Geliştirilmiş Fisher Ayraç Kriteri Kullanarak Hiperspektral Görüntülerde Sınıflandırma

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Geliştirilmiş Fisher Ayraç Kriteri Kullanarak Hiperspektral Görüntülerde Sınıflandırma"

Transkript

1 Geliştirilmiş Fisher Ayraç Kriteri Kullanarak Hiperspektral Görüntülerde Sınıflandırma Mustafa TEKE, Dr. Ufuk SAKARYA TÜBİTAK UZAY IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

2 Sunu Akışı Giriş Elektromanyetik ışıma Hedef ile etkileşim Hiperspektral görüntüleme Çok bantlı ve hiperspektral görüntüler Boyut İndirgeme PCA FLDA EFDC Önerilen Yöntem Deneyler Çıkarımlar IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

3 Elektromanyetik Işıma Güneş Işıması Hız = f. λ λ : Dalga boyu f : Frekans Kaynak: Kaynak: IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

4 Hedef İle Etkileşim Gelen = Yansıyan + Geçirilen + Soğurulan Gelen Yansıyan Soğurulan Geçirilen Kaynak: IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

5 Dünyanın Enerji Bütçesi Kaynak: NASA, IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

6 Hiperspektral Görüntüleme Ön Optik (Odaklama) Spektrometre (Spektral Ayrışma) Sensör IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

7 Çok Bantlı ve Hiperspektral Görüntüler Çok bantlı görüntüler 4 12 bant Bant aralığı nm Ayrık bantlar Hiperspektral görüntüler bant Daha dar aralıklı (5-20 nm) Devamlı bantlar Kaynak: NASA IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

8 Boyut İndirgeme Her bir x i elemanı B boyutlu bir uzayda yer alan ve N adet elemandan oluşan bir X = {x 1, x 2,, x i, x n } kümesinin B> K olmak üzere; X kümesinin her bir x i elemanının K boyutlu bir uzayda yer alacak şekilde Y= {y 1, y 2,, y i, y n } kümesine indirgenmesine boyut indirgeme tekniği denmektedir. Örneğin 2 Boyutlu Veriyi, 1 boyut ile de ifade mümkündür IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

9 PCA Temel bileşen analizi (Principal Component Analysis - PCA) [Duda1]:İlintili bir B boyutlu vektör uzayında yer alan bir X kümesinin doğrusal ilintisiz bir B boyutlu bir vektör uzayına dönüşümü yapılır. PCA öğreticisiz bir yöntemdir, değişintinin en yüksek olduğu yöne doğru bir izdüşüm yapar. Ortak değişinti matrisinin özvektörleri ve özdeğerleri bulunur. En büyük ilk K özdeğere ait özvektörlerden BxK boyutlu bir PCA iz düşüm matrisi oluşturulur. y T ( x ) PCA IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

10 FLDA (1/2) Fisher doğrusal ayraç analizi (Fisher Linear Discriminant Analysis- FLDA) [Duda1],[Gao12] ise öğreticili bir yöntem olup sınıfların en çok ayrılabileceği yönde bir izdüşüm yapar. FLDA için iki değişinti matrisi hesaplanır. Bunlardan birisi sınıf içi değişinti matrisi olan S dir: S m N i i 1 j 1 i i i i ( x )( x ) j j T Yukarıdaki denklemde N i i sınıfının örnek sayısı, m sınıf sayısı, µ i i sınıfının ortalaması, x ij i sınıfındaki j. elemanı göstermektedir. IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

11 FLDA (2/2) Sınıflar arası değişinti matrisi S B : m i i S B N i ( )( ) i 1 T FLDA için aşağıdaki denklem çözülmeye çalışılır. Kısaca Denklem (4) ün çözümü Denklem (5) in özvektör çözümü ile bulunur. S FLDA 1 S arg max B T T S S B (4) (5) IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

12 PCA ve FLDA Aly A. Farag,Shireen Y. Elhabian, atdid pdf IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

13 EFDC (1/3) Gao et al. [Gao12] boyut indirgeme için geliştirilmiş Fisher ayraç kriterini (Enhanced Fisher Discriminant Criterion- EFDC) önermişlerdir. Bu kriter FLDA ya ek olarak sınıf içindeki veri değişintisini de olabildiğince korumaya çalışır. Bu yöntemde Denklem (4) yerine Denklem (6) kriter olarak kullanılır. T (6) EFDC arg max asb 1 a S T S D Yukarıdaki denklemde a bir sabittir, S D aynı küme içindeki değişiklik saçılımı matrisidir (variability scatter matrix) ve şu şekilde hesaplanır: (7) S X F D X D T IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

14 EFDC (2/3) F diyagonal bir matristir: F ii j Dij (8) Denklem (7) deki D ağırlık matrisidir ve birbirine yakın noktalar arası değişimi modeller [Gao12]: D ij exp 0, diger. 2 t / d x, x, Eger x N x i j veya x j N k i x i k ve, i j j (9) Denklem (9) daki t bir sabittir. N k (x i ), x i elemanının k en yakın komşusudur. Eleman x i nin sınıfını τ i belirtir. Fonksiyon d(.) iki eleman arası Öklid uzaklık ölçeridir IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

15 EFDC (3/3) EFDC yönteminde Denklem (6) içerisindeki 3 saçılım matrisi, S, S B ve S D direkt olarak kullanılmaz, bir ön işlem yapılır. S matrisinin tekil olması durumuna karşılık öncelikle Fisherface yöntemindeki [Bel97] gibi PCA uygulanır. Burada elde edilen dönüşüm matrisi de en son elde edilen çözüm dönüşümüne çarpılarak eklenir [Gao12]. IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

16 Önerilen Yöntem Hiperspektral Veri Boyut İndirgeme İzdüşüm Matrisi Örnek Veri Üzerinde EFDC ile İzdüşüm Matrisi Hesaplanma Boyut İndirgeme SVM ile Örnek Veri Üzerinde Eğitim Parametreler SVM ile Veri Sınıflandırma Sonuç Maskesi IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

