YÜZDE HESAPLARI. X sayısı, herhangi bir reel sayı olmak üzere, bu X sayısını 100

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "YÜZDE HESAPLARI. X sayısı, herhangi bir reel sayı olmak üzere, bu X sayısını 100"

Transkript

1 YÜZDE HESAPLARI Ticari hayatta yapılan ticari işlemler aynı türden bazı çoklukların birbiri ile bölme yoluyla karşılaştırılmasını ve böylece belli bir oranın bulunmasını gerektirir. Örneğin, maliyet fiyati ile satış fiyatı arasındaki ilişkinin belirlenmesinde, belli bir satış sonunda elde edilen kâr veya zarar durumlarının tespitinde, malın önceki ağırlığı ile fire verme durumundaki ağırlığının karşılaştırılmasında, gibi. İşte bu durumlar ve bu durumlara benzer durumlarda, bulduğumuz oransal ifadede paydanın ( veya 0) sayısı olma durumu esas alınarak yapılan işlemlere Yüzde Hesapları (veya binde hesapları) denir. X X sayısı, herhangi bir reel sayı olmak üzere, bu X sayısını şeklinde yazmışsak; yüzde sembolünü kullanarak %X şeklinde gösteririz ve yüzde X diye okuruz. Anlaşılacağı üzere, yüzde olarak okunan sayların paydaları dür. Benzer şekilde X çoklukların birbirleriyle karşılaştırılmasında paydaya 0 yazılırsa sayı şeklinde yazılır, 0 binde X olarak okunur, X sembolü ile de gösterilir. Örneğin; ,40 %40, 0, Örnek 1: Aşağıdaki ifadeleri % veya sembollerini kullanarak yazınız. 60 a) 47 b) 5 c) 89 d) e) 0 60 a) % b) =%47 5 c) = %5

2 89 d) = 89 =%8, e) 136=%13,6 0 Örnek 2: Aşağıda verilen ondalık sayıları % sembolü kullanarak gösteriniz. a) 0,29 b) 2,03 c)1, a) 0,29= % b) 2,03= % c) 1,325= 0 132,5 =%132,5 Örnek 3: Bir okuldaki öğrencinin 43 ü kız öğrencidir. Okuldaki erkek öğrenci sayısının, toplam öğrenci sayısına oranı yüzde kaçtır? Toplam öğrenci sayısı= kişi olsun. Bu durumda, Kız öğrenci sayısı= 43 kişi Erkek öğrenci sayısı=-43= 57 kişi olur. 57 Erkek öğrenci sayısı/toplam öğrenci sayısı= 0,57 % 57 olarak bulunur.

3 Yüzdelik Biçimde Verilen Sayıların Ondalık Kesir Şeklinde Yazılması: Yüzdelik biçimde verilmiş sayıyı ondalık kesir şeklinde yazmak için, yüzde oranı olarak verilen sayının ondalık virgülünü sola doğru iki basamak kaydırırız. Örnek 4: Aşağıda % sembolü ile verilen ifadeleri ondalık kesir şeklinde yazınız. a) %25 b) %37,9 c) %8,3 d) %0,67 e) %125 f) %0,04 a) %25=0,25 b) % 37,9=0,379 c) %8,3= 0,083 d) %0,67= 0,0067 e) %125= 1,25 f) %0,04=0,0004 NOT 1: Eğer verilen sayı bir rasyonel sayı olup bunun e oranlanarak yazılması isteniyorsa, verilen sayının paydası olacak şekilde genişletme veya sadeleştirme yapılır. 13 Örnek 5: kesrini yüzde oranı şeklinde yazınız. 25 Verilen kesirli ifadenin paydası olmayıp 25 olduğundan, 25 i yapmak için kesirli ifadeyi 4 ile genişletmemiz gerekir %52

4 5 Örnek 6: kesrini yüzde oranı şeklinde yazınız. 0 Verilen kesirli ifadenin paydası olmayıp 0 olduğundan; 0 i yapmak için kesirli ifadeyi 10 ile sadeleştirmemiz gerekir ,5 %0,5 36 Örnek 7: kesrini yüzde oranı şeklinde yazınız. 75 Verilen kesirli ifadenin paydası olan 75 sayısı hiçbir tamsayı ile genişletme sonucu olamaz. Ancak kesrin pay ve paydasını 3 ile sadeleştirirsek: kesri elde edilir ki, buradaki payda 25 olduğundan kesri 4 ile genişlettiğimizde isteneni bulmuş oluruz %48 18 Örnek 8: kesrini yüzde oranı şeklinde yazınız. 43 Verilen kesirli ifadenin paydasındaki sayı olan 43, hiçbir genişletme veya sadeleştirme ile yapılamaz. Bu nedenle basit bir orantı kurarak isteneni yine bulmuş oluruz.

5 43 te 18 de D.O x tir x.18 x 41, ,86 Bulunan bu değer kesrin payını göstereceğinden, kesrimiz %41, 86 şeklinde yüzdelik olarak yazılmış olur. Verilen Bir Sayının Yüzdesinin Bulunması: Herhangi bir x sayısının %a sı; x: Temel sayı a: Yüzde payı a x. : Yüzde tutarı a x. formülü ile ifade edilir. Bu formülde: anlamlarına gelmektedir. Karşılaştığımız sorularda bu ifadelerden hangisi isteniyorsa, soruda verilenler formülde yerlerine yazılarak, istenen bulunmaya çalışılır. Örnek 9: 500 sayısının %12 si kaçtır? Bu soruda 500 temel sayı, 12 de yüzde payıdır. Bizden yüzde tutarı istenmektedir. Verilenleri formülde yazarsak, yüzde tutarını: olarak elde ederiz.

6 Örnek 10: 200 ün % kaçı 74 eder? Bu soruda temel sayı ve yüzde tutarı verilmiş olup, bizden yüzde payını bulmamız istenmektedir. Verilenleri formülde yazarsak: a a 7400 a olarak elde ederiz. Örnek 11: %15 i 54 olan sayı kaçtır? Bu soruda da yüzde payı ve yüzde tutarı verilmiş olup bizden temel sayıyı bulmamız istenmektedir. Verilenleri formülde yazarsak: x. 54 x x 360 olarak bulunur. 15

7.SINIF Yüzdeler. KAZANIM : Bir çokluğun belirtilen bir yüzdesine karşılık gelen miktarı bulur; belirli bir yüzdesi verilen çokluğu bulur.

7.SINIF Yüzdeler. KAZANIM : Bir çokluğun belirtilen bir yüzdesine karşılık gelen miktarı bulur; belirli bir yüzdesi verilen çokluğu bulur. Yüzdeler Hatırlatma Bir Çokluğun Belirtilen Yüzdesini Bulma Bir çokluğun belirtilen yüzdesi rasyonel sayılarda çarpma işlemi yoluyla veya doğru orantı kurarak bulunabilir. Bir kesrin yüzde sembolü ile

Detaylı

ONDALIK GÖSTERİMLER ONDALIK GÖSTERİM. ÖRNEK: Aşağıda verilen kesirlerin ondalık gösterimlerini yazınız.

ONDALIK GÖSTERİMLER ONDALIK GÖSTERİM. ÖRNEK: Aşağıda verilen kesirlerin ondalık gösterimlerini yazınız. ONDALIK GÖSTERİM Paydası 10, 100, 1000 olan kesirlerin virgül kullanarak yazılışına ondalık gösterim denir. Ondalık gösterimlerde virgül tam kısım ile kesir kısmı ayırmak için kullanılır. ÖRNEK: Aşağıda

Detaylı

SAYILAR SAYI KÜMELERİ

SAYILAR SAYI KÜMELERİ SAYILAR SAYI KÜMELERİ 1.Sayma Sayıları Kümesi: S=N =1,2,3,... 2. Doğal Sayılar Kümesi : N=0,1,2,... 3. Tamsayılar Kümesi : Z=..., 2, 1,0,1,2,... Sıfırın sağında bulunan 1,2,3,. tamsayılarına pozitif tamsayılar

Detaylı

SAYILAR SAYI KÜMELERİ

SAYILAR SAYI KÜMELERİ 1 SAYILAR SAYI KÜMELERİ 1.Sayma Sayıları Kümesi: S=N =1,2,3,... 2. Doğal Sayılar Kümesi : N=0,1,2,... 3. Tamsayılar Kümesi : Z=..., 2, 1,0,1,2,... Sıfırın sağında bulunan 1,2,3,. tamsayılarına pozitif

Detaylı

11. RASYONEL SAYILARIN SIRALANMASI

11. RASYONEL SAYILARIN SIRALANMASI 11. RASYONEL SAYILARIN SIRALANMASI SIRALAMA SEMBOLLERİ Sıralama sembolleri, sayıların sıralanma şeklini gösterirler. Yani, sıralama sembolleri sayıların küçükten büyüğe veya büyükten küçüğe doğru sıralanmasını

Detaylı

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR 2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR KONULAR 1. RASYONEL SAYILAR 2. Kesir Çeşitleri 3. Kesirlerin Sadeleştirilmesi 4. Rasyonel Sayılarda Sıralama 5. Rasyonel Sayılarda İşlemler 6. ÜSLÜ İFADE 7. Üssün

Detaylı

BÜTÜN : Parçalanmamış eksiksiz olan her şeye bütün denir.

BÜTÜN : Parçalanmamış eksiksiz olan her şeye bütün denir. BÜTÜN : Parçalanmamış eksiksiz olan her şeye bütün denir. KESİR : Bütünün eş parçalarından her birine kesir denir. KESİR SAYISI: Eş parçalara bölünmüş bir bütünün bir veya birkaç parçasına bu bütünün kesri,

Detaylı

: Yetmiş yedi milyon altı yüz doksan beş bin dokuz yüz dört

: Yetmiş yedi milyon altı yüz doksan beş bin dokuz yüz dört Matematik Bir Bakışta Matematik Kazanım Defteri Özet bilgi alanları... Doğal Sayılar DOĞAL SAYILARI OKUMA ve YAZMA Türkiye İstatistik Kurumu (TÜİK), adrese dayalı nüfus kayıt sistemi sonuçlarına göre Türkiye

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

a = b ifadesine kareköklü ifade denir.

a = b ifadesine kareköklü ifade denir. KAREKÖKLÜ SAYILAR Rasyonel sayılar kümesi sayı ekseninde sık olmasına rağmen sayı eksenini tam dolduramamaktadır;çünkü sayı doğrusu üzerinde görüntüsü olduğu halde rasyonel olmayan sayılar da vardır. Karesi

Detaylı

KESİRLER BİRİM KESİRLERİ SIRALAMA. Birim kesirlerde paydası büyük olan kesir daha küçüktür.

KESİRLER BİRİM KESİRLERİ SIRALAMA. Birim kesirlerde paydası büyük olan kesir daha küçüktür. BİRİM KESİRLERİ SIRALAMA Bir bütünün eş parçalarından her birine kesir denir. Payı olan kesirlere birim kesir denir. Birim kesirlerde paydası büyük olan kesir daha küçüktür.,, 8 kesirlerini sıralayınız.

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS YILLAR 6 7 8 ÖSS-YGS - - / /LYS ONDALIK SAYILAR Paydası ve un pozitif kuvveti şeklinde olan veya u şekle dönüştürüleilen kesirlere ondalık kesir(ondalık sayı) denir 7,,,,,7 6 (,6)gii 8 8 NOT: ondalık sayıların

Detaylı

www.derssunumlari.com

www.derssunumlari.com . BÖLÜM: KESİRLER HER YERDE Kesirleri Karşılaştıralım, Toplayalım ve Çıkaralım 7 7 7 ile kesirlerini karşılaştırınız ve bu 8 8 kesirleri sayı doğrusunda gösteriniz. 8 Pay üï Payda : Bir bütünün kaç parçaya

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

5. SINIF MATEMATIK KAZANIM ODAKLI SORU BANKASI

5. SINIF MATEMATIK KAZANIM ODAKLI SORU BANKASI 5. SINIF MATEMATIK KAZANIM ODAKLI SORU BANKASI Tudem Eğitim Hiz. San. ve Tic. A.Ş 1476/1 Sokak No: 10/51 Alsancak/Konak/ÝZMÝR Yazarlar: Tudem Yazý Kurulu Dizgi ve Grafik: Tudem Grafik Ekibi Baský ve Cilt:

