TOPLU DEVRE ELEMANLARI KULLANILARAK TASARLANMIŞ 12Ω-50Ω FİLTRE

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "TOPLU DEVRE ELEMANLARI KULLANILARAK TASARLANMIŞ 12Ω-50Ω FİLTRE"

Transkript

1 TOPLU DEVRE ELEMANLARI KULLANILARAK TASARLANMIŞ 12Ω-50Ω FİLTRE Bu süzgeç yapısı, SRFT (Simplified Real Frequency Technique) ile tasarlanmış olup, AWR Microwave Office ile yapılan benzetimde, toplu devre elemanlarının kalite faktörleri (Q) sonsuz olarak kabul edilmiştir. IND ID=L11 L=421 ph PORT P=1 Z=12 Ohm IND ID=L2 L=947.4 ph ID=C C=1.516 pf ID=C4 C=7.62 pf IND ID=L5 L=250 ph ID=C6 C=5.27 pf IND ID=L7 L=500 ph IND ID=L9 L=402 ph ID=C8 C=5.47 pf ID=C12 C=1.51 pf ID=C10 C=2.85 pf PORT P=2 Z=50 Ohm AWR Microwave Office kullanılarak yapılan benzetimde filtreye ait S 21 (sürekli çizgi) ve S 11 (kesikli çizgi) parametreleri aşağıdaki şeilde verilmiştir.

2 TOPLU DEVRE ELEMANLARI İLE TASARLANMIŞ DEVRENİN DAĞILMIŞ PARAMETRELİ EŞDEĞERİNİN TASARLANMASI SRFT ile toplu devre elemanları kullanılarak tasarlanan devre, hesaplama sonucunda elde edilen kondansatör ve bobin değerlerine tam olarak ulaşabilmek ve sonlu Q değerlerinden kaçınmak amacıyla mikroşerit yapıya çevrilmiştir. Taban malzemesi olarak Rogers RT5880 kullanılmıştır. Dielektrik sabiti 2.2, taban kalınlığı 10 mil'dir (0.254mm). Seri koldaki kondansatörler toplu devre elemanı olarak eklenmiştir. (ATC marka kondansatörler kullanılmıştır.) Merkez frekans değeri bandının orta noktası olan 1500 MHz olarak alınmıştır. ******** L2 ELEMANININ DAĞILMIŞ PARAMETRELİ EŞDEĞERİNİN TASARIMI ******** Toplu devre eleman değeri ph olarak hesaplanana bobinin dağılmış parametreli eşdeğerinin elde edilmesi şu şekilde gerçekleştirilir. Seri kola eklenmiş olan bobin, yine seri kolda bulunan bir mikroşerit hat parçası ile eşdeğerdir. Bobinin reaktansı X=ω.L denklemi ile hesaplanır. Mikroşerit hat parçasının reaktansı ise X = Z 0.sinθ ile hesaplanır. Bu iki ifade birbirine eşlendiğinde hat parçasının karakteristik empedansı ve elektriksel uzunluğu elde edilebilir. X=ω.L= Z 0. sinθ X=ω.L = 2.π.f.L= 2 x.14 x 1.5 x 10 9 x 947,4 x = 8.92 Ω X= Z 0. sinθ = 40.sin Ω Bobinin reaktansı 8,92 Ω olarak hesaplanmıştır. Mikroşerit hat parçasının genişliğinin ve uzunluğunun uygun şekilde seçilerek aynı reaktansa sahip olması sağlanmalıdır. Eşdeğer hattın karakteristik empedansı 40 ohm, hat uzunluğu 5.2mm yani 1 olarak seçildiğinde gerekli eşdeğer reaktans değeri elde edilebilmektedir. ******** C ELEMANININ DAĞILMIŞ PARAMETRELİ EŞDEĞERİNİN TASARIMI ******** C elemanı devreye toplu parametreli eleman olarak eklenmiştir. Bu nedenle eşdeğeri tasarlanmamıştır. ******** C4 ELEMANININ DAĞILMIŞ PARAMETRELİ EŞDEĞERİNİN TASARIMI ******** C4 elemanı devreye toplu parametreli eleman olarak eklenmiştir. Bu nedenle eşdeğeri tasarlanmamıştır.

3 ******** L5 ELEMANININ DAĞILMIŞ PARAMETRELİ EŞDEĞERİNİN TASARIMI ******** Toplu devre eleman değeri 250 ph olarak hesaplanana bobinin dağılmış parametreli eşdeğerinin elde edilmesi şu şekilde gerçekleştirilir. Seri kola eklenmiş olan bobin, yine seri kolda bulunan bir mikroşerit hat parçası ile eşdeğerdir. Bobinin reaktansı X=ω.L denklemi ile hesaplanır. Mikroşerit hat parçasının reaktansı ise X = Z 0.sinθ ile hesaplanır. Bu iki ifade birbirine eşlendiğinde hat parçasının karakteristik empedansı ve elektriksel uzunluğu elde edilebilir. X=ω.L= Z 0. sinθ X=ω.L = 2.π.f.L= 2 x.14 x 1.5 x 10 9 x 250 x = Ω X= Z 0. sinθ = 55.sin 2 22,14 Ω Bobinin reaktansı 22,14 Ω olarak hesaplanmıştır. Mikroşerit hat parçasının genişliğinin ve uzunluğunun uygun şekilde seçilerek aynı reaktansa sahip olması sağlanmalıdır. Eşdeğer hattın karakteristik empedansı 55 ohm, hat uzunluğu 9 mm yani 2 olarak seçildiğinde gerekli eşdeğer reaktans değeri elde edilebilmektedir. ******** C6 ELEMANININ DAĞILMIŞ PARAMETRELİ EŞDEĞERİNİN TASARIMI ******** Bir ucu topraklanmış kondansatör, bir ucu açık devre mikroşerit hat ile eşdeğerdir. Kondansatörün reaktansı X= 1 / ω.c denklemi ile hesaplanır. Bir ucu açık devre mikroşerit hat parçasının reaktansı ise X = Z 0. cotθ denklemi ile hesaplanır. Bu iki ifade birbirine eşlendiğinde hat parçasının karakteristik empedansı ve elektriksel uzunluğu elde edilmiş olur. C6 elemanının değeri 5.27 pf olarak hesaplanmıştır. Bu durumda reaktansı kolayca hesaplanabilir. X=1 / (ω.c) = 1 / 2.π.f.C= 1 / 2 x.14 x 1.5 x 10 9 x 5.27 x = 20,14 Ω Kondansatörün reaktansı 20,14 Ω olarak hesaplanmıştır. Mikroşerit hat parçasının da aynı reaktansa sahip olması gerekmektedir. Bu durumda hat parçasının karakteristik empedansının yani genişliğinin ve uzunluğunun uygun şekilde seçilmesi gerekmektedir. Eşdeğer hattın karakteristik empedansı 14 ohm, hat uzunluğu 12.5 mm yani 5 olarak seçildiğinde gerekli reaktans değeri elde edilebilmektedir. X= Z 0. cotθ = 14.cot 5 20,14

4 ******** L7 ELEMANININ DAĞILMIŞ PARAMETRELİ EŞDEĞERİNİN TASARIMI ******** Toplu devre eleman değeri 500 ph olarak hesaplanana bobinin dağılmış parametreli eşdeğerinin elde edilmesi şu şekilde gerçekleştirilir. Seri kola eklenmiş olan bobin, yine seri kolda bulunan bir mikroşerit hat parçası ile eşdeğerdir. Bobinin reaktansı X=ω.L denklemi ile hesaplanır. Mikroşerit hat parçasının reaktansı ise X = Z 0.sinθ ile hesaplanır. Bu iki ifade birbirine eşlendiğinde hat parçasının karakteristik empedansı ve elektriksel uzunluğu elde edilebilir. X=ω.L = 2.π.f.L= 2 x.14 x 1.5 x 10 9 x 500 x = 2,97 Ω Bobinin reaktansı 2,97 Ω olarak hesaplanmıştır. Mikroşerit hat parçasının da aynı reaktansa sahip olması gerekmektedir. Bu durumda hat parçasının karakteristik empedansının yani genişliğinin ve uzunluğunun uygun şekilde seçilmesi gerekmektedir. Eşdeğer hattın karakteristik empedansı 41 ohm, hat uzunluğu 20 mm yani 50 olarak seçildiğinde gerekli reaktans değeri elde edilebilmektedir. X= Z 0. sinθ = 41.sin 50 2,97 ******** C8 ELEMANININ DAĞILMIŞ PARAMETRELİ EŞDEĞERİNİN TASARIMI ******** Bir ucu topraklanmış kondansatör, bir ucu açık devre mikroşerit hat ile eşdeğerdir. Kondansatörün reaktansı X= 1 / ω.c denklemi ile hesaplanır. Bir ucu açık devre mikroşerit hat parçasınının reaktansı ise X = Z 0. cotθ denklemi ile hesaplanır. Bu iki ifade birbirine eşlendiğinde hat parçasının karakteristik empedansı ve elektriksel uzunluğu elde edilmiş olur. C6 elemanının değeri 5.27 pf olarak hesaplanmıştır. bu durumda reaktansı kolayca hesaplanabilir. X=1 / ω.c = 1 / 2.π.f.C= 1 / 2 x,14 x 1.5 x 10 9 x 5.47 x = 19,40 Ω Kondansatörün reaktansı 19,40 Ω olarak hesaplanmıştır. Mikroşerit hat parçasının da aynı reaktansa sahip olması gerekmektedir. Bu durumda hat parçasının karakteristik empedansının yani genişliğinin ve uzunluğunun uygun şekilde seçilmesi gerekmektedir. Eşdeğer hattın karakteristik empedansı 17 ohm, hat uzunluğu 1 mm yani 5 olarak seçildiğinde gerekli reaktans değeri elde edilebilmektedir. X= Z 0. cotθ = 17.cot 5 19,40

5 ******** L9 ELEMANININ DAĞILMIŞ PARAMETRELİ EŞDEĞERİNİN TASARIMI ******** Toplu devre eleman değeri 402 ph olarak hesaplanana bobinin dağılmış parametreli eşdeğerinin elde edilmesi şu şekilde gerçekleştirilir. Seri kola eklenmiş olan bobin, yine seri kolda bulunan bir mikroşerit hat parçası ile eşdeğerdir. Bobinin reaktansı X=ω.L denklemi ile hesaplanır. Mikroşerit hat parçasının reaktansı ise X = Z 0.sinθ ile hesaplanır. Bu iki ifade birbirine eşlendiğinde hat parçasının karakteristik empedansı ve elektriksel uzunluğu elde edilebilir. X=ω.L = 2.π.f.L= 2 x.14 x 1.5 x 10 9 x 402 x = 7.98 Ω Bobinin reaktansı 7,98 Ω olarak hesaplanmıştır. Mikroşerit hat parçasının da aynı reaktansa sahip olması gerekmektedir. Bu durumda hat parçasının karakteristik empedansının yani genişliğinin ve uzunluğunun uygun şekilde seçilmesi gerekmektedir. Eşdeğer hattın karakteristik empedansı 50 ohm, hat uzunluğu XX 22 yani 5 olarak seçildiğinde gerekli reaktans değeri elde edilebilmektedir. X= Z 0. sinθ = 50.sin ******** C10 ELEMANININ DAĞILMIŞ PARAMETRELİ EŞDEĞERİNİN TASARIMI******** Bir ucu topraklanmış kondansatör, bir ucu açık devre mikroşerit hat ile eşdeğerdir. Kondansatörün reaktansı X= 1 / ω.c denklemi ile hesaplanır. Bir ucu açık devre mikroşerit hat parçasınının reaktansı ise X = Z 0. cotθ denklemi ile hesaplanır. Bu iki ifade birbirine eşlendiğinde hat parçasının karakteristik empedansı ve elektriksel uzunluğu elde edilmiş olur. C10 elemanının değeri 2.85 pf olarak hesaplanmıştır. Bu durumda reaktansı kolayca hesaplanabilir. X=1 / ω.c = 1 / 2.π.f.C= 1 / 2 x.14 x 1.5 x 10 9 x 2.85 x = 7,25 Ω Kondansatörün reaktansı 7,25 Ω olarak hesaplanmıştır. Mikroşerit hat parçasının da aynı reaktansa sahip olması gerekmektedir. Bu durumda hat parçasının karakteristik empedansının yani genişliğinin ve uzunluğunun uygun şekilde seçilmesi gerekmektedir. Eşdeğer hattın karakteristik empedansı XX ohm, hat uzunluğu XX mm yani XX olarak seçildiğinde gerekli reaktans değeri elde edilebilmektedir. X= Z 0. cotθ = XX.cot XX 7.25

6 ******** L11 ELEMANININ DAĞILMIŞ PARAMETRELİ EŞDEĞERİNİN TASARIMI******** Toplu devre eleman değeri 421 ph olarak hesaplanana bobinin dağılmış parametreli eşdeğerinin elde edilmesi şu şekilde gerçekleştirilir. Seri kola eklenmiş olan bobin, yine seri kolda bulunan bir mikroşerit hat parçası ile eşdeğerdir. Bobinin reaktansı X=ω.L denklemi ile hesaplanır. Mikroşerit hat parçasının reaktansı ise X = Z 0.sinθ ile hesaplanır. Bu iki ifade birbirine eşlendiğinde hat parçasının karakteristik empedansı ve elektriksel uzunluğu elde edilebilir. X=ω.L = 2.π.f.L= 2 x.14 x 1.5 x 10 9 x 421 x =,96 Ω Bobinin reaktansı,96 Ω olarak hesaplanmıştır. Mikroşerit hat parçasının da aynı reaktansa sahip olması gerekmektedir. Bu durumda hat parçasının karakteristik empedansının yani genişliğinin ve uzunluğunun uygun şekilde seçilmesi gerekmektedir. Eşdeğer hattın karakteristik empedansı 42 ohm, hat uzunluğu mm yani 7 olarak seçildiğinde gerekli reaktans değeri elde edilebilmektedir. X= Z 0. sinθ = 42.sin 7,96 ******** C12 ELEMANININ DAĞILMIŞ PARAMETRELİ EŞDEĞERİNİN TASARIMI******** C12 elemanı devreye toplu parametreli eleman olarak eklenmiştir. Bu nedenle eşdeğeri tasarlanmamıştır. MCURVE ID=TL W=wi mm ANG=90 Deg R=1 mm MCURVE ID=TL4 W=wi mm ANG=90 Deg R=1 mm MSUB Er=2.2 H=0.254 mm T=0.05 mm Rho=1 Tand=0 ErNom=2.2 Name=SUB1 wi=1.21 wc1=.79 wc2=2.44 wc=0.55 ws=0.97 MCURVE ID=TL14 W=ws mm ANG=90 Deg R=1 mm MCURVE ID=TL15 W=ws mm ANG=90 Deg R=1 mm PORT P=1 Z=12 Ohm MLIN ID=TL1 W=1.7 mm L= mm 2 1 ID=C1 C=1.476 pf 2 1 ID=C2 C=8.12 pf MLIN ID=TL6 W=0.64 mm L=7 mm MTEE$ ID=TL MLIN ID=TL9 W=0.99 mm L=17.08 mm MTEE$ ID=TL7 1 2 MLIN ID=TL12 W=0.74 mm L=21.59 mm 1 2 ID=C C= pf 2 1 MLIN ID=TL17 W=0.74 mm L= mm MTEE$ ID=TL2 MTEE$ ID=TL5 4 MCROSS$ ID=TL16 MTEE$ ID=TL10 PORT P=2 Z=50 Ohm MLEF ID=TL8 W=wc1 mm L=10.6 mm MLEF ID=TL11 W=wc2 mm L=11.8 mm MLEF ID=TL18 W=wc mm L=12.8 mm

7

8 ÜRETİLEN DEVRENİN NETWORK ANALİZÖR İLE ÖLÇÜM SONUCU 800 MHZ - 7 GHZ

9 KARŞILAŞTIRMALAR

10

DENEY 7 Pasif Elektronik Filtreler: Direnç-Kondansatör (RC) ve Direnç-Bobin (RL) Devreleri

DENEY 7 Pasif Elektronik Filtreler: Direnç-Kondansatör (RC) ve Direnç-Bobin (RL) Devreleri DENEY 7 Pasif Elektronik Filtreler: Direnç-Kondansatör (RC) ve Direnç-Bobin (RL) Devreleri 1. Amaç Bu deneyin amacı; alternatif akım devrelerinde, direnç-kondansatör birleşimi ile oluşturulan RC filtre

Detaylı

DENEY TARİHİ RAPOR TESLİM TARİHİ NOT

DENEY TARİHİ RAPOR TESLİM TARİHİ NOT DENEY 2 OHM-KIRCHOFF KANUNLARI VE BOBİN-DİRENÇ-KONDANSATÖR Malzeme Listesi: 1 adet 47Ω, 1 adet 100Ω, 1 adet 1,5KΩ ve 1 adet 6.8KΩ Dirençler 1 adet 100mH Bobin 1 adet 220nF Kondansatör Deneyde Kullanılacak

Detaylı

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK LABORATUARI (LAB I) DENEY 3 Deney Adı: Seri ve Paralel RLC Devreleri Öğretim Üyesi: Yard. Doç. Dr. Erhan AKDOĞAN

Detaylı

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Ohm-Kirchoff Kanunları ve AC Bobin-Direnç-Kondansatör

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Ohm-Kirchoff Kanunları ve AC Bobin-Direnç-Kondansatör YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK LABORATUARI (LAB I) DENEY 2 Deney Adı: Ohm-Kirchoff Kanunları ve Bobin-Direnç-Kondansatör Malzeme Listesi:

Detaylı

DENEY TARİHİ RAPOR TESLİM TARİHİ NOT

DENEY TARİHİ RAPOR TESLİM TARİHİ NOT DENEY 3 SERİ VE PARALEL RLC DEVRELERİ Malzeme Listesi: 1 adet 100mH, 1 adet 1.5 mh, 1 adet 100mH ve 1 adet 100 uh Bobin 1 adet 820nF, 1 adet 200 nf, 1 adet 100pF ve 1 adet 100 nf Kondansatör 1 adet 100

Detaylı

DENEY-4 RL DEVRE ANALİZİ. Alternatif akım altında seri RL devresinin analizi ve deneysel olarak incelenmesi.

DENEY-4 RL DEVRE ANALİZİ. Alternatif akım altında seri RL devresinin analizi ve deneysel olarak incelenmesi. DENEY-4 RL DEVRE ANALİZİ 1. DENEYİN AMACI Alternatif akım altında seri RL devresinin analizi ve deneysel olarak incelenmesi. Kullanılan Alet ve Malzemeler: 1. Osiloskop 2. Sinyal jeneratörü 3. Çeşitli

Detaylı

Bölüm 3 AC Devreler. 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak.

Bölüm 3 AC Devreler. 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak. Bölüm 3 AC Devreler DENEY 3-1 AC RC Devresi DENEYİN AMACI 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak. GENEL BİLGİLER Saf

Detaylı

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt.

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt. ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net İçerik AC ve DC Empedans RMS değeri Bobin ve kondansatörün

Detaylı

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri Deneyin Amacı: Seri ve paralel rezonans devrelerini incelemek, devrelerin karakteristik parametrelerini hesaplamak ve ölçmek, rezonans eğrilerini çizmek.

Detaylı

DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ

DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ Deneyin Amacı DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ Seri ve paralel RLC devrelerinde rezonans durumunun gözlenmesi, rezonans eğrisinin elde edilmesi ve devrenin karakteristik parametrelerinin ölçülmesi

Detaylı

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME Deney No:1 Amaç: Osiloskop kullanarak AC gerilimin genlik periyot ve frekans değerlerinin ölçmesi Gerekli Ekipmanlar: AC Güç Kaynağı, Osiloskop, 2 tane 1k

Detaylı

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=?

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=? S1-5 kw lık bir elektrik cihazı 360 dakika süresince çalıştırılacaktır. Bu elektrik cihazının yaptığı işi hesaplayınız. ( 1 saat 60 dakikadır. ) A-30Kwh B-50 Kwh C-72Kwh D-80Kwh S2-400 miliwatt kaç Kilowatt

Detaylı

Alternatif Akım. Yrd. Doç. Dr. Aytaç Gören. Alternatif Akım

Alternatif Akım. Yrd. Doç. Dr. Aytaç Gören. Alternatif Akım Yrd. Doç. Dr. Aytaç Gören Paralel devre 2 İlk durum: 3 Ohm kanunu uygulandığında; 4 Ohm kanunu uygulandığında; 5 Paralel devrede empedans denklemi, 6 Kondansatör (Kapasitans) Alternatif gerilimin etkisi

Detaylı

DENEY 1-1 AC Gerilim Ölçümü

DENEY 1-1 AC Gerilim Ölçümü DENEY 1-1 AC Gerilim Ölçümü DENEYİN AMACI 1. AC gerilimlerin nasıl ölçüldüğünü öğrenmek. 2. AC voltmetrenin nasıl kullanıldığını öğrenmek. GENEL BİLGİLER AC voltmetre, ac gerilimleri ölçmek için kullanılan

Detaylı

Alternatif Akım Devreleri

Alternatif Akım Devreleri Alternatif akım sürekli yönü ve şiddeti değişen bir akımdır. Alternatif akımda bazı devre elemanları (bobin, kapasitör, yarı iletken devre elemanları) doğruakım devrelerinde olduğundan farklı davranırlar.

Detaylı

Per-unit değerlerin avantajları

Per-unit değerlerin avantajları PER-UNİT DEĞERLER Per-unit değerlerin avantajları Elektriksel büyüklüklerin karşılaştırılmasında ve değerlendirilmesinde kolaylık sağlar. Trafoların per-unit eşdeğer empedansları primer ve sekonder taraf

Detaylı

Temel Devre Elemanlarının Alternatif Gerilim Etkisi Altındaki Davranışları

Temel Devre Elemanlarının Alternatif Gerilim Etkisi Altındaki Davranışları Temel Devre Elemanlarının Alternatif Gerilim Etkisi Altındaki Davranışları Direnç (R) Alternatif gerilimin etkisi altındaki direnç, Ohm kanunun bilinen ifadesini korur. Denklemlerden elde edilen sonuç

Detaylı

Yrd. Doç. Dr. Levent Çetin. Alternatif Gerilim. Alternatif Akımın Fazör Olarak İfadesi. Temel Devre Elemanlarının AG Etkisi Altındaki Davranışları

Yrd. Doç. Dr. Levent Çetin. Alternatif Gerilim. Alternatif Akımın Fazör Olarak İfadesi. Temel Devre Elemanlarının AG Etkisi Altındaki Davranışları Yrd. Doç. Dr. Levent Çetin İçerik Alternatif Gerilim Faz Kavramı ın Fazör Olarak İfadesi Direnç, Reaktans ve Empedans Kavramları Devresinde Güç 2 Alternatif Gerilim Alternatif gerilim, devre üzerindeki

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK222 TEMEL ELEKTRİK LABORATUARI-II

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK222 TEMEL ELEKTRİK LABORATUARI-II ALTERNATİF AKIM KÖPRÜLERİ 1. Hazırlık Soruları Deneye gelmeden önce aşağıdaki soruları cevaplayınız ve deney öncesinde rapor halinde sununuz. Omik, kapasitif ve endüktif yük ne demektir? Açıklayınız. Omik

Detaylı

MV 1438 KABLO HAT MODELİ KARAKTERİSTİKLERİ VE MV 1420 İLETİM HATTI ÜZERİNDEKİ GERİLİM DÜŞÜMÜ

MV 1438 KABLO HAT MODELİ KARAKTERİSTİKLERİ VE MV 1420 İLETİM HATTI ÜZERİNDEKİ GERİLİM DÜŞÜMÜ MV 1438 KABLO HAT MODELİ KARAKTERİSTİKLERİ VE MV 1420 İLETİM HATTI ÜZERİNDEKİ GERİLİM DÜŞÜMÜ MV 1438 KABLO HAT MODELİ KARAKTERİSTİKLERİ Genel Bilgi MV 1438 hat modeli 11kV lık nominal bir gerilim için

Detaylı

DENEY 2: ALTERNATİF AKIM DEVRELERİNDE KONDANSATÖR VE BOBİN DAVRANIŞININ İNCELENMESİ

DENEY 2: ALTERNATİF AKIM DEVRELERİNDE KONDANSATÖR VE BOBİN DAVRANIŞININ İNCELENMESİ DENEY 2: ALTERNATİF AKIM DEVRELERİNDE KONDANSATÖR VE BOBİN DAVRANIŞININ İNCELENMESİ Deneyin Amacı *Alternatif akım devrelerinde sıklıkla kullanılan (alternatif işaret, frekans, faz farkı, fazör diyagramı,

Detaylı

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği ANTENLER Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü Ders içeriği BÖLÜM 1: Antenler BÖLÜM 2: Antenlerin Temel Parametreleri BÖLÜM 3: Lineer Tel Antenler BÖLÜM 4: Halka Antenler

Detaylı

Ölçü Aletlerinin Tanıtılması

Ölçü Aletlerinin Tanıtılması Teknoloji Fakültesi Elektrik-Elektronik Mühendisliği 2017-2018 Bahar Yarıyılı EEM108 Elektrik Devreleri I Laboratuvarı 1 Ölçü Aletlerinin Tanıtılması Öğrenci Adı : Numarası : Tarihi : kurallarını okuyunuz.

Detaylı

DENEY 8: BOBİNLİ DEVRELERİN ANALİZİ

DENEY 8: BOBİNLİ DEVRELERİN ANALİZİ A. DENEYİN AMACI : Bobin indüktansının deneysel olarak hesaplanması ve basit bobinli devrelerin analizi. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. AC güç kaynağı,. Değişik değerlerde dirençler ve bobin kutusu.

Detaylı

ALTERNATİF AKIMDA EMPEDANS SERİ DEVRELER

ALTERNATİF AKIMDA EMPEDANS SERİ DEVRELER 1 ALTERNATİF AKMDA EMPEDANS SERİ DEVRELER ALTERNATİF AKMDA EMPEDANS Empedans, gerilim uygulandığında bir elektrik devresinin akımın geçişine karşı gösterdiği zorluğun ölçüsüdür. Empedans Z harfi ile gösterilir

Detaylı

10. e volt ve akımıi(

10. e volt ve akımıi( DEVRE ANALİZİ 1 1. Problemler 4t 1.1. Bir devre elemanından akan yükün zamana göre değişimi q(t ) 2 e Sin(10t ) olarak bilinmektedir. Elemandan geçen akımının değişimini bularak grafiğini çiziniz. 1.2.

Detaylı

UHF GÜÇ KUVVETLENDĠRĠCĠSĠ TASARIMI VE GERÇEKLENĠMĠ. ELĠF PINAR KESĠK Bölüm: Elektronik Mühendisliği Üniversite: Ġstanbul Teknik Üniversitesi

UHF GÜÇ KUVVETLENDĠRĠCĠSĠ TASARIMI VE GERÇEKLENĠMĠ. ELĠF PINAR KESĠK Bölüm: Elektronik Mühendisliği Üniversite: Ġstanbul Teknik Üniversitesi UHF GÜÇ KUVVETLENDĠRĠCĠSĠ TASARIMI VE GERÇEKLENĠMĠ ELĠF PINAR KESĠK Bölüm: Elektronik Mühendisliği Üniversite: Ġstanbul Teknik Üniversitesi Proje Yöneticisi: Öğr. Gör. Dr. H. Bülent YAĞCI 1. GĠRĠġ Bu projede

Detaylı

ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU

ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYİN ADI : DENEY TARİHİ : DENEYİ YAPANLAR : RAPORU HAZIRLAYANIN

Detaylı

ELEKTROMANYETİK DALGA TEORİSİ DERS - 5

ELEKTROMANYETİK DALGA TEORİSİ DERS - 5 ELEKTROMANYETİK DALGA TEORİSİ DERS - 5 İletim Hatları İLETİM HATLARI İletim hatlarının tarihsel gelişimi iki iletkenli basit hatlarla (ilk telefon hatlarında olduğu gibi) başlamıştır. Mikrodalga enerjisinin

Detaylı

YÖNLÜ KUPLÖR TASARIMI

YÖNLÜ KUPLÖR TASARIMI T.C. KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü YÖNLÜ KUPLÖR TASARIMI Adı Soyadı 196134 Nesrin GÖKALP 210225 Münteha Şura YAVUZ Danışman Yrd. Dç. Dr. Haydar

Detaylı

DİRENÇ VE REAKTANS (OMİK DİRENÇ, BOBİN VE KONDANSATÖR)

DİRENÇ VE REAKTANS (OMİK DİRENÇ, BOBİN VE KONDANSATÖR) 1 DİRENÇ VE REAKTANS (OMİK DİRENÇ, BOBİN VE KONDANSATÖR) Alternatif akım devrelerinde üç çeşit devre elemanı vardır. Bunlar; direnç, bobin ve kondansatördür. Sadece direnç bulunduran alternatif akım devreleri

Detaylı

EEM 202 DENEY 10. Tablo 10.1 Deney 10 da kullanılan devre elemanları ve malzeme listesi

EEM 202 DENEY 10. Tablo 10.1 Deney 10 da kullanılan devre elemanları ve malzeme listesi EEM 0 DENEY 0 SABİT FEKANSTA DEVEEİ 0. Amaçlar Sabit frekansta devrelerinin incelenmesi. Seri devresi Paralel devresi 0. Devre Elemanları Ve Kullanılan Malzemeler Bu deneyde kullanılan devre elemanları

Detaylı

8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ

8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ 8. ATENATİF AKIM E SEİ DEESİ AMAÇA 1. Alternatif akım ve gerilim ölçmeyi öğrenmek. Direnç, kondansatör ve indüktans oluşan seri bir alternatif akım devresini analiz etmek AAÇA oltmetre, ampermetre, kondansatör

Detaylı

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI DENEYİ YAPTIRAN: DENEYİN ADI: DENEY NO: DENEYİ YAPANIN ADI ve SOYADI: SINIFI: OKUL NO: DENEY GRUP NO:

Detaylı

T.C. ERCĠYES ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MEKATRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ TEMEL ELEKTRĠK DEVRE LABORATUARI

T.C. ERCĠYES ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MEKATRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ TEMEL ELEKTRĠK DEVRE LABORATUARI T.C. ERCĠYES ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MEKATRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ TEMEL ELEKTRĠK DEVRE LABORATUARI RLC devrelerinde Rezonans, Bant GeniĢliği, Q DENEY SORUMLUSU ArĢ. Gör. Ahmet KIRNAP ARALIK

Detaylı

3 FAZLI SİSTEMLER fazlı sistemler 1

3 FAZLI SİSTEMLER fazlı sistemler 1 3 FAL SİSTEMLER Çok lı sistemler, gerilimlerinin arasında farkı bulunan iki veya daha la tek lı sistemin birleştirilmiş halidir ve bu işlem simetrik bir şekilde yapılır. Tek lı sistemlerde güç dalgalı

Detaylı

Nedim Tutkun, PhD, MIEEE Düzce Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Konuralp Düzce

Nedim Tutkun, PhD, MIEEE Düzce Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Konuralp Düzce ELEKTRİK DEVRELERİ II ÖRNEK ARASINAV SORULARI Nedim Tutkun, PhD, MIEEE nedimtutkun@duzce.edu.tr Düzce Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü 81620 Konuralp Düzce Soru-1) Şekildeki devrede

Detaylı

ELEKTRİK DEVRELERİ-2 LABORATUVARI IV. DENEY FÖYÜ

ELEKTRİK DEVRELERİ-2 LABORATUVARI IV. DENEY FÖYÜ EEKTİK DEEEİ-2 ABOATUAI I. DENEY FÖYÜ ATENATİF AKIM ATINDA DEE ANAİİ Amaç: Alternatif akım altında seri devresinin analizi ve deneysel olarak incelenmesi Gerekli Ekipmanlar: Güç Kaynağı, Ampermetre, oltmetre,

Detaylı

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ 14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ Sinüsoidal Akımda Direncin Ölçülmesi Sinüsoidal akımda, direnç üzerindeki gerilim ve akım dalga şekilleri ve fazörleri aşağıdaki

Detaylı

DİRENÇ VE REAKTANS (OMİK DİRENÇ, BOBİN VE KONDANSATÖR)

DİRENÇ VE REAKTANS (OMİK DİRENÇ, BOBİN VE KONDANSATÖR) 1 DİRENÇ VE REAKTANS (OMİK DİRENÇ, BOBİN VE KONDANSATÖR) ALTERNATİFDA DİRENÇ VE REAKTANS Alternatif akım devrelerinde üç çeşit devre elemanı vardır. Omik Direnç, Bobin Kondansatör Sadece direnç bulunduran

Detaylı

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME Deney No:1 Amaç: Osiloskop kullanarak AC gerilimin genlik periyot ve frekans değerlerinin ölçmesi Gerekli Ekipmanlar: AC Güç Kaynağı, Osiloskop, 2 tane 1k

Detaylı

BÖLÜM 1 RF OSİLATÖRLER

BÖLÜM 1 RF OSİLATÖRLER BÖÜM RF OSİATÖRER. AMAÇ. Radyo Frekansı(RF) Osilatörlerinin çalışma prensibi ve karakteristiklerinin anlaşılması.. Osilatörlerin tasarlanması ve gerçeklenmesi.. TEME KAVRAMARIN İNEENMESİ Osilatör, basit

Detaylı

Alternatif Akım. Alternatif Akım. Yrd. Doç. Dr. Aytaç Gören (MAK4075 Notları)

Alternatif Akım. Alternatif Akım. Yrd. Doç. Dr. Aytaç Gören (MAK4075 Notları) 09.10.2012 (MAK4075 Notları) Yrd. Doç. Dr. Aytaç Gören İçerik Alternatif Gerilim Faz Kavramı ın Fazör Olarak İfadesi Direnç, Reaktans ve Empedans Kavramları Devresinde Güç 2 Alternatif Gerilim Alternatif

Detaylı

UHF RFID SİSTEMLERİ İÇİN DOĞRUDAN VE KUPLAJ BAĞLANTILI SİMETRİK MİKROŞERİT ANTEN TASARIMI VE GERÇEKLENMESİ

UHF RFID SİSTEMLERİ İÇİN DOĞRUDAN VE KUPLAJ BAĞLANTILI SİMETRİK MİKROŞERİT ANTEN TASARIMI VE GERÇEKLENMESİ UHF RFID SİSTEMLERİ İÇİN DOĞRUDAN VE KUPLAJ BAĞLANTILI SİMETRİK MİKROŞERİT ANTEN TASARIMI VE GERÇEKLENMESİ Mehmet Ali BELEN 1 Mehmet Fatih ÇAĞLAR Adnan KAYA 3 Elektronik Haberleşme Mühendisliği Bölümü

Detaylı

BÖLÜM 3 ALTERNATİF AKIMDA SERİ DEVRELER

BÖLÜM 3 ALTERNATİF AKIMDA SERİ DEVRELER BÖÜM 3 ATENATİF AKMDA SEİ DEVEE 3.1 - (DİENÇ - BOBİN SEİ BAĞANMAS 3. - (DİENÇ - KONDANSATÖÜN SEİ BAĞANMAS 3.3 -- (DİENÇ-BOBİN - KONDANSATÖ SEİ BAĞANMAS 3.4 -- SEİ DEVESİNDE GÜÇ 77 ATENATİF AKM DEVE ANAİİ

Detaylı

L2 L= nh. L4 L= nh. C2 C= pf. Term Term1 Num=1 Z=50 Ohm. Term2 Num=2 Z=50 Oh. C3 C= pf S-PARAMETERS

L2 L= nh. L4 L= nh. C2 C= pf. Term Term1 Num=1 Z=50 Ohm. Term2 Num=2 Z=50 Oh. C3 C= pf S-PARAMETERS 1- Design a coupled line 5th order 0.5 db equal-ripple bandpass filter with the following characteristics: Zo = 50 ohm, band edges = 3 GHz and 3.5 GHz, element values of LPF prototype are with N = 5: g1

Detaylı

ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ

ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ DENEY 1 ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ 1.1. Genel Bilgi MV 1424 Hat Modeli 40 kv lık nominal bir gerilim ve 350A lik nominal bir akım için tasarlanmış 40 km uzunluğundaki

Detaylı

ALTERNATİF AKIMDA EMPEDANS (PARALEL DEVRELER)

ALTERNATİF AKIMDA EMPEDANS (PARALEL DEVRELER) 1 ALTERNATİF AKMDA EMPEDANS (PARALEL DEVRELER) Paralel Devreler Direnç, bobin ve kondansatör birbirleri ile paralel bağlanarak üç farkı şekilde bulunabilirler. Direnç Bobin (R-L) Paralel Devresi Direnç

Detaylı

AC DEVRELERDE KONDANSATÖRLER

AC DEVRELERDE KONDANSATÖRLER A DEVRELERDE KONDANSATÖRLER 7.1 Amaçlar: Sabit frekansta çalışan kondansatörler Kondansatör voltaj ve akımı arasındaki faz farkının ölçülmesi Kondansatör voltaj ve akım şiddetleri arasındaki ilişkiler

Detaylı

ELEKTRİK TESİSLERİNDE HARMONİKLERİN PASİF FİLTRE KULLANILARAK AZALTILMASI VE SİMÜLASYONU. Sabir RÜSTEMLİ

ELEKTRİK TESİSLERİNDE HARMONİKLERİN PASİF FİLTRE KULLANILARAK AZALTILMASI VE SİMÜLASYONU. Sabir RÜSTEMLİ ELEKTRİK TESİSLERİNDE HARMONİKLERİN PASİF FİLTRE KULLANILARAK AZALTILMASI VE SİMÜLASYONU Sabir RÜSTEMLİ Elektrik tesislerinin güvenli ve arzu edilir bir biçimde çalışması için, tesisin tasarım ve işletim

Detaylı

İyileştirilmiş Geniş Durdurma Bandlı Taban İletkeni Kusurlu Alçak Geçiren Bir Mikroşerit Süzgeç Tasarımı

İyileştirilmiş Geniş Durdurma Bandlı Taban İletkeni Kusurlu Alçak Geçiren Bir Mikroşerit Süzgeç Tasarımı Ertay A. O, Abbak M., Suer C., İyileştirilmiş Geniş Durdurma Bandlı Taban İletkeni Kusurlu Alçak Geçiren Bir Mikroşerit Süzgeç Tasarımı, Cilt 4, Sayı 8, Syf 35-40, Aralık 2014 Gönderim Tarihi: 06.04.2015,

Detaylı

ANALOG HABERLEŞME A GRUBU İSİM: NUMARA

ANALOG HABERLEŞME A GRUBU İSİM: NUMARA BÖLÜM 7 ÖRNEK SINAV SORULARI İSİM: NUMARA A GRUBU MERSİN ÜNİVERSİTESİ MMYO ANALOG HABERLEŞME DERSİ FİNAL SINAV SORULARI S-1 Bir GM lu sistemde Vmaxtepe-tepe10 V ve Vmin tepe-tepe6 V ise modülasyon yüzdesi

Detaylı

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYĠN ADI : DENEY TARĠHĠ : DENEYĠ YAPANLAR : RAPORU HAZIRLAYANIN

Detaylı

2.4 GHz WIFI ANTEN ve KABLO TV BİRLEŞTİRİCİ GERÇEKLEŞTİRİMİ ve UYGULMAYA YÖNELİK ÖNERİLER

2.4 GHz WIFI ANTEN ve KABLO TV BİRLEŞTİRİCİ GERÇEKLEŞTİRİMİ ve UYGULMAYA YÖNELİK ÖNERİLER 2.4 GHz WIFI ANTEN ve KABLO TV BİRLEŞTİRİCİ GERÇEKLEŞTİRİMİ ve UYGULMAYA YÖNELİK ÖNERİLER Projenin Amacı Projeyi Yapan: Ercan Kaymaksüt Proje Yöneticisi: Dr. Bülent Yağcı Bu projede kablosuz modemlerin

Detaylı

Bu deneyde lab cihazlarının kullanımı için 4 uygulama yapılacaktır.

Bu deneyde lab cihazlarının kullanımı için 4 uygulama yapılacaktır. Bu deneyde lab cihazlarının kullanımı için 4 uygulama yapılacaktır. Uygulama -1: Dirençlerin Seri Bağlanması Uygulama -2: Dirençlerin Paralel Bağlanması Uygulama -3: Dirençlerin Karma Bağlanması Uygulama

Detaylı

DENEY 10: SERİ RLC DEVRESİNİN ANALİZİ VE REZONANS

DENEY 10: SERİ RLC DEVRESİNİN ANALİZİ VE REZONANS A. DENEYİN AMACI : Seri RLC devresinin AC analizini yapmak ve bu devrede rezonans durumunu incelemek. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. AC güç kaynağı, 2. Sinyal üreteci, 3. Değişik değerlerde dirençler

Detaylı

ALTERNATİF AKIMDA EMPEDANS SERİ DEVRELER

ALTERNATİF AKIMDA EMPEDANS SERİ DEVRELER 1 ALTERNATİF AKMDA EMPEDANS SERİ DEVRELER Empedans, gerilim uygulandığında bir elektrik devresinin akımın geçişine karşı gösterdiği zorluğun ölçüsüdür. Empedans Z harfi ile gösterilir ve birimi ohm(ω)

Detaylı

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER ALTERNATİF AKIM DEVRELERİ A. DEVRE ELEMANLARI VE TEMEL DEVRELER Alternatif akım devrelerinde akımın geçişine karşı üç çeşit direnç (zorluk) gösterilir. Devre elamanları dediğimiz bu dirençler: () R omik

Detaylı

3.5. Devre Parametreleri

3.5. Devre Parametreleri 3..3 3.5. Devre Parametreleri 3.5. Devre Parametreleri Mikrodalga mühendisliğinde doğrusal mikrodalga devrelerini karakterize etmek için dört tip devre parametreleri kullanılır: açılma parametreleri (parametreleri)

Detaylı

KONDANSATÖRLER Farad(F)

KONDANSATÖRLER Farad(F) KONDANSATÖRLER Kondansatörler elektrik enerjisi depo edebilen devre elemanlarıdır. İki iletken levha arasına dielektrik adı verilen bir yalıtkan madde konulmasıyla elde edilir. Birimi Farad(F) C harfi

Detaylı

ELEKTRİK DEVRELERİ-2 LABORATUVARI VIII. DENEY FÖYÜ

ELEKTRİK DEVRELERİ-2 LABORATUVARI VIII. DENEY FÖYÜ EEKTRİK DEVREERİ-2 ABORATUVARI VIII. DENEY FÖYÜ SERİ VE PARAE REZONANS DEVRE UYGUAMASI Amaç: Seri ve paralel rezonans devrelerini incelemek, devrelerin karakteristik parametrelerini ölçmek, rezonans eğrilerini

Detaylı

DENEYDEN HAKKINDA TEORİK BİLGİ:

DENEYDEN HAKKINDA TEORİK BİLGİ: DENEY NO : 1 DENEYİN ADI : SERİ RL-RC DEVRELERİ DENEYİN AMACI : Alternatif akım devrelerinde; seri bağlı direnç, bobin ve kondansatör davranışının incelenmesi DENEYDEN HAKKINDA TEORİK BİLGİ: Alternatif

Detaylı

ELINEDL Teknik Bilgiler E L E K T R İ K DL 2424 DL 3434 DL 4444 Beyan Akımı Standartlar İzolasyon Gerilimi Frekans Koruma Sınıfı Kısa Devre ( 0, 1 sn.) Kısa Devre (Dinamik) Kısa Devre Tepe Testi 1 msn'de

Detaylı

Sinüsoidal Gerilim ve Akım ALIŞTIRMALAR

Sinüsoidal Gerilim ve Akım ALIŞTIRMALAR Sinüsoidal Gerilim ve Akım 65 2.7. ALŞTRMALAR Soru 2.1 : 4 kutuplu bir generatörde rotor (hareketli kısım) 3000 devir/dk ile döndüğüne göre, üretilen gerilimin frekansını bulunuz. (Cevap : f=100hz) Soru

Detaylı

Problemler: Devre Analizi-II

Problemler: Devre Analizi-II Problemler: Devre Analizi-II P.7.1 Grafiği verilen sinüsoidalin hem sinüs hem de kosinüs cinsinden ifadesini yazınız. v(t) 5 4 3 2 1 0-1 t(saniye) -2-3 -4-5 0 1 2 3 4 5 6 7 8 9 10 P.7.2 v1(t) 60Cos( 100

Detaylı

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Dirençler ve Kondansatörler

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Dirençler ve Kondansatörler YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK LABORATUARI (LAB I) DENEY 1 Deney Adı: Dirençler ve Kondansatörler Öğretim Üyesi: Yard. Doç. Dr. Erhan AKDOĞAN

Detaylı

Şekil 5-1 Frekans modülasyonunun gösterimi

Şekil 5-1 Frekans modülasyonunun gösterimi FREKANS MODÜLASYONU (FM) MODÜLATÖRLERİ (5.DENEY) DENEY NO : 5 DENEY ADI : Frekans Modülasyonu (FM) Modülatörleri DENEYİN AMACI :Varaktör diyotun karakteristiğinin ve çalışma prensibinin incelenmesi. Gerilim

Detaylı

Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir.

Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir. Küçük Sinyal Analizi Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir. 1. Karma (hibrid) model 2. r e model Üretici firmalar bilgi sayfalarında belirli bir çalışma

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-4 Kondansatörler ve Bobinler

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-4 Kondansatörler ve Bobinler Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-4 Kondansatörler ve Bobinler Kondansatörler Kondansatör, elektronların kutuplanarak elektriksel yükü elektrik alanın içerisinde depolayabilme

Detaylı

Ofset Besleme Hatlı Eğik Açıklık Kuplajlı Yığın Mikroşerit Anten Tasarımı Offset Feed Line Inclined Aperture Coupled Stacked Microstrip Antenna Design

Ofset Besleme Hatlı Eğik Açıklık Kuplajlı Yığın Mikroşerit Anten Tasarımı Offset Feed Line Inclined Aperture Coupled Stacked Microstrip Antenna Design Ofset Besleme Hatlı Eğik Açıklık Kuplajlı Yığın Mikroşerit Anten Tasarımı Offset Feed Line Inclined Aperture Coupled Stacked Microstrip Antenna Design Faruk Öztürk 1, Erdem Yazgan 2 1 Elektrik-Elektronik

Detaylı

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ELEKTRİK MAKİNALARI 4.HAFTA 1 İçindekiler Transformatörlerde Eşdeğer Devreler Transformatör

Detaylı

RF Enerji Toplayıcı Devre Tasarımı RF Energy Harvesting Circuit Design

RF Enerji Toplayıcı Devre Tasarımı RF Energy Harvesting Circuit Design Eleco 04 Elektrik Elektronik Bilgisayar ve Biyomedikal Mühendisliği Sempozyumu, 7 9 Kasım 04, Bursa RF Enerji Toplayıcı Devre Tasarımı RF Energy Harvesting Circuit Design Mehmet Muhittin Maç, Ümit Binici,

Detaylı

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri 2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda

Detaylı

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi DENEY 8: PASİF FİLTRELER Deneyin Amaçları Pasif filtre devrelerinin çalışma mantığını anlamak. Deney Malzemeleri Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop.

Detaylı

Eleco 2014 Elektrik Elektronik Bilgisayar ve Biyomedikal Mühendisliği Sempozyumu, Kasım 2014, Bursa

Eleco 2014 Elektrik Elektronik Bilgisayar ve Biyomedikal Mühendisliği Sempozyumu, Kasım 2014, Bursa İndüktif Yüklemeli Mikroşerit Kare Halka Rezonatörler Kullanılarak Mikrodalga Frekans Çiftleyici Tasarımı ve Çift-Band Uygulamaları Design of Microwave Duplexer Using Microstrip Square Loop Resonators

Detaylı

AC (ALTERNATİF AKIM)

AC (ALTERNATİF AKIM) AC (ALERNAİF AKIM) AC akı daii olarak pozitif ve negatif aksiu değerler arasında değişi gösterir. Pozitif ve negatif değerler arasındaki farka tepe-tepe değer, V p-p adı verilir. 9.03.013 1 AC (ALERNAİF

Detaylı

DENEY 2: AC Devrelerde R, L,C elemanlarının dirençlerinin frekans ile ilişkileri ve RC Devrelerin İncelenmesi

DENEY 2: AC Devrelerde R, L,C elemanlarının dirençlerinin frekans ile ilişkileri ve RC Devrelerin İncelenmesi ilişkileri ve RC Devrelerin 1. Alternatif Akım Devrelerinde Çeşitli Dirençlerin Frekansla Olan İlişkisi 1.1. Deneyin Amacı: AA. da R,L ve C elemanlarının frekansa bağlı olarak değişimini incelemek. 1.2.

Detaylı

ELK101 - ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ

ELK101 - ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ Giresun Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü Bölümün tanıtılması Elektrik Elektronik Mühendisliğinin tanıtılması Mühendislik Etiği Birim Sistemleri Doğru ve Alternatif

Detaylı

TA7OM. (7 EL 20m/15m/10m YAGI) 10m / 15m / 20m. Gain(dbi) 13,1 / 12,0/ 11,5 1,6 1,0 1,5 28,0 28,40 29,00 1,2 1,1 1,6.

TA7OM. (7 EL 20m/15m/10m YAGI) 10m / 15m / 20m. Gain(dbi) 13,1 / 12,0/ 11,5 1,6 1,0 1,5 28,0 28,40 29,00 1,2 1,1 1,6. (7 EL 20m/15m/10m YAGI) Band 10m / 15m / 20m Gain(dbi) 13,1 / 12,0/ 11,5 SWR; 14,0 14,20 14,35 21,0 21,25 21,45 1,3 1,0 1,4 1,6 1,0 1,5 28,0 28,40 29,00 1,2 1,1 1,6 Impedance 50 Ohm Element Sayısı 7 Aktif

Detaylı

Bölüm 12 İşlemsel Yükselteç Uygulamaları

Bölüm 12 İşlemsel Yükselteç Uygulamaları Bölüm 12 İşlemsel Yükselteç Uygulamaları DENEY 12-1 Aktif Yüksek Geçiren Filtre DENEYİN AMACI 1. Aktif yüksek geçiren filtrenin çalışma prensibini anlamak. 2. Aktif yüksek geçiren filtrenin frekans tepkesini

Detaylı

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Konik Dişli Çarklar DİŞLİ ÇARKLAR

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Konik Dişli Çarklar DİŞLİ ÇARKLAR Makine Elemanları II Prof. Dr. Akgün ALSARAN Konik Dişli Çarklar DİŞLİ ÇARKLAR İçerik Giriş Konik dişli çark mekanizması Konik dişli çark mukavemet hesabı Konik dişli ark mekanizmalarında oluşan kuvvetler

Detaylı

EEM 202 DENEY 8 RC DEVRELERİ-I SABİT BİR FREKANSTA RC DEVRELERİ

EEM 202 DENEY 8 RC DEVRELERİ-I SABİT BİR FREKANSTA RC DEVRELERİ Ad&oyad: DEELEİ- ABİT Bİ FEKANTA DEELEİ 8. Amaçlar abit Frekanslı seri devrelerinde empedans, akım ve güç bağıntıları abit Frekanslı paralel devrelerinde admitans, akım ve güç bağıntıları. 8.4 Devre Elemanları

Detaylı

İzolasyon Yalıtım Direnç Ölçer Marka/Model METREL/ 3201

İzolasyon Yalıtım Direnç Ölçer Marka/Model METREL/ 3201 İzolasyon Yalıtım Direnç Ölçer Marka/Model METREL/ 3201 250V-5kV arası 25V luk adımlarla ayarlanabilir test gerilimi 5mA güçlü kısa devre akımı 10 T Ohm a kadar direnç ölçebilme Doğruluk-İzolasyon: 5 %

Detaylı

ĠSTANBUL TEKNĠK ÜNĠVERSĠTESĠ ELEKTRĠK-ELEKTRONĠK FAKÜLTESĠ YÜKSEK GÜÇ RF. GÜÇ BĠRLEġTĠRĠCĠLERĠ VE BÖLÜCÜLERĠ BĠTĠRME ÖDEVĠ.

ĠSTANBUL TEKNĠK ÜNĠVERSĠTESĠ ELEKTRĠK-ELEKTRONĠK FAKÜLTESĠ YÜKSEK GÜÇ RF. GÜÇ BĠRLEġTĠRĠCĠLERĠ VE BÖLÜCÜLERĠ BĠTĠRME ÖDEVĠ. ĠSTANBUL TEKNĠK ÜNĠVERSĠTESĠ ELEKTRĠK-ELEKTRONĠK FAKÜLTESĠ YÜKSEK GÜÇ RF GÜÇ BĠRLEġTĠRĠCĠLERĠ VE BÖLÜCÜLERĠ BĠTĠRME ÖDEVĠ BĠLGĠN KIZILTAġ 040050365 Bölümü: Elektronik Mühendisliği Tez DanıĢmanı: Öğr. Gör.

Detaylı

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc KTÜ, Elektrik Elektronik Müh. Böl. Temel Elektrik aboratuarı. Giriş EZONNS DEVEEİ Bir kondansatöre bir selften oluşan devrelere rezonans devresi denir. Bu devre tipinde selfin manyetik enerisi periyodik

Detaylı

Analog Alçak Geçiren Filtre Karakteristikleri

Analog Alçak Geçiren Filtre Karakteristikleri Analog Alçak Geçiren Filtre Karakteristikleri Analog alçak geçiren bir filtrenin genlik yanıtı H a (jω) aşağıda gösterildiği gibi verilebilir. Ω p : Geçirme bandı kenar frekansı Ω s : Söndürme bandı kenar

Detaylı

BİLGİSAYAR DESTEKLİ TASARIM HAFTA 9 COSMOSWORKS İLE ANALİZ

BİLGİSAYAR DESTEKLİ TASARIM HAFTA 9 COSMOSWORKS İLE ANALİZ BİLGİSAYAR DESTEKLİ TASARIM HAFTA 9 COSMOSWORKS İLE ANALİZ Sunum içeriği: 1. Merkezkaç Kuvveti (Centrifugal Force) 2. Burkulma (Flambaj Analizi) 3. Doğal Frekans Analizi (Natural Frequencies) Merkezkaç

Detaylı

1.58 arasındaki her bir değeri alabileceği için sürekli bir

1.58 arasındaki her bir değeri alabileceği için sürekli bir 7.SUNUM Hatırlanacağı gibi, kesikli rassal değişkenler sonlu (örneğin; 0, 1, 2,...,10) veya sayılabilir sonsuzlukta (örneğin; 0, 1, 2,...) değerler alabilmektedir. Fakat birçok uygulamada, rassal değişkenin

Detaylı

DEVRE ANALİZİ LABORATUARI. DENEY 1 ve 2 İSTATİSTİK ÖRNEKLEME VE ÖLÇME HATALARI

DEVRE ANALİZİ LABORATUARI. DENEY 1 ve 2 İSTATİSTİK ÖRNEKLEME VE ÖLÇME HATALARI DEVRE ANALİZİ LABORATUARI DENEY 1 ve 2 İSTATİSTİK ÖRNEKLEME VE ÖLÇME HATALARI DENEY 1: İSTATİSTİK ÖRNEKLEME 1- Açıklama Bu deneyin amacı; örnekleme tekniği ile istatistik analizinin nasıl yapıldığını açıklamaktır.

Detaylı

Isc, transient şartlarında, Zsc yi oluşturan X reaktansı ve R direncine bağlı olarak gelişir.

Isc, transient şartlarında, Zsc yi oluşturan X reaktansı ve R direncine bağlı olarak gelişir. Sadeleştirilmiş bir şebeke şeması ; bir sabit AC güç kaynağını, bir anahtarı, anahtarın üstündeki empedansı temsil eden Zsc yi ve bir yük empedansı Zs i kapsar. (Şekil 10.1) Gerçek bir sistemde, kaynak

Detaylı

İ Ç İ N D E K İ L E R

İ Ç İ N D E K İ L E R İÇİNDEKİLER İ Ç İ N D E K İ L E R SAYFA BÖLÜM I REZONANS DEVRELERİ... I-. GİRİŞ... I-.. PASİF DEVRE ELEMANLARI... I-..2 DİRENÇLİ AC DEVRE... I-..3 BOBİNLİ AC DEVRE... I-2..4 KONDANSATÖRLÜ AC DEVRE... I-3.2

Detaylı

Yüksek Frekanslı Yüksek Gerilim Transformatörü Tesla Bobini Tasarımı

Yüksek Frekanslı Yüksek Gerilim Transformatörü Tesla Bobini Tasarımı Yüksek Frekanslı Yüksek Gerilim Transformatörü Tesla Bobini Tasarımı Prof. Dr. Özcan Kalenderli İstanbul Teknik Üniversitesi Elektrik Mühendisliği Bölümü Elektrik Enerjisi İletmek için Cihaz Patent Tarihi:

Detaylı

DENEY 5: ALTERNATİF AKIMDA FAZ FARKI (R, L VE C İÇİN)

DENEY 5: ALTERNATİF AKIMDA FAZ FARKI (R, L VE C İÇİN) DENEY 5: ALTERNATİF AKIMDA FAZ FARKI (R, L VE C İÇİN) A. DENEYİN AMACI : Bu deneyin amacı, pasif elemanların (direnç, bobin ve sığaç) AC tepkilerini incelemek ve pasif elemanlar üzerindeki faz farkını

Detaylı

Akreditasyon Sertifikası Eki (Sayfa 1/8) Akreditasyon Kapsamı

Akreditasyon Sertifikası Eki (Sayfa 1/8) Akreditasyon Kapsamı Akreditasyon Sertifikası Eki (Sayfa 1/8) Kalibrasyon Laboratuvarı Adresi : Gürsel Mah. İkbal Sok. TestOne Binası No:7 Kağıthane 34400 İSTANBUL/TÜRKİYE Tel : 0 212 444 83 78 Faks : 0 212 222 90 90 E-Posta

Detaylı

AC Circuits Review Assoc.Prof.Dr.Bahtiyar DURSUN Department of Energy Systems Engineering

AC Circuits Review Assoc.Prof.Dr.Bahtiyar DURSUN Department of Energy Systems Engineering ESM 14701 POWER QUALITY IN ENERGY SYSTEMS AND HARMONICS AC Circuits Review Assoc.Prof.Dr.Bahtiyar DURSUN Department of Energy Systems Engineering FAZÖR (PHASOR) Elektrik terminolojisinde kullanılan iki

Detaylı

1.1.1 E R. Şekil 1.1 Dirençli AC Devresi BÖLÜM I REZONANS DEVRELERİ 1.1 GİRİŞ

1.1.1 E R. Şekil 1.1 Dirençli AC Devresi BÖLÜM I REZONANS DEVRELERİ 1.1 GİRİŞ BÖLÜM I REZONANS DEVRELERİ. GİRİŞ Rezonans, bobin ve kondansatör kullanılan AC elektrik ve elektronik devrelerinde oluşan özel bir durumdur. Herhangi bir AC devrede bobinin Endüktif Reaktans ı ile kondansatörün

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ Elektrik Elektronik Fakültesi

İSTANBUL TEKNİK ÜNİVERSİTESİ Elektrik Elektronik Fakültesi İSTANBUL TEKNİK ÜNİVERSİTESİ Elektrik Elektronik Fakültesi İnsansız Hava Araçları için 2.4 GHz Karesel Yarık Mikroşerit Anten Dizisi ile Anten İzleyici Tasarım Tuğrul Açıkgöz Elektrik Elektronik Fakültesi

Detaylı

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYĠN ADI : DENEY TARĠHĠ : DENEYĠ YAPANLAR : RAPORU HAZIRLAYANIN

Detaylı

COPYRIGHT ALL RIGHTS RESERVED

COPYRIGHT ALL RIGHTS RESERVED IEC 60909 A GÖRE HESAPLAMA ESASLARI - 61 KISA-DEVRE AKIMLARININ HESAPLANMASI (14) TEPE KISA-DEVRE AKIMI ip (2) ÜÇ FAZ KISA-DEVRE / Gözlü şebekelerde kısa-devreler(1) H.Cenk BÜYÜKSARAÇ/ Elektrik-Elektronik

Detaylı

DENEY 3: DTMF İŞARETLERİN ÜRETİLMESİ VE ALGILANMASI

DENEY 3: DTMF İŞARETLERİN ÜRETİLMESİ VE ALGILANMASI DENEY 3: DTMF İŞARETLERİN ÜRETİLMESİ VE ALGILANMASI AMAÇ: DTMF işaretlerin yapısının, üretim ve algılanmasının incelenmesi. MALZEMELER TP5088 ya da KS58015 M8870-01 ya da M8870-02 (diğer eşdeğer entegreler

Detaylı