17 Deneyler (1/3) Testlerde Indian Pines veri seti [AVI] seçilmiştir AVIRIS tarafından alınan bu görüntüde 145x145 piksel alanda 224 bant bulunmaktadır Veri setinde 16 sınıf bulunmaktadır Deneylerde su soğurulması olan bantlar çıkarılarak 200 bant ile çalışılmıştır Benzer şekilde örnek sayısı az (<100) olan sınıflar çıkarılarak, örnek sayısı en yüksek 9 sınıf veri ile çalışılmıştır IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

18 Radyans Deneyler (1/3) Alfalfa-Yonca Corn-notillage Corn-min Corn Grass/Pasture Grass/Trees Grass/pasture-mowed Hay-windrowed-Saman Oats-Yulaf Soybeans-notillage Soybeans-min Soybeans-clean heat-buğday oods Bldg-Grass-Tree-Drives Stone-Steel towers 0 IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

19 Deneyler (1/3) IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

20 Deneyler (2/3) (a) (b) (c) (d) Şekil 2 (a) Çok bantlı görüntü, (b) EFDC ilk 3 bant görselleştirme, (c) Yer doğrusu, (d) EFDC sınıflandırma sonuçları Tablo 1 Eğitimdeki Örnek Sayısı ve Sınıflandırma Performansı Karşılaştırılması Örnek Sayısı EFDC FLDA IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

21 Deneyler (3/3) Performans % Öznitelik Sayısı Şekil 3 EFDC Boyut Sayısı ve Performans Değerleri IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

22 Çıkarımlar EFDC yönteminin hiperspektral görüntülerde sınıflandırma amaçlı kullanımını anlatan bir yöntem önerilmektedir Bildiğimiz kadarı ile EFDC yönteminin hiperspektral görüntü işleme konusundaki ilk uygulaması önerdiğimiz çalışmadır İndirgenmiş boyuttaki veriler SVM ile eğitilerek hiperspektral görüntülerde sınıflandırma işlemi yapılmaktadır Boyut indirgeme aşamasında FLDA ve EFDC kullanılarak karşılaştırmalı bir deneysel çalışma yapılmıştır Önerilen yöntem ile yapılan ilk deneysel çalışmalara göre hiperspektral görüntülerde sınıflandırma için umut verici sonuçlar elde edilmiştir Özellikle EFDC yönteminin hiperspektral görüntü işlemede boyut indirgemedeki avantajının araştırılması için daha çok veri üzerinde testler yapılması gerekmektedir. IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

23 Kaynakça [Duda1] R. Duda, P. Hart, and D. Stork, Pattern Classification, Second Edition, iley-interscience, [Gao12] Q. Gao, J.Liu, H.Zhang, J. Hou and X. Yang, Enhanced fisher discriminant criterion for image recognition, Pattern Recognition, vol. 45, pp , [Bel97] P.N. Belhumeur, J.P. Hespanha and D.J. Kriegman, Eigenfaces vs. Fisherfaces: recognition using class specific linear projection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp , Jul [AVI] AVIRIS N Indiana s Indian Pines 1992 data set [Online]. Kaynak:ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C.tif.zi p (veri), ftp://ftp.ecn.purdue.edu/biehl/multispec/thyfiles.zip (doğruluk verisi), Erişim Tarihi: IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

24 Teşekkür İletişim Bilgileri: Mustafa TEKE Dr. Ufuk SAKARYA IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013), Girne, KKTC, Nisan

Günümüzde birçok yüz tanıma yöntemleri geliştirilmiş olup [2], bunlar şu şekilde sınıflandırılabilir:

Günümüzde birçok yüz tanıma yöntemleri geliştirilmiş olup [2], bunlar şu şekilde sınıflandırılabilir: YÜZ TANIMA YÖNTEMLERİNİN SIKIŞTIRILMIŞ ARŞİVLERDE BAŞARIMI Mustafa Ersel Kamaşak ve Bülent Sankur Sinyal ve İmge İşleme Laboratuvarı (BUSIM) Boǧaziçi Üniversitesi Elektrik Elektronik Mühendisliǧi {kamasak,

Detaylı

Coğrafi Veri Üretimi Bakış Açısı İle TÜBİTAK UZAY daki Uzaktan Algılama Araştırmaları

Coğrafi Veri Üretimi Bakış Açısı İle TÜBİTAK UZAY daki Uzaktan Algılama Araştırmaları Coğrafi Veri Üretimi Bakış Açısı İle TÜBİTAK UZAY daki Uzaktan Algılama Araştırmaları Sunan: Dr. Ufuk SAKARYA TÜBİTAK UZAY Katkıda Bulunanlar: Mustafa Teke, Can Demirkesen, Ramazan Küpçü, Hüsne Seda Deveci,

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 10 Hiperspektral Görüntülerde Öznitelik Çıkarımı ve Boyut Azaltımı Alp Ertürk alp.erturk@kocaeli.edu.tr Öznitelik Çıkarımı Veriden ayırt edici yapıda nitelikler çıkarma

Detaylı

MEH535 Örüntü Tanıma. 6. Boyut Azaltımı (Dimensionality Reduction)

MEH535 Örüntü Tanıma. 6. Boyut Azaltımı (Dimensionality Reduction) MEH535 Örüntü anıma 6. Boyut Azaltımı (Dimensionality Reduction) Doç.Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Bölümü web: http://akademikpersonel.kocaeli.edu.tr/kemalg/ E-posta: kemalg@kocaeli.edu.tr

Detaylı

Gürültü İçeren İnsan Yüzü Görüntülerinde Ayrık Kosinüs Dönüşümü - Alt Bant Tabanlı Yüz Tanıma

Gürültü İçeren İnsan Yüzü Görüntülerinde Ayrık Kosinüs Dönüşümü - Alt Bant Tabanlı Yüz Tanıma Gazi Üniversitesi Fen Bilimleri Dergisi Part:C, Tasarım Ve Teknoloji GU J Sci Part:C 3(2):457-462 (2015) Gürültü İçeren İnsan Yüzü Görüntülerinde Ayrık Kosinüs Dönüşümü - Alt Bant Tabanlı Yüz Tanıma Ahmet

Detaylı

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir.