Detaylı

12.Konu Rasyonel sayılar

12.Konu Rasyonel sayılar 12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama

Detaylı

AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası

AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası SORU 1 525 + 2834 + 379 toplama işlemini alt alta yazarak yapınız. 525 2834 +379 3738 SORU 2 Manavdan kilogramı 4 TL olan armut

Detaylı

Büyük sayıları gerçek yaşamla ilişkilendirerek anlamlandırmalarına yardımcı olacak çalışmalara yer verilir. TASLAKTIR

Büyük sayıları gerçek yaşamla ilişkilendirerek anlamlandırmalarına yardımcı olacak çalışmalara yer verilir. TASLAKTIR 5. SINIF KAZANIM VE AÇIKLAMALARI M.5.1. SAYILAR VE İŞLEMLER M.5.1.1. Doğal Sayılar M.5.1.1.1. En çok dokuz basamaklı doğal sayıları okur ve yazar. M.5.1.1.2. En çok dokuz basamaklı doğal sayıların bölüklerini,

Detaylı

ÜNİTE: RASYONEL SAYILAR KONU: Rasyonel Sayılar Kümesinde Çıkarma İşlemi

ÜNİTE: RASYONEL SAYILAR KONU: Rasyonel Sayılar Kümesinde Çıkarma İşlemi ÜNTE: RASYONEL SAYILAR ONU: Rasyonel Sayılar ümesinde Çıkarma şlemi ÖRNE SORULAR VE ÇÖZÜMLER. işleminin sonucu B) D) ki rasyonel sayının farkını bulmak için çıkan terimin toplama işlemine göre tersi alınarak

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Doğal Sayılar Örüntü Oluşturma Doğal Sayılarla Toplama ve Çıkarma İşlemleri... 26

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Doğal Sayılar Örüntü Oluşturma Doğal Sayılarla Toplama ve Çıkarma İşlemleri... 26 İçindekiler 1. ÜNİTE Doğal Sayılar... 8 Örüntü Oluşturma... 18 Doğal Sayılarla Toplama ve Çıkarma İşlemleri... 26 Zihinden Toplama ve Çıkarma İşlemleri... 36 Toplama ve Çıkarma İşlemlerinde Tahmin... 44

Detaylı

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler DÖRDÜNCÜ BÖLÜM 4.1. Aritmetik işlemler Bu bölümde öğrencilerin lisede bildikleri aritmetik işlemleri hatırlatacağız. Bütün öğrencilerin en azından tamsayıların toplama, çıkarma, çarpma ve bölme işlemlerini

Detaylı

RASYONEL SAYILAR ELİF ÇAĞLAYAN GAMZE NUR AYDIN HUMAYLA ÖNDER GÜLFER YÜKSEKDAĞ 2011-2012

RASYONEL SAYILAR ELİF ÇAĞLAYAN GAMZE NUR AYDIN HUMAYLA ÖNDER GÜLFER YÜKSEKDAĞ 2011-2012 RASYONEL SAYILAR ELİF ÇAĞLAYAN GAMZE NUR AYDIN HUMAYLA ÖNDER GÜLFER YÜKSEKDAĞ 2011-2012 İçindekiler RASYONEL SAYILARIN SAYI DOĞRUSUNDA GÖSTERİLMESİ... 5 RASYONEL SAYILARDA SIRALAMA... 8 RASYONEL SAYILARDA

Detaylı

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA İÇİNDEKİLER Matematiğe Giriş... Temel Kavramlar... Bölme - Bölünebilme Kuralları... 85 EBOB - EKOK... Rasyonel Sayılar... Basit Eşitsizlikler... 65 Mutlak

Detaylı

EĞİTİM-ÖĞRETİM YILI YARIMBAĞ ORTAOKULU 5. SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI

EĞİTİM-ÖĞRETİM YILI YARIMBAĞ ORTAOKULU 5. SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 26-30 19-23 EYLÜL-EKİM 12-16 0-09 28-02 201-2016 EĞİTİM-ÖĞRETİM YILI YARIMBAĞ ORTAOKULU. SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI ÜNİTE: Doğal Sayılar--Zaman Ölçü Birimleri ve Problem Çözme.1.1.1.

Detaylı

DOĞAL SAYILAR. 728 514 039, 30 960 425, 4 518 825 bölük bölük bölük bölük bölük bölük bölük bölük bölük

DOĞAL SAYILAR. 728 514 039, 30 960 425, 4 518 825 bölük bölük bölük bölük bölük bölük bölük bölük bölük MATEMATİ O ON NU UA AN NL L A A T T I I ML ML I I F F A AS S İ İ Ü ÜL LS S E E T T İ İ TEMALARI NA GÖREAYRI LMI Ş FASİ ÜL. SI NI F DOĞAL SAYILAR Günlük hayatta pek çok durumda sayıları kullanırız: Saymak,

Detaylı

EĞİTİM VE ÖĞRETİM YILI SİDRE 2000 ORTAOKULU MATEMATİK 5.SINIF ÜNİTELENDİRİLMİŞ YILLIK PLAN 1.ÜNİTE ALTÖĞRENME ALANI

EĞİTİM VE ÖĞRETİM YILI SİDRE 2000 ORTAOKULU MATEMATİK 5.SINIF ÜNİTELENDİRİLMİŞ YILLIK PLAN 1.ÜNİTE ALTÖĞRENME ALANI EKİM ÜNİTE EYLÜL AY ÜNİTE HAFTA TARİH SA AT ÖĞRENME ALANI 0-0 EĞİTİM VE ÖĞRETİM YILI SİDRE 000 ORTAOKULU MATEMATİK.SINIF ÜNİTELENDİRİLMİŞ YILLIK PLAN.ÜNİTE ALTÖĞRENME KAZANIMLAR ALANI AÇIKLAMALAR.hafta

Detaylı

ÜSLÜ SAYILAR. AMAÇ 1: 6 ve 7. Sınıflarda görmüş olduğumuz üslü ifadelerdeki temel kavramları hatırlama

ÜSLÜ SAYILAR. AMAÇ 1: 6 ve 7. Sınıflarda görmüş olduğumuz üslü ifadelerdeki temel kavramları hatırlama AMAÇ 1: 6 ve 7. Sınıflarda görmüş olduğumuz üslü ifadelerdeki temel kavramları hatırlama KURAL: Bir sayının belli bir sayıda yan yana çarpımının kolay yoldan gösterimine üslü sayılar denir. Örneğin 5 sayısının

Detaylı

ıfırdan büyük olan rasyonel sayılara pozitif rasyonel sayılar, sıfırdan küçük rasyonel sayılar da negatif rasyonel sayılar denir.

ıfırdan büyük olan rasyonel sayılara pozitif rasyonel sayılar, sıfırdan küçük rasyonel sayılar da negatif rasyonel sayılar denir. 1-RASYONEL SAYILAR VE ÖZELLĐKLERĐ A)Rasyonel Sayılar:Birbirine denk olan kesirlerin meydana getirdiği her kümeye rasyonel sayı denir.rasyonel sayıların meydana getirdiği kümelere rasyonel sayılar kümesi

Detaylı

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi...

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi... İÇİNDEKİLER HARFLİ İFADELER Harfli İfadeler ve Elemanları... 1 Benzer Terim... Harfli İfadenin Terimlerini Toplayıp Çıkarma... Harfli İfadelerin Terimlerini Çarpma... Harfli İfadelerde Parantez Açma...

Detaylı

Kesirler. Kesirlere neden ihtiyaç duyulur?

Kesirler. Kesirlere neden ihtiyaç duyulur? Kesirlerin Öğretimi Kesirler Kesirlere neden ihtiyaç duyulur? Kesirler Doğal sayılar günlük yaşantımızda bazı problemlerin çözümünde yetersiz kalır. Kesirler Örneğin, 3 elmayı 2 arkadaşınıza paylaştırdığınızda

Detaylı

ÖSYM nin Sorduğu Tüm Sorular DGS. Tamamı Çözümlü ÇIKMIŞ SORULAR. Temmuz Dahil

ÖSYM nin Sorduğu Tüm Sorular DGS. Tamamı Çözümlü ÇIKMIŞ SORULAR. Temmuz Dahil ÖSYM nin Sorduğu Tüm Sorular DGS Tamamı Çözümlü ÇIKMIŞ SORULAR 00 00 005 006 007 008 009 00 0 Temmuz Dahil Komisyon DGS TAMAMI ÇÖZÜMLÜ ÇIKMIŞ SORULAR ISBN 978-975-879-06- Kitapta yer alan bölümlerin tüm

Detaylı

ÜSLÜ SAYILAR SİBEL BAŞ AKDENİZ ÜNİVERSİTESİ EĞİTİM FAK. İLKÖĞRT. MAT. ÖĞRT. 2. SINIF

ÜSLÜ SAYILAR SİBEL BAŞ AKDENİZ ÜNİVERSİTESİ EĞİTİM FAK. İLKÖĞRT. MAT. ÖĞRT. 2. SINIF ÜSLÜ SAYILAR SİBEL BAŞ 20120907010 AKDENİZ ÜNİVERSİTESİ EĞİTİM FAK. İLKÖĞRT. MAT. ÖĞRT. 2. SINIF 1 ANLATIMI ÜSLÜ SAYILAR KONU Üslü sayılar konu anlatımı içeriği; Üslü sayıların gösterimi, Negatif üslü

Detaylı

Rakam : Sayıları yazmaya yarayan sembollere rakam denir.

Rakam : Sayıları yazmaya yarayan sembollere rakam denir. A. SAYILAR Rakam : Sayıları yazmaya yarayan sembollere rakam denir. Sayı : Rakamların çokluk belirten ifadesine sayı denir.abc sayısı a, b, c rakamlarından oluşmuştur.! Her rakam bir sayıdır. Fakat bazı

Detaylı

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu 016-017 Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları 1) 3. [15 3(8: )] 9 =? a) 16 b) 14 c) 0 d) 14 e) 16 6)

Detaylı

I 5. SINIF ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIM I- 01 I- 02 II- 01 II- 02 II- 03

I 5. SINIF ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIM I- 01 I- 02 II- 01 II- 02 II- 03 I 5. SINIF MATEMATİK VE İŞLEMLER 1.1. En çok dokuz basamaklı doğal sayıları okur ve yazar. 1.2. En çok dokuz basamaklı doğal sayıların bölüklerini, basamaklarını ve rakamların basamak değerlerini belirtir.

Detaylı

DERS YILI 4.SINIF SIRALAMA VE SEVİYE TESPİT SINAVI

DERS YILI 4.SINIF SIRALAMA VE SEVİYE TESPİT SINAVI Kitapçığı 2013-2014 DERS YILI 4.SINIF SIRALAMA VE SEVİYE TESPİT SINAVI Adı Soyadı:... Not:... Sınıf :... Tarih:07/05/2014 MATEMATİK SORULARI Soru 1. 236,469 sayısında 3 rakamının basamak değeri kaçtır?

Detaylı

Yeni Öğretim Programına Uygun. Kısa Bilgi Bol Alıştırma Çözümlü Sorular Yıldızlı Sorular

Yeni Öğretim Programına Uygun. Kısa Bilgi Bol Alıştırma Çözümlü Sorular Yıldızlı Sorular 3.14159265358979323846264 3383279502884 Matematik 5 Yeni Öğretim Programına Uygun KAZANIM ODAKLI 0112358132134 Kısa Bilgi Bol Alıştırma Çözümlü Sorular Yıldızlı Sorular Tudem Eğitim Hiz. San. ve Tic. A.Ş

Detaylı

LĐMĐT ÖSS ÖYS YILLAR SAĞDAN VE SOLDAN LĐMĐT. ÇÖZÜM: x=2 f(x) de yerine yazılır cevap:7

LĐMĐT ÖSS ÖYS YILLAR SAĞDAN VE SOLDAN LĐMĐT. ÇÖZÜM: x=2 f(x) de yerine yazılır cevap:7 YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS ÖYS LĐMĐT Tanım : Bir x0 A = [ a,b ] alalım, f: A R ye veya f: A - { x 0 } R ye bir fonksiyon olsun. Terimleri A - { x 0 } kümesine ait ve x

Detaylı

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI YGS - LYS SAYILAR KONU ÖZETLİ LÜ SORU BANKASI ANKARA ÖN SÖZ Sevgili Öğrenciler, ÖSYM nin son yıllarda yaptığı sınavlardaki matematik sorularının eski sınav sorularından çok farklı olduğu herkes tarafından

Detaylı

Hatalar ve Bilgisayar Aritmetiği

Hatalar ve Bilgisayar Aritmetiği Hatalar ve Bilgisayar Aritmetiği Analitik yollardan çözemediğimiz birçok matematiksel problemi sayısal yöntemlerle bilgisayarlar aracılığı ile çözmeye çalışırız. Bu şekilde Sayısal yöntemler kullanarak

Detaylı

Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir.

Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir. 1 B)ÇARPANLARA AYIRMA VE ÖZDEŞLİKLER: Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir. Çarpanlara Ayırma Yöntemleri: 1)Ortak Çarpan Parantezine Alma:

Detaylı

COŞKU 5.Sınıf Din Kültürü Konu Başlıkları

COŞKU 5.Sınıf Din Kültürü Konu Başlıkları COŞKU 5.Sınıf Din Kültürü İnsan Akıllı ve İnanan Bir Varlıktır ÜNİTE 1 Evrende Bir Düzen Vardır Allah Vardır ve Birdir Çalışırım, Allah ın Yardımına Güvenirim ve Başarırım İhlâs Suresi ve Anlamı İbadet

Detaylı

5. SINIF MATEMATİK. Test , 11, 18, 25, 32, sayı örüntüsünde ardışık iki terim arasındaki

5. SINIF MATEMATİK. Test , 11, 18, 25, 32, sayı örüntüsünde ardışık iki terim arasındaki Test - 3 8.. adım 2. adım Yukarıdaki şekil örüntüsünün. adımında dört kibrit çöpü kullanılırken 2. adımında yedi kibrit çöpü kullanılmıştır. Buna göre. adımdaki şekil için kaç kibrit çöpü kullanılır? 0.,,

Detaylı

Köklü Sayılar ,1+ 0,1+ 1, 6= m 10 ise m kaçtır? ( 8 5 ) 2x 3. + a =? (4)

Köklü Sayılar ,1+ 0,1+ 1, 6= m 10 ise m kaçtır? ( 8 5 ) 2x 3. + a =? (4) Köklü Sayılar.,+ 0,+, 6= m 0 ise m kaçtır ( 8 5 ). a= ise a + a (). : :... = 8 0 0... eşitliğini sağlayan değeri nedir (). 99.0+.6+ (75) 5. + : + 8 7 8 () 6. > 0 ve = olduğuna göre ( ) + a+ b 7. a, b R

Detaylı

ÇARPANLAR VE KATLAR. Başarı Başaracağım Diye Başlayanındır. 1

ÇARPANLAR VE KATLAR. Başarı Başaracağım Diye Başlayanındır. 1 ÇARPANLAR VE KATLAR Başarı Başaracağım Diye Başlayanındır. 1 ÖRNEK 1 48 sayısının çarpanlarını bulalım. 1.Gökkuşağı yöntemi 48 sayısının çarpanlarını küçükten büyüğe sıralayarak eşleştiriniz. 48 çarpanlarını

Detaylı

1.DERECEDEN DENKLEMLER. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

1.DERECEDEN DENKLEMLER.  (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) .DERECEDEN DENKLEMLER Rüstem YILMAZ 546 550 86 48 destek@sinavdestek.com www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları 8 Ağustos 07 0. Bir Bilinmeyenli

Detaylı

SAYILAR. Sayıları yazmak için kullanılan 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 şeklindeki işaretlere rakam denir.

SAYILAR. Sayıları yazmak için kullanılan 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 şeklindeki işaretlere rakam denir. SAYILAR 1. Rakamlar (Numbers) Sayıları yazmak için kullanılan 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 şeklindeki işaretlere rakam denir. 2. Sayma Sayıları 1 den başlayıp artarak devam eden doğal sayılara sayma sayıları

Detaylı

SIRA SENDE DÖRT İŞLEM, İŞLEM ÖNCELİĞİ BİLGİ. = 1 2 ile 3 zıt işaretli olduğundan 3 ten 2 yi çıkarıp 1 bulduk ve büyük olan 3 ün işaretini ( ) 1 in

SIRA SENDE DÖRT İŞLEM, İŞLEM ÖNCELİĞİ BİLGİ. = 1 2 ile 3 zıt işaretli olduğundan 3 ten 2 yi çıkarıp 1 bulduk ve büyük olan 3 ün işaretini ( ) 1 in ÖRT ŞLM, ŞLM ÖCLĞ SORU 0 3 04 + 0 ) B) 0 C) ) ) = ile 3 zıt işaretli olduğundan 3 ten yi çıkarıp bulduk ve büyük olan 3 ün işaretini ( ) in önüne koyduk. SR S C BLG Tam sayılarda aynı işaretli sayılar

Detaylı

8. SINIF KONU : ÜSLÜ SAYILAR

8. SINIF KONU : ÜSLÜ SAYILAR NEGATİF ÜS DİKKAT : Kuvvet negatif olduğunda ifade anlamsızdır bu şekilde değerini bulmak imkansızdır. Anlamlı olması için mutlaka kuvvetin pozitif hale getirilmesi gerekir. ÜSSÜN ÜSSÜ NEDEN İŞARET TESPİTİ

Detaylı

KESİR PROBLEMLERİ ÇÖZÜMLÜ SORULARI

KESİR PROBLEMLERİ ÇÖZÜMLÜ SORULARI KESİR PROBLEMLERİ ÇÖZÜMLÜ SORULARI ) Bir sayının ü ile inin toplamı 4 olduğuna 4 göre, bu sayı kaçtır? A) 40 B) 4 C) 48 D) 4 E) 60 ) Soruyu denklem kurarak çözelim, Aradığımız sayıya diyelim; Bu sayının

Detaylı

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 5. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 5. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN SİDRE 000 ORTAOKULU 06-07 EĞİTİM-ÖĞRETİM YILI. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN ÜNİTE Ay Ders Saati E Y L Ü L 9.09.06/.09.06 6.09.06/0.09.06 Doğal Sayılar Doğal Sayılar Terimler: Basamak,

Detaylı

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 1. ve y aralarında asal iki doğal sayıdır. 7 y 11 olduğuna göre, y farkı 5. 364 sayısının en büyük asal böleni A) 3 B) 7 C) 11 D) 13 E) 17 A) B) 3 C) 4

Detaylı

Bir bütünün eş parçalarının bütüne olan oranı kesir olarak adlandırılır. b Payda

Bir bütünün eş parçalarının bütüne olan oranı kesir olarak adlandırılır. b Payda Matematik6 Bir Bakışta Matematik Kazanım Defteri Özet bilgi alanları... Kesirlerle İşlemler KESİR ve KESİRLERDE SIRALAMA Bir bütünün eş parçalarının bütüne olan oranı kesir olarak adlandırılır. Bir kesirde

Detaylı

ASAL SAYILAR. www.unkapani.com.tr

ASAL SAYILAR. www.unkapani.com.tr ASAL SAYILAR ve kendisinden aşka pozitif öleni olmayan den üyük doğal sayılara asal sayı denir.,, 5, 7,,, 7, 9, sayıları irer asal sayıdır. En küçük asal sayı dir. den aşka çift asal sayı yoktur. den aşka

Detaylı

3 7 üs(kuvvet) 5 2 ( 4 3 ( 7 5 (

3 7 üs(kuvvet) 5 2 ( 4 3 ( 7 5 ( Bu konuda üslü sayılarla ilgili kazanımları maddeler halide işleyeceğiz Normalde 8 sınıf matematik kazanımları üslü sayılar konusunda negatif üs kavramı ile başlamasına rağmen bu çalışma kağıdında 6sınıf

Detaylı

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30 İçindekiler 1. ÜNİTE Bölüm 1 : Üslü Sayılar... 8 Bölüm 2 : Doğal Sayılar... 18 Bölüm 3 : Doğal Sayı Problemleri... 30 Bölüm 4 :- Çarpanlar ve Katlar, Bölünebilme... 40 Bölüm 5 : Asal Sayılar, Ortak Bölenler,

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak sayfası İÇİNDEKİLER. ÜNİTE DENKLEM VE EŞİTSİZLİKLER Gerçek Sayılar... 4 Doğal Sayılarda İşlemler... 4 Tam Sayılar... 4 Rasyonel Sayılar... 5 İrrasyonel Sayılar... 5 Gerçek (Reel) Sayılar... 6 9 Konu

Detaylı

İlköğretim 5. Sınıfların Matematik Alanı KGS-1, KGS-2 ve KGS -YERLEŞTİRME Sınavlarına Yönelik İçerik Detayları

İlköğretim 5. Sınıfların Matematik Alanı KGS-1, KGS-2 ve KGS -YERLEŞTİRME Sınavlarına Yönelik İçerik Detayları KUZEY KIBRIS TÜRK CUMHURİYETİ MİLLİ EĞİTİM GENÇLİK VE SPOR BAKANLIĞI TALİM ve TERBİYE DAİRESİ MÜDÜRLÜĞÜ 2012-2013 ÖĞRETİM YILI İlköğretim 5. Sınıfların Matematik Alanı KGS-1, KGS-2 ve KGS -YERLEŞTİRME

Detaylı

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =?

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =? TANIM MUTLAK DEĞER Örnek...6 : 1 x > 1 y > 1 z ise x y x z z y =? Bir x reel sayısına karşılık gelen noktanın sayı doğrusunda 0 (sıf ır) a olan uzaklığına x sayısının mutlak değeri denir ve x şeklinde

Detaylı

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik 1. Ünite: Geometriden Olasılığa 1. Bölüm: Yansıyan ve Dönen Şekiller, Fraktallar Yansıma, Öteleme, Dönme Fraktallar 2. Bölüm: Üslü Sayılar Tam

Detaylı

12-A. Sayılar - 1 TEST

12-A. Sayılar - 1 TEST -A TEST Sayılar -. Birbirinden farklı beş pozitif tam sayının toplamı 0 dur. Bu sayılardan sadece ikisi den büyüktür. Bu sayılardan üç tanesi çift sayıdır. Buna göre bu sayılardan en büyüğü en çok kaç

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

Tereyağının ½ sinden ve 1 saatin ¼ ünden bahsederiz. Bunlar kesirsel çoklukların

Tereyağının ½ sinden ve 1 saatin ¼ ünden bahsederiz. Bunlar kesirsel çoklukların KESİRLER Tereyağının ½ sinden ve 1 saatin ¼ ünden bahsederiz. Bunlar kesirsel çoklukların örnekleridir. Bir bütünün parçalarını ifade eden sayılara kesir denir. A ve b tamsayılar ve b sıfırdan farklı olmak

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3)": ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3): ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4 Üniversite Haz rl k Sözcükte Do al ve Say lar Söz Öbeklerinde ve Tam Say lar Anlam - I - I Kolay Temel Matematik. 8 ( + ) A) 7 B) 8 C) 9 D) 0 E) 6.! ( )": ( ) A) B) 0 C) D) E). 7. + 5 A) 6 B) 7 C) 8 D)

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK İÇİNDEKİLER Kümeler 5 44 Fonksiyonlar 1 45 88 Fonksiyonlar 2 89 124 Sayma Kuralları 125 140 Faktöriyel

Detaylı

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir.

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir. TABAN ARĠTMETĠĞĠ Kullandığımız 10 luk sayma sisteminde sayılar {0,1,2,3,4,5,6,7,8,9} kümesinin elemanları (Rakam) kullanılarak yazılır. En büyük elemanı 9 olan, 10 elemanlı bir kümedir. Onluk sistemde;

Detaylı

II. DERECEDEN DENKLEMLER Test -1

II. DERECEDEN DENKLEMLER Test -1 II. DERECEDEN DENKLEMLER Test -. 5 {, 5} {, 5} { 5, } {, 5} {, 5} 5. 5 {,, } {,, } {,, } {,, } {,, }.. 5 7 7 5 5,, 5 5, 5 5, 5 5, 6. 7. 5 95 { 5,, } {,, 5} { 5,, 9} {,, 5} { 9,, 5} 6 66 {, } {,, } {,,

Detaylı

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER YILLAR 00 00 00 00 00 00 007 008 009 00 ÖSS-YGS - - - - - - - - BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER a,b R ve a 0 olmak üzere ab=0 şeklindeki denklemlere Birinci dereceden bir bilinmeyenli denklemler

Detaylı

İşlenecek Konular. Tarih. Hafta 2: Şubat Hafta 3: 26 Şubat GRUP 3: Cansu GÜNDOĞDU Kübra ÇATALKAYA Serkan ALTUN Mustafa ENGINSEL

İşlenecek Konular. Tarih. Hafta 2: Şubat Hafta 3: 26 Şubat GRUP 3: Cansu GÜNDOĞDU Kübra ÇATALKAYA Serkan ALTUN Mustafa ENGINSEL Tarih Hafta 2: 17-21 Şubat 2014 Hafta 3: 26 Şubat 2014 GRUP 3: Cansu GÜNDOĞDU Kübra ÇATALKAYA Serkan ALTUN Mustafa ENGINSEL Hafta 4: 5 Mart 2014 GRUP 1: Faruk GÜREŞÇİ Süleyman Emre İLGÜN Özlem GEZGİN Hafta

Detaylı

SAYILARA GİRİŞ. Her şeyden önce temel kavramları bilmeliyiz. Nedir temel kavramlar? Matematik dilinin abc'si olarak tanımlayabiliriz.

SAYILARA GİRİŞ. Her şeyden önce temel kavramları bilmeliyiz. Nedir temel kavramlar? Matematik dilinin abc'si olarak tanımlayabiliriz. SAYILARA GİRİŞ Her şeyden önce temel kavramları bilmeliyiz. Nedir temel kavramlar? Matematik dilinin abc'si olarak tanımlayabiliriz. Rakamlar {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} On tane rakam bulunmaktadır.

Detaylı

5. Sınıf Süreç Değerlendirme Testi 1

5. Sınıf Süreç Değerlendirme Testi 1 . Sınıf Süreç Değerlendirme Testi Bölüm Adı Kazanımlar Soru Sayısı Türkçe Matematik Fen Bilimleri Eş - Zıt Anlamlılık ve Eş Seslilik Gerçek, Mecaz, Terim ve Yan Anlam Deyim, Atasözü ve Özdeyiş Hikâyenin

Detaylı

ÖZEL BAHÇELİEVLER İHLAS İLKOKULU 2012-2013 EĞİTİM- ÖĞRETİM YILI 4.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANLARI

ÖZEL BAHÇELİEVLER İHLAS İLKOKULU 2012-2013 EĞİTİM- ÖĞRETİM YILI 4.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANLARI 8 EYLÜL 01 AÇI VE AÇI ÖLÇÜSÜ GEOMETRİ AÇI VE AÇI ÖLÇÜSÜ 17 1 EYLÜL 01 ÜÇGEN, KARE VE DİKDÖRTGEN ÜNİTE 1 : 01-013 EĞİTİM- ÖĞRETİM YILI.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANLARI GEOMETRİYE YOLCULUK

Detaylı

ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI:

ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: Bu formun ç kt s n al p ço altarak ö rencilerinizin ücretsiz Morpa Kampüs yarıyıl tatili üyeli inden yararlanmalar n sa layabilirsiniz.! ISBN NUMARASI: 65482465 ISBN NUMARASI: 65482465! ISBN NUMARASI:

Detaylı

ÜNİTE MATEMATİK-1 İÇİNDEKİLER HEDEFLER ÜSTEL VE LOGARİTMA FONKSİYONLARI. Prof.Dr.Ahmet KÜÇÜK. Üstel Fonksiyon Logaritma Fonksiyonu

ÜNİTE MATEMATİK-1 İÇİNDEKİLER HEDEFLER ÜSTEL VE LOGARİTMA FONKSİYONLARI. Prof.Dr.Ahmet KÜÇÜK. Üstel Fonksiyon Logaritma Fonksiyonu HEDEFLER İÇİNDEKİLER ÜSTEL VE LOGARİTMA FONKSİYONLARI Üstel Fonksiyon Logaritma Fonksiyonu MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK Bu ünite çalışıldıktan sonra, Üstel fonksiyonun tanımı öğrenilecek Üstel fonksiyonun

Detaylı

Fraktal Akıllı Ödev 1

Fraktal Akıllı Ödev 1 Fraktal Akıllı Ödev 1 Öğrenci Adı Soyadı Sınıfı Ödev Teslim Tarihi Öğretmen Görüşü Soru 1 Aşağıda fraktal ve örüntü örneklerinin bazı adımları verilmiştir. Buna göre, fraktal ve örüntüleri belirleyip devam

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 6. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 6. SINIF TEST SORULARI 1. a ve b birer pozitif tamsayıdır. 12. a = b³ olduğuna göre, a + b toplamının alabileceği en küçük değer kaçtır? A) 21 B) 23 C) 24 D) 25 3. Beş kişinin yaşlarının aritmetik ortalaması 24 tür. Aşağıda

Detaylı

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur? 07.10.2006 1. Kaç p asal sayısı için, x 3 x + 2 (x r) 2 (x s) (mod p) denkliğinin tüm x tam sayıları tarafından gerçeklenmesini sağlayan r, s tamsayıları bulunabilir? 2. Aşağıdaki ifadelerin hangisinin

Detaylı

Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi

Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi KAĞIT KATLAMA YOLUYLA KESİRLERİN BELİRLENMESİ Onur NURTAN Danışman Öğretmen: Mustafa YAZAGAN Özel Atacan Anadolu Lisesi Özet: Kare biçimindeki kağıdı tam iki eş parçaya ayıran kırışığına kağıdımızı katlayarak

Detaylı

Kesirler ve İşlemler Ondalık Kesirler ve İşlemler, Yüzdeler, Oran. Yrd. Doç. Dr. Nuray Çalışkan-Dedeoğlu Matematik Eğitimi ndedeoglu@sakarya.edu.

