)=2x+5 fonksiyonu artan mıdır? Örnek...4 : FONKSİYONLAR BÖLÜM 8 Örnek...3 : ARTAN AZALAN FONKSİYONLAR ARTAN FONKSİYON f : A R R fonksionu verilsin. Her i B A için 1 < 2 f ( 1 )

Detaylı

EŞİTSİZLİK SİSTEMLERİ Test -1

EŞİTSİZLİK SİSTEMLERİ Test -1 EŞİTSİZLİK SİSTEMLERİ Test -1 1. 9 5. 69 A) (, ] B) (, ) C) (, ) D) [, ] E) [, ) A) B) {} C) {, } D) R E) R {}. 5 6. 1 A) (, 5) B) [, 5] C) (, 5) D) (5, ) E) (, ) A) (, 1] B) (, ) C) [1, ) D) (, ] [1,

Detaylı

Örnek...1 : f (x)=2x 2 5x+6 parabolü K(2,p) noktasından geçiyorsa p kaçtır? Örnek...2 : Aşağıda çeşitli parabol grafikleri verilmiştir incele yi niz.

Örnek...1 : f (x)=2x 2 5x+6 parabolü K(2,p) noktasından geçiyorsa p kaçtır? Örnek...2 : Aşağıda çeşitli parabol grafikleri verilmiştir incele yi niz. a, b,c R,a 0 olmak koşulula f ()=a 2 +b+c fonksionuna ikinci dereceden bir değişkenli fonksion ve bu fonksionun belirttiği eğrie de parabol denir. Uarı ir parabolün grafiği başkatsaı olan a saısına bağlı

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır.

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır. -A Adı Soadı kulu Sınıfı LYS- MATEMATİK TESTİ Bu Testte; Toplam Adet soru bulunmaktadır. Cevaplama Süresi 7 dakikadır. Süre bitiminde Matematik Testi sınav kitapçığınızı gözetmeninize verip Geometri Testi

Detaylı

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır?

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır? . SINIF M Fonksionlar. f ( + a ) + vef( ) 7 olduğuna göre a kaçtır? E) TEST. f ( ) k + 6 fonksionu sabit fonksion olduğuna f ( ) göre aşağıdakilerden k E). f( ) 6 k ve f ( ) olduğuna göre k kaçtır? E)

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. n olmak üzere; n n toplamı ten büük n nin alabileceği tamsaı değerleri kaç tanedir? 9 B) 8 7.,, z reel saılar olmak üzere; ( 8) l 8 l z z aşağıdakilerden hangisidir? B) 8. tabanındaki

Detaylı

BAĞINTI - FONKSİYON Test -1

BAĞINTI - FONKSİYON Test -1 BAĞINTI - FONKSİYON Test -. A,,,4,5 B,, olduğuna göre, AB kümesinin eleman saısı A) 8 B) C) D) 4 E) 5 5. A ve B herhangi iki küme AB,a,,a,,a,,b,,b,,b olduğuna göre, s(a) + s(b) toplamı A) B) 4 C) 5 D)

Detaylı

Cebir Notları. Birinci Derecen Denklemler TEST I. Gökhan DEMĐR, x

Cebir Notları. Birinci Derecen Denklemler TEST I. Gökhan DEMĐR, x MC www.matematikclub.com, 006 Cebir Notları Gökhan DEMĐR, gdemir@yahoo.com.tr Birinci Derecen Denklemler TEST I. 7 [ [ ( )] ] + 6 = ( ) + denkleminin kökü 6. + 7 = 0 denkleminin köklerinin toplamı A) B)

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08 LİSNS YRLŞTİRM SINVI- MTMTİK-GMTRİ SINVI MTMTİK TSTİ SRU KİTPÇIĞI 08 U SRU KİTPÇIĞI LYS- MTMTİK TSTİ SRULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik Testi

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

DERS 8. Artan ve Azalan Fonksiyonlar, Konkavlık, Maksimum ve Minimum

DERS 8. Artan ve Azalan Fonksiyonlar, Konkavlık, Maksimum ve Minimum DERS 8 Artan ve Azalan Fonksionlar, Konkavlık, Maksimum ve Minimum 8.. Artan ve Azalan Fonksionlar. Bir fonksionun vea onun grafiğinin belli bir aralık üzerinde artan vea azalan olmasının ne anlama geldiği

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak safası İÇİNDEKİLER. ÜNİTE FNKSİYNLARDA İŞLEMLER VE UYGULAMALARI Fonksionların Simetrileri ve Cebirsel Özellikleri... 4 Tek ve Çift Fonksionlar... 4 Fonksionlarda İşlemler... 6 Konu Testleri -...

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. abba dört basamaklı, ab iki basamaklı doğal saıları için, abba ab. a b eşitliğini sağlaan kaç farklı (a, b) doğal saı ikilisi vardır? 7 olduğuna göre, a b toplamı kaçtır? 9.,,

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. Üç basamaklı doğal saılardan kaç tanesi, 8 ve ile tam bölünür? 8 9. ile in geometrik ortası z dir. ( z). ( z ). z aşağıdakilerden hangisidir?. 9 ifadesinin cinsinden değeri

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS MATEMATİK TESTİ. Bu testte 5 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. - - ^- h + c- m - (-5 )-(- ) işleminin sonucu kaçtır? A) B) C) D) 5 E).

Detaylı

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon İçindekiler Cebir 1. Fonksiyonlar....... 1.1 Fonksiyonların Tanım, Değer ve Görüntü Kümesi...... 1.1.1 Fonksiyon.. 1.1. Görüntü Kümesi... 1.1.3 Eşit Fonksiyonlar. 1.1.4 Fonksiyonun Gösterimi. 1.1.4.1 Liste

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS MTEMTİK TESTİ. Bu testte soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. d + n - d + n d - + n- d + + n işleminin sonucu kaçtır?., R olmak üzere, + +

Detaylı

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI YILLAR 966 967 968 969 97 97 97 975 976 977 978 980 98 98 98 98 985 986 987 988 989 990 99 99 99 99 995 996 997 998 006 007 ÖSS / ÖSS-I ÖYS / ÖSS-II 5 6 6 5

Detaylı

DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ

DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ Örnek : Taksi ile yapılan yolculukların ücreti taksimetre ile belirlenir Bir taksimetrenin açılış ücreti 2 TL, sonraki her kilometre başına 1 TL ücret ödendiğine

Detaylı

EĞİM, BİR DOĞRUNUN DENKLEMİ VE EĞİMİ ARASINDAKİ İLİŞKİ

EĞİM, BİR DOĞRUNUN DENKLEMİ VE EĞİMİ ARASINDAKİ İLİŞKİ Özgür EKER EĞİM, BİR DOĞRUNUN DENKLEMİ VE EĞİMİ ARASINDAKİ İLİŞKİ Eğim: ETKİNLİK : Bir bisiklet arışındaki iki farklı parkur aşağıdaki gibidir. I. parkurda KL 00 metre ve II. parkurda AB 00 metre olduğuna

Detaylı

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir? PROL est -. m parabolü eksenini kesmiorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?. f a b c (, ) ) (, ) (, ) (, ) ( 6, ). m parabolü eksenini iki farklı noktada kesmektedir. una göre,

Detaylı

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012 Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi e Ku ru lu Baş kan lı ğı nın.8. ta rih ve sa ı lı ka ra rı ile ka bul edi len ve - Öğ re tim Yı lın dan iti ba ren u gu lana cak olan prog ra ma gö re ha zır

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR İÇİNDEKİLER HEDEFLER GRAFİK ÇİZİMİ. Simetri ve Asimtot Bir Fonksiyonun Grafiği

ÜNİTE. MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR İÇİNDEKİLER HEDEFLER GRAFİK ÇİZİMİ. Simetri ve Asimtot Bir Fonksiyonun Grafiği HEDEFLER İÇİNDEKİLER GRAFİK ÇİZİMİ Simetri ve Asimtot Bir Fonksionun Grafiği MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR Bu ünitei çalıştıktan sonra; Fonksionun simetrik olup olmadığını belirleebilecek, Fonksionun

Detaylı

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x.

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x. - TÜREV KAVRAMI - TÜREV KAVRAMI 7 iadesinin türevini alınız. Çözüm lim lim 7 7 lim 7 7 lim lim onksionunun türevini alınız. Tanım onksionunda değişkeni artımını alırken de kadar artsın. oranının giderken

Detaylı

TÜRKİYE GENELİ DENEME SINAVI LYS - 1 MATEMATİK

TÜRKİYE GENELİ DENEME SINAVI LYS - 1 MATEMATİK TÜRKİY GNLİ SINVI LYS - 1 7 MYIS 017 LYS 1 - TSTİ 1. u testte 80 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz. + k+ n 15 + 10 1. : = + 6 16 + 8 0 + 8 olduğuna

Detaylı

Örnek...3 : f : R R, f (x)=2 x fonksiyonuna ait tabloyu. Örnek...4 : Örnek...1 :

Örnek...3 : f : R R, f (x)=2 x fonksiyonuna ait tabloyu. Örnek...4 : Örnek...1 : LOGARİTMA a b =c eşitliğini düşünelim. Mümkün olan durum larda; Durum 1: a ve b biliniorsa c üs alma işlemile bulunabilir. Örneğin 2 5 =c ise c=32 dir. Örnek...3 : f : R R, f ()=2 fonksionuna ait tablou

Detaylı

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1...

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1... İÇİNDEKİLER TÜREVİN GEOMETRİK YORUMU Teğet ve Normal Doğruların Eğimi... Teğet Doğrusunun Eğim Açısı... Teğet ve Normal Denklemleri... Eğrinin Teğetine Paralel ve Dik Doğrular... Grafikte Teğet I... 5

Detaylı

f : R + R, f(x) = log a 0 < a < 1 için f(x) = log a a. f : ;, 4m R, f(x) = log2 x b. f : R + R, f(x) = log 1, f(2) = 2 2

f : R + R, f(x) = log a 0 < a < 1 için f(x) = log a a. f : ;, 4m R, f(x) = log2 x b. f : R + R, f(x) = log 1, f(2) = 2 2 Fonksionlar f : R R, f() = a Fonksionunun Grafi i f : R R, f() = log a Fonksionunun Grafi i a > için f() = a üstel fonksionunun grafi i andaki gibidir. = a a > için f() = log a fonksionunun grafi i andaki

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

YARDIRMALI MATEMATİK TÜREV FASİKÜLÜ

YARDIRMALI MATEMATİK TÜREV FASİKÜLÜ YRIRMLI MTEMTİK TÜREV FSİKÜLÜ Maksimum-Minimum Problemleri MESUT ERİYES MKSİMUM - MİNİMUM PROLEMLERİ Maksimum ve minimum problemlerini çözmek için şu kurallar ugulanır; 1) Maksimum a da minimum olması

Detaylı

SAYISAL BÖLÜM. 5. a, b, c gerçel sayıları için. 2 a = 3. 3 b = 4. 4 c = 8. olduğuna göre, a b c çarpımı kaçtır? 6. a, b, c gerçel sayıları için

SAYISAL BÖLÜM. 5. a, b, c gerçel sayıları için. 2 a = 3. 3 b = 4. 4 c = 8. olduğuna göre, a b c çarpımı kaçtır? 6. a, b, c gerçel sayıları için SYISL ÖLÜM ĐKKT! U ÖLÜM VPLYĞINIZ TPLM SRU SYISI 90 IR. Đlk 45 soru Matematiksel Đlişkilerden Yararlanma Gücü, Son 45 soru Fen ilimlerindeki Temel Kavram ve Đlkelerle üşünme Gücü ile ilgilidir. şit ğırlık

Detaylı

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona , 2006 MC Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Đşlem ĐŞLEM A ve A x A nın bir alt kümesinden A ya her fonksiyona ikili işlem denir. Örneğin toplama, çıkarma, çarpma birer işlemdir. Đşlemler

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. A.. n saısının tamsaı bölenlerinin saısı olduğuna göre, n 0. R de tanımlı " " işlemi; ο ο işleminin sonucu 0. (6) 6 (6) ifadesinin eşiti aşağıdakilerden hangisidir? 6 6 (6)

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. ab iki basamaklı saısı b ile bölündüğünde, bölüm 5 ve kalan b 5 tir. u şartlara uan kaç farklı ab iki basamaklı saısı vardır? ) 5 6 7 5. a, b, c, d, e sıfırdan farklı tamsaılar

Detaylı

Diferansiyel Denklemler I (M) Çalışma Soruları

Diferansiyel Denklemler I (M) Çalışma Soruları Diferansiel Denklemler I (M Çalışma Soruları 800 ( A Aşağıdaki diferansiel denklemlerin çözümlerini bulunuz ( ( = d n d 0 d ( sin cos d = 0 3 ( cos sin d sin d = 0 4 5 6 7 ( 5 d ( 5 d = 0 ( ( = d d 0 =