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir. ÇELĐK YÜZEYLERĐN SINIFLANDIRILMASI * Cem ÜNSALAN ** Aytül ERÇĐL * Ayşın ERTÜZÜN *Boğaziçi Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü unsalan@boun.edu.tr **Boğaziçi Üniversitesi, Endüstri Mühendisliği

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: Pattern Recognition

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: Pattern Recognition Dersi Veren Birim: Fen Bilimleri Enstitüsü Dersin Türkçe Adı: Örüntü Tanıma Dersin Orjinal Adı: Pattern Recognition Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisansüstü Dersin Kodu: CSE

Detaylı

Kanonik Korelasyon Analizi ile Düşük Çözünürlüklü Görüntülerden Yüz Tanıma

Kanonik Korelasyon Analizi ile Düşük Çözünürlüklü Görüntülerden Yüz Tanıma Kanonik Korelasyon Analizi ile Düşük Çözünürlüklü Görüntülerden Yüz Tanıma Face Recognition from Low Resolution Images Using Canonical Correlation Analysis B. Şen 1 and Y. Özkazanç 2 1 Karel Elektronik,

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 10 Nesne / Yüz Tespiti ve Tanıma Alp Ertürk alp.erturk@kocaeli.edu.tr Nesne Tespiti Belirli bir nesnenin sahne içindeki konumunun tespitidir Tespit edilecek nesne önceden

Detaylı

ÖZDEĞERLER- ÖZVEKTÖRLER

ÖZDEĞERLER- ÖZVEKTÖRLER ÖZDEĞERLER- ÖZVEKTÖRLER GİRİŞ Özdeğerler, bir matrisin orijinal yapısını görmek için kullanılan alternatif bir yoldur. Özdeğer kavramını açıklamak için öncelikle özvektör kavramı ele alınsın. Bazı vektörler

Detaylı

Makine Öğrenmesi 11. hafta

Makine Öğrenmesi 11. hafta Makine Öğrenmesi 11. hafta Özellik Çıkartma-Seçme Boyut Azaltma PCA LDA 1 Özellik Çıkartma Herhangi bir problemin makine öğrenmesi yöntemleriyle çözülebilmesi için sistemin uygun şekilde temsil edilmesi

Detaylı

Kredi Onayı İçin Bir Sınıflandırma Algoritması Önerisi A Classification Algorithm Advice for Credit Approval

Kredi Onayı İçin Bir Sınıflandırma Algoritması Önerisi A Classification Algorithm Advice for Credit Approval Kredi Onayı İçin Bir Sınıflandırma Algoritması Önerisi A Classification Algorithm Advice for Credit Approval İsmail Haberal Bilgisayar Mühendisliği Bölümü Başkent Üniversitesi ihaberal@baskent.edu.tr Umut

Detaylı

Kanonik Korelasyon Analizi ile Cinsiyet Tabanlı İmge Sınıflandırması. Gender Based Image Classification via Canonical Correlation Analysis

Kanonik Korelasyon Analizi ile Cinsiyet Tabanlı İmge Sınıflandırması. Gender Based Image Classification via Canonical Correlation Analysis Kanonik Korelasyon Analizi ile Cinsiyet Tabanlı İmge Sınıflandırması Gender Based Image Classification via Canonical Correlation Analysis * Mehmet Cem Catalbas 1, Yakup Ozkazanc 2, Arif Gulten 1 1 Electric

Detaylı

Görüntü İyileştirme Teknikleri. Hafta-8

Görüntü İyileştirme Teknikleri. Hafta-8 Görüntü İyileştirme Teknikleri Hafta-8 1 Spektral İyileştirme PCA (Principal Component Analysis) Dönüşümü. Türkçesi Ana Bileşenler Dönüşümü Decorrelation Germe Tasseled Cap RGB den IHS ye dönüşüm IHS den

Detaylı

Çok-öbekli Veri için Aradeğerlemeci Ayrışım

Çok-öbekli Veri için Aradeğerlemeci Ayrışım Interpolative Decomposition for Data with Multiple Clusters Çok-öbekli Veri için Aradeğerlemeci Ayrışım İsmail Arı, A. Taylan Cemgil, Lale Akarun. Boğaziçi Üniversitesi, Bilgisayar Mühendisliği 25 Nisan

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

Uzaktan Algılama Uygulamaları

Uzaktan Algılama Uygulamaları Aksaray Üniversitesi Uzaktan Algılama Uygulamaları Doç.Dr. Semih EKERCİN Harita Mühendisliği Bölümü sekercin@aksaray.edu.tr 2010-2011 Bahar Yarıyılı Uzaktan Algılama Uygulamaları GÖRÜNTÜ İŞLEME TEKNİKLERİ

Detaylı

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında ucuz ve hızlı sonuç alınabilen uzaktan algılama tekniğinin, yenilenebilir

Detaylı

ORM 7420 USING SATELLITE IMAGES IN FOREST RESOURCE PLANNING

ORM 7420 USING SATELLITE IMAGES IN FOREST RESOURCE PLANNING ORM 7420 USING SATELLITE IMAGES IN FOREST RESOURCE PLANNING Asst. Prof. Dr. Uzay KARAHALİL Week IV NEDEN UYDU GÖRÜNTÜLERİ KULLANIRIZ? Sayısaldır (Dijital), - taramaya gerek yoktur Hızlıdır Uçuş planı,

Detaylı

36. Basit kuvvet metodu

36. Basit kuvvet metodu 36. Basit kuvvet metodu Basit kuvvet metodu hakkında çok kısa bilgi verilecektir. Basit kuvvet metodunda hiperstatik bilinmeyenlerinin hesaplanmasına, dolayısıyla buna ait denklem sisteminin kurulmasına

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 8 Multispektral Görüntüleme ve Uygulamaları Alp Ertürk alp.erturk@kocaeli.edu.tr Multispektral Görüntüleme Her piksel için birkaç adet spektral kanalda ölçüm değeri

Detaylı

HATA BULMA YÖNTEMLERİNİN YANLIŞ ALARM ORANLARI FALSE ALARM RATES OF FAULT DETECTION METHODS

HATA BULMA YÖNTEMLERİNİN YANLIŞ ALARM ORANLARI FALSE ALARM RATES OF FAULT DETECTION METHODS Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Vol(No): pp, year SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DERGİSİ SAKARYA UNIVERSITY JOURNAL OF SCIENCE e-issn: 2147-835X Dergi sayfası: http://dergipark.gov.tr/saufenbilder

Detaylı

Çekişmeli Üretici Ağlar Kullanarak Dış Mekan Görüntülerinin Geçici Niteliklerini Düzenleme

Çekişmeli Üretici Ağlar Kullanarak Dış Mekan Görüntülerinin Geçici Niteliklerini Düzenleme Çekişmeli Üretici Ağlar Kullanarak Dış Mekan Görüntülerinin Geçici Niteliklerini Düzenleme Adjusting Transient Attributes of Outdoor Images using Generative Adversarial Networks Levent Karacan, Aykut Erdem,

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: CME 4410

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: CME 4410 Dersi Veren Birim: Bilgisayar Mühendisliği Dersin Türkçe Adı: ÖRÜNTÜ TANIMAYA GİRİŞ Dersin Orjinal Adı: INTRODUCTION TO PATTERN RECOGNITION Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk alp.erturk@kocaeli.edu.tr Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 25 Ekim

Detaylı

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1.