Kesirler ve İşlemler Ondalık Kesirler ve İşlemler, Yüzdeler, Oran. Yrd. Doç. Dr. Nuray Çalışkan-Dedeoğlu Matematik Eğitimi ndedeoglu@sakarya.edu. Kesirler ve İşlemler Ondalık Kesirler ve İşlemler, Yüzdeler, Oran Yrd. Doç. Dr. Nuray Çalışkan-Dedeoğlu Matematik Eğitimi ndedeoglu@sakarya.edu.tr Kesirler 4 elmayı çocuğa paylaştıralım: 4 : = 4 elmayı

Detaylı

ÇARPANLAR VE KATLAR ÖĞRENİYORUM

ÇARPANLAR VE KATLAR ÖĞRENİYORUM ÖĞRENİYORUM Bir pozitif tam sayıyı birden fazla pozitif tam sayının çarpımı şeklinde yazarken kullandığımız her bir sayıya o sayının çarpanı denir. Örnek: nin çarpanları,, 3, 4, 6 ve dir. UYGULUYORUM Verilmeyen

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600

Detaylı

Sayıtlama Dizgeleri. (a n a n-1 a n1 a n0. b 1 b 2 b m )r. simgesi şu sayıyı temsil eder.

Sayıtlama Dizgeleri. (a n a n-1 a n1 a n0. b 1 b 2 b m )r. simgesi şu sayıyı temsil eder. 1 Sayıtlama Dizgeleri Hint-Arap Sayıtlama Dizgesi Sayıları göstermek (temsil etmek) için tarih boyunca türlü simgeler kullanılmıştır. Sümerlerin, Mısırlıların, Romalıların ve diğer uygarlıkların kullandıkları

Detaylı

5. a ve b birer pozitif tam sayıdır. A) 1 B) 2 C) 3 D) 14 E) a ve b birer doğal sayıdır. 7. a ve b birer pozitif tam sayıdır.

5. a ve b birer pozitif tam sayıdır. A) 1 B) 2 C) 3 D) 14 E) a ve b birer doğal sayıdır. 7. a ve b birer pozitif tam sayıdır. Üniversite Haz rl k Sözcükte Do al ve Say lar Söz Öbeklerinde ve Tam Say lar Anlam - I - I YGS Temel Matematik. 8 + 4. + 8 : 4 işleminin sonucu A) 8 B) 9 C) D) 5 E) 8 5. a ve b birer pozitif tam sayıdır.

Detaylı

DOĞAL SAYILAR , , bölük bölük bölük bölük bölük bölük bölük bölük bölük

DOĞAL SAYILAR , , bölük bölük bölük bölük bölük bölük bölük bölük bölük DĞAL SAILAR Günlük hayatta pek çok durumda sayıları kullanırız: Saymak, sıra belirtmek, saati okumak, telefon numaraları, T.C. kimlik numaraları, levha ve paralar vb. u sayılar 7, 8 veya 9 basamaklı olabilir.

Detaylı

AKILLI. sınıf. Musa BOR

AKILLI. sınıf. Musa BOR AKILLI sınıf. Musa BOR AFG Matbaa Yayıncılık Kağ. İnş. Ltd. Şti. Buca OSB, BEGOS. Bölge / Sk. No: Buca-İZMİR Tel:.. - Faks: 6 6 Bu kitabın tüm hakları AFG Matbaa Yay. Kağ. İnş. Teks. Paz. İm. San. ve Tic.

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. SAYISAL DEVRE TASARIMI EEM122 Ref. Morris MANO & Michael D. CILETTI SAYISAL TASARIM 4. Baskı Fatih University- Faculty of Engineering- Electric and Electronic Dept. SAYISAL DEVRE NEDİR? Mühendisler, elektronik

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler ORGANİZASYON ŞEMASI 1. BÖLÜM Mantık... 7. BÖLÜM Sayılar... 13 3. BÖLÜM Rasyonel Sayılar... 93 4. BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler... 103 5. BÖLÜM Mutlak Değer... 113 6. BÖLÜM Çarpanlara Ayırma...

Detaylı

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde 1. Aşağıdaki kümelerden hangisi sonsuz küme belirtir? A) A = { x 4 < x < 36,x N} B) B = { x 19 < x,x asal sayı} C) C = { x x = 5k,0 < x < 100,k Z} D) D = { x x = 5, x Z} E) E = { x x < 19,x N}. A, B ve

Detaylı

ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI:

ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: Bu formun ç kt s n al p ço altarak ö rencilerinizin ücretsiz Morpa Kampüs yarıyıl tatili üyeli inden yararlanmalar n sa layabilirsiniz.! ISBN NUMARASI: 84354975 ISBN NUMARASI: 84354975! ISBN NUMARASI:

Detaylı

2. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

2. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 2. HAFTA BLM323 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 HATA Sayısal yöntemler analitik çözümlerden farklı olarak

Detaylı

YARIMBAĞ İLKOKULU EĞİTİM ÖĞRETİM YILI 4-B SINIFLARI MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILIK PLANI

YARIMBAĞ İLKOKULU EĞİTİM ÖĞRETİM YILI 4-B SINIFLARI MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILIK PLANI EYLÜL-EKİM EKİM.hafta 1.hafta YARIMBAĞ İLKOKULU 015-016 EĞİTİM ÖĞRETİM YILI 4-B SINIFLARI MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILIK PLANI I.ÜNİTE DÜNYAMIZI ŞEKİLLENDİREN GEOMETRİ GEOMETRİ Açı ve Ölçüsü 1

Detaylı

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :.

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. SAYILAR BASAMAK KAVRAMI İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. Üç basamaklı rakamları farklı en küçük sayı :. SORU 5 MATEMATİK KAF03 TEMEL KAVRAM 01 Üç basamaklı birbirinden

Detaylı

KESRİN TERİMLERİ ÖRNEK:

KESRİN TERİMLERİ ÖRNEK: KESİRLER Kesir sayılarına neden ihtiyaç duyuldu Piknikte simit yemeyi ailecek çok severiz. Babam 2, annem 1, ablam yarım ( ) simit yedi. Ben de çeyrek )simit yedim. Babamın ve annemin yediği simitleri

Detaylı

9) A B ve B A ise A=B dir. Birbirinin alt kümesi olan iki küme eşit kümedir.

9) A B ve B A ise A=B dir. Birbirinin alt kümesi olan iki küme eşit kümedir. CEVAPLAR .BÖLÜM - TEST ) {K.K.T.C nin g harfi ile başlayan ilçeleri} ) İlkbahar, yaz, sonbahar, kış mevsimlerinin bazıları ile oluşturulacak kümeler farklı olacağından, bir küme oluşturmazlar. ) Okulumuzdaki

Detaylı