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

FONKSİYONLAR ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

FONKSİYONLAR ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT FONKSİYONLAR ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT Fonksionlar. Kazanım : Fonksion kavramı, fonksion çeşitleri ve ters fonksion kavramlarını açıklar.. Kazanım : Verilen bir fonksionun artan, azalan ve sabit

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI fonksionunun ek seninin k estiği k nok taların m apsisleri b, c, e dir. u noktalar a b c f()= denk leminin n kök leridir p in eksenini kestiği nokta ise

Detaylı

Konikler ÜNİTE. Amaçlar. İçindekiler. Yazar Doç.Dr. Hüseyin AZCAN

Konikler ÜNİTE. Amaçlar. İçindekiler. Yazar Doç.Dr. Hüseyin AZCAN Konikler Yazar Doç.Dr. Hüsein AZCAN ÜNİTE 7 Amaçlar Bu ünitei çalıştıktan sonra; lise ıllarından da tanıdığınız çember, elips, parabol ve hiperbol gibi konik kesitleri olarak adlandırılan geometrik nesneleri

Detaylı

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında ılmaarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören çocuklarımızın ana ve babalarına da avrularının öğreniminin tamamlanması

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI fonksionunun ekseninin kestiği k noktaların m apsisleri b, c, e dir. u noktalar a b c f()= denkleminin n kök leridir p in eksenini kestiği nokta ise (,p)

Detaylı

DERS 2. Fonksiyonlar

DERS 2. Fonksiyonlar DERS Fonksionlar.1. Fonksion Kavramı. Her bilim dalının önemli bir işlevi, çeşitli nesneler vea büüklükler arasında eşlemeler kurmaktır. Böle bir eşleme kurulması tahmin ürütme olanağı verir. Örneğin,

Detaylı

TÜREVİN GEOMETRİK YORUMU

TÜREVİN GEOMETRİK YORUMU TÜREVİN GEOMETRİK YORUMU f :R R, =f ( fonksionuna düzlemde A karşılık gelen f( +h eğri anda ki =f( P gibi olsun. f( Eğrinin P(,f( noktasındaki teğetlerini +h araştıralım. Bunun için P(,f( noktasının sağıda

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere, Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI =f() fonksio - nunun ekseninin kestiği noktaların m apsisleri b, c, e dir. u noktalar a b f()= denkleminin kökleridir n =f() in p eksenini kestiği nokta

Detaylı

8.SINIF CEBirsel ifadeler

8.SINIF CEBirsel ifadeler KAZANIM : 8..1.3. Özdeşlikleri modellerle açıklar. Özdeşlik 3 + = + 3 eşitliğinin özdeşlik olup olmadığını inceleelim. İçerdiği değişken vea değişkenlerin alabileceği her gerçek saı değeri için doğru olan

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabol Denkleminin Yazılması

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabol Denkleminin Yazılması www.mustafaagci.com.tr, 11 Cebir Notları Mustafa YAĞCI, agcimustafa@ahoo.com Parabol Denkleminin Yazılması B ir doğru kaç noktasıla bellidi? İki, değil mi Çünkü tek bir noktadan geçen istediğimiz kadar

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

Cebir Notları. Kümeler. Gökhan DEMĐR, KÜME KAVRAMI

Cebir Notları. Kümeler. Gökhan DEMĐR, KÜME KAVRAMI , 2006 MC Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Kümeler KÜME KVRMI Kümenin tanım yoktur. undan dolayı kümeyi tanıtmaya çalışalım. Küme kavramında bir topluluk, bir kolleksiyon ifadesi vardır.

Detaylı

diferansiyel hale getiren) bir integrasyon çarpanı olur? belirleyiniz, bu çarpanı kullanarak denklemin çözümünü bulunuz.

diferansiyel hale getiren) bir integrasyon çarpanı olur? belirleyiniz, bu çarpanı kullanarak denklemin çözümünü bulunuz. Diferansiel Denklemler I /8 Çalışma Soruları 9.0.04 A. Aşağıda istenilenleri elde ediniz!. ( e +. d + ( e + k. d 0 denkleminin tam diferansiel denklem olabilmesi için ugun k saısını belirleiniz. Bu k saısı

Detaylı

İÇİNDEKİLER ÖNERMELER BİLEŞİK ÖNERMELER AÇIK ÖNERMELER İSPAT YÖNTEMLERİ

İÇİNDEKİLER ÖNERMELER BİLEŞİK ÖNERMELER AÇIK ÖNERMELER İSPAT YÖNTEMLERİ - MANTIK İÇİNDEKİLER Safa No Test No ÖNERMELER...-... - BİLEŞİK ÖNERMELER...-... -6 AÇIK ÖNERMELER...-6... 7-8 İSPAT YÖNTEMLERİ...7-8... 9-9 - KÜMELER KÜMELERDE TEMEL KAVRAMLAR...9-4... - KÜMELERDE İŞLEMLER...5-6...

Detaylı

Soru 1: Şekil-1 de görülen düzlem gerilme hali için: b) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir

Soru 1: Şekil-1 de görülen düzlem gerilme hali için: b) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir Soru 1: Şekil-1 de görülen düzlem gerilme hali için: a) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir eden gerilme bileşenlerini, gerilme dönüşüm denklemlerini kullanarak

Detaylı

1) BU TESTTE TEMEL MATEMATİK VE GEOMETRİ OLMAK ÜZERE, TOPLAM 40 ADET SORU VARDIR. 2) BU TESTİN CEVAPLANMASI İÇİN TAVSİYE EDİLEN SÜRE 40 DAKİKADIR.

1) BU TESTTE TEMEL MATEMATİK VE GEOMETRİ OLMAK ÜZERE, TOPLAM 40 ADET SORU VARDIR. 2) BU TESTİN CEVAPLANMASI İÇİN TAVSİYE EDİLEN SÜRE 40 DAKİKADIR. YGS DENEESİ 2 1) U ESE EEL AEAİK VE GEOERİ OLAK ÜERE, OPLA ADE SORU VARDIR. 2) U ESİN CEVAPLANASI İÇİN AVSİYE EDİLEN SÜRE DAKİKADIR. 1) 2,.(!+1!+2!) =?, 1 A) ) 1 C) 2 D) ) +8 ( 2 + 1) ( 2 2+ 2 ) hangisidir?

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI

Ortak Akıl MATEMATİK DENEME SINAVI Ortak kıl YGS MTMTİK DNM SINVI 0- Ortak kıl dem ÇİL han YNĞLIBŞ Barış DMİR Celal İŞBİLİR Deniz KRDĞ ngin POLT rsin KSN üp BULUT Fatih TÜRKMN Hakan BKIRCI Kadir LTINTŞ Köksal YİĞİT Muhammet YVUZ Muharrem

Detaylı

ÖSS MATEMATİK TÜREV FASİKÜLÜ

ÖSS MATEMATİK TÜREV FASİKÜLÜ ÖSS MATEMATİK TÜREV FASİKÜLÜ GRAFİK ÇİZİMİ Bir fonksiyonun denklemi verilip grafiği istendiğinde aşağıdaki yolu izlemeliyiz. ) Fonksiyonun en geniş tanım kümesi bulunur. ) ± için fonksiyonun limiti bulunur.

Detaylı

6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x)

6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x) 6 II. DERECEDEN FNKSÝYNLR (Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MTEMTÝK 1. f(). f() 6 8 T Yukarıda grafiği verilen = f() parabolünün denklemi nedir?( = 6) Yukarıda grafiği verilen

Detaylı

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI LYS- MATEMATİK (MF-TM). Bu testte Matematik ile ilgili soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz..

Detaylı

LYS MATEMATİK-2 SORU BANKASI LYS. M. Ali BARS. çözümlü sorular. yıldızlı testler. Sınavlara en yakın özgün sorular

LYS MATEMATİK-2 SORU BANKASI LYS. M. Ali BARS. çözümlü sorular. yıldızlı testler. Sınavlara en yakın özgün sorular LYS LYS 6 Sınavlara en akın özgün sorular MATEMATİK- SORU BANKASI çözümlü sorular ıldızlı testler M. Ali BARS M. Ali Bars LYS Matematik Soru Bankası ISBN 978-65-8-7-9 Kitapta er alan bölümlerin tüm sorumluluğu

Detaylı

2005 ÖSS Soruları. 5. a, b, c gerçel sayıları için 2 a = 3 3 b = 4 4 c = 8 olduğuna göre, a.b.c çarpımı kaçtır?

2005 ÖSS Soruları. 5. a, b, c gerçel sayıları için 2 a = 3 3 b = 4 4 c = 8 olduğuna göre, a.b.c çarpımı kaçtır? . + c m 9 + c9 m 9 9 20 ) ) 9 ) 27 ) ) 82 9 5. a, b, c gerçel saıları için 2 a = b = c = 8 olduğuna göre, a.b.c çarpımı kaçtır? ) ) 2 ) ) ) 5 6. a, b, c gerçel saıları için, a.c = 0 a.b 2 > 0 2. 2 2 +

Detaylı

Ders 7: Konikler - Tanım

Ders 7: Konikler - Tanım Ders 7: Konikler - Tanım Şimdie kadar nokta ve doğrular ve bunların ilişkilerini konuştuk. Bu derste eni bir kümeden söz edeceğiz: kuadrikler ve düzlemdeki özel adı konikler. İzdüşümsel doğrular, doğrusal

Detaylı

İşaret ve Sistemler. Ders 2: Spektral Analize Giriş

İşaret ve Sistemler. Ders 2: Spektral Analize Giriş İşaret ve Sistemler Ders 2: Spektral Analize Giriş Spektral Analiz A 1.Cos (2 f 1 t+ 1 ) ile belirtilen işaret: f 1 Hz frekansında, A 1 genliğinde ve fazı da Cos(2 f 1 t) ye göre 1 olan parametrelere sahiptir.

Detaylı

Trigonometrik Fonksiyonlar

Trigonometrik Fonksiyonlar Trigonometrik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 6 Amaçlar Bu üniteyi çalıştıktan sonra; açı kavramını hatırlayacak, açıların derece ölçümünü radyan ölçümüne ve tersine çevirebilecek, trigonometrik

Detaylı

Cebir Notları. Karmaşık sayılar TEST I. Gökhan DEMĐR, 2006

Cebir Notları. Karmaşık sayılar TEST I. Gökhan DEMĐR,  2006 MC Karmaşık saılar www.matematikclub.cm, 006 Cebir Ntları Gökhan DEMĐR, gdemir@ah.cm.tr TEST I. i 897 + i 975 + i 997 i 995 tplamının snucu i B) i C) i D) i E) 5i 8. Z = i nin kutupsal biçimi (cs0 + isin0)

Detaylı

2013 2013 LYS LYS MATEMATİK Soruları

2013 2013 LYS LYS MATEMATİK Soruları LYS LYS MATEMATİK Soulaı. LYS 5. LYS ( + a ) = 8 < < olmak üzee, olduğuna öe, a kaçtı? I. A) D) II. + III. (.) ifadeleinden hanileinin değei neatifti? A) Yalnız I Yalnız II Yalnız III D) I ve III II ve

Detaylı

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu .SORU 8 sayı tabanında verilen (5) 8 sayısının sayı tabanında yazılışı nedir?.soru 6 3 3 3 3 4 6 8? 3.SORU 3 ise 5? 5 4.SORU 4 5 olduğuna göre, ( )? 5.SORU (y z) z(y ) y z yz bulunuz. ifadesinin en sade

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLAIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MAEMAÝK - II PARABL - II MF M LYS1 10 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr.

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

MATEMATİK 12. SINIF DERS KİTABI

MATEMATİK 12. SINIF DERS KİTABI ORTAÖĞRETİM MATEMATİK. SINIF DERS KİTABI YAZARLAR Mustafa BAĞRIAÇIK Muslu LÖKÇÜ Zenel SAĞLAM Önder ÇOLAK Timur YURTSEVEN Turgut OĞUZ Asun Nükhet ELÇİ Yalçın YILDIRIM DEVLET KİTAPLARI BEŞİNCİ BASKI...,

Detaylı

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ 1 E) x x. x x = x

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ 1 E) x x. x x = x Ö.S.S. MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ. olduğuna göre, kaçtır? A B C D E Çözüm. -. : ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? A B C D E Çözüm :... :....... . olduğuna göre, - ifadesinin

Detaylı

LYS MATEMATİK KONU ANLATIM FASİKÜLÜ

LYS MATEMATİK KONU ANLATIM FASİKÜLÜ Ders Adı.ınıf Mezun LY MATEMATİK KONU ANLATIM FAİKÜLÜ TÜREV KAF 0 Konu Bir doğrunun eğimi dik koordinat sisteminde X ekseni ile aptığı pozitif önlü açının tanjantıdır. Örneğin, şekilde verilen d doğrusunun