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1. Ders: MAT6 Konu: Matrisler, Denklem Sistemleri. A = matrisi bulunuz.. A = a b c d e f ve B = ÇALIŞMA SORULARI- olmak üzere X = AX + B olacak şekilde bir X matrisi satır basamak hale getirildiğinde en fazla

Detaylı

Kelebek Görüntülerin Sınıflandırılmasında Yeni Yerel İkili Örüntüler

Kelebek Görüntülerin Sınıflandırılmasında Yeni Yerel İkili Örüntüler Kelebek Görüntülerin Sınıflandırılmasında Yeni Yerel İkili Örüntüler Yılmaz KAYA 1, Lokman KAYCİ 2 1 Bilgisayar Mühendisliği Bölümü, Siirt Üniversitesi, 56100 Siirt 2 Biyoloji Bölümü, Siirt Üniversitesi,

Detaylı

Emrah Kurtoğlu Gamze Dinçar Liva Gizem Göze Ali Kadir Ulu

Emrah Kurtoğlu Gamze Dinçar Liva Gizem Göze Ali Kadir Ulu 1302120002 1302130068 1302150039 1302150049 Emrah Kurtoğlu Gamze Dinçar Liva Gizem Göze Ali Kadir Ulu 17.10.2016 SPEKTRAL İMGELER Bir malzeme için yansıyan, yutulan veya iletilen ışınım miktarları dalga

Detaylı

Hızlı Düzey Küme Yöntemine Bağlı Retinal Damar Bölütlemesi. Bekir DİZDAROĞLU. KTÜ Bilgisayar Mühendisliği Bölümü

Hızlı Düzey Küme Yöntemine Bağlı Retinal Damar Bölütlemesi. Bekir DİZDAROĞLU. KTÜ Bilgisayar Mühendisliği Bölümü Bekir DİZDAROĞLU KTÜ Bilgisayar Mühendisliği Bölümü bekir@ktu.edu.tr 1/29 Tıbbi imge bölütleme klasik yaklaşımları a) Piksek tabanlı b) Kenar tabanlı c) Bölge tabanlı d) Watershed (sınır) tabanlı e) Kenar

Detaylı

Gama ışını görüntüleme: X ışını görüntüleme:

Gama ışını görüntüleme: X ışını görüntüleme: Elektronik ve Hab. Müh. Giriş Dersi Görüntü İşleme Yrd. Doç. Dr. M. Kemal GÜLLÜ Uygulama Alanları Gama ışını görüntüleme: X ışını görüntüleme: Uygulama Alanları Mor ötesi bandı görüntüleme: Görünür ve

Detaylı

Hafta 2 Görüntünün Alınması ve Sayısallaştırılması

Hafta 2 Görüntünün Alınması ve Sayısallaştırılması BLM429 Görüntü İşlemeye Giriş Hafta 2 Görüntünün Alınması ve Sayısallaştırılması Yrd. Doç. Dr. Caner ÖZCAN When something can be read without effort, great effort has gone into its writing. ~E. J. Poncela

Detaylı

Özdeğer ve Özvektörler

Özdeğer ve Özvektörler Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin

Detaylı

Kaynak: A. İŞLİER, TESİS PLANLAMASI, 1997

Kaynak: A. İŞLİER, TESİS PLANLAMASI, 1997 Mühendislik Fakültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2016-2017 Güz Dönemi Kaynak: A. İŞLİER, TESİS PLANLAMASI, 1997 2 Tesis Yer Seçimi Problemi (TYSP) TEK AMAÇLI

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 9 Stereo Görüntüleme Alp Ertürk alp.erturk@kocaeli.edu.tr Tek Kamera Geometrisi??? x Tek Kamera Geometrisi Tek Kamera Geometrisi İğne Deliği Kamera Modeli ) /, / ( ),, (

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Proje

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Proje Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Bilgisayarla Görme Proje Renk ve Şekil Temelli Trafik İşareti Tespiti Selçuk BAŞAK 08501008 1. Not: Ödevi hazırlamak için

Detaylı

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HİPERSPEKTRAL GÖRÜNTÜLERDE BOYUT İNDİRGEME BURAK AKGÜL

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HİPERSPEKTRAL GÖRÜNTÜLERDE BOYUT İNDİRGEME BURAK AKGÜL T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HİPERSPEKTRAL GÖRÜNTÜLERDE BOYUT İNDİRGEME BURAK AKGÜL YÜKSEK LİSANS TEZİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ANABİLİM DALI HABERLEŞME PROGRAMI

Detaylı

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x,x,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x + a x + L + a x = b n n a x + a x + L + a x = b n n a x + a

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 06 Kasım

Detaylı

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN Giriş Bilgi teknolojisindeki gelişmeler ve verilerin dijital ortamda saklanmaya başlanması ile yeryüzündeki bilgi miktarı her 20 ayda iki katına

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 6 Kenar, Köşe, Yuvarlak Tespiti Alp Ertürk alp.erturk@kocaeli.edu.tr KENAR TESPİTİ Kenar Tespiti Amaç: Görüntüdeki ani değişimleri / kesintileri algılamak Şekil bilgisi elde

Detaylı

[1086] HİPERSPEKTRAL GÖRÜNTÜLERİN NESNE-TABANLI SINIFLANDIRILMASINDA BOYUTSALLIK PROBLEMİ VE PARAMETRE SEÇİMİ

[1086] HİPERSPEKTRAL GÖRÜNTÜLERİN NESNE-TABANLI SINIFLANDIRILMASINDA BOYUTSALLIK PROBLEMİ VE PARAMETRE SEÇİMİ 691 [1086] HİPERSPEKTRAL GÖRÜNTÜLERİN NESNE-TABANLI SINIFLANDIRILMASINDA BOYUTSALLIK PROBLEMİ VE PARAMETRE SEÇİMİ Taşkın KAVZOĞLU 1, Hasan TONBUL 2, Merve YILDIZ ERDEMİR 3, İsmail ÇÖLKESEN 4 1 Prof. Dr.,

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 7 SIFT ve Öznitelik Eşleme Alp Ertürk alp.erturk@kocaeli.edu.tr Panorama Oluşturma Görüntü mozaikleme, panorama oluşturma gibi tüm uygulamalar için öncelikle ilgili görüntülerin

Detaylı

SPEKTROSKOPİK ELİPSOMETRE

SPEKTROSKOPİK ELİPSOMETRE OPTİK MALZEMELER ARAŞTIRMA GRUBU SPEKTROSKOPİK ELİPSOMETRE Birhan UĞUZ 1 0 8 1 0 8 1 0 İçerik Elipsometre Nedir? Işığın Kutuplanması Işığın Maddeyle Doğrusal Etkileşmesi Elipsometre Bileşenleri Ortalama

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İçerik Tanımlar

Detaylı

Ampirik Kip Ayrışımı ve Dalgacık Dönüşümü Kullanarak Hiperspektral Görüntülerin Boyutlarının Azaltılması

Ampirik Kip Ayrışımı ve Dalgacık Dönüşümü Kullanarak Hiperspektral Görüntülerin Boyutlarının Azaltılması Ampirik Kip Ayrışımı ve Dalgacık Dönüşümü Kullanarak Hiperspektral Görüntülerin Boyutlarının Azaltılması Esra Tunç Görmüş a *, Nishan.Canagarajah b, Alin Achim b a KTU Harita Mühendisliği Bölümü, Kanuni

Detaylı

İnsan Yüzü Resimlerinin Sorgulamaya Uygun ve Bölgelendirmeye Dayalı Kodlanması

İnsan Yüzü Resimlerinin Sorgulamaya Uygun ve Bölgelendirmeye Dayalı Kodlanması 1 Giriş: İnsan Yüzü Resimlerinin Sorgulamaya Uygun ve Bölgelendirmeye Dayalı Kodlanması Hatice Çınar, Ö Nezih Gerek Anadolu Üniversitesi, Elektrik-Elektronik Müh Böl, Eskişehir ongerek@anadoluedutr, hacinar@anadoluedutr

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 16 Sayı: 48 sh. 86-93 Eylül 2014

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 16 Sayı: 48 sh. 86-93 Eylül 2014 DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 16 Sayı: 48 sh. 86-93 Eylül 2014 DESTEK VEKTÖR MAKİNELERİ PARAMETRE OPTİMİZASYONUNUN DUYGU ANALİZİ ÜZERİNDEKİ ETKİSİ (EFFECTS OF SUPPORT VECTOR

Detaylı

HAVADAN LAZER TARAMA ve SAYISAL GÖRÜNTÜ VERİLERİNDEN BİNA TESPİTİ VE ÇATILARIN 3 BOYUTLU MODELLENMESİ

HAVADAN LAZER TARAMA ve SAYISAL GÖRÜNTÜ VERİLERİNDEN BİNA TESPİTİ VE ÇATILARIN 3 BOYUTLU MODELLENMESİ Akdeniz Üniversitesi Uzay Bilimleri ve Teknolojileri Bölümü Uzaktan Algılama Anabilim Dalı HAVADAN LAZER TARAMA ve SAYISAL GÖRÜNTÜ VERİLERİNDEN BİNA TESPİTİ VE ÇATILARIN 3 BOYUTLU MODELLENMESİ Dr.Nusret

Detaylı

İki Boyutlu Dalgacık Dönüşümü Kullanarak Ön Cepheden Çekilmiş İnsan Yüzü Resimlerini Tanıma Üzerine Yaklaşımlar

İki Boyutlu Dalgacık Dönüşümü Kullanarak Ön Cepheden Çekilmiş İnsan Yüzü Resimlerini Tanıma Üzerine Yaklaşımlar KSÜ Mühendislik Bilimleri Dergisi, 12(1), 2009 6 KSU Journal of Engineering Sciences, 12 (1), 2009 İki Boyutlu Dalgacık Dönüşümü Kullanarak Ön Cepheden Çekilmiş İnsan Yüzü Resimlerini Tanıma Üzerine Yaklaşımlar

Detaylı

K-En Yakın Komşu Algoritması Parametrelerinin Sınıflandırma Performansı Üzerine Etkisinin İncelenmesi

K-En Yakın Komşu Algoritması Parametrelerinin Sınıflandırma Performansı Üzerine Etkisinin İncelenmesi K-En Yakın Komşu Algoritması Parametrelerinin Sınıflandırma Performansı Üzerine Etkisinin İncelenmesi Erdal TAŞCI* Aytuğ ONAN** *Ege Üniversitesi Bilgisayar Mühendisliği Bölümü **Celal Bayar Üniversitesi

Detaylı

DEPREM KONUMLARININ BELİRLENMESİNDE BULANIK MANTIK YAKLAŞIMI

DEPREM KONUMLARININ BELİRLENMESİNDE BULANIK MANTIK YAKLAŞIMI DEPREM KONUMLRININ BELİRLENMESİNDE BULNIK MNTIK YKLŞIMI Koray BODUR 1 ve Hüseyin GÖKLP 2 ÖZET: 1 Yüksek lisans öğrencisi, Jeofizik Müh. Bölümü, Karadeniz Teknik Üniversitesi, Trabzon 2 Yrd. Doç. Dr., Jeofizik

Detaylı

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun.

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Doç.Dr.Mehmet MISIR-2013 TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

Aşağı Link MC-CDMA Sistemlerinde Kullanılan PIC Alıcının EM-MAP Tabanlı Olarak İlklendirilmesi

Aşağı Link MC-CDMA Sistemlerinde Kullanılan PIC Alıcının EM-MAP Tabanlı Olarak İlklendirilmesi IEEE 15. Sinyal İşleme ve İletişim Uygulamaları Kurultayı - 2007 Aşağı Link MC-CDMA Sistemlerinde Kullanılan PIC Alıcının EM-MAP Tabanlı Olarak İlklendirilmesi Hakan Doğan 1,Erdal Panayırcı 2, Hakan Ali

Detaylı

İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik

İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik Tekrar Konular İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik 1. Uygulamalar ve tanımlamalar 2. Örüntü tanıma sistemleri ve bir örnek 3. Bayes karar teorisi 4. En yakın komşu sınıflandırıcıları

Detaylı

ÖRNEK TABANLI K-STAR ALGORİTMASI İLE UZAKTAN ALGILANMIŞ GÖRÜNTÜLERİN SINIFLANDIRILMASI

ÖRNEK TABANLI K-STAR ALGORİTMASI İLE UZAKTAN ALGILANMIŞ GÖRÜNTÜLERİN SINIFLANDIRILMASI ÖRNEK TABANLI K-STAR ALGORİTMASI İLE UZAKTAN ALGILANMIŞ GÖRÜNTÜLERİN SINIFLANDIRILMASI İ. Çölkesen *, T. Kavzoğlu GYTE, Mühendislik Fakültesi, Jeodezi ve Fotogrametri Müh. Bölümü, 41400 Gebze-Kocaeli (icolkesen@gyte.edu.tr,

Detaylı

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Akış Makine Öğrenmesi nedir? Günlük Hayatımızdaki Uygulamaları Verilerin Sayısallaştırılması Özellik Belirleme Özellik Seçim Metotları Bilgi Kazancı (Informaiton Gain-IG) Sinyalin Gürültüye Oranı: (S2N

Detaylı

6. Ders. Mahir Bilen Can. Mayıs 16, 2016

6. Ders. Mahir Bilen Can. Mayıs 16, 2016 6. Ders Mahir Bilen Can Mayıs 16, 2016 Bu derste lineer cebirdeki bazı fikirleri gözden geçirip Lie teorisine uygulamalarını inceleyeceğiz. Bütün Lie cebirlerinin cebirsel olarak kapalı ve karakteristiği

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 5001

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 5001 Dersi Veren Birim: Fen Bilimleri Enstitüsü Dersin Türkçe Adı: Uygulamalı Matematik Dersin Orjinal Adı: Applied Mathematics Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisansüstü Dersin Kodu:

Detaylı

ÜÇ BOYUTLU M-BANTLI DALGACIK DÖNÜŞÜMÜ İLE TRAFİK TIKANIKLIĞININ BELİRLENMESİ

ÜÇ BOYUTLU M-BANTLI DALGACIK DÖNÜŞÜMÜ İLE TRAFİK TIKANIKLIĞININ BELİRLENMESİ ÜÇ BOYUTLU M-BANTLI DALGACIK DÖNÜŞÜMÜ İLE TRAFİK TIKANIKLIĞININ BELİRLENMESİ 1. Giriş Tolga Kurt, Emin Anarım Boğaziçi Üniversitesi, Elektrik-Elektronik Mühendisliği 80815,Bebek, İstanbul-Türkiye e-posta:

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Sahne Geçişlerinin Geometrik Tabanlı olarak Saptanması

Sahne Geçişlerinin Geometrik Tabanlı olarak Saptanması Sahne Geçişlerinin Geometrik Tabanlı olarak Saptanması 1 Giriş Binnur Kurt, H. Tahsin Demiral, Muhittin Gökmen İstanbul Teknik Üniversitesi, Bilgisayar Mühendisliği Bölümü, Maslak, 80626 İstanbul {kurt,demiral,gokmen}@cs.itu.edu.tr

Detaylı

ENİNE DEMET DİNAMİĞİ. Prof. Dr. Abbas Kenan Çiftçi. Ankara Üniversitesi

ENİNE DEMET DİNAMİĞİ. Prof. Dr. Abbas Kenan Çiftçi. Ankara Üniversitesi ENİNE DEMET DİNAMİĞİ Prof. Dr. Abbas Kenan Çiftçi Ankara Üniversitesi 1 Dairesel Hızlandırıcılar Yönlendirme: mağnetik alan Odaklama: mağnetik alan Alan indisi zayıf odaklama: 0

Detaylı

İçerik. Giriş 1/23/13. Giriş Problem Tanımı Tez Çalışmasının Amacı Metodoloji Zaman Çizelgesi. Doktora Tez Önerisi

İçerik. Giriş 1/23/13. Giriş Problem Tanımı Tez Çalışmasının Amacı Metodoloji Zaman Çizelgesi. Doktora Tez Önerisi İsmail ÇÖLKESEN 501102602 Doktora Tez Önerisi Tez Danışmanı : Prof.Dr. Tahsin YOMRALIOĞLU İTÜ Geoma*k Mühendisliği İçerik Giriş Tez Çalışmasının Amacı Zaman Çizelgesi 1 of 25 Giriş Yeryüzü ile ilgili yapılan

Detaylı

Elena Battini SÖNMEZ Önder ÖZBEK N. Özge ÖZBEK. 2 Şubat 2007

Elena Battini SÖNMEZ Önder ÖZBEK N. Özge ÖZBEK. 2 Şubat 2007 AVUÇ İZİ VE PARMAK İZİNE DAYALI BİR BİYOMETRİK TANIMA SİSTEMİ Elena Battini SÖNMEZ Önder ÖZBEK N. Özge ÖZBEK İstanbul Bilgi Üniversitesi Bilgisayar Bilimleri 2 Şubat 2007 Biyometrik Biyometrik, kişileri

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

MULTISPEKTRAL UYDU GÖRÜNTÜLERİ İÇİN EN UYGUN BANT SEÇİMİNİN SINIFLANDIRMA DOĞRULUĞUNA ETKİLERİNİN İNCELENMESİ

MULTISPEKTRAL UYDU GÖRÜNTÜLERİ İÇİN EN UYGUN BANT SEÇİMİNİN SINIFLANDIRMA DOĞRULUĞUNA ETKİLERİNİN İNCELENMESİ MULTISPEKTRAL UYDU GÖRÜNTÜLERİ İÇİN EN UYGUN BANT SEÇİMİNİN SINIFLANDIRMA DOĞRULUĞUNA ETKİLERİNİN İNCELENMESİ T. Kavzoğlu *, İ. Çölkesen, E.K. Şahin Gebze Yüksek Teknoloji Enstitüsü, Jeodezi ve Fotogrametri

Detaylı

N. Murat Arar, N. Kaan Bekmezci, Fatma Güney, Hazım K. Ekenel. Antalya, 22/04/2011

N. Murat Arar, N. Kaan Bekmezci, Fatma Güney, Hazım K. Ekenel. Antalya, 22/04/2011 N. Murat Arar, N. Kaan Bekmezci, Fatma Güney, Hazım K. Ekenel Antalya, 22/04/2011 IEEE 19. Sinyal İşleme ve İletişim Uygulamaları Kurultayı http://www.cmpe.boun.edu.tr/pilab Giriş İlgili Çalışmalar Yöntem

Detaylı

Ayrık Dalgacık Dönüşümü Bileşenlerine Ait İstatistiksel Veriler ile Epileptik EEG İşaretlerinin Sınıflandırılması

Ayrık Dalgacık Dönüşümü Bileşenlerine Ait İstatistiksel Veriler ile Epileptik EEG İşaretlerinin Sınıflandırılması 214 Spring/Bahar Cilt/Vol: 5 - Sayı/Num: 15 DOI: 1.5824/139-1581.214.2.3.x Ayrık Dalgacık Dönüşümü Bileşenlerine Ait İstatistiksel Veriler ile Epileptik EEG İşaretlerinin Sınıflandırılması Tuğba PALABAŞ,

Detaylı

ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI

ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI Araştırmalarda incelenen olaylar göstermektedir ki tek değişkenli istatistiklerin kullanılması problemi açıklamakta yetersiz ve eksik kalmaktadır.

Detaylı

SÜREKLİ SAKLI MARKOV MODELLERİ İLE METİNDEN BAĞIMSIZ KONUŞMACI TANIMA PARAMETRELERİNİN İNCELENMESİ

SÜREKLİ SAKLI MARKOV MODELLERİ İLE METİNDEN BAĞIMSIZ KONUŞMACI TANIMA PARAMETRELERİNİN İNCELENMESİ Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 12, Sayı 1, 2007 SÜREKLİ SAKLI MARKOV MODELLERİ İLE METİNDEN BAĞIMSIZ KONUŞMACI TANIMA PARAMETRELERİNİN İNCELENMESİ Cemal HANİLÇİ Figen

Detaylı

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 8. HAFTA BLM323 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 MATRİSLER Matris veya dizey, dikdörtgen bir sayılar tablosu

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 3 Uzaktan Algılama Temelleri Alp Ertürk alp.erturk@kocaeli.edu.tr Elektromanyetik Spektrum Elektromanyetik Spektrum Görünür Işık (Visible Light) Mavi: (400 500 nm) Yeşil:

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Görüntü Sınıflandırma Sınıflandırma nedir Sınıflandırma türleri Kontrolsüz/Kontrollü (Denetimli, Eğitimli)

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 4 İkili Görüntüler, Topoloji ve Morfoloji Alp Ertürk alp.erturk@kocaeli.edu.tr İkili (binary) görüntüler Gri skala veya renkli bir görüntünün eşiklenmesi ile elde edilirler.

Detaylı

13. Karakteristik kökler ve özvektörler

13. Karakteristik kökler ve özvektörler 13. Karakteristik kökler ve özvektörler 13.1 Karakteristik kökler 1.Tanım: A nxn tipinde matris olmak üzere parametrisinin n.dereceden bir polinomu olan şeklinde gösterilen polinomuna A matrisin karakteristik

Detaylı

MEH535 Örüntü Tanıma

MEH535 Örüntü Tanıma MEH535 Örüntü Tanıma 1. Örüntü Tanımaya Giriş Doç.Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Bölümü web: http://akademikpersonel.kocaeli.edu.tr/kemalg/ E-posta: kemalg@kocaeli.edu.tr Değerlendirme

Detaylı

ÖRNEKLER-VEKTÖR UZAYLARI 1. Çözüm: w=k 1 u+k 2 v olmalıdır.

ÖRNEKLER-VEKTÖR UZAYLARI 1. Çözüm: w=k 1 u+k 2 v olmalıdır. ÖRNEKLER-VEKTÖR UZAYLARI. vektör uzayında yer alan w=(9 7) vektörünün, u=( -), v=(6 ) vektörlerinin doğrusal bir kombinasyonu olduğunu ve z=( - 8) vektörünün ise bu vektörlerin doğrusal bir kombinasyonu

Detaylı

2.3. MATRİSLER Matris Tanımlama

2.3. MATRİSLER Matris Tanımlama 2.3. MATRİSLER 2.3.1. Matris Tanımlama Matrisler girilirken köşeli parantez kullanılarak ( [ ] ) ve aşağıdaki yollardan biri kullanılarak girilir: 1. Elemanları bir tam liste olarak girmek Buna göre matris

Detaylı

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri ÖNSÖZ Gerçekte herhangi bir olguyu etkileyen dinamikler çok karmaşıktır ve her alanda olayların akışını etkileyen faktörler çok sayıda (genellikle sonsuz sayıda) özellik tarafından belirlendiğinden çok

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

Uzaktan Algõlama Ve Yerbilimlerinde Uygulamalarõ

Uzaktan Algõlama Ve Yerbilimlerinde Uygulamalarõ Uzaktan Algõlama Ve Yerbilimlerinde Uygulamalarõ Bölüm 3 Spektrometre, Kullanõm Alanlarõ, Hiperspektral Analiz Yöntemleri ve Uygulamalar B.Taner SAN tanersan@mta.gov.tr Engin Ö. SÜMER esumer@mta.gov.tr

Detaylı

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr Ders Bilgisi Ders Kodu 9060528 Ders Bölüm 1 Ders Başlığı BİLİŞİM SİSTEMLERİ İÇİN MATEMATİĞİN TEMELLERİ Ders Kredisi 3 ECTS 8.0 Katalog Tanımı Ön koşullar Ders saati Bu dersin amacı altyapısı teknik olmayan

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Görüntü Zenginleştirme Spektral Dönüşümler Spektral dönüşümler Kontrast zenginleştirme Doğrusal/Lineer

Detaylı

YOĞUN GÖRÜNTÜ EŞLEME ALGORİTMALARI İLE ÜRETİLEN YÜKSEK ÇÖZÜNÜRLÜKLÜ SAYISAL YÜZEY MODELİ ÜRETİMİNDE KALİTE DEĞERLENDİRME VE DOĞRULUK ANALİZİ

YOĞUN GÖRÜNTÜ EŞLEME ALGORİTMALARI İLE ÜRETİLEN YÜKSEK ÇÖZÜNÜRLÜKLÜ SAYISAL YÜZEY MODELİ ÜRETİMİNDE KALİTE DEĞERLENDİRME VE DOĞRULUK ANALİZİ YOĞUN GÖRÜNTÜ EŞLEME ALGORİTMALARI İLE ÜRETİLEN YÜKSEK ÇÖZÜNÜRLÜKLÜ SAYISAL YÜZEY MODELİ ÜRETİMİNDE KALİTE DEĞERLENDİRME VE DOĞRULUK ANALİZİ Naci YASTIKLI a, Hüseyin BAYRAKTAR b a Yıldız Teknik Üniversitesi,

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi Uzaktan Algılama (JDF439) Hiperspektral ve termal bantlı uydular Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) 2016-2017 Öğretim Yılı Güz Dönemi 1 3 4 5 SPOT 6 6 Geçen ders: Mikrodalga algılama sistemleri Gündüz

Detaylı

INVESTIGATION OF EFFECTS ON MULTIDIMENSIONAL SCALING ALGORITHMS OF DISTANCE FUNCTIONS WİTH REAL AND SIMULATION DATAS

INVESTIGATION OF EFFECTS ON MULTIDIMENSIONAL SCALING ALGORITHMS OF DISTANCE FUNCTIONS WİTH REAL AND SIMULATION DATAS UZAKLIK FONKSİYONLARININ STRESS DEĞERİ ÜZERİNE ETKİSİNİN SİMÜLASYON VE GERÇEK VERİLER İLE GÖSTERİLMESİ Selim GÜNDÜZ Faculty of Arts and Sciences, University of Cukurova, Address Çukurova University, Adana,

Detaylı

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir.

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. . nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. Buna göre, n C r + n C r toplamı aşağıdakilerden hangisine eşittir? A) n + C r B)

Detaylı

Büyük Veri ve Endüstri Mühendisliği

Büyük Veri ve Endüstri Mühendisliği Büyük Veri ve Endüstri Mühendisliği Mustafa Gökçe Baydoğan Endüstri Mühendisliği Bölümü Boğaziçi Üniversitesi İstanbul Yöneylem Araştırması/Endüstri Mühendisliği Doktora Öğrencileri Kolokyumu 21-22 Nisan

Detaylı

Bu durumu, konum bazında bileşenlerini, yani dalga fonksiyonunu, vererek tanımlıyoruz : ) 1. (ikx x2. (d)

Bu durumu, konum bazında bileşenlerini, yani dalga fonksiyonunu, vererek tanımlıyoruz : ) 1. (ikx x2. (d) Ders 10 Metindeki ilgili bölümler 1.7 Gaussiyen durum Burada, 1-d de hareket eden bir parçacığın önemli Gaussiyen durumu örneğini düşünüyoruz. Ele alış biçimimiz kitaptaki ile neredeyse aynı ama bu örnek

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 4 Pasif - Aktif Alıcılar, Çözünürlük ve Spektral İmza Alp Ertürk alp.erturk@kocaeli.edu.tr Pasif Aktif Alıcılar Pasif alıcılar fiziksel ortamdaki bilgileri pasif olarak

Detaylı

1.1.1. Açıklayıcı faktör analizi (EFA, Exploratory Factor Analysis)

1.1.1. Açıklayıcı faktör analizi (EFA, Exploratory Factor Analysis) 1. FAKTÖR ANALİZİ Faktör analizi (Factor Analysis) başta sosyal bilimler olmak üzere pek çok alanda sıkça kullanılan çok değişkenli analiz tekniklerinden biridir. Faktör analizi p değişkenli bir olayda

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İzdüşüm merkezi(o):

Detaylı

Doküman Sınıflandırma Text Categorization - TC

Doküman Sınıflandırma Text Categorization - TC Doküman Sınıflandırma Text Categorization - TC Doç.Dr.Banu Diri Akış Görev Eğiticili Eğiticisiz Öğrenme Metin Özellikleri Metin Kümeleme Hiyerarşik eklemeli kümeleme Metin kümelerinin birbirine benzerliği

Detaylı

Android Telefonlarla Yol Bozukluklarının Takibi: Kitle Kaynaklı Alternatif Çözüm

Android Telefonlarla Yol Bozukluklarının Takibi: Kitle Kaynaklı Alternatif Çözüm Galatasaray Üniversitesi Android Telefonlarla Yol Bozukluklarının Takibi: Kitle Kaynaklı Alternatif Çözüm Mustafa Tekeli, Özlem Durmaz İncel İçerik Giriş Literatür Özeti Sistem Mimarisi / Metodoloji Öncül

Detaylı

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine

Detaylı

GENETEK. Güç Sistemlerinde Kısa Devre Analizi Eğitimi. Güç, Enerji, Elektrik Sistemleri Özel Eğitim ve Danışmanlık San. Tic. Ltd. Şti.

GENETEK. Güç Sistemlerinde Kısa Devre Analizi Eğitimi. Güç, Enerji, Elektrik Sistemleri Özel Eğitim ve Danışmanlık San. Tic. Ltd. Şti. GENETEK Güç, Enerji, Elektrik Sistemleri Özel Eğitim ve Danışmanlık San. Tic. Ltd. Şti. Güç Sistemlerinde Kısa Devre Analizi Eğitimi Yeniköy Merkez Mh. KOÜ Teknopark No:83 C-13, 41275, Başiskele/KOCAELİ

Detaylı

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Bir Matrisin Rankı A m n matrisinin determinantı sıfırdan farklı olan alt kare matrislerinin boyutlarının en büyüğüne A matrisinin rankı denir. rank(a)

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı