BSM-767 MAKİNE ÖĞRENMESİ. Doğrusal Ayırıcılar (Linear Discriminants)

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BSM-767 MAKİNE ÖĞRENMESİ. Doğrusal Ayırıcılar (Linear Discriminants)"

Transkript

1 BSM-767 MAKİNE ÖĞRENMESİ Doğrusal Ayırıcılar (Linear Discriminants) Yrd. Doç. Dr. Ümit ATİLA

2 Perceptron Perceptron, bir giriş kümesinin ağırlıklandırılmış bağlantılarla tek katmanda yer alan McCulloch-Pitts nöronlarına bağlanmasından oluşan yapıdır. Girişler genelde nöron gibi yuvarlak çizilir ama aslında bunlar nöron değil sadece giriş sinyalleridir. Nöronların bias girişleri genelde çizilmez, ama orada olduğunu bilmelisiniz. 2

3 Perceptron Perceptronlarda nöronlar diğer nöronlardan bağımsızdır. Onların ne yaptığıyla ilgilenmez. Sadece ağırlıklar ile çarpılmış giriş sinyalini alır ve kendi eşik değeri ile karşılaştırır. Giriş sinyali sayısını veri setindeki parametre sayısı belirler. 3

4 Perceptron Doğrusal sınıflandırıcı perceptron için kullanacağımız mimari doğrusal bir birleştiricidir. Girişler x1,x2,...xm olsun. Ağırlıklar ise wij ile temsil edilir. Bu i. girişten j. nörona yapılan bağlantı demektir. Bu ağırlıklar ixj boyutlu matriste tutulabilir. Perceptron modeli sahip olduğumuz özellikleri alıyor bunlara farklı ağırlıklar (w) veriyor. 4

5 Perceptron Daha sonra bu ağırlıklandırılmış girişler doğrusal formda toplanırlar. Daha sonra bu toplam sinyal bir eşik değer ile karşılaştırılır. Eğer eşik değer aşılıyorsa verilen giriş iki sınıftan birine, aşılmıyorsa diğerine dahil edilir. n v k = i=1 w i x i y k = ቊ 1, eğer v k > θ 0, eğer v k θ v k = W T. X 5

6 Perceptron Sonuçta elde edilen 0 ve 1 lerden oluşan bir vektördür. Örneğin, 5 nöronlu perceptron için çıkış sinyali olarak (0,1,0,0,1) vektörü elde ediliyorsa 2. ve 5. nöronların tetiklendiğini diğerlerinin ise tetiklenmediğini anlıyoruz. Bu elde edilen vektör ise beklenen değer vektörü ile karşılaştırılır ve hangi nöronun doğru hangisinin yanlış cevap verdiği anlaşılır. Eğer nöron doğru cevap vermiyorsa bu nörona giden ağırlıklar güncellenir. Nöron için öyle bir ağırlık vektörü bulunmalı ki bir daha ki sefere aynı giriş için doğru cevabı versin. 6

7 Perceptron Ağırlık güncellemek için kullanılan formül: w ij n = d k y k. x i w ij (n + 1) = w ij (n) + η w ij (n) w ij (n + 1) = w ij (n) + η d k y k. x i 7

8 Öğrenme Katsayısı Öğrenme katsayısı her iterasyonda ağırlık değişim miktarını değiştirmek için kullanılan 0 ile 1 arasında seçilen bir parametredir. 1 seçilirse elde edilen ağırlık değişim miktarı olduğu gibi uygulanır. Bu durumda sistem hızlı ancak kararsız öğrenme gerçekleştirir. Çok küçük seçilmesi de öğrenme süresini uzatır ancak kararlı öğrenme gerçekleşir veri setindeki gürültü ve hatalara karşı daha dirençli olur. Genel olarak 0.1 ile 0.4 arası seçmek uygun olur. 8

9 Bias Girişi McCulloch-Pitts modelinde bahsedilen ve nörona ait bir eşik değeri vardı. Bu eşik değer nöronun tetiklenmek için ihtiyaç duyduğu bir değerdir. Bu değer değiştirilebilir olmalıdır. Eğer tüm girişler sıfır olursa bu durumda nöronun tetiklenip tetiklenmeyeceğine karar veren eşik değer olacaktır. 9

10 Bias Girişi Bu sebeple McCulloch-Pitts modeline değeri sabit +1 olan bir bias girişi eklenir. Bu bias değeri normal bir giriş gibi düşünülür ve x0= +1 olur ve W0j = bias olur. 10