Detaylı

ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI

ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı a da bir kısmı, azarın izni olmaksızın, elektronik, mekanik,

Detaylı

10. SINIF MATEMATİK FONKSİYONLARDA İŞLEMLER-1 ÇAKABEY ANADOLU LİSESİ MATEMATİK BÖLÜMÜ

10. SINIF MATEMATİK FONKSİYONLARDA İŞLEMLER-1 ÇAKABEY ANADOLU LİSESİ MATEMATİK BÖLÜMÜ 10. SINIF MATEMATİK FONKSİYONLARDA İŞLEMLER-1 ÇAKABEY ANADOLU LİSESİ MATEMATİK BÖLÜMÜ 1. ÜNİTE 3.1 FONKSİYONLARLA İŞLEMLER VE UYGULAMALARI Neler öğreneceksiniz? Bir fonksiyon grafiğinden dönüşümler yardımıyla

Detaylı

Şekil 23.1: Düzlemsel bölgenin alanı

Şekil 23.1: Düzlemsel bölgenin alanı Bölüm Belirli İntegral Şekil.: Düzlemsel bölgenin alanı Düzlemde kare, dikdörtgen, üçgen, çember gibi iyi bilinen geometrik şekillerin alanlarını bulmak için uygun formüller kullanıyoruz. Ama, uygulamada

Detaylı

www.mehmetsahinkitaplari.org

www.mehmetsahinkitaplari.org MATEMA www.mehmetsahinkitaplari.org T T r. P ALME YA YINCILIK Ankara I PALME YAYINLARI: 76 Sinif Matematik Konu Anlatım / Mehmet Şahin Yaına Hazırlama : PALME Dizgi-Grafik Tasarım Birimi Yaın Editörü :

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

UYGULAMALI DİFERANSİYEL DENKLEMLER

UYGULAMALI DİFERANSİYEL DENKLEMLER UYGULAMALI DİFERANSİYEL DENKLEMLER GİRİŞ Birçok mühendislik, fizik ve sosal kökenli problemler matematik terimleri ile ifade edildiği zaman bu problemler, bilinmeen fonksionun bir vea daha üksek mertebeden

Detaylı

Mustafa YAĞCI, Parabol ile Eğrilerin Kesişimi

Mustafa YAĞCI, Parabol ile Eğrilerin Kesişimi www.mustafaagci.com.tr, 11 Ceir Notları Mustafa YAĞCI, agcimustafa@ahoo.com Paraol ile Eğrilerin Kesişimi P araol İle Doğrunun Birirlerine Göre Durumları. Aslında sadece paraol ve doğru çifti için değil,

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

Çözüm: Örnek: 3. BÖLÜM TEST - 1. 4x 3 +3y 2 2x 4y=9 eğrisinin (1, 1) noktasındaki teğetinin denklemi nedir?

Çözüm: Örnek: 3. BÖLÜM TEST - 1. 4x 3 +3y 2 2x 4y=9 eğrisinin (1, 1) noktasındaki teğetinin denklemi nedir? . BÖLÜM TÜREVİN GEOMETRİK YORUMU TEST TEST - 4 + 4=9 eğrisinin (, ) noktasındaki teğetinin denklemi nedir?. f()=( ). ( 5) fonksionun =4 noktasındaki teğetinin eğimi kaçtır? A) 4 B) C) D) E) 6. fonksionun.

Detaylı

ÖZEL EGE LİSESİ 11. MATEMATİK YARIŞMASI 7. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ 11. MATEMATİK YARIŞMASI 7. SINIF ELEME SINAVI TEST SORULARI . a,b,c negatif tam sayılardır. (a + 3).b b< c< a ve; = 6 olduğuna c göre, a+b+c toplamının en büyük değeri 4. 50 kişinin çalıştığı bir şirkette 25 kişi İngilizce, 6 kişi Fransızca biliyor. En çok bir

Detaylı

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 1. ve y aralarında asal iki doğal sayıdır. 7 y 11 olduğuna göre, y farkı 5. 364 sayısının en büyük asal böleni A) 3 B) 7 C) 11 D) 13 E) 17 A) B) 3 C) 4

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı