Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi"

Transkript

1 Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi 1

2 Görüntü Zenginleştirme Spektral Dönüşümler Spektral dönüşümler Kontrast zenginleştirme Doğrusal/Lineer kontrast artırımı Doğrusal olmayan (Histogram eşitleme, Gauss) Aritmetik bant işlemleri Ana bileşen dönüşümü

3 Spektral Dönüşümler Kontrast Artırımı Histogram Eşitleme: Bu yöntemde amaç, çıktı görüntü histogramının uniform bir dağılımda olmasını yani her bir parlaklık seviyesi için yaklaşık aynı sayıda piksel bulunmasını amaçlar. Görüntü parlaklık değerleri ayrık değerler olduğu için eşitleme işlemi sırasında herhangi bir parlaklık seviyesine çok fazla sayıda piksel girebilir. Ancak histogram, yansıtım değerlerinin mekânsal konumuyla ilgili bilgi içermediğinden, bu seviyedeki pikselleri birbirinden ayırt etmek imkânsızdır. Diğer bir deyişle birçok piksel birkaç parlaklık seviyesinde toplanabilir. Genelde çok nadiren tamamen uniform bir sonuç histogramı elde edilir.

4 4

5 Spektral Dönüşümler Aritmetik Bant İşlemleri Tek veya farklı kaynaklardan gelen görüntü bantlarının, uygun matematiksel yöntemlerle yeni bir özellik uzayına dönüştürülmesi işlemidir. En temel dönüşüm yöntemleri basit aritmetik işlemleri ve bant oranlamasıdır

6 NOAA AVHRR NDVI Nisan Aralik

7 Spektral Dönüşümler Ana Bileşen Dönüşümü Çok spektrumlu görüntülemede ölçülen toplam spektral bilgi, bantlar arasında paylaştırılmıştır. Genellikle toplam spektral bilginin bir kısmı değişik oranlarda bantlar arasında tekrarlanır. Matematiksel ifadeyle, bantlar birbirleriyle korelasyonludur ve bundan dolayı benzer bilgiler içerirler. Şekil de, bir görüntünün mavi ve kırmızı bantları arasındaki saçılım diyagramı ve aralarındaki lineer ilişki verilmiştir. Bantlar arasındaki korelasyon katsayısı 0.96 olarak hesaplanmıştır. Bu değer, saçılım grafiğiyle tutarlı bir şekilde pozitif oldukça güçlü bir doğrusal ilişkiyi göstermektedir

8 Bu dönüşüm, farklı disiplinlerce çok değişkenli (çokboyutlu) verilerin analizinde (multivariate analysis) kullanılmaktadır. Çok değişkenli analiz konusu, iki veya daha çok boyutlu rasgele değişkenleri bir bütün olarak ele alan ve değişkenler arasındaki ilişkileri göz önünde tutarak,bütünsel bir sonuç üreten istatistiksel tekniklerden meydana gelmektedir. Ç. Göksel-N. Musaoğlu, Veri entegrasyonu ders notu

9 Çok değişkenli verilerin analizinde, bütüncül istatistiksel sonuçlar üretmenin ötesinde, çok değişkenli veri kümesinin yapısını tanımlamaya yönelik veri-çözümleme Ana bileşenler dönüşümü (Principal Components Transformation ); aralarında yüksek korelasyon bulunan çok değişkenli verileri, aralarında korelasyon olmayan yeni bir koordinat sistemine dönüştüren doğrusal bir dönüşümdür. Dönüşümden sonra, veriler arasında korelasyon ortadan kalkar. 9

10 Ana bileşenler dönüşümü, fotogrametri ve uzaktan algılamada; Görüntü sıkıştırmada (image compression), Görüntü iyileştirmede (image enhancement), Üçten fazla bandla algılanmış görüntülerin ekranda gösterilmesinde, Değişim belirlemede(change detection), Görüntü çakıştırılmasında (image merging), Sınıflandırma öncesinde sınıflandırmaya sokulacak band sayısının azaltılmasında, Özellik çıkarımında vs.kullanılmaktadır. 10

11 Ana bileşenler yöntemi uzaktan algılama verisini işlemede kullanılan veriye bağımlı, istatistiksel bir yöntemdir. Bu yöntemde verinin istatistiksel değerlendirmelerinden yararlanarak görüntü yeniden oluşturulmaya çalışılır. İstatistiksel yöntemler kullanılarak veri içerisindeki benzerlikler ve farklılıklar vurgulanmaktadır. 11

12 Ana bileşenler dönüşümü, çok spektrumlu verilerdeki veri fazlalılığını kaldırmak veya azaltmak, Başka bir deyişle benzer olan kanalları bastırmak veya göze daha yorumlanabilir olan yeni kanal verilerini oluşturmak amacıyla geliştirilmiş bir görüntü zenginleştirme işlemidir. Veri Sıkıştırma tekniğidir. Bilgi kaybı olmaksızın daha az sayıda veri bitinin iletimini ve depolanmasını mümkün kılar. Veri özetleme yöntemidir. Gereksiz verilerin boyutları küçültülerek bantlarda daha az yer kaplamaları sağlanır 12

13 Spektral kanallar arasındaki spektral duyarlılığın çakışması neticesinde korelasyon oluşabilir Örneğin, bitki örtüsünün yoğun olduğu bir bölgenin çok bandlı görüntüsünde, görünür kırmızı band ile yakın-kızılötesi band arasında negatif korelasyon olmasına karşın, Görünür mavi band ile görünür yeşil band arasında pozitif korelasyon olacaktır. 13

14 Ana bileşenler dönüşümü ile verinin boyutu azaltılır ve orijinal görüntüdeki bantlar daha az sayıda banda sıkıştırılır. Bu istatistiksel işlemler sonucunda oluşan yeni bantlara ana bileşenler denir. Bu işlemde az sayıda bileşenle daha fazla bilgi elde edilir. Ana bileşenler dönüşümü ile 7 bantlık görüntü, 3 bantlı bileşene dönüştürülüp boyutsallık indirgenir ve bilgi oranı arttırılır. Mevcut bilgi korunarak, bant sayısı azaltılmaktadır 14

15 15

16 Yöntem, minimum korelasyonlu bilgileri sıkıştırarak veri grubu hakkında maksimum bilginin çıkarılmasını sağladığı için, çok kanallı verilere görsel yorumlama veya sınıflandırma öncesi uygulandığında, verilerden bilgi çıkarılmasını kolaylaştırmaktadır. Dönüşümde, uydu görüntülerindeki parlaklık değerleri, yeni bir koordinat sisteminde yeniden hesaplanır. n kanallı orijinal veri dizisinde mevcut olan tüm bilgiler n den daha az sayıda ki yeni kanallara veya bileşenlere sıkıştırılır. Elde edilen ana bileşen verileri,orijinal veri değerlerinin basit bir lineer kombinasyonudur. 16

17 Spektral Dönüşümler Ana Bileşen Dönüşümü Ana bileşen dönüşümünde amaç, bilgi tekrarı olmayan korelasyonsuz (birbirine ortogonal) bileşenler elde etmektir. Elde edilen bileşenlerin bağımsız olmaları, orijinal verinin çok boyutlu Normal (Gauss) dağılımına uygun olmasına bağlıdır. Dönüşüm sonucu, orijinal bantların lineer bir kombinasyonudur:

18 Spektral Dönüşümler Ana Bileşen Dönüşümü N bantlı bir görüntüde; Ki ler orijinal bantları ve i ler ana bileşenleri göstermektedir. aij ler ise dönüşüm katsayılarıdır. Bu katsayılar, birbirine ortogonal ve normalize edilmiş x özvektörlerinden oluşur. Bu nedenle dönüşüm ortogonaldir. Temel matematiksel prensip, sıfırdan farklı bir x vektörünün herhangi bir C kare matrisiyle (özel olarak simetrik matris) çarpımının bu x vektörüyle orantısal olmasıdır. Yani Cx çarpım vektörüyle x vektörü aynı doğrultuda ancak farklı büyüklüğe (norma) sahiptirler. Bu iki vektör arasındaki oran değeri α skaleriyle gösterilir. Bu durum şu eşitlik ile ifade edilir:

19 Spektral Dönüşümler Ana Bileşen Dönüşümü Çok spektrumlu uydu görüntüleri için C matrisi, merkeze ötelenmiş çok bantlı görüntü verisinin simetrik varyanskovaryans matrisidir. skalerine özdeğer ve x vektörüne bu özdeğerlere karşılık gelen özvektör denir. Görüntü bant sayısı kadar ve x vektörü elde edilir. değerleri her bir ana bileşenin taşıdığı bilgi içeriğinin yani varyansının bir ölçüsüdür.

20 Spektral Dönüşümler Ana Bileşen Dönüşümü Ana bileşenler, büyük varyans değerine sahip bileşenden küçük varyanslı bileşene doğru sıralanır. Böylece en büyük varyans (veri değişkenliği) 1. ana bileşende ve daha sonra 2. ana bileşende olacak şekilde devam eder. Genellikle bu işlem sonucunda tüm ana bileşenler yerine toplamda veri değişkenliğinin yaklaşık %90-95 lik kısmını içeren ana bileşenler dikkate alınarak veri boyutunda etkin indirgeme sağlanır. 20

21 Spektral Dönüşümler Ana Bileşen Dönüşümü Orijinal 3 bantlı görüntünün kırmızı ve mavi bantlarına uygulanan ana bileşen dönüşümü sonuçları verilmektedir. Birinci ana bileşen tüm verinin yaklaşık %98 ini içermektedir.

22 PCA örnek 22

23 23

24 24

25 25

26 26

27 27

28 Geometrik düzeltme Geometrinin önemi Görüntü eşleme Yeniden örnekleme (resampling) 28

29 Karşılaştırma amaçlı; Çok bantlı görüntüler Çoklu algılayıcı kullanımı Çoklu sistemler Çok zamanlı analiz 29

30 GEOMETRİK DÖNÜŞÜM Geometrinin önemi Uzaktan algılama verilerinin harita amaçlı kullanımında Raster-vektör verilerinin entegrasyonunda Faklı uydu verilerinin birleştirilmesinde Coğrafi konumun önem taşıdığı çalışmalarda Coğrafi Bilgi Sistemleri için veri tabanı hazırlanacak ise Doğru uzunluk ve alan ölçmelerinin belirlenmesinde Sınıflandırmada harita koordinatlarına göre test alanlarının belirlenmesinde vs. (Kaya, vd. 2002).

31 GIS 31

32 Geometrik Dönüşüm-Rektifikasyon Haritalar, belirli matematiksel kartografik ve jeodezik projeksiyon kurallarına göre düzlem bir altlık üzerine izdüşürülen ve her noktasında uniform ölçeğe sahip olan yeryüzünün gösterimidirler. Dijital görüntüler, değişik sebeplerden kaynaklanan geometrik distorsiyonlardan dolayı doğrudan harita gibi kullanılamazlar.

33 Diğer bir ifade ile görüntüyü oluşturan piksellerin temsil ettikleri coğrafi alanların arasındaki uzaklıklar, görüntüde uniform olmayan bir şekilde hatalı olarak gösterilir. Bunun sonucu cisimlerin şekil, büyüklük ve konum gibi özellikleri görüntü düzleminde bozulur. Uydu görüntü verilerinin bu distorsiyonlar için düzeltilerek bir harita projeksiyon sistemiyle tutarlı hale getirilmesi işlemine rektifikasyon adı verilir. 33

34 Geometrik Dönüşüm-Rektifikasyon Rektifikasyon işlemi sonrasında piksellerin geometrik konumlarının yanı sıra radyometrik (parlaklık) değerleri de değişmektedir. Geometrik distorsiyonlar genel olarak aşağıda belirtilen faktörlerden kaynaklanmaktadır: Bazı algılayıcıların geniş bakış alanı Görüntü elde edilirken Dünya nın dönüşü Yeryüzü eğriselliği (geniş alanlar) Uydu platformunun konum, durum ve hızındaki değişimler Görüntüleme geometrisiyle ilişkili panoramik etkiler Topoğrafik rölyef etkisi

35 Geometrik Dönüşüm-Rektifikasyon Geometrik distorsiyonların görüntünün bütününde aynı anda giderilmesinde kullanılan genel olarak iki yaklaşım söz konusudur: 1. yaklaşım: Görüntünün piksel piksel topoğrafik distorsiyonları düzeltilerek, harita gibi ortografik izdüşüm özelliğine sahip bir duruma getirilmesi işlemin olan ortorektifikasyon dur sistematik bir yaklaşım distorsiyon düzeltmeleri distorsiyonun türü ve büyüklüğünün modellenmesiyle hesaplanır. Bu yaklaşım distorsiyonun tipi (örn. uydu konumu, durumu, tarama açısı, Dünya nın dönüşü,bakış oranı, panoramik etki, vb.) iyi karakterize edilebildiğinde çok etkili olmaktadır. Topoğrafik rölyefe bağlı geometrik distorsiyonların düzeltilmesi için yeryüzünün Dijital Yükseklik Modeli gereklidir.

36 36

37 37

38 38

39 Geometrik Dönüşüm-Rektifikasyon 2. yaklaşım: İkinci yaklaşımda distorsiyonlu görüntüdeki piksellerin koordinatları ile bunların karşılık geldiği arazideki koordinatları arasında (harita yardımıyla) matematiksel bağlantı kurulur. distorsiyonun tipi ve kaynağı hakkında herhangi bir bilgiye gerek olmaksızın görüntü geometrisi düzeltilir. platformdan bağımsız ve ilk etapta en çok tercih edilen bir yaklaşımdır. Bu matematiksel ilişkilendirme yaklaşımı distorsiyonların fiziksel modellendiği birinci yaklaşımla birlikte hibrit (melez) olarak da kullanılabilir. Birinci yaklaşımla algılayıcı, uydu platformu ve yeryüzü kaynaklı distorsiyonlar düzeltildikten sonra geriye kalan artık distorsiyonlar ikinci yaklaşımla düzeltilebilir.

40 Geometrik Dönüşüm-Rektifikasyon Hangi yaklaşım kullanılırsa kullanılsın görüntülerin geometrik düzeltilmesinde genel olarak 3 aşamalı bir süreç uygulanır: 1. Uygun matematiksel hata düzeltme modelinin seçimi 2. Koordinat dönüşümü veya belirlenen modelin kullanımı 3. Parlaklık değerlerinin yeniden örneklenmesi Distorsiyon tipinin modellenmediği ikinci yaklaşımda, koordinat dönüşüm modelleri iki eksen için ayrı ayrı elde edilir: u = f (x,y) v = g (x,y)

41 Geometrik Dönüşüm-Rektifikasyon En çok kullanılan dönüşüm modelleri polinom fonksiyonlardır. 1. dereceden tek değişkenli polinom: f(x) = a 0 + a 1 x 2. dereceden tek değişkenli polinom: f(x) = a 0 + a 1 x + a 2 x 2 Görüntü iki boyutlu olduğu için dönüşüm modelleri de iki boyutlu olmak zorundadır. Dönüşüm modeli olarak kullanılacak iki değişkenli polinomun genel matematiksel eşitliği; dir, burada; N; polinomun derecesi, a ve b katsayıları; model parametreleri

42 42

43 Geometrik Dönüşüm-Rektifikasyon

44 Geometrik Dönüşüm-Rektifikasyon Hangi polinom derecesinin kullanılacağına dair fiziksel bir gerekçe yoktur. Uçak platformlarına kıyasla daha stabil bir platformdan alınan uydu görüntüleri için bakış alanının büyük ve topoğrafik rölyef etkisinin küçük olması durumunda genellikle 1. veya 2. dereceden polinomların kullanımı yeterlidir. Özellikle sistem parametrelerine göre sistematik modellerle düzeltilmiş görüntülerin rektifikasyonunda 1. dereceden polinomlar uygundur.

45 Geometrik Dönüşüm-Rektifikasyon Polinomun derecesi ölçülmesi gereken en az YKN sayısını belirler. 1. dereceden polinom dönüşümü için 6 bilinmeyen (a0, a1, a2, b0, b1, b2) 2. dereceden dönüşüm için toplam 12 bilinmeyen model parametresi vardır. Bunlara göre her bir YKN nin u ve v görüntü koordinatları için iki ayrı eşitlik yazılabildiğinden 1. derece dönüşüm için en az 3 tane ve 2. derece dönüşüm için en az 6 tane YKN ölçülmelidir.

46 Eğer bilinmeyen (model parametresi) sayısından daha fazla sayıda ölçü (YKN) varsa En Küçük Kareler yöntemi kullanılarak bilinmeyenlerin en olasılıklı değerleri hesaplanmalıdır. Dönüşümün doğruluğu; YKN sayısına, YKN dağılımına, Dönüştürülecek noktaların ağırlık merkezine olan uzaklıklarına bağlıdır. 46

47 GEOMETRİK DÖNÜŞÜM KOH Dönüştürülen görüntü koordinatları ve buna karşılık gelen referans koordinatları arasındaki dönüşümün doğruluğunu test etmek için aynı noktanın konumları arasındaki uzaklık hesaplanır [Erdas Field Guide,1991]. Bu uzaklık Karesel Ortalama Hata (KOH) olarak adlandırılır.

48 GEOMETRİK DÖNÜŞÜM KOH R X = R Y = n 1 n i=1 n 1 n i=1 X 2 R i Y 2 R i RMSE = R 2 x + R 2 y RX, RY : x ve y yönlerindeki KOH. RMSE: Karesel ortalama hata. XRi, YRi : i. yer kontrol noktasının düzeltme değeri. n: yer kontrol noktası sayısı.

49 GEOMETRİK DÖNÜŞÜM Uzaktan algılama verilerinin geometrik dönüşümünde maksimum hata piksel boyutunun yarısı olarak alınır [Welch ve Usery,1984]. Landsat 5 TM için bu değer ± 15 m.(0.5 piksel) Spot P için ± 5 m.(0.5 piksel) IRS 1C P ± 2.5 m.(0.5 piksel)

50 Geometrik Dönüşüm-Rektifikasyon YKN ler iyi tanımlanmışı, mekânsal olarak küçük, olabildiğince aynı yükseklikte, zamanla değişmeyen yapay veya doğal yeryüzü noktalarıdır. Yol kesişimleri, tarımsal alanların köşeleri, dalga kıran ve limanlar örnek olarak verilebilir. Polinomun derecesi ölçülmesi gereken en az YKN sayısını belirler.

51 51

52 52

53 53

54 54

55 55

56 56

57 3. derece 57

58 58

59 Geometrik Dönüşüm-Rektifikasyon Yeniden Örnekleme Dönüşümün YKN ler aracılığıyla belirlenmesinden sonra, geometrik hataları düzeltilmiş distorsiyonsuz gridi oluşturan piksellere ait parlaklık değerlerinin belirlenmesi gerekir. Bu durumda orijinal distorsiyonlu görüntüden hangi parlaklık değerlerinin alı-nacağına karar verilmesi işlemi, diğer bir ifade ile parlaklık enterpolasyonu adımı uygulanır.

60 Geometrik Dönüşüm-Rektifikasyon Yeniden Örnekleme Genel olarak 3 farklı yaklaşım kullanılmaktadır: tam piksel konum değerleriyle çakışmazlar. 1. En Yakın Komşuluk Örneklemesi Basit bir yöntem olup dönüşüm koordinatlarının en yakın olduğu pikselin parlaklık değeri distorsiyonsuz grid pikseline atanır.

61 Avantajı Basit bir metottur Orijinal değerler değişmez Dezavantajı Bazı pikseller kaybolurken bazı piksellerin çifti oluşabilir Küçük gride örneklerken köşegen doğru boyunca ve kıvrımlı hat boyunca piksellerde basamak etkisi 61

62 2. Bilineer Enterpolasyon Bu yöntem, pikseli çevreleyen 4 komşu pikselin kullanıldığı iki boyutlu lineer bir enterpolasyondur. Şekil de görüldüğü gibi siyah dolgulu hedef gride atanacak parlaklık değeri, orijinal distorsiyonlu görüntüdeki (mavi çizgili) en yakın 4 pikselin iki boyutlu lineer enterpolasyonuyla belirlenir. 62

63 Avantajı Mekansal olarak daha doğru Dezavantajı Sonuçlar daha pürüzsüz Kenarlar kaybolabilir Orjinal pikseldeğerleri değişir ve görüntü harici yeni piksel değerleri oluşur. 63

64 Geometrik Dönüşüm-Rektifikasyon Yeniden Örnekleme 3. Kübik Enterpolasyon:İki boyutlu 3. dereceden polinom enterpolasyonu olup pikseli çevreleyen 16 piksel (4x4 piksel komşuluk) kullanılır. Şekilde görüldüğü gibi siyah dolgulu hedef gride atanacak parlaklık değeri, orijinal distorsiyonlu görüntüdeki (mavi çizgili) en yakın 16 pikselin iki boyutlu kübik enterpolasyonuyla belirlenir.

65 Avantajı Geometrik olarak en doğru sonucu verir Bilineer görüntüye göre daha keskin görüntü üretir Dezavantajı Girdi görüntüde yer almayan yeni değerler üretilir Hesaplama uzun sürer 65

66 Nearest Neighbour Bi-linear Interpolation Cubic Convolution ml 66

Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi Uzaktan Algılama (JDF439) Görüntü İyileştirme, Geometrik Düzeltme Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) 2016-2017 Öğretim Yılı Güz Dönemi 1 Görüntü Zenginleştirme Görüntü zenginleştirmede amaç; Görsel

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2015-2016 Öğretim Yılı Bahar Dönemi 1 Ön İşleme-Radyometrik Düzeltme Atmosferik Düzeltme Atmosferik etkilerin giderilmesinde kullanılan radyometrik

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Ana bileşenler dönüşümü 2 Yöntem, minimum korelasyonlu bilgileri sıkıştırarak veri grubu hakkında maksimum

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2016-2017 Öğretim Yılı Bahar Dönemi 1 Ana bileşenler dönüşümü 2 Yöntem, minimum korelasyonlu bilgileri sıkıştırarak veri grubu hakkında maksimum

Detaylı

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında ucuz ve hızlı sonuç alınabilen uzaktan algılama tekniğinin, yenilenebilir

Detaylı

Uzaktan Algılama Uygulamaları

Uzaktan Algılama Uygulamaları Aksaray Üniversitesi Uzaktan Algılama Uygulamaları Doç.Dr. Semih EKERCİN Harita Mühendisliği Bölümü sekercin@aksaray.edu.tr 2010-2011 Bahar Yarıyılı Uzaktan Algılama Uygulamaları GÖRÜNTÜ İŞLEME TEKNİKLERİ

Detaylı

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun.

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Doç.Dr.Mehmet MISIR-2013 TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında

Detaylı

Uydu Görüntülerinin. Rektifikasyon ve Registrasyonu. Hafta - 5

Uydu Görüntülerinin. Rektifikasyon ve Registrasyonu. Hafta - 5 Uydu Görüntülerinin Rektifikasyon ve Registrasyonu Hafta - 5 1 Rektifikasyon Uydulardan veya uçaklardan elde edilen ham uzaktan algılama görüntüleri Dünya nın düzensiz yüzeyinin temsilidir. Nispeten dümdüz

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İzdüşüm merkezi(o):

Detaylı

Görüntü İyileştirme Teknikleri. Hafta-8

Görüntü İyileştirme Teknikleri. Hafta-8 Görüntü İyileştirme Teknikleri Hafta-8 1 Spektral İyileştirme PCA (Principal Component Analysis) Dönüşümü. Türkçesi Ana Bileşenler Dönüşümü Decorrelation Germe Tasseled Cap RGB den IHS ye dönüşüm IHS den

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Yüksek ve düşük spektral çözünürlüğe sahip dijital görüntülerdeki temel avantaj ve dezavantajlar aşağıda

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2016-2017 Öğretim Yılı Bahar Dönemi 1 Geçen ders Mekansal/Konumsal/Geometrik(Spatial resolution) Radyometrik Spektral Zamansal 2 Dijital /Sayısal

Detaylı

BÖLÜM-II ERDAS IMAGINE TEMEL KISIM1: IMAGINE VIEWER 1

BÖLÜM-II ERDAS IMAGINE TEMEL KISIM1: IMAGINE VIEWER 1 BÖLÜM-II ERDAS IMAGINE TEMEL KISIM1: IMAGINE VIEWER 1 KISIM 1 ERDAS IMAGINE VIEWER KULLANIMI KISIM1: IMAGINE VIEWER 2 GİRİŞ TERMİNOLOJİ GÖRÜNTÜ NEDİR? UZAKTAN ALGILAMA GÖRÜNTÜLERİN GÖRÜNÜŞÜ GEOMETRİK DÜZELTME

Detaylı

COĞRAFİ BİLGİ SİSTEMLERİ VE UZAKTAN ALGILAMA

COĞRAFİ BİLGİ SİSTEMLERİ VE UZAKTAN ALGILAMA Coğrafi Bilgi Sistemleri ve Uzaktan Algılama Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı COĞRAFİ BİLGİ SİSTEMLERİ VE UZAKTAN ALGILAMA 1 Coğrafi Bilgi Sistemleri ve Uzaktan Algılama İçindekiler

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

UZAKTAN ALGILAMA- UYGULAMA ALANLARI

UZAKTAN ALGILAMA- UYGULAMA ALANLARI UZAKTAN ALGILAMA- UYGULAMA ALANLARI Doç. Dr. Nebiye Musaoğlu nmusaoglu@ins.itu.edu.tr İTÜ İnşaat Fakültesi Jeodezi ve Fotogrametri Mühendisliği Bölümü Uzaktan Algılama Anabilim Dalı UZAKTAN ALGILAMA-TANIM

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri

Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Eklemeli renk teorisi Çıkarmalı renk teorisi 1 RGB (Red Green - Blue) Kavramı Red Green - Blue RGB-Mixer

Detaylı

Uzaktan Alg ılamaya Giriş Ünite 6 - Görüntü O t r orektifikasyonu

Uzaktan Alg ılamaya Giriş Ünite 6 - Görüntü O t r orektifikasyonu Uzaktan Algılamaya Giriş Ünite 6 - Görüntü Ortorektifikasyonu Ortorektifikasyon Uydu veya uçak platformları ile elde edilen görüntü verisi günümüzde haritacılık ve CBS için temel girdi kaynağını oluşturmaktadır.

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İçerik Tanımlar

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2015-2016 Öğretim Yılı Bahar Dönemi 1 Piksel / dpi Piksel en küçük anlamlı birim dpi = dot per inch/ 1 inch teki nokta sayısı 1 inch =25.4 mm

Detaylı

YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDE GEOMETRİK DÜZELTMENİN SINIFLANDIRMA SONUÇLARINA ETKİSİ

YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDE GEOMETRİK DÜZELTMENİN SINIFLANDIRMA SONUÇLARINA ETKİSİ YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDE GEOMETRİK DÜZELTMENİN SINIFLANDIRMA SONUÇLARINA ETKİSİ E. Ayhan 1,G. Atay 1, O. Erden 1 1 Karadeniz Teknik Üniversitesi Jeodezi ve Fotogrametri Mühendisliği Bölümü,

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ FOTOGRAMETRİ ANABİLİM DALI SUNULARI JDF435 UZAKTAN ALGILAMA DERSİ NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ FOTOGRAMETRİ ANABİLİM DALI SUNULARI JDF435 UZAKTAN ALGILAMA DERSİ NOTLARI UZAKTAN ALGILAMA Sayısal Görüntü ve Özellikleri GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ FOTOGRAMETRİ ANABİLİM DALI SUNULARI JDF435 UZAKTAN ALGILAMA DERSİ NOTLARI http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Piksel / dpi Piksel en küçük anlamlı birim dpi = dot per inch/ 1 inch teki nokta sayısı 1 inch =25.4 mm

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2015-2016 Öğretim Yılı Bahar Dönemi 1 A- Enerji Kaynağı / Aydınlatma B- Işıma ve atmosfer C- Hedef nesneyle etkileşim D- Nesneden yansıyan /

Detaylı

TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon

TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon Lazer Tarama Verilerinden Bina Detaylarının Çıkarılması ve CBS İle Entegrasyonu

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 25 Ekim

Detaylı

ÖZDEĞERLER- ÖZVEKTÖRLER

ÖZDEĞERLER- ÖZVEKTÖRLER ÖZDEĞERLER- ÖZVEKTÖRLER GİRİŞ Özdeğerler, bir matrisin orijinal yapısını görmek için kullanılan alternatif bir yoldur. Özdeğer kavramını açıklamak için öncelikle özvektör kavramı ele alınsın. Bazı vektörler

Detaylı

GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Aycan M. MARANGOZ

GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Aycan M. MARANGOZ FOTOGRAMETRİ II GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

TÜRKİYE NİN BİTKİ ÖRTÜSÜ DEĞİŞİMİNİN NOAA UYDU VERİLERİ İLE BELİRLENMESİ*

TÜRKİYE NİN BİTKİ ÖRTÜSÜ DEĞİŞİMİNİN NOAA UYDU VERİLERİ İLE BELİRLENMESİ* TÜRKİYE NİN BİTKİ ÖRTÜSÜ DEĞİŞİMİNİN NOAA UYDU VERİLERİ İLE BELİRLENMESİ* Determination the Variation of The Vegetation in Turkey by Using NOAA Satellite Data* Songül GÜNDEŞ Fizik Anabilim Dalı Vedat PEŞTEMALCI

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

Emrah Kurtoğlu Gamze Dinçar Liva Gizem Göze Ali Kadir Ulu

Emrah Kurtoğlu Gamze Dinçar Liva Gizem Göze Ali Kadir Ulu 1302120002 1302130068 1302150039 1302150049 Emrah Kurtoğlu Gamze Dinçar Liva Gizem Göze Ali Kadir Ulu 17.10.2016 SPEKTRAL İMGELER Bir malzeme için yansıyan, yutulan veya iletilen ışınım miktarları dalga

Detaylı

İçerik. Giriş 1/23/13. Giriş Problem Tanımı Tez Çalışmasının Amacı Metodoloji Zaman Çizelgesi. Doktora Tez Önerisi

İçerik. Giriş 1/23/13. Giriş Problem Tanımı Tez Çalışmasının Amacı Metodoloji Zaman Çizelgesi. Doktora Tez Önerisi İsmail ÇÖLKESEN 501102602 Doktora Tez Önerisi Tez Danışmanı : Prof.Dr. Tahsin YOMRALIOĞLU İTÜ Geoma*k Mühendisliği İçerik Giriş Tez Çalışmasının Amacı Zaman Çizelgesi 1 of 25 Giriş Yeryüzü ile ilgili yapılan

Detaylı

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü 3.2. Raster Veriler Satırlar Piksel/hücre büyüklüğü Sütunlar 1 Görüntü formatlı veriler Her piksel için gri değerleri kaydedilmiştir iki veya üç bant (RGB) çok sayıda bant Fotoğraf, uydu görüntüsü, ortofoto,

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 8 Multispektral Görüntüleme ve Uygulamaları Alp Ertürk alp.erturk@kocaeli.edu.tr Multispektral Görüntüleme Her piksel için birkaç adet spektral kanalda ölçüm değeri

Detaylı

Bilgisayarla Fotogrametrik Görme

Bilgisayarla Fotogrametrik Görme Bilgisayarla Fotogrametrik Görme Dijital Görüntü ve Özellikleri Yrd. Doç. Dr. Mustafa DİHKAN 1 Dijital görüntü ve özellikleri Siyah-beyaz resimler için değer elemanları 0-255 arasındadır. 256 farklı durum

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI FOTOGRAMETRİ I GEOMETRİK ve MATEMATİK TEMELLER Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

Geliştirilmiş Fisher Ayraç Kriteri Kullanarak Hiperspektral Görüntülerde Sınıflandırma

Geliştirilmiş Fisher Ayraç Kriteri Kullanarak Hiperspektral Görüntülerde Sınıflandırma Geliştirilmiş Fisher Ayraç Kriteri Kullanarak Hiperspektral Görüntülerde Sınıflandırma Mustafa TEKE, Dr. Ufuk SAKARYA TÜBİTAK UZAY IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013),

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 6 Kenar, Köşe, Yuvarlak Tespiti Alp Ertürk alp.erturk@kocaeli.edu.tr KENAR TESPİTİ Kenar Tespiti Amaç: Görüntüdeki ani değişimleri / kesintileri algılamak Şekil bilgisi elde

Detaylı

Korelasyon, Korelasyon Türleri ve Regresyon

Korelasyon, Korelasyon Türleri ve Regresyon Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.

Detaylı

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur.

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur. Görüntü İşleme Görüntü işleme, dijital bir resim haline getirilmiş olan gerçek yaşamdaki görüntülerin bir girdi resim olarak işlenerek, o resmin özelliklerinin ve görüntüsünün değiştirilmesidir. Resimler

Detaylı

ArcGIS ile Tarımsal Uygulamalar Eğitimi

ArcGIS ile Tarımsal Uygulamalar Eğitimi ArcGIS ile Tarımsal Uygulamalar Eğitimi Kursun Süresi: 5 Gün 30 Saat http://facebook.com/esriturkey https://twitter.com/esriturkiye egitim@esriturkey.com.tr ArcGIS ile Tarımsal Uygulamalar Eğitimi Genel

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 9 Stereo Görüntüleme Alp Ertürk alp.erturk@kocaeli.edu.tr Tek Kamera Geometrisi??? x Tek Kamera Geometrisi Tek Kamera Geometrisi İğne Deliği Kamera Modeli ) /, / ( ),, (

Detaylı

TEMEL GÖRÜNTÜ BİLGİSİ

TEMEL GÖRÜNTÜ BİLGİSİ TEMEL GÖRÜNTÜ BİLGİSİ FOTOĞRAF/GÖRÜNTÜ KAVRAMI VE ÖZELLİKLERİ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF345 TEMEL GÖRÜNTÜ BİLGİSİ DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz/ İÇERİK

Detaylı

KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ

KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ Yasemin ŞİŞMAN, Ülkü KIRICI Sunum Akış Şeması 1. GİRİŞ 2. MATERYAL VE METHOD 3. AFİN KOORDİNAT DÖNÜŞÜMÜ 4. KALİTE KONTROL 5. İRDELEME

Detaylı

Özdeğer ve Özvektörler

Özdeğer ve Özvektörler Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI FOTOGRAMETRİ I GEOMETRİK ve MATEMATİK TEMELLER Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 Görüntü İşleme K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 İçerik Görüntü İşleme Nedir? Görüntü Tanımlamaları Görüntü Operasyonları Görüntü İşleme

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 2 Kuvvet Vektörleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö.Soyuçok. 2 Kuvvet Vektörleri Bu bölümde,

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 10 Nesne / Yüz Tespiti ve Tanıma Alp Ertürk alp.erturk@kocaeli.edu.tr Nesne Tespiti Belirli bir nesnenin sahne içindeki konumunun tespitidir Tespit edilecek nesne önceden

Detaylı

YOĞUN GÖRÜNTÜ EŞLEME ALGORİTMALARI İLE ÜRETİLEN YÜKSEK ÇÖZÜNÜRLÜKLÜ SAYISAL YÜZEY MODELİ ÜRETİMİNDE KALİTE DEĞERLENDİRME VE DOĞRULUK ANALİZİ

YOĞUN GÖRÜNTÜ EŞLEME ALGORİTMALARI İLE ÜRETİLEN YÜKSEK ÇÖZÜNÜRLÜKLÜ SAYISAL YÜZEY MODELİ ÜRETİMİNDE KALİTE DEĞERLENDİRME VE DOĞRULUK ANALİZİ YOĞUN GÖRÜNTÜ EŞLEME ALGORİTMALARI İLE ÜRETİLEN YÜKSEK ÇÖZÜNÜRLÜKLÜ SAYISAL YÜZEY MODELİ ÜRETİMİNDE KALİTE DEĞERLENDİRME VE DOĞRULUK ANALİZİ Naci YASTIKLI a, Hüseyin BAYRAKTAR b a Yıldız Teknik Üniversitesi,

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME Hafta Hafta 1 Hafta 2 Hafta 3 Hafta 4 Hafta 5 Hafta 6 Hafta 7 Hafta 8 Hafta 9 Hafta 10 Hafta 11 Hafta 12 Hafta 13 Hafta 14 Konu Giriş Digital Görüntü Temelleri-1

Detaylı

HAVADAN LAZER TARAMA ve SAYISAL GÖRÜNTÜ VERİLERİNDEN BİNA TESPİTİ VE ÇATILARIN 3 BOYUTLU MODELLENMESİ

HAVADAN LAZER TARAMA ve SAYISAL GÖRÜNTÜ VERİLERİNDEN BİNA TESPİTİ VE ÇATILARIN 3 BOYUTLU MODELLENMESİ Akdeniz Üniversitesi Uzay Bilimleri ve Teknolojileri Bölümü Uzaktan Algılama Anabilim Dalı HAVADAN LAZER TARAMA ve SAYISAL GÖRÜNTÜ VERİLERİNDEN BİNA TESPİTİ VE ÇATILARIN 3 BOYUTLU MODELLENMESİ Dr.Nusret

Detaylı

JDF821 UZAKTAN ALGILAMA GÖRÜNTÜLERİNDEN DETAY ÇIKARIMI Sunu2

JDF821 UZAKTAN ALGILAMA GÖRÜNTÜLERİNDEN DETAY ÇIKARIMI Sunu2 JDF821 UZAKTAN ALGILAMA GÖRÜNTÜLERİNDEN DETAY ÇIKARIMI Sunu2 Yrd. Doç. Dr. Aycan M. MARANGOZ FOTOGRAMETRİ ANABİLİM DALI SUNULARI http://jeodezi.beun.edu.tr/marangoz 2012-2013 Öğretim Yılı Bahar Dönemi

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI FOTOGRAMETRİ II FOTOGRAMETRİK ÜRÜNLER BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/ GİRİŞ Giriş Ortofoto Ortofoto Ürün

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 06 Kasım

Detaylı

Koordinat Referans Sistemleri

Koordinat Referans Sistemleri Koordinat Referans Sistemleri Harita yapımında geometrik süreç Küre Referans yüzeyin seçimi Elipsoit Ölçek küçültme Dünya/Jeoit Harita düzlemine izdüşüm Harita Fiziksel yer yüzünün belli bir şekli yok,

Detaylı

FOTOYORUMLAMA UZAKTAN ALGILAMA

FOTOYORUMLAMA UZAKTAN ALGILAMA FOTOYORUMLAMA VE UZAKTAN ALGILAMA (Photointerpretation and Remote Sensing) 1 Ders İçeriği Hava fotoğrafının tanımı Fotogrametrinin geometrik ilkeleri Fotogrametride fotoğrafik temel ilkeler Stereoskopik

Detaylı

1. Değişik yeryüzü kabuk tiplerinin spektral yansıtma eğrilerinin durumu oranlama ile ortaya çıkarılabilmektedir.

1. Değişik yeryüzü kabuk tiplerinin spektral yansıtma eğrilerinin durumu oranlama ile ortaya çıkarılabilmektedir. ORAN GÖRÜNTÜLERİ Oran Görüntüsü Oran görüntülerini değişik şekillerde tanımlamak mümkündür; Bir görüntünün belirli bandındaki piksel parlaklık değerleri ile bunlara karşılık gelen ikinci bir banddaki piksel

Detaylı

TOPOĞRAFYA Temel Ödevler / Poligonasyon

TOPOĞRAFYA Temel Ödevler / Poligonasyon TOPOĞRAFYA Temel Ödevler / Poligonasyon Yrd. Doç. Dr. Aycan M. MARANGOZ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ JDF 264/270 TOPOĞRAFYA DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz/marangoz.htm

Detaylı

Dünya nın şekli. Küre?

Dünya nın şekli. Küre? Dünya nın şekli Küre? Dünya nın şekli Elipsoid? Aslında dünyanın şekli tam olarak bunlardan hiçbiri değildir. Biz ilkokulda ve lisede ilk önce yuvarlak olduğunu sonra ortadan basık olduğunu sonrada elipsoid

Detaylı

ORM 7420 USING SATELLITE IMAGES IN FOREST RESOURCE PLANNING

ORM 7420 USING SATELLITE IMAGES IN FOREST RESOURCE PLANNING ORM 7420 USING SATELLITE IMAGES IN FOREST RESOURCE PLANNING Asst. Prof. Dr. Uzay KARAHALİL Week IV NEDEN UYDU GÖRÜNTÜLERİ KULLANIRIZ? Sayısaldır (Dijital), - taramaya gerek yoktur Hızlıdır Uçuş planı,

Detaylı

FOTOGRAMETRİ DAİRESİ BAŞKANLIĞI FAALIYETLERI

FOTOGRAMETRİ DAİRESİ BAŞKANLIĞI FAALIYETLERI FOTOGRAMETRİ DAİRESİ BAŞKANLIĞI FAALIYETLERI Fotg.D.Bşk.lığı, yurt içi ve yurt dışı harita üretimi için uydu görüntüsü ve hava fotoğraflarından fotogrametrik yöntemlerle topoğrafya ve insan yapısı detayları

Detaylı

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Elektrik devrelerinde ölçülebilen büyüklükler olan; 5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Akım Gerilim Devrede bulunan kaynakların tiplerine göre değişik şekillerde olabilir. Zamana bağlı

Detaylı

JDF 242 JEODEZİK ÖLÇMELER 2. HAFTA DERS SUNUSU. Yrd. Doç. Dr. Hüseyin KEMALDERE

JDF 242 JEODEZİK ÖLÇMELER 2. HAFTA DERS SUNUSU. Yrd. Doç. Dr. Hüseyin KEMALDERE JDF 242 JEODEZİK ÖLÇMELER 2. HAFTA DERS SUNUSU Yrd. Doç. Dr. Hüseyin KEMALDERE 3 boyutlu uzayda Jeoit Z Y X Dünyaya en uygun elipsoid modeli ve yer merkezli dik koordinat sistemi Ülkemizde 2005

Detaylı

Hafta 2 Görüntünün Alınması ve Sayısallaştırılması

Hafta 2 Görüntünün Alınması ve Sayısallaştırılması BLM429 Görüntü İşlemeye Giriş Hafta 2 Görüntünün Alınması ve Sayısallaştırılması Yrd. Doç. Dr. Caner ÖZCAN When something can be read without effort, great effort has gone into its writing. ~E. J. Poncela

Detaylı

UA Teknikleri Kullanılarak Taşkın Alanlarının Belirlenmesi ve Bölgesel Taşkın Frekans Analizinin Batı Karadeniz Bölgesinde Uygulanması

UA Teknikleri Kullanılarak Taşkın Alanlarının Belirlenmesi ve Bölgesel Taşkın Frekans Analizinin Batı Karadeniz Bölgesinde Uygulanması UA Teknikleri Kullanılarak Taşkın Alanlarının Belirlenmesi ve Bölgesel Taşkın Frekans Analizinin Batı Karadeniz Bölgesinde Uygulanması Prof. Dr. A. Ünal Şorman Orta Doğu Teknik Üniversitesi, Đnşaat Mühendisliği

Detaylı

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI .. MAK MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI Polinom MATLAB p=[8 ] d=[ - ] h=[ -] c=[ - ] POLİNOMUN DEĞERİ >> polyval(p, >> fx=[ -..9 -. -.9.88]; >> polyval(fx,9) ans =. >> x=-.:.:.; >> y=polyval(fx,;

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 3 Uzaktan Algılama Temelleri Alp Ertürk alp.erturk@kocaeli.edu.tr Elektromanyetik Spektrum Elektromanyetik Spektrum Görünür Işık (Visible Light) Mavi: (400 500 nm) Yeşil:

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI FOTOGRAMETRİ II FOTOGRAMETRİK DEĞERLENDİRME - TEK RESİM DEĞERLENDİRMESİ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

3-1 Koordinat Sistemleri Bir cismin konumunu tanımlamak için bir yönteme gereksinim duyarız. Bu konum tanımlaması koordinat kullanımı ile sağlanır.

3-1 Koordinat Sistemleri Bir cismin konumunu tanımlamak için bir yönteme gereksinim duyarız. Bu konum tanımlaması koordinat kullanımı ile sağlanır. Bölüm 3 VEKTÖRLER Bölüm 3: Vektörler Konu İçeriği Sunuş 3-1 Koordinat Sistemleri 3-2 Vektör ve Skaler nicelikler 3-3 Vektörlerin Bazı Özellikleri 3-4 Bir Vektörün Bileşenleri ve Birim Vektörler Sunuş Fizikte

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi Uzaktan Algılama (JDF439) Hiperspektral ve termal bantlı uydular Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) 2016-2017 Öğretim Yılı Güz Dönemi 1 3 4 5 SPOT 6 6 Geçen ders: Mikrodalga algılama sistemleri Gündüz

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT

KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT.. KENDİNE BENZERLİK VE AFİNİTE Fraktal özelliklerinden bir diğeri de kendine benzerlikdir. Geometrik açıdan, aynı şekle sahip olan geometrik şekiller birbirine

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Uzaktan algılamada uydu görüntülerine uygulanan işlemler

Uzaktan algılamada uydu görüntülerine uygulanan işlemler Uzaktan algılamada uydu görüntülerine uygulanan işlemler Uzaktan algılama görüntülerine uygulanan işlemler genel olarak; 1. Görüntü ön işleme (Düzeltme) 2. Görüntü İşleme olarak ele alınabilir. GÖRÜNTÜ

Detaylı

Uzaktan Algılamanın. Doğal Ekosistemlerde Kullanımı PROF. DR. İ BRAHİM ÖZDEMİR SDÜ ORMAN FAKÜLTESI I S PARTA

Uzaktan Algılamanın. Doğal Ekosistemlerde Kullanımı PROF. DR. İ BRAHİM ÖZDEMİR SDÜ ORMAN FAKÜLTESI I S PARTA Uzaktan Algılamanın Doğal Ekosistemlerde Kullanımı PROF. DR. İ BRAHİM ÖZDEMİR SDÜ ORMAN FAKÜLTESI I S PARTA 1 Uzaktan Algılama Nedir? Arada fiziksel bir temas olmaksızın cisimler hakkında bilgi toplanmasıdır.

Detaylı

2. BASİT DOĞRUSAL REGRESYON 12

2. BASİT DOĞRUSAL REGRESYON 12 1. GİRİŞ 1 1.1 Regresyon ve Model Kurma / 1 1.2 Veri Toplama / 5 1.3 Regresyonun Kullanım Alanları / 9 1.4 Bilgisayarın Rolü / 10 2. BASİT DOĞRUSAL REGRESYON 12 2.1 Basit Doğrusal Regresyon Modeli / 12

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

Eski Yunanca'dan batı dillerine giren Fotogrametri sözcüğü 3 kök sözcükten oluşur. Photos(ışık) + Grama(çizim) + Metron(ölçme)

Eski Yunanca'dan batı dillerine giren Fotogrametri sözcüğü 3 kök sözcükten oluşur. Photos(ışık) + Grama(çizim) + Metron(ölçme) FOTOGRAMETRİ FOTOGRAMETRİ Eski Yunanca'dan batı dillerine giren Fotogrametri sözcüğü 3 kök sözcükten oluşur. Photos(ışık) + Grama(çizim) + Metron(ölçme) Buna göre ışık yardımı ile ölçme (çizim yapabilme)

Detaylı

TEMEL GÖRÜNTÜ BİLGİSİ

TEMEL GÖRÜNTÜ BİLGİSİ TEMEL GÖRÜNTÜ BİLGİSİ ÜRÜNLER Ortofoto/görüntü, Sayısal Yüzey, Yükseklik ve Arazi Modeli Kavramları BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF345 TEMEL GÖRÜNTÜ BİLGİSİ DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

Veri toplama- Yersel Yöntemler Donanım

Veri toplama- Yersel Yöntemler Donanım Veri toplama- Yersel Yöntemler Donanım Data Doç. Dr. Saffet ERDOĞAN 1 Veri toplama -Yersel Yöntemler Optik kamera ve lazer tarayıcılı ölçme robotu Kameradan gerçek zamanlı veri Doç. Dr. Saffet ERDOĞAN

Detaylı

JEODEZİK AĞLARIN OPTİMİZASYONU

JEODEZİK AĞLARIN OPTİMİZASYONU JEODEZİK AĞLARIN OPTİMİZASYONU Jeodezik Ağların Tasarımı 10.HAFTA Dr.Emine Tanır Kayıkçı,2017 OPTİMİZASYON Herhangi bir yatırımın gerçekleştirilmesi sırasında elde bulunan, araç, hammadde, para, işgücü

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 7 SIFT ve Öznitelik Eşleme Alp Ertürk alp.erturk@kocaeli.edu.tr Panorama Oluşturma Görüntü mozaikleme, panorama oluşturma gibi tüm uygulamalar için öncelikle ilgili görüntülerin

Detaylı