11 Perceptron Öğrenme Algoritması Başlangıç değeri verme Ağırlıkları rasgele olarak ata Eğitim T iterasyon boyunca veya tüm örnekler doğru sınıflandırılıncaya kadar yap Her bir giriş vektörü için yap Her j nöronu için toplam sinyali bul ve çıkışını hesapla n v j = w ij x i i=1 Her bir ağırlığı güncelle y j = 1, eğer v j > θ 0, eğer v j θ w ij (n + 1) = w ij (n) + η d j y j. x i 11

12 Doğrusal Ayrılabilirlik (Linear Separability) Bir perceptron, perceptron öğrenme algoritmasının ağırlıklar ve bias parametresini ayarlaması suretiyle bir doğru elde eder. Perceptron bu doğrunun bir tarafında tetiklenirken diğer tarafında tetiklenmez. Bu doğruya karar sınırı (decision boundry) denir. Bu karar sınırı 2B uzayda doğru, 3B uzayda düzlem ve daha yüksek boyutlar ise hiper düzlemdir. 12

13 Doğrusal Ayrılabilirlik (Linear Separability) Perceptron, W T. X 0 ise tetiklenir. Burada iki vektörün çarpımı vardır. a. b = a. b. cos(θ) olarak yazılır. Buna iki vektörün inner product ya da skalar çarpımı denir. Burada θ, a ve b vektörleri arasındaki açı ve a ise a vektörünün büyüklüğüdür. Diyelim ki W T. X1 = 0 ise X1, karar sınırında yer alıyor demektir. Diyelim ki aynı şartı sağlayan başka bir X2 olsun. Bu durumda; W T. X1 = W T. X2 X1 X2 W T = 0 13

14 Doğrusal Ayrılabilirlik (Linear Separability) Buradan iki vektörün skalar çarpımının sıfır olması için ya a veya b veya cos(θ) sıfır olması gerektiği anlaşılır. a ve b vektörlerinin sıfır olması için bir sebep olmadığına göre, cos θ = 0 olmalıdır. Buradan da θ açısı П/2 veya - П/2 olmalıdır. Böylece X1-X2 karar sınırı üzerinde yer alan bir doğrudur ve W T ise karar sınırına diktir. 14

15 Doğrusal Ayrılabilirlik (Linear Separability) Rasgele ağırlık değerleri ile başladığınızda bu rasgele değerler size herhangi bir doğru çizebilir. Böylelikle bu öğreneme algoritması bu iki parametreyi değiştirmek suretiyle doğruyu ayarlıyor ve istenen sınıf ayrımını yapabilir hale geliyor. 15

16 Doğrusal Ayrılabilirlik (Linear Separability) Perceptron her iterasyonda bir noktayı doğru sınıfa dahil eder. Diğer noktaları önemsemez. Yapmamız gereken her iterasyonda yanlış sınıflandırılan her hangi bir noktayı seçip iterasyonlara devam etmektir. Tüm noktalar doğru sınıflandırılıncaya kadar algoritma devam ettirilir. Eğer üzerinde çalıştığımız veri seti doğrusal olarak ayrılabilir ise öyle bir duruma varılacak ki tüm noktalar doğru olarak sınıflandırılacak. Perceptron öğrenme algoritması doğrusal olarak ayrılabilen veriler üzerinde sınıflandırmayı garanti eder. 16

17 Doğrusal Ayrılabilirlik (Linear Separability) Perceptron öğrenme algoritması her seferinde tek bir noktayı değerlendirdiği için sadece bir iterasyon sonra çok kötü bir duruma geçerken bir sonraki iterasyonda çok iyi bir duruma geçebilir. Veri seti tamamiyle doğrusal ayrılabilir değilse perceptron öğrenme algoritması hiç bir şekilde yakınsamayı gerçekleştiremez. 17

18 Doğrusal Ayrılabilirlik (Linear Separability) Bu durumda ne yaparız? Belli bir iterasyonda diyelim ki iterasyonda algoritmayı durdururuz iterasyonda artık ağırlık vektörü olarak ne elde etmişsek ona razı geliriz iterasyonda elde ettiğimiz hipotezi perceptron öğrenme algoritmasının final hipotezi olarak belirleriz 18

19 Doğrusal Ayrılabilirlik (Linear Separability) Eğer birden fazla perceptron varsa ne olur? Bu durumda her biri uzayın farklı bir kısmını bölen doğrular tanımlar. Örneğin 4 perceptron bir araya getirildiğinde 4 sınıfı bir birinden ayırabilen karar sınırları bulunabilir. 19

20 AND ve OR Problemleri Sinir ağının yapı taşı perceptronlardır ve biz bu perceptronları sinir ağlarında bir araya getiririz. Bir perceptron ile doğrusal ayrılabilir problemler çözülebilir. Çünkü perceptronda elde ettiğimiz hipotez bir doğrudur. Örneğin AND ve OR problemleri doğrusal özellik gösterir ve bu problemler perceptron ile çözülebilir. 20

21 AND Problemi AND fonksiyonunu gerçekleştirecek ağa batığınızda -1.5 bias değeri ile bir direnç oluşturulmuş ve sadece iki girişinde +1 olduğu durumda +1 elde ediyorum. Diğer durumlarda ise 0 elde ediyorum. 21

22 OR Problemi 22

23 XOR Problemi Şimdi perceptronları bir araya getirdiğimiz farklı kombinasyonlar ile tek bir perceptron ile yapamadığımız bazı şeylere bakalım. Mesela diyagonal +1 ve -1 noktalarının olduğu durum. Yani XOR problemi. Bu duruma tek bir perceptron ile çözüm üretemiyorsunuz. Bu durum Minsky ve Papert tarafından (1961) yazılan "Perceptron" isimli kitapta da belirtilmiş ve araştırmacıların sinir ağlarına olan ilgili azalmıştır. Neticesinde sinir ağları araştırmalarının 20 yıl gecikmesine sebep olmuştur. 23

24 XOR Problemi Bu fonksiyonda X1=0 ve X2=0 iken çıkış 0, X1=0 X2=1 iken çıkış 1, X1=1 ve X2=0 iken çıkış 1, X1=1 ve X2=1 iken çıkış 0 olur. Bu durumda bu örüntüleri bir doğru ile iki sınıfa ayırabilir miyiz. Hayır. Böyle bir doğru çizemeyiz. Bu durumda deriz ki XOR problemi doğrusal olarak ayrılabilen bir problem değildir ve iki girişli bir perceptron ile bu problemi çözemeyiz. 24

25 XOR Problemi XOR probleminin doğrusal fonksiyonlar kullanan perceptronlar ile çözülmesinin imkansız olduğunu söyleyemeyiz. Eğer problemi boyut artırmak suretiyle 3 boyutlu hale getirirsek iki sınıfı ayıran bir düzlem bulunabilir. Örneğin (x,y) düzleminden bakıldığında veriyi değiştirmeyen ancak sadece (0,0) noktasını 3. boyut ekseni boyunca ilerleten bir 3. giriş eklenebilir. 25

26 Doğrusal Ayrılabilirlik (Linear Separability) Aslında doğrusal fonksiyon ile iki sınıfı ayırmak her zaman mümkündür. Bunu problemin boyutunu artırarak gerçekleştiririz. Örneğin Karar Destek Makineleri (SVM) bu mantıkla çalışan kernel tabanlı sınıflandırıcıdır. Eğer doğrusal perceptron ile doğrusal olmayan problemler çözmek isterseniz doğrusal olmayan değişkenler üretebilirsiniz. Örneğin şekilde aynı veri setinin iki versiyonu görülüyor. Üstteki veri setinde koordinatlar x1 ve x2 iken alttakinde x1,x2 ve x1*x2 dir. Böylece 3. boyuta çıkılır ve veri doğrusal fonksiyon ile ayrılabilir hale gelir. 26

27 Örnek Problem-1 P1 = (1,2) d1= 1 P2 = (-1,2) d2= 0 P3 = (0,-1) d3= 0 2 boyutlu düzlemde verilen 3 örüntüye ait veri noktaları perceptron algoritması ile sınıflandırılmak isteniyor. Öyle bir W* ağırlık vektörü elde edin ki tüm örüntüler perceptron tarafından doğru sınıflandırılsın. Başlangıç ağırlık vektörü W(0) = (-1, 0.8) 27

28 Örnek Problem-1 28

29 Doğrusal Regresyon "Regresyon" kelimesi basitçe "gerçek değerli çıkış" anlamına gelir. Acaba şu değişkenler şu değişkenlerle ilişkili midir dediğiniz her durumda akla gelen ilk şey doğrusal regresyondur. Doğrusal regresyonun temelinde bir özellik vektörüne ait giriş değişkeninin ağırlık kazanmasıyla bir hedef değişkeni belirli bir hata ile ürettiği varsayılır. 29

30 Doğrusal Regresyon Bu varsayım aşağıdaki eşitlik ile temsil edilir: W ağırlıkları, X verinin özellik vektörünü, E hatayı ve Y değişkeni de hedef değişkeni temsil etmektedir. Yukarıda verilen 2 boyutlu uzayda bir doğru denklemidir ve burada W1 doğrunun eğimini, W0 ise y eksenini kestiği noktayı belirtir. 30

31 Doğrusal Regresyon Doğrusal regresyon, bir doğrunun bize verilen bir veriye uydurulması işlemidir. Doğruyu veriye uydurmak için önce hatamızı ölçmeli ve bu hatayı minimize etmeliyiz. Her veri örneği aslında bir doğru denklemine E hatası oranında uzaktır. Bu hata değerleri çok küçük olduğu varsayımı ile çözüm sırasında ihmal edilirler. X ve Y vektörlerini içeren veri kümesi kullanılarak en az hatayı verecek optimal W ağırlık vektörünün tespiti regresyon analizinin temel amacını oluşturur. 31

32 Doğrusal Regresyon Bu modeli iki nöron ile basitçe oluşturabiliriz. Bu durumda y2 = w21 X + w20 olacaktır. Böylece basit bir yapay sinir ağı modellenmiş olur. Burada y2 ağın çıkışıdır ve doğrusal olarak modellenmiştir. Burada bias görevi gören w20 ağırlığı doğru denklemindeki kesme, w21 ağırlığı ise eğim yerine geçer. 32

33 Çoklu Doğrusal Regresyon Doğrusal regresyonun M boyutlu bir veri kümesine uygulanabilen şeklidir. Tüm giriş değişkenlerinin ağırlıklı toplamının hedef değişkeni belirli bir hata ile ürettiği varsayılır. Wj ağırlıkları, Xj verinin özellik vektörlerini, E hatayı ve Y değişkeni de hedef değişkeni temsil etmektedir. 2 değişkenli problemde bias ile beraber 3 boyutlu uzaya çıkılmış olunur ve elde edilen doğru değil düzlemdir, 3 boyuttan fazlasında ise hiperdüzlem elde edilir. 33

34 Çoklu Doğrusal Regresyon Örneğin 2 değişkenli doğrusal regresyon yapabilecek modeli 3 nöronla basitçe oluşturabiliriz. Bu durumda hücrenin çıkışı y3= w31 x1 + w32 x2 + w30 olacaktır. Bu durumda y3 çıkışı x1 ve x2 olmak üzere iki girişe bağlıdır. Bu durumda W31 ve W32 olmak üzere iki tane eğim vardır. 34

35 Çoklu Doğrusal Regresyon Veri örnekleri M+1 boyutlu bir hiper-düzlem denklemine, ihmal edilebilecek kadar küçük E hatası oranında uzaktır., Amaç, doğrusal regresyondaki gibi W ağırlık vektörünün tespit edilmesine dayanır. Hem basit doğrusal hem de çoklu doğrusal regresyonun en temel çözümü en küçük kareler yöntemine (least squares) dayanır. 35

36 En Küçük Kareler Yöntemi (Least Squares) En küçük kareler yöntemiyle çözülebilen bu denklemlerin matematiksel çözümü aşağıdaki gibi ifade edilebilir. N değeri verideki toplam örnek sayısını, i indisi her bir örneğin verideki sırasını ve j indisi de verinin boyutlarını temsil eder. 36

37 En Küçük Kareler Yöntemi (Least Squares) En küçük kareler yönteminin temel prensibi aşağıdaki gibi ifade edilen hata kareleri ortalamasının (MSE) minimize edilmesidir. Bu esitlikle ifade edilen ei hataları olabilecek en küçük değerlere sahiptir ve doğrusal bir çözüm ile tahmin edilemez kabul edilirler. 37

38 En Küçük Kareler Yöntemi (Least Squares) Diyelim ki elimizde insanlara ait boy-kilo verisi olsun Boy (inch) Kilo (pound) Verilerin iki boyutlu düzlemde gösterimi şu şekilde olsun. 38

39 En Küçük Kareler Yöntemi (Least Squares) Amacımız öyle bir doğru elde etmek ki bu veri setinde yer alan noktalara en iyi uyumu sağlasın. Doğrusal regresyon sonucu uydurulan doğruda bir takım hatalar olabilir. Hata, veri noktaları ile bu noktaların dikey düzlemde doğruyu kestiği noktalar arasındaki mesafelerdir. Her bir doğru için elde edilen hataların kareleri toplanarak toplam hata bulunur. Kare alınmasının amacı negatif çıkabilecek olan hataları pozitife çevirmektir. Burada amaç hatayı en küçük verecek doğrusal modeli bulmaktır. 39

40 En Küçük Kareler Yöntemi (Least Squares) 40

41 En Küçük Kareler Yöntemi (Least Squares) Doğrusal modeli uygulamak için doğru denkleminden faydalanacağız. y = w0 + w1x 41

42 En Küçük Kareler Yöntemi (Least Squares-Matris Formu) 42

43 Eşikleme ve Yarışmalı Sınıflandırma Tahmin ve kestirim yöntemlerinin başarıları MSE ölçütü yardımıyla karşılaştırılır. Regresyon gibi tahminlemede kullanılan bir çözümleyicinin sınıflandırma yapabilmesi için ise hesaplanan sonuçlar üzerinde bir eşikleme yapılmalıdır. İki sınıflı sistemlerde etiketler için 0 ve 1 değerleri seçilirse eşik değeri de 0.5 olmalıdır. Çok sınıflı sistemlerde ise yarışma usulü sonuç tayin edilir. 43

44 Sınıflandırma Örneği Kümeleme ve sınıflandırma için sık kullanılan İRİS veri kümesinden bir kesit alınmıştır. Veri, giriş için 4 özellik vektörüne sahip X değişkenini, hedef içinse 3 sınıf değeri taşıyan Y değişkenini bulundurur. Sınıflandırma yapılacağı için Y değişkeni üç ayrı lojik değişkene dönüşmelidir. 44

45 Sınıflandırma Örneği Sınıflandırma sistemlerinin en kolay öğrendiği hedefler 0 ve 1 olmak üzere ikili sınıf bilgileridir. Tahmin sistemi gerçel sayılar üretir. Bu yüzden tek çıkışlı sistemde 0.5 eşikleme kullanılarak yuvarlama yapılır Çok çıkışlı sistemlerde ise değişkenlerden hangisi büyükse o kazandı denilir. 45

46 Sınıflandırma Örneği Çoklu doğrusal regresyon çözümü ile aşağıdaki 3 denklem bulunur; Bulunan ortalama karesel hatalar; 46

47 Sınıflandırma Örneği Burada Ȳ değişkenleri regresyon denklemleriyle hesaplanan değerleri gösterir. İlk iki örnekte en büyük değer Ȳ1, sonraki iki örnekte Ȳ2 ve son iki örnekte Ȳ3 değişkeni kazanan sınıfı temsil eder. Y değişkenleri sırasıyla A, B ve C sınıflarını temsil eder. Buna göre 6 örneğin tümü de doğru sınıflandırılmıştır. 47

48 Doğrusal Olmayan Regresyon Doğrusal olmayan regresyon modelleri de aynı doğrusal modeller gibi basit bir denklemle gösterilebilirler. Doğrusal olmayan regresyon modellerinde bu denklemdeki parametre sayısı verideki değişken sayısıyla doğrudan ilişkili olmayabilir. Doğrusal olmayan regresyon modellerinin parametre tahminleri için önerilen birçok yöntem vardır. Bunlardan en çok bilinenleri en küçük kareler, en çok olabilirlik (maximum likelihood) ve gauss- Newton yöntemleridir. 48

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

İlk Yapay Sinir Ağları. Dr. Hidayet Takçı

İlk Yapay Sinir Ağları. Dr. Hidayet Takçı İlk Yapay Sinir Ağları Dr. Hidayet htakci@gmail.com http://htakci.sucati.org Tek katmanlı algılayıcılar (TKA) Perceptrons (Rosenblat) ADALINE/MADALINE (Widrow and Hoff) 2 Perseptron eptronlar Basit bir

Detaylı

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk alp.erturk@kocaeli.edu.tr Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur.

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Üç Boyutlu Geometri Nokta (Point,Vertex) Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Kartezyen Koordinat Sistemi Uzayda bir noktayı tanımlamak

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Bibliography 9 Index 13 CONTENTS 5 0.1 Doğru, Düzlem, Uzay Bu derste sık sık doğru, düzlem ve

Detaylı

Bir Doğrusal Programlama Modelinin Genel Yapısı

Bir Doğrusal Programlama Modelinin Genel Yapısı Bir Doğrusal Programlama Modelinin Genel Yapısı Amaç Fonksiyonu Kısıtlar M i 1 N Z j 1 N j 1 a C j x j ij x j B i Karar Değişkenleri x j Pozitiflik Koşulu x j >= 0 Bu formülde kullanılan matematik notasyonların

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

DENKLEM SİSTEMLERİ. ifadesinde a sayısı bilinmeyenin katsayısı ve b ise sabit sayıdır.

DENKLEM SİSTEMLERİ. ifadesinde a sayısı bilinmeyenin katsayısı ve b ise sabit sayıdır. DENKLEM SİSTEMLERİ 1) BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER: a,bϵ R ve olmak üzere; şeklindeki denklemlere birinci dereceden bir bilinmeyenli denklem denir. Bu tür denklemlerde sadece bir bilinmeyen

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

Çok değişkenli fonksiyonlar. Maksimum- Minimum

Çok değişkenli fonksiyonlar. Maksimum- Minimum 66 Bölüm 6 Ders 06 Çok değişkenli fonksiyonlar. Maksimum- Minimum 6.1 Çözümler:Alıştırmalar 06 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay Ön Bilgi: z = f (x, y) fonksiyonu 3-boyutlu uzayda bir yüzeyin denklemidir.

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 4- LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Matematikte veya hidrolik, dinamik, mekanik, elektrik

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

ÖRNEKLER-VEKTÖR UZAYLARI 1. Çözüm: w=k 1 u+k 2 v olmalıdır.

ÖRNEKLER-VEKTÖR UZAYLARI 1. Çözüm: w=k 1 u+k 2 v olmalıdır. ÖRNEKLER-VEKTÖR UZAYLARI. vektör uzayında yer alan w=(9 7) vektörünün, u=( -), v=(6 ) vektörlerinin doğrusal bir kombinasyonu olduğunu ve z=( - 8) vektörünün ise bu vektörlerin doğrusal bir kombinasyonu

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

Temelleri. Doç.Dr.Ali Argun Karacabey

Temelleri. Doç.Dr.Ali Argun Karacabey Doğrusal Programlamanın Temelleri Doç.Dr.Ali Argun Karacabey Doğrusal Programlama Nedir? Bir Doğrusal Programlama Modeli doğrusal kısıtlar altında bir doğrusal ğ fonksiyonun değerini ğ maksimize yada minimize

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI Yapay Sinir Ağları (Artificial Neural Networks) J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Yapay Sinir Ağları Tarihçe Biyolojik

Detaylı

T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI

T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI Genişletilmiş Lagrange Yöntemi Hazırlayan: Nicat GASIM Öğretim Üyesi Prof. Dr. İpek Deveci KARAKOÇ

Detaylı

İş Zekası. Hafta 6 Kestirimci Modelleme Teknikleri. Yrd. Doç. Dr. H. İbrahim CEBECİ

İş Zekası. Hafta 6 Kestirimci Modelleme Teknikleri. Yrd. Doç. Dr. H. İbrahim CEBECİ İş Zekası Hafta 6 Kestirimci Modelleme Teknikleri Business Intelligence and Analytics: Systems for Decision Support 10e isimli eserden adapte edilmiştir Bölüm Amaçları Yapay Sinir Ağları (YSA) kavramını

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR Aç Gözlü (Hırslı) Algoritmalar (Greedy ) Bozuk para verme problemi Bir kasiyer 48 kuruş para üstünü nasıl verir? 25 kuruş, 10 kuruş,

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması. (Eğitim/Hata geri yayılım)

Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması. (Eğitim/Hata geri yayılım) Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması (Eğitim/Hata geri yayılım) Özetçe Bu çalışmada çok katmanlı ve ileri sürümlü bir YSA

Detaylı

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere, Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli

Detaylı

Bölüm-4. İki Boyutta Hareket

Bölüm-4. İki Boyutta Hareket Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme

Detaylı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı REGRESYON ANALİZİ VE UYGULAMA Yrd. Doç. Dr. Hidayet Takcı htakci@cumhuriyet.edu.tr Sunum içeriği Bu sunumda; Lojistik regresyon konu anlatımı Basit doğrusal regresyon problem çözümleme Excel yardımıyla

Detaylı

ÜSTEL DÜZLEŞTİRME YÖNTEMİ

ÜSTEL DÜZLEŞTİRME YÖNTEMİ ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik

Detaylı

Esnek Hesaplamaya Giriş

Esnek Hesaplamaya Giriş Esnek Hesaplamaya Giriş J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Esnek Hesaplama Nedir? Esnek hesaplamanın temelinde yatan

Detaylı

SEK Tahmincilerinin Türetilmesi. SEK Tahmincilerinin Türetilmesi. Ekonometri 1 Konu 8 Sürüm 2,0 (Ekim 2011)

SEK Tahmincilerinin Türetilmesi. SEK Tahmincilerinin Türetilmesi. Ekonometri 1 Konu 8 Sürüm 2,0 (Ekim 2011) İki Değişkenli Bağlanım Modeli SEK Tahmincilerinin Türetilmesi Ekonometri 1 Konu 8 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Sınıflandırıcıların Değerlendirilmesi Skorlar Karışıklık matrisi Accuracy Precision Recall

