KOMBİNASYON. Güneşe bakarsanız gölgeleri göremezsiniz. Adı : Soyadı : Zeka, Tecrübe ve Çalıskanlık birlesirse tüm hedeflere ulasılır

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "KOMBİNASYON. Güneşe bakarsanız gölgeleri göremezsiniz. Adı : Soyadı : Zeka, Tecrübe ve Çalıskanlık birlesirse tüm hedeflere ulasılır"

Transkript

1 Güeşe bakarsaız gölgeleri göremezsiiz KOMBİNASYON Adı : Soyadı : Zeka, Tecrübe ve Çalıskalık birlesirse tüm hedeflere ulasılır Mat Müh BAHTİYAR DAĞDELEN

2 KOMBİNASYON KOMBİNASYON r olmak üzere, elemalı bir kümei r elemalı alt kümelerii sayısıa i r li kombiasyou deir! C, r ) = r ) = dir r )!! 1 Ayı düzlemde, i ) İki oktada e çok bir doğru geçer ) = 1 ii ) Üç oktada e çok üç doğru geçer ) = ÖZELLİKLER i ) ) = ) = 1 0 ii ) ) = - 1 ) = 1 iii ) r ) = - r ) iv ) ) = b ) ise, a v a = b ya da v a + b = olmalıdır v ) Permütasyo SIRAMA - DİZİLİŞ iii ) Dört oktada e çok altı doğru geçer 4 ) = 6 iv ) Herhagi üçü doğrusal olmaya tae oktada e çok Ayı düzlemde, ) tae doğru geçer i ) İki doğru e çok bir kesişim oluşturur ) = 1 Kombiasyo vi ) SEÇ SIRALA kuralı GRPLAMA - SEÇİM! r! P, r ) = = ) r! dir r r )! r! Seç Sırala vii ) elemalı bir kümei tüm alt kümeleri sayısı 0 ) + 1 ) + ) + ) = dir r - 1 ) r ) + 1 viii ) + = r ) ii ) Üç doğru e çok üç kesişim oluşturur ) = iii ) Dört doğru e çok altı kesişim oluşturur 4 ) = 6 iv ) Hiçbiri diğeri ile paralel olmaya tae doğru ile e çok ) tae kesişim oluşur Mat Müh BAHTİYAR DAĞDELEN

3 KOMBİNASYON Ayı düzlemde, i ) Üç okta ile e çok bir üçge çizilir ) = 1 ii ) Dört okta ile köşeleri bu oktalar üzeride bulua e çok dört üçge çizilir 4 ) = 4 6 Ayı düzlemde yarıçapları farklı, i ) İki çember e çok iki kesişim oluşturur ) = ii ) Üç çember e çok altı kesişim oluşturur ) = 6 iii ) Herhagi üçü doğrusal olmaya tae oktaı ikişer ikişer birleştirilmesiyle köşeleri bu oktalar üzeride bulua e çok ) tae farklı üçge oluşur iii ) tae çember ile e çok ) tae kesişim oluşur 4 7 Herhagi üçü doğrusal olmaya ayı düzlemdeki 11 tae okta şekildeki gibidir Ayı düzlemde 5 tae paralel doğruu 4 tae paralel doğruyu kesmesiyle 5 ) 4 ) tae paralelkear elde edilir Bu 11 okta ile; 5 B A A oktasıda bulua bir kişi e kısa sadece sağ ve yukarı) kaç değişik yolda B oktasıa gider? [ Dört tae Yukarı ve altı tae sağ yol var] YYYYSSSSSS I Yol : 10! 4! 6! III Yol : i ) ii ) 11 ) 11 ) [Bir gei tae doğru çizilir - 11 tae köşege çizilir ) - tae köşegei vardır] II Yol : 10 ) 4 Mat Müh BAHTİYAR DAĞDELEN

4 KOMBİNASYON 8 Şekilde birim kareler verilmiştir Bua göre, her bir çizimde kaç adet kare vardır? 9 Şekilde birim kareler verilmiştir Bua göre, kaç adet dörtge vardır? ) 5 ) tae dörtge elde edilir Mat Müh BAHTİYAR DAĞDELEN

5 Örek 01 Kavrama Soruları KOMBİNASYON 1 Zeka, Tecrübe ve Çalıskalık birlesirse tüm hedeflere ulasılır 7 ) 10 + ) = 11 eşitliğii sağlaya x 4 x değerlerii buluuz Örek 0 0 ve 7 C, - ) = 4 olduğua göre, C, ) kaçtır? Örek kişi, şahıslar kedi aralarıda bir kez olmak şartı ile kaç farklı şekilde tokalaşır? Örek bay ve baya öğretme arasıda üç öğretme seçiliyor Kaç seçimde e az iki bay öğretme buluur? Örek farklı mektup 7 farklı posta kutusua kaç değişik şekilde atılabilir? Mat Müh BAHTİYAR DAĞDELEN

6 1 KOMBİNASYON Örek 06 4 doktor, 5 asista arasıda; i ) doktor ve asista kaç farklı şekilde seçilebilir? iii ) Seçile doktor ve asista; doktorlar ya yaa olmak üzere kaç farklı sıralaır? ii ) Seçile doktor ve asista; kaç farklı sıralaır? 60 60x48 iv ) Seçile doktor ve asista; asistalarda hiç birii ya yaa bulumadığı kaç farklı sıra oluşturulur? Örek 07 6 resimde 4 taesii seçip duvarda ya yaa olacak şekilde kaç farklı asabiliriz? 60x5! 60x1 Örek 08 15x4 8 boş koltuğa kişi kaç farklı şekilde oturabilir? Örek 09 farklı mektup 7 farklı posta kutusua, her mektup farklı farklı posta kutusua kaç değişik şekilde atılabilir? 6 10

7 KOMBİNASYON 1 Örek 10 {a,b,c,d,e,f,g} kümesii 4 elemalı alt kümeleride kaç taeside i) a harfi bulumaz? iv) a ve b harfi bulumaz? ii) b harfi buluur? 15 5 v) a ve b harfi buluur? iii) a buluup, b bulumaz? 0 vi) a veya b buluur? 10 Örek Bayram ı 7 farklı oyucağı vardır 1 taesii kedie alıp diğerlerii iki kardeşi arasıda eşit olarak pay ediyor Bayram, kaç farklı dağıtım yapabilir? 140 Örek 1 6 mühedis ile 4 mimar arasıda seçilecek kişilik ekipte, e az bir tae mühedisi buluması gerekmektedir Kaç değişik seçim yapılabilir? Örek İş içi başvura 0 memur adayıda 5 i işe alıacaktır Alıacak memurları ü belli ise, kaç türlü seçim yapılabilir? 17) =16

8 1 KOMBİNASYON Örek kişilik bir heyette 4 ü Bursa ya, 6 sı Akara ya göderilecektir Serca ve Yuus Bey ayı heyette bulumamak şartıyla, 10 kişi kaç farklı göderilebilir? Örek 15 8 ) x! 5 Hemşire ve 4 doktoru buluduğu bir sağlık grubuda hemşire ve doktorda oluşa ekipler kurulacaktır Ca isimli doktor ile Casel isimli hemşire ekibe katılsı veya katılmasılar, daima birlikte olacaklarıa göre, kaç farklı ekip kurulabilir? Örek 16 0 Öğrecilerle oluşturula şerli grupları sayısı, öğreci sayısıı 4 katı ise, öğreci sayısı edir? Örek Kişilik bir sııfta erkek öğrecilerde oluşturulabilecek ikişerli grupları sayısı bu sııftaki Kız öğrecileri sayısıa eşittir Sııftaki kız öğreci sayısı kaçtır? Örek sorulu bir imtihada 6 soru cevapladırılacaktır 10 i) İlk dört soruyu cevaplamak mecbur ise kaç farklı cevap verilebilir? ii) İlk dört soruda e çok ikisi cevaplaacaksa kaç farklı cevap verilebilir? 4 15, 115

9 KOMBİNASYON 1 Örek 19 A = 1,,,4, 5, 6, 7 Kümesii iki elemalı alt kümelerii kaç taesii elemaları ardışık değildir Örek 0 7 ) - 6 Beş şıklı 4 soruda oluşa bir testi cevap aahtarı, ardışık gele soruları cevabı ayı olmamak şartıyla kaç farklı şekilde oluşturulur? Örek 1 0 Bir torbada 4 ü yeşil, ü mavi, si turucu rekli Toplam 11 tae top vardır Farklı reklerde iki top kaç farklı şekilde çekilebilir? Örek kişilik bir toplulukta oluşturula ve içide e az bir kız bulua kişilik tüm grupları sayısı 85 ise, erkek sayısı edir? Örek 7 A, B, C, D ve E isimlerideki beş seçmeli derste A ve B dersleri ayı saatte verilmektedir Bu beş derste ikisii seçmek isteye bir öğrecii kaç seçeeği vardır? 9 5

10 1 KOMBİNASYON Örek 4 Bir öğretme evide iki yataklı iki oda, üç yataklı bir oda boştur 7 kişide belirli iki kişi dargı olduğuda farklı odalarda kalacaklardır Bu kişiler odalara kaç değişik biçimde yerleştirebilirler? Odalarda yatak sıralamasıı öemi yoktur) Örek ü birbiri ile paralel 10 tae doğru e çok kaç oktada kesişir? Örek 6 Çember üzerideki 10 okta ile, 9 i) Kaç doğru çizilir? ii) Kaç üçge çizilir? Örek 7 5 taesi ayı doğru üzeride ola 1 okta ile, e çok i) Kaç doğru çizilir? ii) Kaç üçge çizilir?

11 Örek 8 i )Kaç doğru çizilir? Şekildeki gibi birbirie paralel iki doğru ve 11 okta verilmiştir Bu oktalar ile, A B iii )Kaç üçgede A oktası bir köşedir? KOMBİNASYON 1 5 ii ) Kaç üçge çizilir iv )Kaç üçgede A ve B oktası bir köşedir? Örek 9 B A Aşağıdaki şekilde ABC üçgei üzeride 9 tae okta verilmiştir I H 11 ) 6 ) - 5 ) 5 Bu oktalar ile bir köşesi E oktası ola kaç tae üçge çizilebilir? C D E F Örek 0 G 1 Düzlemdeki 1 doğruda 4 taesi birbirie paralel bulumaktadır Buları dışıda 6 taesi ise, bir A oktasıda geçmektedir Bua göre, bu doğruları e fazla kaç kesişme oktası vardır? Örek 1 C 46 Şekilde birbirii dik kese yollar verilmiştir A da hareket edip B ye uğramak şartıyla C oktasıa e kısa yolda gidecek ola bir kimse kaç değişik yolda gidebilir? A B 90 7

12 1 KOMBİNASYON Örek Şekilde kaç tae paralelkear vardır? Örek A Şekilde kaç tae üçge vardır? 150 B C D E F G Örek 4 A Şekilde kaç tae üçge vardır? BCD doğrusaldır) 15 B C D 5 Örek 5 Şekildeki doğrular üzerideki 10 okta ile e çok kaç üçge çizilir? Örek 6 90 Ayı düzlemde yarıçapları farklı altı daire ile e çok kaç kesişim oluşturulur? 8 0

13 KOMBİNASYON 1 Örek 7 E A Ḅ D C F G Şekilde verile oktaları köşe kabül ede ve e az bir kearı çemberi kirişi olacak biçimde e çok kaç üçge çizilir? Örek 8 A B C E D 1 Şekilde verile oktalarda e çok kaç tae kiriş geçer? Örek 0 5 ) ) + 1 Köşege sayısı 5 ola bir düzgü çokgei kaç tae kearı vardır? Örek 40 Şekilde; i ) Kaç tae üçge vardır? 10 A d 1, d, d doğruları birbirie paralel ise, d 1 d ii ) Kaç tae yamuk vardır? d e 1 e e e 4 e 5 B I R A Z D A Z E K A N I Z I C O S T R N 4 KÖPRÜ 0 ve 0 Bir köprü var ve e çok 60 kilo kaldırabiliyor Bu köprüde tae, taesi 1 kg ağırlığıdaki bilyelerle geçme gerekiyor Sei kilo 58 ise, bu köprüde asıl geçersiiz? 9

14 KAYBETMEYİ DÜŞÜNMEYEN KAZANIR Mayıs 1989 utulmaya maçlarda biri, bir derbi zaferi Feerbahçe i 8 kuruluş yılı Rakip Galatasaray, stadyum Ali Sami Ye Türkiye Kupası Çeyrek Fial mücadelesi O yıllarda derbi maçlarda taraftarlar stadyumu yarı yarıya paylaşıyorlardı Kimi ereye oturacağı maçta bir gü öce belli değildi Erke gele oturacağı bölgeyi seçiyordu Ali Sami Ye stadyumuu e stratejik bölgesi; kapalıı sağı, yai otoyola baka tarafı Bir gece öce stadyum etrafıda toplaa Sarı Lacivertliler derbi maçıda öce ilk zaferi tribüde kazaıyorlar Maçı başlamasıyla birlikte tribülerdeki heyeca artık kalpleri durduracak seviyeye gelmişti Feerbahçe bir türlü ezeli rakibii kale direklerii geçemiyordu Bu da yetmezmiş gibi Futbolu atamayaa atarlar kuralı işliyor Ve Galatasaray takımı üst üste gol birde buluyordu Taju u attığı gol ile tam bir şok yaşaıyordu Feerbahçe futbol takımıda ve tribülerdeki Feerbahçelilerde BEŞ-BEŞ sesleri yükseliyordu tribülerde Öyle ki bu duruma sahadaki Galatasaraylı futbolcular da katılıyordu Ve futbolu maevi altı kuralı Rakibii asla küçümseme ve oula asla dalga geçme maddesie ihaet ediyorlardı Kaleci Simoviç topu göğsüyle stop ediyor, Prekazi topu orta sahada sektiriyor, Taju rövoşatalar atarak Feerbahçeli meslektaşlarıyla alay ediyordu Hatta Galatasaray ı Alma kodisyoeri Feerbahçe tribülerie eliyle BEŞ işareti yapıyordu Soyuma odasıda Sarı Lacivertli takımı oyucularıı ağızlarıı bıçak açmıyordu Moral sıfır, motivasyo kaybolmuştu Feerbahçe Tekik Direktörü oyucularıı calaması içi şu sözlerle oları motive ediyordu; Olar bize bir devrede gol atabiliyorlarsa biz olara 5 tae atarız Sahaya çıkı ve e kadar Feerbahçeli olduğuuzu olara gösteri İkici yarı başladığıda, bambaşka bir Feerbahçe var sahada Aykut u attığı erke gele gol sayeside Sarı Lacivertli tribülerde ümit ışığı oluşmuştu Herkes artık dişlerii sıkıyordu ki; Hasa ı attığı ilk golde sora Feerbahçe de artık sahadakide tribüdekie herkes iaıyordu bu maçı döeceğie Hasa ı attığı ikici golde sora ise, efesler tutulmuştu artık Herkes bir tarihe taıklık etmei heyecaıı yaşıyordu Hasa ı attığı üçücü golle durum 4- oluyordu Feerbahçe tribüleride mutluluk ve seviç, Galatasaray tribüleride ise, hayal kırıklığı ve göz yaşları vardı artık Maç sorası ise, Feerbahçe tribülerii öüe gele Sarı Lacivertli futbolcular taraftarlarıyla birlikte ağlıyorlardı Bu maç basit bir maç değildi Feerbahçe içi tarihi bir maçtı Olar yarı sahaya çıkarke kaybetmeyi hiç düşümediler VE KAZANDILAR CEVAP : Adam 58 kilo olduğuda bir tae bilyeyi cebie koyarsa adamı kilosu 59 olur Diğer kiloluk topları da elide havaya atarak karşıya geçebilir Sabit olarak her seferide bir top havada olduğuda toplam kütle her zama 60 kiloda kalır

KOMBİNASYON: ve r birer pozitif doğal sayı olmak üzere r olsu. farklı elemaı r elemalı alt kümelerii sayısıa i r 2. Örek:! C(,r) = r!. r! li kombiasyou deir ve gösterilir. C(,r) = r P(,r)! = = r r! r!.

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

MATEMATİK ÖĞRETMENİ ALIMI AKADEMİK BECERİ SINAVI ÇÖZÜMLERİ

MATEMATİK ÖĞRETMENİ ALIMI AKADEMİK BECERİ SINAVI ÇÖZÜMLERİ MTEMTİK ÖĞRETMENİ LIMI KDEMİK EERİ SINVI ÇÖZÜMLERİ SÜLEYMNİYE EĞİTİM KURUMLRI MTEMTİK ÖĞRETMENİ LIMI KDEMİK EERİ SINVI ÇÖZÜMLERİ SORULR. li ile etül ü de içide buluduğu 4 erkek ve 6 bayada oluşa bir grupta

Detaylı

OLİMPİYAT SINAVI. 9 x.sin x + 4 / x.sin x, 0 x π İfadesinin alabileceği en küçük tamsayı değeri kaçtır? A) 14 B) 13 C) 12 D) 11 E) 10

OLİMPİYAT SINAVI. 9 x.sin x + 4 / x.sin x, 0 x π İfadesinin alabileceği en küçük tamsayı değeri kaçtır? A) 14 B) 13 C) 12 D) 11 E) 10 . ( ) ( ) 9 x.si x + 4 / x.si x, 0 x π İfadesii alabileceği e küçük tamsayı değeri A) 4 B) 3 C) D) E) 0. Yuvarlak bir masa etrafıda otura 5 şövalye arasıda rasgele seçile 3 taeside e az ikisii ya yaa oturma

Detaylı

YENİDEN DÜZENLENMİŞTİR.

YENİDEN DÜZENLENMİŞTİR. 0. Sııf MATEMATİK Soru Kitabı Mehmet ŞAHİN T.C MİLLİ EĞİTİM BAKANLIĞI Talim Terbiye Kurulu Başkalığı MATEMATİK Öğretim programıda yaptığı so gücelleme doğrultusuda YENİDEN DÜZENLENMİŞTİR. Emre ORHAN Mehmet

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ PURPLE COMET MATEMATİK BULUŞMASI Nisa 2010 LİSE - PROBLEMLERİ c Copyright Titu Adreescu ad Joatha Kae Çeviri. Sibel Kılıçarsla Casu ve Fatih Kürşat Casu Problem 1 m ve aralarıda asal pozitif tam sayılar

Detaylı

BAĞINTI VE FONKSİYON

BAĞINTI VE FONKSİYON BAĞINTI VE FONKSİYON SIRALI N-Lİ x, x, x,..., x tae elema olsu. ( x, x, x,..., x ) yazılışıda elemaları sırası öemli ise x, x, x,..., x ) e sıralı -li deir. x, x, x,..., x ) de ( x (, x, x ( x, ) sıralı

Detaylı

VII. OLİMPİYAT SINAVI. Sınava Katılan Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR k polinomu ( )

VII. OLİMPİYAT SINAVI. Sınava Katılan Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR k polinomu ( ) Sıava Katıla Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR 2 997. ( )( )( ) ( ) ( ) k x x x... k. x... 997. x poliomu ( ) a x a x... a x, a 0 ve k < k

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI.

TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI. TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI Birici Bölüm DENEME-4 Bu sıav iki bölümde oluşmaktadır. * Çokta seçmeli

Detaylı

MATEMAT K PERMÜTASYON - KOMB NASYON ÖRNEK 1: ÖRNEK 2:

MATEMAT K PERMÜTASYON - KOMB NASYON ÖRNEK 1: ÖRNEK 2: MATEMAT K PERMÜTASYON - KOMB NASYON ÖRNEK : ÖRNEK 2:, 6, 7, 8, 9 rakamlar kullaarak rakamlar birbiride farkl ola, üç basamakl ve 780 de küçük kaç de iflik say yaz labilir? A) 6 B) 2 C) 36 D) 30 E) 2 (999

Detaylı

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİKLERİ ) ... BOŞ KÜME. w w w. m a t b a z.

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİKLERİ ) ... BOŞ KÜME. w w w. m a t b a z. KÜME KAVRAMI Küme matematiği taımsız bir kavramıdır. Acak kümeyi, iyi taımlamış kavram veya eseler topluluğu diye tarif edebiliriz. Kümeler A, B, X, K,... gibi büyük harflerle Bir kümeyi oluştura eseleri

Detaylı

Kutu Poblemlei (Tekalı Kombiasyo) c) faklı dağıtılabili! Özdeş üç kutuya pay, pay, pay dağıtımı yapılısa; pay ala kutuu diğeleiyle ola özdeşliği bozul

Kutu Poblemlei (Tekalı Kombiasyo) c) faklı dağıtılabili! Özdeş üç kutuya pay, pay, pay dağıtımı yapılısa; pay ala kutuu diğeleiyle ola özdeşliği bozul Kutu Poblemlei (Tekalı Kombiasyo) KUTU PROBLEMLERİ Bu kouyu öekle üzeide iceleyeek geellemele elde edelim Öek a) faklı ese, kutuya pay, kutuya pay ve kutuya pay olacak şekilde kaç faklı dağıtılabili? b)

Detaylı

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri V MERSİN MATEMATİK OLİMPİYATI (ÜNV ÖĞR) I AŞAMA SINAV SORULARI ( Nisa 8) de ye taımlı, birebir ve örte f ve g foksiyoları her bir içi koşuluu sağlası g( a ) = ve f ( ) ( ) ( ) f = g a 4 = a ise a sayısı

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK...111. Konu Özeti...111. Testler (1 11)...115. Yazılıya Hazırlık Soruları (1 2)...

PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK...111. Konu Özeti...111. Testler (1 11)...115. Yazılıya Hazırlık Soruları (1 2)... ÜNİTE PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK Bölüm PERMÜTASYON, KOMBİNASYON BİNOM VE OLASILIK! = (...... ) PERMÜTASYON, KOMBİNASYON BİNOM, OLASILIK VE İSTATİSTİK PERMÜTASYON, KOMBİNASYON,

Detaylı

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25 1 İçindekiler 1. Bölüm: SIRALAMA (PERMÜTASYON)... 5 2. Bölüm: SEÇME (KOMBİNASYON)...13 3. Bölüm: BİNOM AÇILIMI...21 4. Bölüm: OLASILIK...25 5. Bölüm: FONKSİYONLARIN SİMETRİLERİ VE CEBİRSEL ÖZELLİKLERİ...37

Detaylı

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİK- LERİ ) ... BOŞ KÜME. w w w. m a t b a z.

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİK- LERİ ) ... BOŞ KÜME. w w w. m a t b a z. KÜME KAVRAMI Küme matematiği taımsız bir kavramıdır. Acak kümeyi, iyi taımlamış kavram veya eseler topluluğu diye tarif edebiliriz. Kümeler A, B, X, K,... gibi büyük harflerle gösterilir. Bir kümeyi oluştura

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

+ y ifadesinin en küçük değeri kaçtır?

+ y ifadesinin en küçük değeri kaçtır? PROBLEMLER: 9 Sıavı 5 a, a, a,..., a Z, 0 a k olmak üzere, 95 sayısı faktöriyel tabaıda 5. k 95 = a+ a.! + a.! +... + a.! biçimide yazılıyor. a kaçtır? (! =...( ) ) 0 ( B ) ( C ) ( D ) ( E ). Bir ABC üçgeide

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

Bağıntı YILLAR ) AxB BxA. 2) Ax(BxC) = (AxB)xC. 4) s(axb) = s(bxa) = s(a).s(b)

Bağıntı YILLAR ) AxB BxA. 2) Ax(BxC) = (AxB)xC. 4) s(axb) = s(bxa) = s(a).s(b) Bağıtı YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - - - - BAĞINTI ÖZELLĐKLER: SIRALI ĐKĐLĐ: (a,) şeklideki ifadeye ir sıralı ikili yada kısaca ikili deir (a,) sıralı ikiliside a ya irici

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir?

1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir? 1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir? 9. 4 çocuklu bir aile yan yana poz verecektir. Çocukların soldan sağa doğru boy sırasında olduğu kaç durum

Detaylı

vor vsu n Sini 2 = n 12 = sabit ; Sinr n1 Sini n = Sinr Sinr = Sini

vor vsu n Sini 2 = n 12 = sabit ; Sinr n1 Sini n = Sinr Sinr = Sini KIRILMALAR Gülük hayatta çok sık rastladığımız ve gözlemlediğimiz bir olaydır kırılma. Bir su kuyusua baktığımız zama kuyuu dibii daha yakıda görürüz. Çay bardağıdaki kaşığı bardak içideyke kırık gibi

Detaylı

35 Yay Dalgaları. Test 1'in Çözümleri. Yanıt B dir.

35 Yay Dalgaları. Test 1'in Çözümleri. Yanıt B dir. 35 Yay Dalgaları 1 Test 1'i Çözümleri 1. dalga üreteci 3. m 1 2m 2 Türdeş bir yayı her tarafıı kalılığı ayıdır. tma türdeş yay üzeride ilerlerke dalga boyu ve hızı değişmez. İlk üretile ı geişliği büyük,

Detaylı

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006 MC www.matematikclub.com, 2006 Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Permutasyon-Kombinasyon- Binom TEST I 1. Ankra'dan Đstanbul'a giden 10 farklı otobüs, Đstanbul'- dan Edirne'ye giden 6 farklı

Detaylı

Đki Oyun Yaz Dnemi 22 Haziran 2011, Çarşamba Đst201 Đstatistik Teorisi Dersin konusu: Olasılık Hesabı

Đki Oyun Yaz Dnemi 22 Haziran 2011, Çarşamba Đst201 Đstatistik Teorisi Dersin konusu: Olasılık Hesabı Đki Oyu Yaz Demi 22 Hazira 20, Çarşamba Đst20 Đstatistik Teorisi Dersi kousu: Olasılık Hesabı - Çocuklar, Đstatistik Teorisi bir tarafa, istatistikçileri işi rasgelelik ortamıda hesap yapmaktır. Şöyle

Detaylı

İstatistik Nedir? Sistem-Model Kavramı

İstatistik Nedir? Sistem-Model Kavramı İstatistik Nedir? İstatistik rasgelelik içere olaylar, süreçler, sistemler hakkıda modeller kurmada, gözlemlere dayaarak bu modelleri geçerliğii sıamada ve bu modellerde souç çıkarmada gerekli bazı bilgi

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

TEMEL SAYMA KURALLARI

TEMEL SAYMA KURALLARI TEMEL SAYMA KURALLARI SAYMA Toplama Yoluyla Sayma A ve B sonlu ve ayrık kümeler olmak üzere, bu iki kümenin birleşiminin eleman sayısı; s(a,b) = s(a) + s(b) dir. Sonlu ve ayrık iki kümenin birleşiminin

Detaylı

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri, POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x

Detaylı

10. SINIF KONU ANLATIMLI. 5. ÜNİTE: DALGALAR ETKİNLİK ve TEST ÇÖZÜMLERİ

10. SINIF KONU ANLATIMLI. 5. ÜNİTE: DALGALAR ETKİNLİK ve TEST ÇÖZÜMLERİ 10. SINI ONU ANATII 5. ÜNİTE: DAGAAR ETİNİ e TEST ÇÖZÜERİ 31 5. Üite 1. ou Etkilik C i Çözümleri c. 1. Soruda e dalgalarıı hızı eşit erilmiş. Ayrıca şekil icelediğide m = 4 birim, m = 2 birimdir. Burada;

Detaylı

ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR

ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR 1) 60 sayısıı asal çarpalarıa ayrılmış şekli aşağıdakilerde hagisidir? A)..5 D)..5 B)..5 E)..5 C)..5 1.Yötem: 60 180 90 45 60..5 tir. 15 5 5 1.Yötem: Öğrecilerimizi1.Yötemde

Detaylı

14. Kümelerin Niceliklerinin Kıyaslanışı ve Sonsuzluğun Mertebeleri

14. Kümelerin Niceliklerinin Kıyaslanışı ve Sonsuzluğun Mertebeleri =2. Kısmı Başı= 14. Kümeleri Niceliklerii Kıyaslaışı ve Sosuzluğu Mertebeleri Sosuz kümeleri iceliklerii kıyaslamak içi, öğe sayısı yaklaşımı yetersizdir. Farklı bir yaklaşım gereklidir. İki küme A, B

Detaylı

Yrd.Doç. Dr. Mustafa Akkol

Yrd.Doç. Dr. Mustafa Akkol komşuluğu: Taım: ; isteildiği kadar küçük seçilebile poziti bir sayı olmak üzere a a açık aralığıa a R sayısıı komşuluğu deir Örek : Taım: a a a a ve 0 00 olsu ' i 0 00 0 00 999 00 : Z R bir dizi deir

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

Olimpiyat Eğitimi TUĞBA DENEME SINAVI

Olimpiyat Eğitimi TUĞBA DENEME SINAVI TUSİ Ortaöğretim Öğretmenleri için Olimpiyat Eğitimi TUĞBA DENEME SINAVI 10.01.2014-17.01.2014 2 1. Tuğba üç test yapar. İlkinde, 25 sorudan %60 ını, ikinci de 30 sorudan ve %70 ini ve son olarak 45 sorudan

Detaylı

Permütasyon Kombinasyon Binom Olasılık

Permütasyon Kombinasyon Binom Olasılık Permütasyon Kombinasyon Binom Olasılık Saymanın Temel İlkesi: A1, A2,..., A n kümeleri için s( A1 ) = a1, s( A2 ) = a2,.., s( An ) A xa x xa Kartezyen çarpımının eleman sayısı; s( A xa x... xa ) = s( A

Detaylı

1986 ÖYS. 3 b. 2 b C) a= 1. Aşağıdaki ABC üçgeninde. BD kaç cm dir? C) 3 D) 8 E)

1986 ÖYS. 3 b. 2 b C) a= 1. Aşağıdaki ABC üçgeninde. BD kaç cm dir? C) 3 D) 8 E) ÖYS. Aşağıdaki ABC üçgeninde. BD kaç cm dir? 0. Aşağıdaki şekilde ABCD bir yamuk ve AECD bir paralel kenardır.. Aşağıdaki şekilde EAB ve FBC eşkenar üçgendir. AECD nin alanı cm Buna göre CEB üçgeninin

Detaylı

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI:

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: www.testhae.com SAYILAR DERS NOTLARI Bölüm / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: -RAKAM -SAYI -DOGAL SAYILAR -SAYMA SAYILARI -ÇFT DOGAL SAYILAR -TEK DOGAL SAYILAR -ARDISIK DOGAL SAYILAR -ARDISIK ILK

Detaylı

4. Bir tabakta 3 elma, 4 armut ve 5 portakal vardır.

4. Bir tabakta 3 elma, 4 armut ve 5 portakal vardır. Saymanın Temel İlkesi Birinci elemanı A 1 kümesinden, ikinci elemanı A 2 kümesinden,..., n inci elemanı A n kümesinden alınmak koşulu ile; kaç değişik sıralı n li yazılabilir? 1. Aşağıdaki problemleri,

Detaylı

Matematik Olimpiyatları İçin

Matematik Olimpiyatları İçin KONU ANLATIMLI Matematik Olimpiyatları İçi İdirgemeli Diziler, Kombiatorik ve Cebirsel Uygulamaları LİSE MATEMATİK OLİMPİYATLARI İÇİN Lokma Gökçe, Osma Ekiz İdirgemeli Diziler ve Uygulamaları Lokma Gökçe,

Detaylı

İDEAL ÇARPIMLARI (IDEAL PRODUCTS)

İDEAL ÇARPIMLARI (IDEAL PRODUCTS) T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ (IDEAL PRODUCTS) 070216013 TUĞBA ÖZMEN 080216038 AYŞE MUTLU 080216064 SEVİLAY HOROZ Nil ehri, Düyaı e uzu ehridir (6.650

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ 1. BÖÜM A DAGAARI MDE SRU - 1 DEİ SRUARIN ÇÖZÜMERİ 1. 5. T x x x uvvet vektörüü degede uzaklaşa ucu ile hız vektörüü ları çakışık olalıdır. Bua göre şeklide. Dal ga la rı ge li ği de ge ok ta sı a ola

Detaylı

AÇIK UÇLU SORULAR ÜNİTE 1 VERİ, SAYMA VE OLASILIK. Bölüm 1 TEMEL SAYMA KLURALLARI

AÇIK UÇLU SORULAR ÜNİTE 1 VERİ, SAYMA VE OLASILIK. Bölüm 1 TEMEL SAYMA KLURALLARI ÜNİTE VERİ, SAYMA VE OLASILIK Bölüm TEMEL SAYMA KLURALLARI AÇIK UÇLU SORULAR. A = {0,,, 3, 4, } kümesindeki rakamlar kullanılarak 3 basamaklı rakamları farklı kaç farklı tek sayı yazılabilir? 48. A = {0,,

Detaylı

ÇEMBER KARMA / TEST-1

ÇEMBER KARMA / TEST-1 ÇMR RM / S-... Verilenlere göre, m( ) ) ) 0 ) ) 0 ) Verilenlere göre, m(g ) ) ) ) 6 ) 0 ) 60 0 0 G 0 ) ) ) ) ) 8 L 0 [] [] = {} m( ) = 0 m() = 0 ve üçgenlerinin çevrel çemberi m( ) = 0 m() = 0 m() = üçgen

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ Lokma Gökçe Olimpiyat problemlerii çözümüde eşitsizlik teorisi öemli bir yer tutar. Baze bir maksimum miimum değer problemide, baze bir geometrik eşitsizlik kaıtıda, baze

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

2013 YGS MATEMATİK. a a olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? A) 1 2 C) 1 4 E) 4 9 B) 3 2 D) 1 9 A) 3 B) 4 C) 5 D) 6 E) 7

2013 YGS MATEMATİK. a a olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? A) 1 2 C) 1 4 E) 4 9 B) 3 2 D) 1 9 A) 3 B) 4 C) 5 D) 6 E) 7 0 YGS MATEMATİK. m olduğuna göre, m kaçtır?. a a a a olduğuna göre, a kaçtır? A) B) ) D) 6 E) 7 A) B) ) D) 9 E) 9.. (0,) (0,) işleminin sonucu kaçtır? A) 0,06 B) 0,08 ) 0, D) 0, E) 0, A B B D B A BD 9?

Detaylı

KÖKLÜ İFADELER. = a denklemini sağlayan x sayısına a nın n inci. Tanım: n pozitif doğal sayı olmak üzere kuvvetten kökü denir.

KÖKLÜ İFADELER. = a denklemini sağlayan x sayısına a nın n inci. Tanım: n pozitif doğal sayı olmak üzere kuvvetten kökü denir. 1 Taı: pozitif doğal saı olak üzere kuvvette kökü deir. KÖKLÜ İFADELER = a dekleii sağlaa saısıa a ı ici = a dekleide = a, tek ise a 0 ; = ± a, çift ise Uarı: = ise, a = a olarak gösterilir. a ifadesie

Detaylı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı A 1. Köşeleri, yarıçapı 1 olan çemberin üstünde yer alan düzgün bir n-genin çevre uzunluğunun alanına oranı 4 3 ise, n kaçtır? 3 a) 3 b) 4 c) 5 d)

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir?

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir? KONU:ATOM FİĞİ ebuyukfizikci@otmail.com HAIRLAYAN ve SORU ÇÖÜMLERİ:Amet Selami AKSU Fizik Öğretmei www.fizikvefe.com S.1. Uyarılmış bir idroje atomuda Balmer serisii H β çizgisi gözlemiştir. Bua göre,buu

Detaylı

OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe)

OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe) OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe) Matematikte sayı dizileri teorisii ilgiç bir alt kolu ola idirgemeli diziler kousu olimpiyat problemleride de karşımıza

Detaylı

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır?

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? TEMEL MATEMATİK TESTİ 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 1. 3. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? A)

Detaylı

PERMÜTASYON DERS NOTLARI. Sayma Yöntemleri. TEMEL SAYMA KURALLARI Toplama yoluyla sayma. Çarpma yoluyla sayma

PERMÜTASYON DERS NOTLARI. Sayma Yöntemleri. TEMEL SAYMA KURALLARI Toplama yoluyla sayma. Çarpma yoluyla sayma TEMEL SAYMA KURALLARI Toplama yoluyla sayma A ve B ayrık iki küme olsun. Bu iki kümenin birleşimlerinin eleman sayısı, bu kümelerin eleman sayılarının toplamına eşittir. Bu sayma yöntemine toplama yoluyla

Detaylı

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI SERİMYA - 4 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI. 4? 4 4. A B denkleminde A ve B birbirinden farklı pozitif tam sayılar olduğuna göre, A + B toplamı kaçtır? işleminin sonucu kaçtır? A) 6 B) 8 C) D)

Detaylı

SERİMYA 2003 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

SERİMYA 2003 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI SERİMYA 00 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI. + + 5 0 + + + 0 40 toplamının sonucu kaçtır? A) 5 B) C) D) E) + 4. a,b,c Z olmak üzere, a + b + c 7 = 6 ise, a.b.c kaçtır? A) 6 B) 8 C) D) 6 E) 8 y.

Detaylı

İstenen Durum Olasılık Tüm Durum 12

İstenen Durum Olasılık Tüm Durum 12 OLASILIK ÇIKMIŞ SORULAR 1.SORU İçinde top bulunan iki torbadan birincisinde beyaz, siyah ve ikincisinde beyaz, 5 siyah top vardır. Birinci torbadan bir top çekilip rengine bakılmadan ikinci torbaya atılıyor.

Detaylı

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80. 11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır?

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır? Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994 Matematik Soruları ve Çözümleri 4.10 +.10 1. 4 10 4 işleminin sonucu kaçtır? A) 0,4 B) 4, C) 4 D) 40 E) 400 Çözüm 1 4.10 +.10 4 10 4 4.10 +.10 10 1+ 1 = 4 4 (40+

Detaylı

{ 1 3 5} UYGULAMA-2 OLASILIK HESABI { } i, i = 1, 2,, n elemanına aşağıdaki özelliklere sahip bir p. her bir ω. sayısı karşılık getirilsin.

{ 1 3 5} UYGULAMA-2 OLASILIK HESABI { } i, i = 1, 2,, n elemanına aşağıdaki özelliklere sahip bir p. her bir ω. sayısı karşılık getirilsin. UYGULAMA- OLASILIK HESABI Ω. Ω solu sayıda elemaa sahip olsu. Ω { ω, ω,, ω }, U olmak üzere, Ω ı her bir ω i, i,,, elemaıa aşağıdaki özelliklere sahip bir p i sayısı karşılık getirilsi. ) p 0, i,,...,

Detaylı

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR 7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR KONULAR 1. DOĞRUDA AÇILAR 2. Açı 3. Açının Düzlemde Ayırdığı Bölgeler 4. Açı Ölçü Birimleri 5. Ölçülerine Göre Açılar 6. Açıortay 7. Tümler Açı 8. Bütünler Açı 9. Ters

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 15.MATEMATİK YARIŞMASI 8. SINIFLAR FİNAL SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 15.MATEMATİK YARIŞMASI 8. SINIFLAR FİNAL SORULARI EGE BÖLGESİ OKULLAR ARASI 5.MATEMATİK YARIŞMASI 8. SINIFLAR FİNAL SORULARI. (a n ) bir geometrik dizidir. a5+a 6 a+a 8 olduğuna göre, kaçtır? a. Bir ABC dik üçgeninde [AB] [BC] dir. [AB] kenarı üzerinde

Detaylı

SİVAS FEN LİSESİ. Soru Kitapçığı Türü. 25 Nisan 2015 Cumartesi, 9:30 12:30

SİVAS FEN LİSESİ. Soru Kitapçığı Türü. 25 Nisan 2015 Cumartesi, 9:30 12:30 SİVAS FEN LİSESİ SİVAS İL MERKEZİ ORTAOKUL 1. MATEMATİK OLİMPİYATI SINAVI 015 ÖĞRENCİNİN ADI SOYADI : T.C. KİMLİK NO : OKUL / SINIFI : SINAVLA İLGİLİ UYARILAR: Soru Kitapçığı Türü A 5 Nisan 015 Cumartesi,

Detaylı

LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN

LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN Konu Anlatımlı Örnek Çözümlü Test Çözümlü Test Sorulu Karma Testli GEOMETRİ 1 Hazırlayan Erol GEDİKLİ Matematik

Detaylı

Örnek. Temel Matematik Sınavı. 1 Diğer sayfaya geçiniz.

Örnek. Temel Matematik Sınavı. 1 Diğer sayfaya geçiniz. Temel Matematik Sınavı 10 u testte sırasıyla Matematik (1 3) ve Geometri (33 40) ile ilgili 40 soru vardır. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz. u testin cevaplanması

Detaylı

Ö.S.S. 1994. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ = 43. olduğuna göre a kaçtır?

Ö.S.S. 1994. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ = 43. olduğuna göre a kaçtır? Ö.S.S. 1994 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ 4.10 1. 4 10 +.10 4 işleminin sonucu kaçtır? A) 0,4 B) 4, C) 4 D) 40 E) 400 Çözüm 1 4.10 +.10 4 10 4 4.10 +.10 10 1+ 1 4 4 (40+ ).10 10 4 4 4 (98² 98²) 00.9.

Detaylı

10. Hilesiz iki zar birlikte atılıyor. Üst yüze gelen sayıların toplamı 6 olduğuna göre bunlardan birinin 1 olma olasılığı kaçtır?

10. Hilesiz iki zar birlikte atılıyor. Üst yüze gelen sayıların toplamı 6 olduğuna göre bunlardan birinin 1 olma olasılığı kaçtır? . kız ve 5 erkek arasınan kişilik bir ekip seçilecektir. n çok birinin kız olması olasılığı kaçtır? ( 5 ). 6 evli çift arasınan rasgele kişi seçiliyor. Seçilen bu kişi arasına evli bulunmama olasılığı

Detaylı

İlkokulu - 3/ Sınıfı *** Matematik *** Geometrik şekiller - 3

İlkokulu - 3/ Sınıfı *** Matematik *** Geometrik şekiller - 3 İlkokulu - 3/ Sınıfı *** Matematik *** Geometrik şekiller - 3 Adım Soyadım : Okul Numaram:. S ü l e y m a n O C A K S ü l e y m a n O C A K S O ü l C e y A m a K n İlkokulu - 3/ Sınıfı *** Matematik ***

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI

Ortak Akıl MATEMATİK DENEME SINAVI rtak kıl YGS MTEMTİK DENEME SINVI 060- rtak kıl. ydın ÜNLÜ dem ÇİL li Can GÜLLÜ yhan YNĞLIBŞ Barbaros GÜR Barış DEMİR Deniz KRDĞ Ersin KESEN Fatih TÜRKMEN Hatice MNKN Kemal YDIN Köksal YİĞİT Muhammet YVUZ

Detaylı

EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ.

EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ. DERS : GEOMETRİ KONU : ÜÇGEN EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ. AMAN SIKILMAYIN NOT BİRAZ UZUN DA :-) Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının

Detaylı

ÜÇGENLERİN KENARLARI ARASINDAKİ BAĞINTILAR ÜÇGENLERDE EŞLİK VE BENZERLİK. Şekilde verilen ABC üçgeninde [BC] kenarına

ÜÇGENLERİN KENARLARI ARASINDAKİ BAĞINTILAR ÜÇGENLERDE EŞLİK VE BENZERLİK. Şekilde verilen ABC üçgeninde [BC] kenarına . Verilen şekilde en uzun kenar aşağıdakilerden ÜÇGENLERİN KENARLARI ARASINDAKİ BAĞINTILAR. Şekilde verilen ABC üçgeninde [BC] kenarına ait kenar orta dikme, aşağıdaki noktaların hangilerinden geçer? AB

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ ADAYIN ÞÝFRESÝ BURAYA YAPIÞTIR DEVLET OLGUNLUK SINAVI DEVLET SINAV MERKEZÝ MATEMATÝK - TEMEL SEVÝYE MATEMATÝK TEMEL SEVÝYE Testin Çözme Süresi: 180 dakika Haziran, 2009 yýlý BÝRÝNCÝ deðerlendiricinin þifresi

Detaylı

2012 YGS MATEMATİK Soruları

2012 YGS MATEMATİK Soruları 01 YGS MATEMATİK Soruları 1. 10, 1, 0, 0, işleminin sonucu kaçtır? A) B), C) 6 D) 6, E) 7. + ABC 4 x 864 Yukarıda verilenlere göre, çarpma işleminin sonucu kaçtır? A) 8974 B) 907 C) 9164 D) 94 E) 98. 6

Detaylı

ÖZEL YUNUS GÜNER FEN ve ANADOLU LĐSESĐ MATEMATĐK OLĐMPĐYATI TAKIM SEÇME SINAVI

ÖZEL YUNUS GÜNER FEN ve ANADOLU LĐSESĐ MATEMATĐK OLĐMPĐYATI TAKIM SEÇME SINAVI ÖZEL YUNUS GÜNER FEN ve NDOLU LĐSESĐ MTEMTĐK OLĐMPĐYTI TKIM SEÇME SINVI Süre: 90 dakika ÖĞRENĐNĐN DI SOYDI: SINVL ĐLGĐLĐ UYRILR: u sınav çoktan seçmeli 32 sorudan oluşmaktadır. Her sorunun sadece bir doğru

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak sayfası İÇİNDEKİLER. ÜNİTE SAYMA Sıralama ve Seçme... 4 Toplama Yolu ile Sayma... 4 Çarpma Yolu ile Sayma... 4 Permütasyon (Sıralama)... 5 Konu Testleri - -... 9 Kombinasyon (Seçme)... 4 Konu Testleri

Detaylı

FEN BİLİMLERİ TESTİ. 1. Burak DNA modeli yapmak için nükleotitteki yapılara ait tabloda belirtilen sayıdaki gibi kartondan şekiller yapıyor.

FEN BİLİMLERİ TESTİ. 1. Burak DNA modeli yapmak için nükleotitteki yapılara ait tabloda belirtilen sayıdaki gibi kartondan şekiller yapıyor. FEN BİLİMLERİ ESİ 1. Burak N modeli yapmak içi ükleotitteki yapılara ait tabloda belirtile sayıdaki gibi kartoda şekiller yapıyor. 3. şağıda bir N molekülüü eşlemesi gösterilmiştir. Şekil emsil ettiği

Detaylı

ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI

ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI PROJENİN ADI: ANA ÇOKGEN YAVRU ÇOKGEN İLİŞKİSİ: KENAR VE ALAN BAĞINTILARI HAZIRLAYANLAR: AYŞENUR İREM OKAY EZGİ HARPUT ÖZEL

Detaylı

NİÇİN ÖRNEKLEME YAPILIR?

NİÇİN ÖRNEKLEME YAPILIR? İÇİ ÖREKEME YAPIIR? Zama Kısıdı Maliyeti Azaltma Hata Oraıı Azaltma Souca Ulaşma Hızı Doç.Dr. Ali Kemal ŞEHİRİOĞU Araş.Gör. Efe SARIBAY Örekleme Teorisi kousuu içide, Örekleme Tipleri populasyoda örek

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

ÜÇGENDE AÇILAR. Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir.

ÜÇGENDE AÇILAR. Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir. ÜÇGENDE AÇILAR Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir. Burada; A, B, C noktaları üçgenin köşeleri, [AB], [AC], [BC] doğru parçaları

Detaylı

YGS MATEMATİK SORULARI !+7! 6! 5! işleminin sonucu kaçtır? A) 24 B)32 C)42 D)48 E)56. ifadesinin eşiti hangisidir?

YGS MATEMATİK SORULARI !+7! 6! 5! işleminin sonucu kaçtır? A) 24 B)32 C)42 D)48 E)56. ifadesinin eşiti hangisidir? 2017 YGS MATEMATİK SORULARI 1. 4. 4.7!+7! 6! 5! işleminin sonucu kaçtır? ifadesinin eşiti hangisidir? A) 24 B)32 C)42 D)48 E)56 A)1/2 B)1/4 C)1/6 D)1/8 E)1/12 2. 2 9 5.2 4 12 3 işleminin sonucu kaçtır?

Detaylı

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin

Detaylı

Not: n tane madeni paranın atılması deneyinde örnek uzayın eleman sayısı

Not: n tane madeni paranın atılması deneyinde örnek uzayın eleman sayısı LYS Matematik Olasılık Tanım: Bir deneyde çıkabilecek tüm sonuçların kümesine örnek uzay denir ve E ile gösterilir. Örnek uzayın herhangi bir elemanına da örnek nokta denir. Örnek: Bir zarın atılması deneyinde

Detaylı

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır?

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? 014 LYS GOMTRİ 1. y 1 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? parabolü ile. O merkezli çeyrek çemberde O deltoid olduğuna göre, taralı alan kaç birim karedir? O. d:y a b doğrusu -ekseni

Detaylı

Temel Matematik Testi - 5

Temel Matematik Testi - 5 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: 005. u testte 40 soru vardır.. Tavsiye edilen süre 40 dakikadır. Temel Matematik Testi

Detaylı

ÖZEL SERVERGAZİ LİSELERİ

ÖZEL SERVERGAZİ LİSELERİ S R İ M Y ÖZL SRVRGZİ LİSLRİ VI. İ L K Ö Ğ R T İ M OKU L L R I R S I MT M Tİ K YRIŞMSI ÇIKLMLR u sınav çoktan seçmeli 5 ve klasik sorudan oluşmaktadır. Sınav süresi 50 dakikadır. Tavsiye edilen süre (5*=05

Detaylı

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersin Adı SINIFI: KONU: Olasılık Dersin Konusu. Bir kutudaki 7 farklı boncuğun içinden iki tanesi seçiliyor. Buna göre, örneklem uzayının eleman sayısı A) 7 B)! 7. madeni

Detaylı

n 1 1. Pratik Bilgi-1 in y a(x r) k türünden 2. Pratik Bilgi-1 x a(y k) r türünden

n 1 1. Pratik Bilgi-1 in y a(x r) k türünden 2. Pratik Bilgi-1 x a(y k) r türünden Pratik Bilgi- (İtegralsiz Ala Bulma) a eğrisi ile ve 0 doğrularıı sıırladığı ala ise, a eğrisi ile 0 ve a doğrularıı sıırladığı ala dir. Ugulama-. Muharrem Şahi eğrisi ile ve 0 doğrularıı sıırladığı bölgei

Detaylı