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak TP Çözümü TP problemlerinin çözümü için başlıca iki yaklaşım vardır kesme düzlemleri (cutting planes) dal sınır (branch and bound) tüm yaklaşımlar tekrarlı

Detaylı

REGRESYON ANALĐZĐ. www.fikretgultekin.com 1

REGRESYON ANALĐZĐ. www.fikretgultekin.com 1 REGRESYON ANALĐZĐ Regresyon analizi, aralarında sebep-sonuç ilişkisi bulunan iki veya daha fazla değişken arasındaki ilişkiyi belirlemek ve bu ilişkiyi kullanarak o konu ile ilgili tahminler (estimation)

Detaylı

Nedensel Modeller Y X X X

Nedensel Modeller Y X X X Tahmin Yöntemleri Nedensel Modeller X 1, X 2,...,X n şeklinde tanımlanan n değişkenin Y ile ilgili olmakta; Y=f(X 1, X 2,...,X n ) şeklinde bir Y fonksiyonu tanımlanmaktadır. Fonksiyon genellikle aşağıdaki

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

A COMMUTATIVE MULTIPLICATION OF DUAL NUMBER TRIPLETS

A COMMUTATIVE MULTIPLICATION OF DUAL NUMBER TRIPLETS . Sayı Mayıs 6 A COMMTATIVE MLTIPLICATION OF DAL NMBER TRIPLETS L.KLA * & Y.YAYLI * *Ankara Üniversitesi Fen Fakültesi, Matematik Bölümü 6 Tandoğan-Ankara, Türkiye ABSTRACT Pfaff [] using quaternion product

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi 1) Giriş Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Pendulum Deneyi.../../2015 Bu deneyde amaç Linear Quadratic Regulator (LQR) ile döner ters sarkaç (rotary inverted

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik İkiye Bölme / Yarılama Yöntemi Genel olarak f x = 0 gerek şartını sağlamak oldukça doğrusal olmayan ve bu sebeple çözümü

Detaylı

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI Lineer Ayrılabilen Paternlerin Yapay Sinir Ağı ile Sınıflandırılması 1. Biyolojik Sinirin Yapısı Bilgi işleme

Detaylı

17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: TAHMİN Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 17 Ekim 2012 Ekonometri

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

Lineer Denklem Sistemleri

Lineer Denklem Sistemleri Lineer Denklem Sistemleri Yazar Yrd. Doç.Dr. Nezahat ÇETİN ÜNİTE 3 Amaçlar Bu üniteyi çalıştıktan sonra; Lineer Denklem ve Lineer Denklem Sistemleri kavramlarını öğrenecek, Lineer Denklem Sistemlerinin

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Genel Olarak Bir Yüzeyin Diğer Bir Yüzeye Projeksiyonu

Genel Olarak Bir Yüzeyin Diğer Bir Yüzeye Projeksiyonu JEODEZİ9 1 Genel Olarak Bir Yüzeyin Diğer Bir Yüzeye Projeksiyonu u ve v Gauss parametrelerine bağlı olarak r r ( u, v) yer vektörü ile verilmiş bir Ω yüzeyinin, u*, v* Gauss parametreleri ile verilmiş

Detaylı

Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI

Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI Öğrenme Türleri Eğiticili Öğrenme Eğiticisiz Öğrenme: Ağın verilerin sınıflandırmasını dışarıdan yardım almadan kendi başına yapmasıdır. Bunun olabilmesi için

Detaylı

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ Kenan KILIÇASLAN Okul No:1098107203 1. DESTEK VEKTÖR MAKİNELER

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN Yapı Sistemleri: İzostatik (Statikçe Belirli) Sistemler : Bir sistemin tüm kesit tesirlerini (iç kuvvetlerini) ve mesnet reaksiyonlarını

Detaylı

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Yapay Sinir Ağları (Artificial Neural Network) Doç.Dr. M. Ali Akcayol Yapay Sinir Ağları Biyolojik sinir sisteminden esinlenerek ortaya çıkmıştır. İnsan beyninin öğrenme, eski

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II)

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II) 7.2 Fonksiyon ve Fonksiyon Tanımları (I) Tanım kümesindeki her elemanın değer kümesinde bir ve yalnız bir görüntüsü varsa, tanım kümesinden değer kümesine olan bağıntıya fonksiyon denir. Fonksiyonu f ile

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon Korelasyon- (lineer korelasyon) Açıklayıcı (Bağımsız) Değişken x çalışma zamanı ayakkabı numarası İki değişken arasındaki ilişkidir. Günlük sigara sayısı SAT puanı boy Yanıt (Bağımlı)

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 3 Araliık 7 Hazırlayan: Yamaç Pehlivan Başlama saati: : Bitiş Saati: 3:4 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET Yrd. Doç. Dr. Emine AYDIN Yrd. Doç. Dr. Elif BORU 1 GENEL YÜKLEME DURUMUNDA GERİLME ANALİZİ Daha önce incelenen gerilme örnekleri eksenel yüklü yapı elemanları

Detaylı

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x,x,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x + a x + L + a x = b n n a x + a x + L + a x = b n n a x + a

Detaylı

ZAMAN SERİLERİNDE REGRESYON ANALİZİ

ZAMAN SERİLERİNDE REGRESYON ANALİZİ ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 10 Nesne / Yüz Tespiti ve Tanıma Alp Ertürk alp.erturk@kocaeli.edu.tr Nesne Tespiti Belirli bir nesnenin sahne içindeki konumunun tespitidir Tespit edilecek nesne önceden

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Sınıflandırma yöntemleri Karar ağaçları ile sınıflandırma Entropi Kavramı ID3 Algoritması C4.5

Detaylı

Özdeğer ve Özvektörler

Özdeğer ve Özvektörler Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin

Detaylı

ROBOTLARIN YAPAY SİNİR AĞLARI KULLANILARAK DENETİMİ.

ROBOTLARIN YAPAY SİNİR AĞLARI KULLANILARAK DENETİMİ. ROBOTLARIN YAPAY SİNİR AĞLARI KULLANILARAK DENETİMİ Murat ŞEKER 1 Ahmet BERKAY 1 EMurat ESİN 1 ArşGör,Gebze Yüksek Teknoloji Enstitüsü, Bilgisayar MühBöl 41400 Gebze mseker@bilmuhgyteedutr aberkay@bilmuhgyteedutr,

Detaylı

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 8. HAFTA BLM323 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 MATRİSLER Matris veya dizey, dikdörtgen bir sayılar tablosu

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 2 Kuvvet Vektörleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö.Soyuçok. 2 Kuvvet Vektörleri Bu bölümde,

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İzdüşüm merkezi(o):

Detaylı

ELEKTROMANYETİK DALGALAR DERSİ YAZ DÖNEMİ

ELEKTROMANYETİK DALGALAR DERSİ YAZ DÖNEMİ DERS İÇERİĞİNE GENEL BAKIŞ ELEKTROMANYETİK DALGALAR DERSİ 2015-2016 YAZ DÖNEMİ Yrd. Doç. Dr. Seyit Ahmet Sis seyit.sis@balikesir.edu.tr, MMF 7. kat, ODA No: 3, Dahili: 5703 1 DERS İÇERİĞİNE GENEL BAKIŞ

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Öğr. Gör. Volkan ÖĞER MAT 1010 Matematik II 1/ 172 Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası)

Detaylı

Fonksiyon Minimizasyonunda Simulated Annealing Yöntemi

Fonksiyon Minimizasyonunda Simulated Annealing Yöntemi 07-04-006 Ümit Akıncı Fonksiyon Minimizasyonunda Simulated Annealing Yöntemi İçindekiler Fonksiyon Minimizasyonu Metropolis Algoritması. Algoritma.......................................... Bir boyutlu

Detaylı

Soru 1: Şekil-1 de görülen düzlem gerilme hali için: b) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir

Soru 1: Şekil-1 de görülen düzlem gerilme hali için: b) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir Soru 1: Şekil-1 de görülen düzlem gerilme hali için: a) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir eden gerilme bileşenlerini, gerilme dönüşüm denklemlerini kullanarak

Detaylı

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21 İçindekiler Önsöz İkinci Basım için Önsöz Türkçe Çeviri için Önsöz Gösterim xiii xv xvii xix 1 Giriş 1 1.1 Yapay Öğrenme Nedir?......................... 1 1.2 Yapay Öğrenme Uygulamalarına Örnekler...............

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

Başlangıç Temel Programının Bilinmemesi Durumu

Başlangıç Temel Programının Bilinmemesi Durumu aşlangıç Temel Programının ilinmemesi Durumu İlgili kısıtlarda şartlar ( ) ise bunlara gevşek (slack) değişkenler eklenerek eşitliklere dönüştürülmektedir. Ancak sınırlayıcı şartlar ( ) veya ( = ) olduğu

Detaylı