4. TERMODİNAMİĞİN İKİNCİ YASASI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "4. TERMODİNAMİĞİN İKİNCİ YASASI"

Transkript

1 4. TERMODİNAMİĞİN İKİNCİ YASASI Bir odanın elektrik direncinden geçen akımla ısıtılması gözönüne alınsın. Birinci yasaya göre direnç tellerine sağlanan elektrik enerjisi, odaya ısı olarak geçen elektrik enerjisine eşit olacaktır. Bu hal değişimini diğer yönde uygulayalım; telleri ısıtarak tellerde eşit miktarda elektrik enerjisi sağlamak mümkün değildir. Yani hal değişimi belirli bir yönde gerçekleşirken, tersi olan yönde gerçekleşmemektedir. Termodinamiğin ikinci yasası hal değişiminin yönünü belirler. Termodinamiğin ikinci yasasının değişik biçimlerde tanımlaması yapılabilir. Bu tanımlamalardan ikisi termodinamik çevrim gerçekleştirerek çalışan bazı mühendislik sistemleriyle ilgili olarak bu bölüm içinde ele alınacaktır. İkinci yasa yalnızca hal değişimlerinin yönünü belirlemez, aynı zamanda enerjinin niceliğinin yanında niteliğinin de olduğunu ortaya koyar. İkinci yasa enerjinin niteliğinin yanısıra, bir hal değişimi sırasında bu niteliğin nasıl azaldığının belirlenmesi için gerekli olan vasıtaları da sağlar. Termodinamiğin ikinci yasası, yaygın olarak kullanılan ısı makineleri (motorlar) ve soğutma makineleri gibi temel mühendislik sistemlerinin verimlerinin kuramsal sınırlarının ve kimyasal reaksiyonların tamamlanma oranlarının belirlenmesinde de kullanılır Isıl Enerji Depoları Termodinamiğin ikinci yasası açıklanırken, sıcaklığında herhangi bir değişim olmadan sonlu miktarda ısıyı verebilecek ya da alabilecek büyüklükte ısıl enerji sığasına (mc, kütle xözgül ısı) sahip olduğu varsayılan bir cisimden yaygın olarak yararlanılır. Böyle bir cisim bir ısıl enerji deposu, (ısıl depo) (okyanuslar, atmosfer, büyük göller, akarsular., vs) olarak tanımlanır. İkifazlı bir sistem de sabit sıcaklıkta kalarak büyük miktarda enerji verebilme veya alabilme yeteneğine sahip olduğundan bir ısıl depo olarak düşünülebilir. Bir cismin ısıl depo olarak tanımlanabilmesi için kütlesinin çok büyük olması gerekmez. Örneğin, televizyondan çevreye olan ısı geçişini incelerken odadaki hava bir ısıl enerji deposu olarak algılanabilir, çünkü televizyondan odaya geçen ısı, oda sıcaklığını duyulur ölçüde etkileyecek büyüklükte değildir. Isıl enerjinin alındığı depoya, yüksek sıcaklıkta ısıl enerji deposu veya kaynak, ısıl enerjinin verildiği depoya da düşük sıcaklıkta ısıl enerji deposu veya kuyu adı verilir. Isıl enerji depoları, enerjiyi ısı şeklinde sağladıkları veya aldıkları için çoğunlukla ısı depoları veya ısıl depolar olarak tanımlanırlar Isı Makineleri Termodinamik olarak iş doğrudan ve tümüyle ısıya dönüşebildiği halde, ısının işe dönüştürülmesi için bazı sistemlere gereksinim duyulur ve bu sistemler ısı makineleri olarak tanımlanırlar. Isı makineleri; Yüksek sıcaklıkta bir ısıl enerji deposundan ısıl enerji alırlar (güneş enerjisi, kazan, nükleler reaktörler). 1

2 Alınan bu ısıl enerjinin bir bölümünü işe (genellikle döner mil işine) dönüştürürler. Alınan enerjinin geri kalan bölümünü (atık ısı) akarsu, çevre, hava gibi düşük sıcaklıkta bir ısıl enerji deposuna verirler. Isı makinelerinde gerçekleşen hal değişimleri bir çevrim oluşturur. Isı makinelerinde ısı geçişleri bir akışkan aracılığıyla gerçekleşir. Bu akışkana aracı akışkan (iş akışkanı) denir. Isı makinesi tanımına en çok uyan iş üreten makine, dıştan yanmalı bir motor olan buharlı güç santralleridir (Şekil.4.1). Bu güç santralinde, yanma makinenin dışında gerçekleşir ve bu sırada açığa çıkan ısıl enerji iş akışkanı olan suya ısı şeklinde aktarılır. Eneji kaynağı (kazan) Q giren Sistem sınırı Kazan W giren W çıkan Türbin Yoğuşturucu Eneji kuyusu (atmosfer) Q çıkan Şekil.4.1. Buharlı güç santralinin şematik gösterimi. Şekil.4.1 de görülen güç santralinde görülen bazı terimler aşağıda açıklanmıştır. Q giren : Kazanda yüksek sıcaklıktaki ısı kaynağından suya geçen ısı miktarı, Q çıkan : Yoğuşturucuda buhardan düşük sıcaklıktaki kuyuya verilen ısı miktarı, W çıkan : Türbinde genişlerken buhar tarafından üretilen iş miktarı, W giren : Suyu kazan basıncına sıkıştırmak için gerekli olan iş miktarı, Bu güç santralinin net işi, santralin yaptığı toplam net iş ile santrale sağlanması gereken iş arasındaki farktır. Çevrimi oluşturan bir dizi hal değişiminden geçen kapalı bir sistem için iç enerji değişimi olduğundan sistemin net işi, net ısı alışverişine eşit olacaktır. 2

3 4.3. Isıl verim (4.2) denkleminde bulunan Q çıkan terimi çevrimi tamamlamak için atılması gereken enerji miktarını gösterir ve hiç bir zaman sıfır olmaz. Buna göre bir ısı makinesinin net işi her zaman giren ısıl enerjiden azdır ve ısı makinesine giren ısıl enerjinin ancak bir kısmı işe dönüşebilir. Bir ısı makinesine girilen ısıl enerjinin net işe dönüşebilen bölümü, ısı makinesinin etkenliğinin bir ölçüsüdür ve ısıl verim (η th ) olarak tanımlanır. Etkenlik veya verimin genel tanımı, elde edilmek istenen değeri, bunu elde etmek için harcanması gereken değere bölerek yapılabilir. Isı makineleri için elde edilmek istenen değer yapılan net iştir, bu amaçla harcanması gereken değer ise aracı akışkana verilen ısıl enerjidir. Bu durumda ısı makinesinin ısıl verimi şöyle tanımlanabilir; Kaynak Giren ısı 100 kj 100 kj Çıkan net iş 20 kj Çıkan net iş 30 kj Atık ısı 80 kj Kuyu Atık ısı 70 kj th, 1 = %20 th, 2 = %30 Şekil.4.2. Bazı ısı makineleinin verimi daha büyüktür. Isıl verim, bir ısı makinesinin aldığı ısıyı hangi oranda işe dönüştürdüğünün bir ölçüsüdür. Mühendislik uygulamalarında çok önemli yer tutan ısı makineleri, soğutma makineleri ve ısı pompaları T H sıcaklığında bir ortam (yüksek sıcaklıkta ısıl enerji deposu) ile T L sıcaklığında bir ortam (düşük sıcaklıktaki ısıl enerji deposu) arasında bir çevrim oluşturacak şekilde çalışırlar. Q H, çevrimle T H sıcaklığındaki sıcak ortam arasındaki ısı geçişinin mutlak değeri, Q L, çevrimle T L sıcaklığındaki soğuk ortam arasındaki ısı geçişinin mutlak değeri olmak üzere ısı makinesi için çıkan net iş ve ısıl verim aşağıdaki gibi yazılabilir; 3

4 T H, yüksek sıcaklıktaki depo Q H W net, çıkış IM Q L T L düşük sıcaklığındaki depo Şekil.4.3. Bir ısı makinesinin şematik gösterimi. Q H ve Q L her zaman artı değer alan büyüklükler olduğundan bir ısı makinesinin ısıl verimi her zaman 1 den küçüktür. İş yapan makinelerin ısıl verimleri şaşılacak ölçüde düşüktür. Yakından bildiğimiz otomobil motorlarının ısıl verimi % 25 dolayındadır. Bir başka deyişle bir otomobil motoru, benzinin kimyasal enerjisinin yaklaşık % 25 sini mekanik işe dönüştürür. Bu değer dizel motorları ve gaz türbini için yaklaşık %30, buharlı güç santralleri için % 40 kadardır Termodinamiğin İkinci Yasasının Kelvin-Planck İfadesi İdeal koşullarda gerçekleşse bile, bir ısı makinesinin çevrimini tamalayabilmesi için düşük sıcaklıktaki bir ısıl depoya bir miktar enerji vermesi gerekir. dolaysıyla, hiç bir ısı makinesi aldığı ısının tamamını faydalı işe dönüştüremez. Termodinamik bir çevrim gerçekleştirerek çalışan bir makinenin sadece bir kaynaktan ısı alıp, net iş üretmesi olanaksızdır. Başka bir deyişle bir ısı makinesi, sürekli çalışabilmek için hem yüksek sıcaklıktaki bir ısıl enerji deposuyla hem de düşük sıcaklıktaki bir ısıl enerji deposuyla ısı alışverişinde bulunmak zorundadır. Kelvin-Planck ifadesine göre hiçbir ısı makinesinin ısıl verimi % 100 olamaz veya bir güç santralinin sürekli çalışabilmesi için aracı akışkanın kazandan ısıl enerji almasının yanısıra çevre ortama kazandan da ısıl enerji aktarması gerekir. 4

5 4.5. Soğutma Makineleri ve Isı Pompaları Isı geçişi yüksek sıcaklıktaki bir ortamdan düşük sıcaklıktaki ortama olur. Düşük sıcaklıktaki bir ortamdan yüksek sıcaklıktaki bir ortama ısı geçişi kendiliğinden gerçekleşmez ve ancak soğutma makineleri olarak bilinen özel aygıtların kullanımı ile gerçekleşebilir. Soğutma makineleri de ısı makineleri gibi bir çevrimi esas alarak çalışır. Bir soğutma çevriminde kullanılan aracı akışkana soğutucu akışkan adı verilir. En yaygın kullanılan soğutma çevrimi, buhar sıkıştırmalı soğutma çevrimidir ve aşağıdaki şekilde gösterilen dört elemanla gerçekleştirilir: kompresör, yoğuşturucu, kısılma vanası ve buharlaştırıcı. Q H Q L Soğutulan ortam Şekil.4.4. Bir soğutma sisteminin ana elemanları. Soğutucu akışkan kompresöre buhar olarak girer ve burada yoğuşturucu basıncına kadar sıkıştırılır. Kompresörden nispeten yüksek bir sıcaklıkta çıkan akışkan, yoğuşturucu borularından geçerken çevre ortama ısı vererek (Q H ) soğur ve yoğunlaşır. Akışkan yoğuşturucudan (buzdolabı arkasındaki ince borular) sonra kılcsl bir boruya girer ve kısılma etkisiyle akışkanın basıncı ve sıcaklığı önemli oranda düşer. Düşük sıcaklıktaki soğutucu akışkan, daha sonra buharlaştırıcıya (buzfolabı dondurucusu) gider ve burada soğutulan ortamdan ısı alarak (Q L ) buharlaşır. Soğutucu akışkanın buharlaştırıcıdan ayrılarak kompresöre girmesi ile çevrim tamalanmış olur. Ilık ortam, T H > T L Q H Giren iş W net, giren SM İstenen sonuç, Q L, Soğutulan ortam, T L Şekil.4.5. Bir soğutma makinesinin amacı, soğutulan ortamdan Q L ısısını çekmektir. 5

6 Etkinlik Katsayısı Bir soğutma makinesinin verimi etkinlik katsayısı ile ifade edilir ve COP SM ile gösterilir. Soğutma makinesinin amacı, soğutulan ortamdan ısı çekmektir (Q L ) ve bu amacı gerçekleştirmek için iş yapılması gerekir (W net, giren ). Bir soğutma makinesinin etkinlik katsayısı aşağıdaki gibi ifade edilir. Bir çevrim gerçekleştirerek çalışan makineler için enerjinin korunumu ilkesi aşağıdaki gibi yazılabilir. COP SM değeri birden büyük olabilir, başka bir deyişle soğutulan ortamdan çekilen ısı miktarı (Q L ) soğutma makinesine verilen işten (W net, giren ) büyük olabilir Isı Pompaları Düşük sıcaklıkta bir ortamdan yüksek sıcaklıkta bir ortama ısıl enerji aktaran bir başka makina da ısı pompasıdır. Soğutma makineleri ve ısı pompaları aynı çevrimi gerçekleştirirler fakat kullanım amaçları farklıdır. Isıtılan ortam, T H > T L İstenen sonuç IP Q H Giren iş W net, giren Q L, Soğutulan ortam, T L Şekil.4.6. Bir ısı pompasının amacı, ılık ortama Q H ısısını vermektir. Bir soğutma makinesinin amacı, düşük sıcaklıktaki ortamdan ısı çekerek çevre sıcaklığının altında tutmaktır. Daha sonra çevreye veya yüksek sıcaklıktaki bir ortama ısı geçişi, çevrimi tamamlamak için yapılması zorunlu bir işlemdir fakat amaç değildir. 6

7 Isı pompasının amacı ise ısıtılan bir ortamın yüksek sıcaklıkta tutulmasını sağlamaktır. Bu işlevi yerine getirmek için, düşük sıcaklıktaki bir ısıl enerji deposundan alınan ısı, ısıtılmak istenen ortama verilir. Düşük sıcaklıktaki ısıl enerji deposu genellikle soğuk çevre havası, kuyu suyu veya toprak, ısıtılmak istenen ortam ise bir evin içidir. Bir ısı pompasına giren iş, soğuk dış ortamdan alınan ısıl enerjinin ılık olan iç ortama verilmesini sağlar. Bir buzdolabı kışın kapısı açık olarak pencerenin önüne yerleştirilirse, dışarıdaki soğuk havadan aldığı ısıl enerjiyi arkasındaki borular aracılığıyla eve verecektir, başka bir deyişle ısı pompası gibi çalışacaktır. Bir ısı pompasının etkiliği de etkinlik katsayısı COP IP ile ifade edilir. Bu eşitliklerde kullanılan ısı ve iş terimleri için birim zamandaki değerleri de ( ) kullanılabilir. (4.8) ve (4.10) denklemleri karşılaştırıldığında, QH ve QL değerlerinin eşit olması durumunda, aşağıdaki eşitlik sağlanır. Buna göre, COP SM değeri her zaman pozitif olacağından, ısı pompasının etkinlik katsayısı (COP IP ) her zaman 1 den büyüktür. Örnek.4.1. Bir buzdolabının yiyecek bölümünün +4 o C sıcaklıkta tutulması için bu bölümden 360 kj/dak ısı çekilmektedir. Buzdolabını çalıştırmak için 2 kw güç gerekli olduğuna göre, buzdolabının etkinlik katsayısını ve buzdolabının bulunduğu ortama atılan ısı miktarını hesaplayınız. Çözüm.4.1. Buzdolabı bir soğutmamakinesi gibi çalıştığı için etkinlik katsayısı aşağıdaki gibi yazılır; Buna göre, buzdolabının tükettiği her kw enerji için soğutulan bölmeden 3 kj ısı çekilmektedir. Buzdolabının bulunduğu mutfağa verilen (atılan) ısı, çevrim gerçekleştirerek çalışan makineler için enerjinin korunumu ilkesine göre belirlenebilir. Buna göre, Mutfağa verilen ısı mutfağın iç enerjisini (sıcaklığını) artırmaktadır. Bu durum, enerjinin bir biçimden diğerine dönüşebileceğini, bir ortamdan başka bir ortama akatrılabileceğini; ancak yok olmayacağını göstermektedir. 7

8 Termodinamiğin İkinci Yasasının Clausius İfadesi İkinci yasanın, ısı makineleriyle ilgili olarak incelenen Kelvin-Plank ifadesi, diğeri de soğutma makineleri ve ısı pompaları ile ilgili olan Clausius ifadesi, olmak üzere iki tanımlaması vardır. Clausius ifadesi; Termodinamik bir çevrim gerçekleştirerek çalışan ve düşük sıcaklıktaki bir ortamdan aldığı ısıyı yüksek sıcaklıktaki bir ortama aktarmak dışında hiçbir enerji etkileşiminde bulunmayan bir makine tasarlamak olanaksızdır Tersinir ve Tersinmez Hal Değişimleri Tersinir hal değişimi, bir yönde gerçekleştikten sonra, çevre üzerinde hiçbir iz bırakmadan ters yönde de gerçekleşebilen hal değişimleridir. Başka bir deyişle, ters yöndeki hal değişiminden sonra hem sistem hem de çevre ilk hallerine geri dönerler. Bu ancak her iki yöndeki hal değişimi birlikte ele alındığı zaman, net ısı geçişi veya net iş sıfır olursa mümkündür. Tersinir olmayan hal değişimi tersinmez hal değişimi diye adlandırılır. Doğada tersinir hal değişimine rastlanmaz. Bazı gerçek hal değişimleri, tersinir hal değişimlerine yaklaşabilir fakat hiçbir zaman tersinir olmaz. Otomobil motorları, gaz ve buhar türbinleri gibi iş yapan makineler, en çok işi tersinir bir hal değişimi sırasında yapar. Benzer olarak kompresör, fan ve pompa gibi çalışmaları için iş tüketen makineler de en az işi tersinir hal değişimi sırasında tüketirler. Tersinmezlikler: Sürtünme, dengesiz genişleme, iki gazın karıştırılması, sonlu sıcaklık farkında ısı geçişi, elektrik direnci, katıların elastik olmayan şekil değiştirmeleri ve kimyasal reaksiyonlar bir hal değişiminin tersinmez olmasına neden olan etkenlerdir Carnot Çevrimi Bir çevrim yaparak çalışan ısı makineleri, çevrimin bir bölümünde iş akışkanı iş yaparken, diğer bölümünde iş akışkanı üzerinde iş yapılır ve bu iki iş arasındaki fark ısı makinesi tarafından yapılan net işi verir. Net iş ve dolayısıyla çevrimin verimi, tersinir hal değişimleri uygulanarak en yüksek değere çıkarılabilir. Hal değişimlerindeki tersinmezlikler yok edilemeyeceği için gerçek uygulamalarda tersinir çevrimler başarılamaz. Ancak tersinir çevrime göre çalışan ısı makineleri ve soğutma makineleri gerçek tasarımlar için model oluştururlar. Tersinir bir çevrim olan Carnot çevrimi, verilen iki sıcaklık sınırı arasında en yüksek verime sahip olan çevrimdir. Carnot çevrimine göre çalışan kuramsal ısı makinesi ise Carnot ısı makinesi diye bilinir. Carnot çevrimi uygulamada gerçekleştirilemez, fakat gerçek çevrimlerin verimlerini Carnot çevriminin verimiyle karşılaştırmak ve gerçek çevrimlerde buna göre iyileştirmeler yapmak mümkündür. Carnot çevrimi ikisi sabit sıcaklıkta, ikisi adiyabatik olmak üzere dört hal değişiminden oluşur ve kapalı bir sistemde veya sürekli akışlı sistemlerde gerçekleştirilebilir. Carnot çevrimini oluşturan dört tersinir çevrim aşağıda özetlenmiştir (Şekil.4.7). Tersinir sabit sıcaklıkta (İzotermal) genleşme (1-2 hal değişimi, T H sabit): Başlangıçta T H sabit sıcaklığında bulunan gaz yavaşça 2 konumuna varıncaya kadar genleşmekte ve çevreye karşı iş yapmaktadır. Gaz genişlerken, sıcaklığında dt diferansiyel değeri kadar düşme eğilimi olduğunda kaynaktan gaza ısı geçişi olur ve sıcaklık T H değerinde sabit kalır. 8

9 İzolasyon İzolasyon Tersinir Adiyabatik genleşme (2-3 hal değişimi, sıcaklık T H den T L ye düşmektedir): 2 halinde silindir kafası yalıtılarak sistem adiyabatik hale getirliyor. Gaz çevreye karşı iş yaparak sıcaklığı T H den T L ye dşünceye kadar yavaşça genişlemeye devam etmektedir. Enerji kaynağı, T H Enerji kuyusu, T L Q L Q H Şekil.4.7. Kapalı bir sistemde Carnot Çevrimi. Tersinir sabit sıcaklıkta (İzotermal) sıkıştırma (3-4 hal değişimi, T L sabit): 3 halinde silindirin ucundaki yalıtım kaldırılarak silindirin kafası T L sabit sıcaklığında olan kuyu ile temas ettirilmektedir. Daha sonra piston bir kuvvet ile ittirilerek gaz üzerinde iş yapılmaktadır. Gaz sıkıştıkça sıcaklığı yükselme eğilimine geçer ancak gazdan kuyuya ısı geçişi olarak sıcaklığın dt miktarı kadar artması önlenir ve sıcaklık T L de sabit kalır. Gazın sıkıştırılması piston 4 konumuna gelinceye kadar devam eder ve bu arada gazdan Q L kadar ısı çekilir. Tersinir Adiyabatik sıkıştırma (4-1 hal değişimi, sıcaklık T L den T H ye yükselmektedir): 4 halinde silindir kafası ile temas eden düşük sıcaklıktaki ısı deposu kaldırılarak silindir kafası yalıtılmakta ve gaz tersinir olarak sıkıştırılarak ilk haline getirilmektedir ve sıcaklık T L den T H ye kadar yükselerek çevrim tamamlanmaktadır. Bu çevrimin P-V diyagramında gösterimi Şekil.4.8 de verilmiştir ve eğriler arasında kalan taralı bölgenin alanı çevrim sırasında elde edilen net işi verir. T H = st W net, çıkan T L = st Şekil.4.8. Carnot çevriminin P-V diyagramı. 9

10 Ters Carnot Çevrimi Carnot ısı makinesi çevrimi tümden tersinir bir çevrimdir. Bu nedenle onu oluşturan tüm hal değişimleri ters yönde gerçekleştirilebilir. Bu yapıldığı zaman elde edilen çevrime Carnot soğutma makinesi çevrimi adı verilir. Bu çevrimde, Carnot çevrimine göre, yalnızca ısı ve iş etkileşimlerinin yönleri değişmektedir. T H = st W net, gir T L = st Şekil.4.9. Ters Carnot çevriminin P-V diyagramı. Carnot İlkeleri Aynı ısıl enerji depoları arasında çalışan tersinmez bir ısı makinesiyle, tersinir bir ısı makinesi karşılaştırıldığı zaman, tersinmez ısı makinesinin verimi her zaman tersinir ısı makinesinin veriminden daha azdır. Aynı ısıl enerji depoları arasında çalışan tüm tersinir ısı makinelerinın verimleri eşittir Termodinamik Sıcaklık Ölçeği Sıcaklığı ölçmek için kullanılan maddelerin özelliklerinden bağımsız olan sıcaklık ölçeğine, termodinamik sıcaklık ölçeği adı verilir. Isıl enerji depoları, sıcaklıkları ile nitelendirilir ve tersinir ısı makinelerinin ısıl verimleri yalnızca ısıl depo sıcaklıklarının fonksiyonudur. ( Lord Kelvin e göre kendi adıyla anılan aşağıdaki termodinamik sıcaklık ölçeği tanımlanmıştır. Bu eşitlikte yer alan sıcaklık K olarak alınıp mutlak sıcaklık olarak tanımlanır. 1 K nin büyüklüğü, mutlak sıfır ile suyun üçlü nokta sıcaklığı arasınadki sıcaklık farkının 1/ sı olarak tanımlanır. Kelvin ve Celcius ölçeklerinde birim sıcaklık büyüklükleri aynıdır Carnot Isı Makinesi Tersinir Carnot çevrimiyle çalışan sanal ısı makinesine Carnot ısı makinesi adı verilir. Tersinir veya tersinmez herhangi bir ısı makinesinin verimi aşağıdaki gibi verilir; 10

11 Burada Q H ısı makinesine, T H sıcaklığındaki ısıl enerji deposundan geçen ısı, Q L ise ısı makinesinin T L sıcaklığındaki ısıl enerji deposuna verdiği ısıdır. Tersinir ısı makineleri için yukarıdaki denklemde yer alan ısı geçişlerinin oranı yerine enerji depolarının mutlak sıcaklıklarının oranı yazılır. Bu durumda Carnot veya başka bir tersinir ısı makinesinin ısıl verimi aşağıdaki gibi ifade edilir ve genellikle Carnot verimi olarak bilinir; Bu verim T H ve T L sıcaklıkları arasındaki iki ısıl enerji deposu arasında çalışan bir ısı makinesinin sahip olabileceği en yüksek verimdir. Bu sıcaklık sınırları arasında çalışan tüm tersinmez (gerçek) ısı makinelerinın verimleri bu değerden daha düşük olacaktır Carnot Soğutma Makinesi ve Isı Pompası Ters Carnot çevrimine göre çalışan bir soğutma makinesi veya ısı pompası, Carnot soğutma makinesi veya Carnot ısı pompası olarak bilinir. Tersinir veya tersinmez olsun, bir soğutma makinesinin veya ısı pompasının etkinlik katsayısı sırasıyla aşağıda verilmektedir; Burada Q L, düşük sıcaklıktaki ortamdan çekilen ısı miktarı, Q H ise yüksek sıcaklıktaki ortama atılan ısı miktarlarıdır. Tersinir (Carnot) bir soğutma makinesinin veye ısı pompasının etkinlik katsayıları, ısıl enerji depolarının mutlak sıcaklıklarına göre aşağıda verilmektedir. Bu değerler, T H ve T L sıcaklık sınırları arasında çalışan bir soğutma amkinesi veya ısı pompasının sahip olabileceği en yüksek etkinlik katsayılarıdır. Bu sıcaklık sınırları arasında çalışan tüm gerçek soğutma makineleri ve ısı pompalarının etkinlik katsayıları daha düşük olacaktır. Örnek.4.2. Bir Carnot soğutma çevrimi kapalı bir sistemde, iş akışkanı olarak 0.8 kg R-134a kullanılarak doymuş sıvı-buhar karışımı bölgesinde gerçekleştirilmektedir. Çevrimin en yüksek ve en düşük sıcaklıkları sırasıyla, 20 o C ve -8 o C olarak tespit edilmiştir. Çevrimin ısı çıkışı sonunda iş akışkanının doymuş sıvı durumunda ve çevrime net iş girişinin 15 kj olduğu belirlenmiştir. ısı girişi süreseince buharlaşan soğutucunun kütlesel oranını ve ısı çıkışı işlemi sonundaki basıncı belirleyiniz. Çözüm.4.2. En yüksek ve en düşük sıcaklıklar belli olduğundan, çevrimin etkinlik katsyısı aşağıdaki gibi hesaplanır; 11

12 Performans katsayısının tanımından faydalanarak soğutma miktarı; R134-a nın -8 oc sıcaklıktaki buharlaşma entalpisi, h fg = kj/kg okunur (Tablo-A11). Buna göre ısı çekerken buharlaşan soğutucu akışkan miktarı, Buna göre, ısı giriş sürecinde buharlaşan kütlenin toplam soğutucu akışkan kütlesine oranı, Isı atılması işlemi sonrasındaki bsınç, ısı atılma sıcaklığındaki basınç olacaktır. 12

4. TERMODİNAMİĞİN İKİNCİ YASASI

4. TERMODİNAMİĞİN İKİNCİ YASASI 4. TERMODİNAMİĞİN İKİNCİ YASASI Bir odanın elektrik direncinden geçen akımla ısıtılması gözönüne alınsın. Birinci yasaya göre direnç tellerine sağlanan elektrik enerjisi, odaya ısı olarak geçen elektrik

Detaylı

Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI

Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI İKİNCİ YASANIN ESAS KULLANIMI 1. İkinci yasa hal değişimlerinin yönünü açıklayabilir. 2. İkinci yasa aynı zamanda enerjinin niceliği kadar niteliğinin de olduğunu öne

Detaylı

Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI. Bölüm 6: Termodinamiğin İkinci Yasası

Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI. Bölüm 6: Termodinamiğin İkinci Yasası Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI 1 Amaçlar Termodinamiğin ikinci yasasına giriş yapmak.. Termodinamiğin birinci ve ikinci yasalarını birlikte sağlayan geçerli hal değişimlerini belirlemek. Isıl enerji

Detaylı

TERMODİNAMİĞİN İKİNCİ YASASI I

TERMODİNAMİĞİN İKİNCİ YASASI I TERMODİNAMİĞİN İKİNCİ YASASI I Termodinamiğin İkinci Yasasına Giriş Bu işlemler birinci kanuna uymalarına rağmen, gerçekleşemezler. Hal değişimleri belirli bir yönde gerçekleşir. Ters yönde gerçekleşmez.

Detaylı

Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI. Bölüm 6: Termodinamiğin İkinci Yasası

Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI. Bölüm 6: Termodinamiğin İkinci Yasası Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI 1 Amaçlar Termodinamiğin ikinci yasasına giriş yapmak.. Termodinamiğin birinci ve ikinci yasalarını birlikte sağlayan geçerli hal değişimlerini belirlemek. Isıl enerji

Detaylı

Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI. Bölüm 6: Termodinamiğin İkinci Yasası

Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI. Bölüm 6: Termodinamiğin İkinci Yasası Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI 1 Amaçlar Termodinamiğin ikinci yasasına giriş yapmak.. Termodinamiğin birinci ve ikinci yasalarını birlikte sağlayan geçerli hal değişimlerini belirlemek. Isıl enerji

Detaylı

SOĞUTMA ÇEVRİMLERİ 1

SOĞUTMA ÇEVRİMLERİ 1 SOĞUTMA ÇEVRİMLERİ 1 SOĞUTMA MAKİNALARI VE ISI POMPALARI Soğutma makinesinin amacı soğutulan ortamdan ısı çekmektir (Q L ); Isı pompasının amacı ılık ortama ısı vermektir (Q H ) Düşük sıcaklıktaki ortamdan

Detaylı

Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI

Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI Prof. Dr. Hakan F. ÖZTOP 1 Bu bölümde elde etmek istediklerimiz; Termodinamiğin ikinci yasasına giriş yapmak. Termodinamiğin birinci ve ikinci yasalarını birlikte sağlayan

Detaylı

Bölüm 2 TERMODİNAMİĞİN İKİNCİ YASASI

Bölüm 2 TERMODİNAMİĞİN İKİNCİ YASASI ME412 - Soğutma Teknolojisi Bahar, 2017 Bölüm 2 TERMODİNAMİĞİN İKİNCİ YASASI Ceyhun Yılmaz Afyon Kocatepe Üniversitesi Teknoloji Fakültesi Makine Mühendisliği Bölümü Amaçlar Termodinamiğin ikinci yasasına

Detaylı

SORULAR VE ÇÖZÜMLER. Adı- Soyadı : Fakülte No :

SORULAR VE ÇÖZÜMLER. Adı- Soyadı : Fakülte No : Adı- Soyadı : Fakülte No : Gıda Mühendisliği Bölümü, 2014/2015 Öğretim Yılı, Güz Yarıyılı 00391-Termodinamik Dersi, Dönem Sonu Sınavı Soru ve Çözümleri 06.01.2015 Soru (puan) 1 (15) 2 (15) 3 (15) 4 (20)

Detaylı

NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER

NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER Adı- Soyadı : Fakülte No : Gıda Mühendisliği Bölümü, 2014/2015 Öğretim Yılı, Güz Yarıyılı 00391-Termodinamik Dersi, Bütünleme Sınavı Soru ve Çözümleri 23.01.2015 Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20)

Detaylı

TERMODİNAMİK SINAV HAZIRLIK SORULARI BÖLÜM 4

TERMODİNAMİK SINAV HAZIRLIK SORULARI BÖLÜM 4 Kapalı Sistem Enerji Analizi TERMODİNAMİK SINAV HAZIRLIK SORULARI BÖLÜM 4 4-27 0.5 m 3 hacmindeki bir tank başlangıçta 160 kpa basınç ve %40 kuruluk derecesinde soğutucu akışkan-134a içermektedir. Daha

Detaylı

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ Kütlenin korunumu: Kütle de enerji gibi korunum yasalarına uyar; başka bir deyişle, var veya yok edilemez. Kapalı sistemlerde: Sistemin kütlesi

Detaylı

Bölüm 8 EKSERJİ: İŞ POTANSİYELİNİN BİR ÖLÇÜSÜ. Bölüm 8: Ekserji: İş Potansiyelinin bir Ölçüsü

Bölüm 8 EKSERJİ: İŞ POTANSİYELİNİN BİR ÖLÇÜSÜ. Bölüm 8: Ekserji: İş Potansiyelinin bir Ölçüsü Bölüm 8 EKSERJİ: İŞ POTANSİYELİNİN BİR ÖLÇÜSÜ 1 Amaçlar Termodinamiğin ikinci yasası ışığında, mühendislik düzeneklerinin verimlerini veya etkinliklerini incelemek. Belirli bir çevrede verilen bir halde

Detaylı

KMB405 Kimya Mühendisliği Laboratuvarı II. Isı Pompası Deneyi. Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1

KMB405 Kimya Mühendisliği Laboratuvarı II. Isı Pompası Deneyi. Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1 Isı Pompası Deneyi Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1 1.Amaç Isı pompasının çalışma prensibinin deney üzerinde gösterilmesi ve ısı pompası kullanılarak performans katsayılarının

Detaylı

NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER

NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER Adı- Soyadı: Fakülte No : Gıda Mühendisliği Bölümü, 2015/2016 Öğretim Yılı, Güz Yarıyılı 00391-Termodinamik Dersi, Bütünleme Sınavı Soru ve Çözümleri 20.01.2016 Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20)

Detaylı

ISI POMPASI DENEY FÖYÜ

ISI POMPASI DENEY FÖYÜ T.C BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK ve MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ ISI POMPASI DENEY FÖYÜ 2015-2016 Güz Yarıyılı Prof.Dr. Yusuf Ali KARA Arş.Gör.Semih AKIN Makine

Detaylı

Bölüm 7 ENTROPİ. Bölüm 7: Entropi

Bölüm 7 ENTROPİ. Bölüm 7: Entropi Bölüm 7 ENTROPİ 1 Amaçlar Termodinamiğin ikinci kanununu hal değişimlerine uygulamak. İkinci yasa verimini ölçmek için entropi olarak adlandırılan özelliği tanımlamak. Entropinin artış ilkesinin ne olduğunu

Detaylı

Otto ve Dizel Çevrimlerinin Termodinamik Analizi. Bölüm 9: Gaz Akışkanlı Güç Çevrimleri

Otto ve Dizel Çevrimlerinin Termodinamik Analizi. Bölüm 9: Gaz Akışkanlı Güç Çevrimleri Otto ve Dizel Çevrimlerinin Termodinamik Analizi 1 GÜÇ ÇEVRİMLERİNİN ÇÖZÜMLEMESİNE İLİŞKİN TEMEL KAVRAMLAR Güç üreten makinelerin büyük çoğunluğu bir termodinamik çevrime göre çalışır. Ideal Çevrim: Gerçek

Detaylı

TERMODİNAMİK II BUHARLI GÜÇ ÇEVRİMLERİ. Dr. Nezaket PARLAK. Sakarya Üniversitesi Makine Müh. Böl. D Esentepe Kampüsü Serdivan-SAKARYA

TERMODİNAMİK II BUHARLI GÜÇ ÇEVRİMLERİ. Dr. Nezaket PARLAK. Sakarya Üniversitesi Makine Müh. Böl. D Esentepe Kampüsü Serdivan-SAKARYA TERMODİNAMİK II BUHARLI GÜÇ ÇEVRİMLERİ Dr. Nezaket PARLAK Sakarya Üniversitesi Makine Müh. Böl. D-6 605 Esentepe Kampüsü 54180 Serdivan-SAKARYA BUHARLI GÜÇ ÇEVRİMLERİ Güç elde etmek amacıyla : iş akışkanı

Detaylı

ENTROPİ. Clasius eşitsizliği. Entropinin Tanımı

ENTROPİ. Clasius eşitsizliği. Entropinin Tanımı Bölüm 7 ENTROPİ ENTROPİ Clasius eşitsizliği Entropinin Tanımı Sistem Clausius eşitsizliğinin geliştirilmesinde hesaba katılır. Clausius eşitsizliğindeki eşit olma durumu tümden veya içten tersinir çevrimler

Detaylı

Bölüm 7 ENTROPİ. Bölüm 7: Entropi

Bölüm 7 ENTROPİ. Bölüm 7: Entropi Bölüm 7 ENTROPİ 1 Amaçlar Termodinamiğin ikinci kanununu hal değişimlerine uygulamak. İkinci yasa verimini ölçmek için entropi olarak adlandırılan özelliği tanımlamak. Entropinin artış ilkesinin ne olduğunu

Detaylı

NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER

NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER Adı- Soyadı: Fakülte No : Gıda Mühendisliği Bölümü, 2015/2016 Öğretim Yılı, Güz Yarıyılı 00391-Termodinamik Dersi, Dönem Sonu Sınavı Soru ve Çözümleri 07.01.2016 Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20)

Detaylı

Bölüm 8 EKSERJİ: İŞ POTANSİYELİNİN BİR ÖLÇÜSÜ. Bölüm 8: Ekserji: İş Potansiyelinin bir Ölçüsü

Bölüm 8 EKSERJİ: İŞ POTANSİYELİNİN BİR ÖLÇÜSÜ. Bölüm 8: Ekserji: İş Potansiyelinin bir Ölçüsü Bölüm 8 EKSERJİ: İŞ POTANSİYELİNİN BİR ÖLÇÜSÜ 1 Amaçlar Termodinamiğin ikinci yasası ışığında, mühendislik düzeneklerinin verimlerini veya etkinliklerini incelemek. Belirli bir çevrede verilen bir halde

Detaylı

5. ENTROPİ Enerji geçişi, ısı İçten tersinirlik: S Süretim ( 0) Süretim

5. ENTROPİ Enerji geçişi, ısı İçten tersinirlik: S Süretim ( 0) Süretim 5. ENTROPİ Entropi, moleküler düzensizlik olarak görülebilir. Entropi terimi genellikle hem toplam entropi hemde özgül entropi şeklinde tanımlanabilir. Bir sistem daha düzensiz bir hal aldıkça, moleküllerin

Detaylı

Buhar çevrimlerinde akışkan olarak ucuzluğu, her yerde kolaylıkla bulunabilmesi ve buharlaşma entalpisinin yüksek olması nedeniyle su alınmaktadır.

Buhar çevrimlerinde akışkan olarak ucuzluğu, her yerde kolaylıkla bulunabilmesi ve buharlaşma entalpisinin yüksek olması nedeniyle su alınmaktadır. Buhar Çevrimleri Buhar makinasının gerçekleştirilmesi termodinamik ve ilgili bilim dallarının hızla gelişmesine yol açmıştır. Buhar üretimi buhar kazanlarında yapılmaktadır. Yüksek basınç ve sıcaklıktaki

Detaylı

BUHARLI VE BİRLEŞİK GÜÇ ÇEVRİMLERİ

BUHARLI VE BİRLEŞİK GÜÇ ÇEVRİMLERİ BUHARLI VE BİRLEŞİK GÜÇ ÇEVRİMLERİ 1 CARNOT BUHAR ÇEVRİMİ Belirli iki sıcaklık sınırı arasında çalışan en yüksek verimli çevrim Carnot çevrimidir buharlı güç santralleri için ideal bir çevrim değildir.

Detaylı

Termodinamik. Öğretim Görevlisi Prof. Dr. Lütfullah Kuddusi. Bölüm 4: Kapalı Sistemlerin Enerji Analizi

Termodinamik. Öğretim Görevlisi Prof. Dr. Lütfullah Kuddusi. Bölüm 4: Kapalı Sistemlerin Enerji Analizi Termodinamik Öğretim Görevlisi Prof. Dr. Lütfullah Kuddusi 1 Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ 2 Amaçlar Özellikle otomobil motoru ve kompresör gibi pistonlu makinelerde yaygın olarak karşılaşılan

Detaylı

T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFERİ LABORATUVARI ISI POMPASI DENEY FÖYÜ 1. DENEYİN AMACI Isı pompası deneyi ile, günümüzde bir çok alanda kullanılan ısı pompalarının

Detaylı

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ. Bölüm 5: Kontrol Hacimleri için Kütle ve Enerji Çözümlemesi

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ. Bölüm 5: Kontrol Hacimleri için Kütle ve Enerji Çözümlemesi Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ 1 Amaçlar Kütlenin korunumu ilkesi geliştirilecektir. Kütlenin korunumu ilkesi sürekli ve sürekli olmayan akış sistemlerini içeren çeşitli sistemlere

Detaylı

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ. Bölüm 5: Kontrol Hacimleri için Kütle ve Enerji Çözümlemesi

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ. Bölüm 5: Kontrol Hacimleri için Kütle ve Enerji Çözümlemesi Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ 1 Amaçlar Kütlenin korunumu ilkesi geliştirilecektir. Kütlenin korunumu ilkesi sürekli ve sürekli olmayan akış sistemlerini içeren çeşitli sistemlere

Detaylı

3. TERMODİNAMİK KANUNLAR. (Ref. e_makaleleri) Termodinamiğin Birinci Kanunu ÖRNEK

3. TERMODİNAMİK KANUNLAR. (Ref. e_makaleleri) Termodinamiğin Birinci Kanunu ÖRNEK 1 3. TERMODİNAMİK KANUNLAR (Ref. e_makaleleri) Termodinamiğin Birinci Kanunu Termodinamiğin Birinci Kanununa göre, enerji yoktan var edilemez ve varolan enerji yok olmaz, ancak şekil değiştirebilir. Kanun

Detaylı

Termodinamik Termodinamik Süreçlerde İŞ ve ISI

Termodinamik Termodinamik Süreçlerde İŞ ve ISI Termodinamik Süreçlerde İŞ ve ISI Termodinamik Hareketli bir pistonla bağlantılı bir silindirik kap içindeki gazı inceleyelim (Şekil e bakınız). Denge halinde iken, hacmi V olan gaz, silindir çeperlerine

Detaylı

Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ

Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ http://public.cumhuriyet.edu.tr/alipinarbasi/ 1 Prof. Dr. Ali PINARBAŞI Amaçlar Özellikle otomobil motoru ve kompresör gibi pistonlu makinelerde yaygın olarak

Detaylı

HR. Ü. Müh. Fak. Makina Mühendisliği Bölümü Termodinamik II Final Sınavı (22/05/2017) Adı ve Soyadı: No: İmza:

HR. Ü. Müh. Fak. Makina Mühendisliği Bölümü Termodinamik II Final Sınavı (22/05/2017) Adı ve Soyadı: No: İmza: HR. Ü. Müh. Fak. Makina Mühendisliği Bölümü Termodinamik II Final Sınavı (/05/07) Adı ve Soyadı: No: İmza: Alınan Puanlar:.. 3. 4. 5. Sınav sonucu. Süre: 00 dak. Not: Verilmediği düşünülen değerler için

Detaylı

Gerçek ve ideal çevrimler, Carnot çevrimi, hava standardı kabulleri, pistonlu motolar

Gerçek ve ideal çevrimler, Carnot çevrimi, hava standardı kabulleri, pistonlu motolar Gerçek ve ideal çevrimler, Carnot çevrimi, hava standardı kabulleri, pistonlu motolar 9-16. Kapalı bir sistemde gerçekleşen ideal hava çevirimi aşağıda belirtilen dört hal değişiminden oluşmaktadır. Oda

Detaylı

YILDIZ TEKNİK ÜNİVERSİTESİ

YILDIZ TEKNİK ÜNİVERSİTESİ Rev: 17.09.2014 YILDIZ TEKNİK ÜNİVERSİTESİ Makine Fakültesi Makine Mühendisliği Bölümü Termodinamik ve Isı Tekniği Anabilim Dalı Termodinamik Genel Laboratuvar Föyü Güz Dönemi Öğrencinin Adı Soyadı : No

Detaylı

Bölüm 7 ENTROPİ. Prof. Dr. Hakan F. ÖZTOP

Bölüm 7 ENTROPİ. Prof. Dr. Hakan F. ÖZTOP Bölüm 7 ENTROPİ Prof. Dr. Hakan F. ÖZTOP Amaçlar Termodinamiğin ikinci kanununu hal değişimlerine uygulamak. İkinci yasa verimini ölçmek için entropi olarak adlandırılan özelliği tanımlamak. Entropinin

Detaylı

Proses Tekniği TELAFİ DERSİ

Proses Tekniği TELAFİ DERSİ Proses Tekniği TELAFİ DERSİ Psikometrik diyagram Psikometrik diyagram İklimlendirme: Duyulur ısıtma (ω=sabit) Bu sistemlerde hava sıcak bir akışkanın bulunduğu boruların veya direnç tellerinin üzerinden

Detaylı

T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR LABORATUVARI BUHAR TÜRBİNİ DENEYİ FÖYÜ

T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR LABORATUVARI BUHAR TÜRBİNİ DENEYİ FÖYÜ T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR LABORATUVARI BUHAR TÜRBİNİ DENEYİ FÖYÜ 1. GENEL BİLGİLER Buhar türbini, genel olarak yatay ekseni etrafında dönebilen bir rotor,

Detaylı

T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR LABORATUVARI BUHAR TÜRBİNİ DENEYİ FÖYÜ

T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR LABORATUVARI BUHAR TÜRBİNİ DENEYİ FÖYÜ T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR LABORATUVARI BUHAR TÜRBİNİ DENEYİ FÖYÜ 1. GENEL BİLGİLER Buhar türbini, genel olarak yatay ekseni etrafında dönebilen bir rotor,

Detaylı

Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ. Bölüm 4: Kapalı Sistemlerin Enerji Analizi

Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ. Bölüm 4: Kapalı Sistemlerin Enerji Analizi Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ 1 Amaçlar Özellikle otomobil motoru ve kompresör gibi pistonlu makinelerde yaygın olarak karşılaşılan hareketli sınır işi veya PdV işi olmak üzere değişik iş biçimlerinin

Detaylı

SOĞUTMA SİSTEMLERİ VE ÇALIŞMA İLKELERİ (Devamı)

SOĞUTMA SİSTEMLERİ VE ÇALIŞMA İLKELERİ (Devamı) SOĞUTMA SİSTEMLERİ VE ÇALIŞMA İLKELERİ (Devamı) Soğutma devresine ilişkin bazı parametrelerin hesaplanması "Doymuş sıvı - doymuş buhar" aralığında çalışma Basınç-entalpi grafiğinde genel bir soğutma devresi

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 5 PSİKROMETRİK İŞLEMLERDE ENERJİ VE KÜTLE DENGESİ

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 5 PSİKROMETRİK İŞLEMLERDE ENERJİ VE KÜTLE DENGESİ BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 5 PSİKROMETRİK İŞLEMLERDE ENERJİ VE KÜTLE DENGESİ BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402

Detaylı

Şekil 2.1 İki kademeli soğutma sistemine ait şematik diyagram

Şekil 2.1 İki kademeli soğutma sistemine ait şematik diyagram 2. ÇOK BASINÇLI SİSTEMLER 2.1 İKİ KADEMELİ SOĞUTMA SİSTEMLERİ: Basit buhar sıkıştırmalı soğutma çevrimi -30 ye kadar verimli olmaktadır. -40 C ile -100 C arasındaki sıcaklıklar için kademeli soğutma sistemleri

Detaylı

3. Versiyon Kitapta 5. Bölüm, 7. Versiyon Kitapta 6. Bölüm, soruları

3. Versiyon Kitapta 5. Bölüm, 7. Versiyon Kitapta 6. Bölüm, soruları 3. Versiyon Kitapta 5. Bölüm, 7. Versiyon Kitapta 6. Bölüm, soruları Soru 5-26 Buharlı bir güç santralinin kazanında aracı akışkana 280 GJ/saat ısı geçişi olmaktadır. Borularda ve diğer elemanlarda buhardan

Detaylı

NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER

NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER Adı- Soyadı: Fakülte No : Gıda Mühendisliği Bölümü, 2016/2017 Öğretim Yılı, Güz Yarıyılı 00391-Termodinamik Dersi, Dönem Sonu Sınavı Soru ve Çözümleri 13.01.2017 Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20)

Detaylı

Bölüm 3 SOĞUTMA ÇEVRİMLERİNDE EKSERJİ UYGULAMASI

Bölüm 3 SOĞUTMA ÇEVRİMLERİNDE EKSERJİ UYGULAMASI ME412 - Soğutma Teknolojisi Bahar, 2017 Bölüm 3 SOĞUTMA ÇEVRİMLERİNDE EKSERJİ UYGULAMASI Ceyhun Yılmaz Afyon Kocatepe Üniversitesi Teknoloji Fakültesi Makine Mühendisliği Bölümü Amaçlar Termodinamiğin

Detaylı

O )molekül ağırlığı 18 g/mol ve 1g suyun kapladığı hacimde

O )molekül ağırlığı 18 g/mol ve 1g suyun kapladığı hacimde 1) Suyun ( H 2 O )molekül ağırlığı 18 g/mol ve 1g suyun kapladığı hacimde 10 6 m 3 olduğuna göre, birbirine komşu su moleküllerinin arasındaki uzaklığı Avagadro sayısını kullanarak hesap ediniz. Moleküllerin

Detaylı

HR. Ü. Müh. Fak. Makina Mühendisliği Bölümü Termodinamik II Final Sınavı (15/06/2015) Adı ve Soyadı: No: İmza:

HR. Ü. Müh. Fak. Makina Mühendisliği Bölümü Termodinamik II Final Sınavı (15/06/2015) Adı ve Soyadı: No: İmza: HR. Ü. Müh. Fak. Makina Mühendisliği Bölümü ermodinamik II Final Sınavı (5/06/05) Adı ve Soyadı: No: İmza: Alınan Puanlar:... 4. 5.6 Sınav sonucu. Süre: 90 dak. Not: erilmediği düşünülen değerler için

Detaylı

TERMODİNAMİĞİN BİRİNCİ YASASI

TERMODİNAMİĞİN BİRİNCİ YASASI İzotermal ve Adyabatik İşlemler Sıcaklığı sabit tutulan sistemlerde yapılan işlemlere izotermal işlem, ısı alışverişlerine göre yalıtılmış sistemlerde yapılan işlemlere ise adyabatik işlem adı verilir.

Detaylı

Sıcaklık (Temperature):

Sıcaklık (Temperature): Sıcaklık (Temperature): Sıcaklık tanım olarak bir maddenin yapısındaki molekül veya atomların ortalama kinetik enerjilerinin ölçüm değeridir. Sıcaklık t veya T ile gösterilir. Termometre kullanılarak ölçülür.

Detaylı

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ Bölüm 3 SAF MADDENİN ÖZELLİKLERİ 1 Amaçlar Amaçlar Saf madde kavramının tanıtılması Faz değişimi işleminin fizik ilkelerinin incelenmesi Saf maddenin P-v-T yüzeylerinin ve P-v, T-v ve P-T özelik diyagramlarının

Detaylı

HACETTEPE ÜNİVERSİTESİ GIDA MÜHENDİSLİĞİ BÖLÜMÜ GMU 319 MÜHENDİSLİK TERMODİNAMİĞİ Çalışma Soruları #4 ün Çözümleri

HACETTEPE ÜNİVERSİTESİ GIDA MÜHENDİSLİĞİ BÖLÜMÜ GMU 319 MÜHENDİSLİK TERMODİNAMİĞİ Çalışma Soruları #4 ün Çözümleri HACETTEPE ÜNİVERSİTESİ GIDA MÜHENDİSLİĞİ BÖLÜMÜ GMU 319 MÜHENDİSLİK TERMODİNAMİĞİ Çalışma Soruları #4 ün Çözümleri Veriliş Tarihi: 18/11/2018 1) Durdurucular bulunan bir piston silindir düzeneğinde başlanğıçta

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ LABORATUARI DENEY FÖYÜ DENEY ADI SOĞUTMA DENEY FÖYÜ DERSİN ÖĞRETİM ELEMANI DENEYİ YAPTIRAN ÖĞRETİM ELEMANI DENEY

Detaylı

Bölüm 9 GAZ AKIŞKANLI GÜÇ ÇEVRİMLERİ. Bölüm 9: Gaz Akışkanlı Güç Çevrimleri

Bölüm 9 GAZ AKIŞKANLI GÜÇ ÇEVRİMLERİ. Bölüm 9: Gaz Akışkanlı Güç Çevrimleri Bölüm 9 GAZ AKIŞKANLI GÜÇ ÇEVRİMLERİ 1 Amaçlar Tüm çevrim boyunca iş akışkanının gaz fazında kaldığı gaz akışkanlı güç çevrimlerinin performanslarını değerlendirmek. Gaz akışkanlı güç çevrimlerine uygulanabilir

Detaylı

OREN303 ENERJİ YÖNETİMİ KERESTE KURUTMADA ENERJİ ANALİZİ/SÜREÇ YÖNETİMİ

OREN303 ENERJİ YÖNETİMİ KERESTE KURUTMADA ENERJİ ANALİZİ/SÜREÇ YÖNETİMİ OREN303 ENERJİ YÖNETİMİ KERESTE KURUTMADA ENERJİ ANALİZİ/SÜREÇ YÖNETİMİ Enerji analizi termodinamiğin birinci kanununu, ekserji analizi ise termodinamiğin ikinci kanununu kullanarak enerjinin maksimum

Detaylı

Makale. ile ihtiyacın eşitlendiği kapasite modülasyon yöntemleri ile ilgili çeşitli çalışmalar gerçekleştirilmiştir

Makale. ile ihtiyacın eşitlendiği kapasite modülasyon yöntemleri ile ilgili çeşitli çalışmalar gerçekleştirilmiştir Makale ile ihtiyacın eşitlendiği kapasite modülasyon yöntemleri ile ilgili çeşitli çalışmalar gerçekleştirilmiştir (Qureshi ve ark., 1996; Nasution ve ark., 2006; Aprea ve ark., 2006). Bu çalışmada, boru

Detaylı

MAKİNE MÜHENDİSLİĞİNE GİRİŞ Ders 3

MAKİNE MÜHENDİSLİĞİNE GİRİŞ Ders 3 Enerji Kaynakları MAKİNE MÜHENDİSLİĞİNE GİRİŞ Ders 3 Enerji kaynakları Yakıtlar Doğa kuvvetleri Özel doğa kuvvetleri Yrd. Doç. Dr. Yüksel HACIOĞLU Katı Sıvı Gaz Odun Petrol Doğal Gaz Hidrolik Güneş Rüzgar

Detaylı

Buji ile ateşlemeli motorlar için teorik çevrimin (Hava Standart OTTO çevrimi) Sıkıştırma ile ateşlemeli motorlar için teorik çevrimin (Dizel Teorik

Buji ile ateşlemeli motorlar için teorik çevrimin (Hava Standart OTTO çevrimi) Sıkıştırma ile ateşlemeli motorlar için teorik çevrimin (Dizel Teorik SAKARYA 2010 Buji ile ateşlemeli motorlar için teorik çevrimin (Hava Standart OTTO çevrimi) Sıkıştırma ile ateşlemeli motorlar için teorik çevrimin (Dizel Teorik çevrimi) açıklanması Çevrim Prosesin başladığı

Detaylı

ISI POMPASI DENEY FÖYÜ

ISI POMPASI DENEY FÖYÜ ONDOKUZ MAYIS ÜNĐVERSĐTESĐ MÜHENDĐSLĐK FAKÜLTESĐ MAKĐNA MÜHENDĐSLĐĞĐ BÖLÜMÜ ISI POMPASI DENEY FÖYÜ Hazırlayan: YRD. DOÇ. DR HAKAN ÖZCAN ŞUBAT 2011 DENEY NO: 2 DENEY ADI: ISI POMPASI DENEYĐ AMAÇ: Isı pompası

Detaylı

TERMODİNAMİĞİN TEMEL EŞİTLİKLERİ

TERMODİNAMİĞİN TEMEL EŞİTLİKLERİ Serbest İç Enerji (Helmholtz Enerjisi) Ve Serbest Entalpi (Gibbs Enerjisi) Fonksiyonları İç enerji ve entalpi fonksiyonları yalnızca termodinamiğin birinci yasasından tanımlanır. Entropi fonksiyonu yalnızca

Detaylı

MOTORLAR-5 HAFTA GERÇEK MOTOR ÇEVRİMİ

MOTORLAR-5 HAFTA GERÇEK MOTOR ÇEVRİMİ MOTORLAR-5 HAFTA GERÇEK MOTOR ÇEVRİMİ Yrd.Doç.Dr. Alp Tekin ERGENÇ GERÇEK MOTOR ÇEVRİMİ Gerçek motor çevrimi standart hava (teorik) çevriminden farklı olarak emme, sıkıştırma,tutuşma ve yanma, genişleme

Detaylı

MAKİNE MÜHENDİSLİĞİNE GİRİŞ Ders 5

MAKİNE MÜHENDİSLİĞİNE GİRİŞ Ders 5 Buhar Kazanları MAKİNE MÜHENDİSLİĞİNE GİRİŞ Ders 5 Bazı temel bilgiler: Su, 1 atm lik basınç altında 100 C de buharlaşır ve hacmi büyük ölçüde artar. Meydana geldiği su ile dengede olan buhara doymuş buhar

Detaylı

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 2 SOĞUTMA DENEYİ

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 2 SOĞUTMA DENEYİ T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 2 SOĞUTMA DENEYİ ÖĞRENCİ NO: ADI SOYADI: DENEY SORUMLUSU: YRD. DOÇ. DR. BİROL

Detaylı

Vˆ (m 3 /kg) ρ (kg/m 3 ) m (kg) F (N)

Vˆ (m 3 /kg) ρ (kg/m 3 ) m (kg) F (N) PROBLEM SETİ Genel tanımlar. Aşağıdaki tablodaki boşlukları g = 9.8 m/s ve V = 0 m 3 için doldurunuz. Vˆ (m 3 /kg) ρ (kg/m 3 ) m (kg) F (N) a. 0 b. c. d. 00 e. 00. Patm = 0 kpa ise (ρ Hg = 3.6 g/cm 3 )

Detaylı

SORU 1) ÇÖZÜM 1) UYGULAMALI AKIŞKANLAR MEKANİĞİ 1

SORU 1) ÇÖZÜM 1) UYGULAMALI AKIŞKANLAR MEKANİĞİ 1 SORU 1) Şekildeki sistemde içteki mil dönmektedir. İki silindir arasında yağ filmi vardır. Sistemde sızdırmazlık sağlanarak yağ kaçağı önlenmiştir. Verilen değerlere göre sürtünme yolu ile harcanan sürtünme

Detaylı

E = U + KE + KP = (kj) U = iç enerji, KE = kinetik enerji, KP = potansiyel enerji, m = kütle, V = hız, g = yerçekimi ivmesi, z = yükseklik

E = U + KE + KP = (kj) U = iç enerji, KE = kinetik enerji, KP = potansiyel enerji, m = kütle, V = hız, g = yerçekimi ivmesi, z = yükseklik Enerji (Energy) Enerji, iş yapabilme kabiliyetidir. Bir sistemin enerjisi, o sistemin yapabileceği azami iştir. İş, bir cisme, bir kuvvetin tesiri ile yol aldırma, yerini değiştirme şeklinde tarif edilir.

Detaylı

Not: Termodinamik tablolar açıktır Tam sonuçlar değerlendirmede dikkate alınacaktır.

Not: Termodinamik tablolar açıktır Tam sonuçlar değerlendirmede dikkate alınacaktır. Makine Mühendisliği Bölümü Termodinamik II. Vize Sınav soruları 9.5.6 Öğrencinin, Adı Soyadı - a- Gerçek buhar çevrimlerinin, ideal buhar çevrimleriyle olan farkları nelerdir? b- Basit ideal bir Rankin

Detaylı

ISI VE SICAKLIK. 1 cal = 4,18 j

ISI VE SICAKLIK. 1 cal = 4,18 j ISI VE SICAKLIK ISI Isı ve sıcaklık farklı şeylerdir. Bir maddeyi oluşturan bütün taneciklerin sahip olduğu kinetik enerjilerin toplamına ISI denir. Isı bir enerji türüdür. Isı birimleri joule ( j ) ve

Detaylı

MAKİNE MÜHENDİSLİĞİNE GİRİŞ Ders 4

MAKİNE MÜHENDİSLİĞİNE GİRİŞ Ders 4 Akışkanlar ile ilgili temel kavramlar MAKİNE MÜHENDİSLİĞİNE GİRİŞ Ders 4 Yrd. Doç. Dr. Yüksel HACIOĞLU Su,, gaz, buhar gibi kolayca şekillerini değiştirebilen ve dış etkilerin etkisi altında kolayca hareket

Detaylı

3. TERMODİNAMİĞİN BİRİNCİ YASASI. 3.1. Kapalı Sistemler

3. TERMODİNAMİĞİN BİRİNCİ YASASI. 3.1. Kapalı Sistemler 3. TERMODİNAMİĞİN BİRİNCİ YASASI 3.1. Kapalı Sistemler Termodinamiğin birinci yasasına (Enerjinin korunumu) göre, sistem ile çevresinin etkileşimi sırasında, sistem tarafından kazanılan enerji çevresi

Detaylı

TEKNİK FİZİK ÖRNEK PROBLEMLER-EK2 1

TEKNİK FİZİK ÖRNEK PROBLEMLER-EK2 1 TEKNİK FİZİK ÖRNEK PROBLEMLER-EK2 ÖRNEK PROBLEM (KİNETİK ENERJİ) RÜZER şirketi 40 kw güce sahip bir rüzgar çiftliği kurmayı planlamıştır. Tasarlanan rüzgar türbinine gelecek rüzgarın debisi 000 kg/s dir.

Detaylı

YAZ DÖNEMİ UYGULAMA II I. & II.

YAZ DÖNEMİ UYGULAMA II I. & II. 007 008 YAZ DÖNEMİ UYGULAMA II I. & II. Yasa Arş. Gör. Mehmet Akif EZAN Dokuz Eylül Üniversitesi Makina Mühendisliği Bölümü 05/08/08 roblem 4.40 roblem 4.40 q 6 kj/k Hava Soru: Hava sürekli akışlı bir

Detaylı

DENEY FÖYÜ DENEY ADI ĐKLĐMLENDĐRME TEKNĐĞĐ DERSĐN ÖĞRETĐM ÜYESĐ DOÇ. DR. ALĐ BOLATTÜRK

DENEY FÖYÜ DENEY ADI ĐKLĐMLENDĐRME TEKNĐĞĐ DERSĐN ÖĞRETĐM ÜYESĐ DOÇ. DR. ALĐ BOLATTÜRK SÜLEYMAN DEMĐREL ÜNĐVERSĐTESĐ MÜHENDĐSLĐK-MĐMARLIK FAKÜLTESĐ MAKĐNA MÜHENDĐSLĐĞĐ BÖLÜMÜ TERMODĐNAMĐK LABORATUARI DENEY FÖYÜ DENEY ADI ĐKLĐMLENDĐRME TEKNĐĞĐ DERSĐN ÖĞRETĐM ÜYESĐ DOÇ. DR. ALĐ BOLATTÜRK DENEY

Detaylı

HR. Ü. Müh. Fak. Makina Mühendisliği Bölümü Termodinamik I Bütünleme Sınavı (02/02/2012) Adı ve Soyadı: No: İmza:

HR. Ü. Müh. Fak. Makina Mühendisliği Bölümü Termodinamik I Bütünleme Sınavı (02/02/2012) Adı ve Soyadı: No: İmza: HR. Ü. Müh. Fak. Makina Mühendisliği Bölümü 050304-0506304-Termodinamik I Bütünleme Sınavı (0/0/0) Adı ve Soyadı: No: İmza: Alınan uanlar:..3.4.5.6.. Sınav sonucu. Süre: 90 dak. Not: erilmediği düşünülen

Detaylı

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ 1 Bir otomobil lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır Hava sıcaklığı 25 C iken etkin basınç 210 kpa dır Eğer lastiğin hacmi 0025

Detaylı

İKLİMLENDİRME DENEYİ FÖYÜ

İKLİMLENDİRME DENEYİ FÖYÜ İKLİMLENDİRME DENEYİ FÖYÜ Deneyin Amacı İklimlendirme tesisatının çalıştınlması ve çeşitli kısımlarının görevlerinin öğrenilmesi, Deney sırasında ölçülen büyüklükler yardımıyla Psikrometrik Diyagramı kullanarak,

Detaylı

2. Teori Hesaplamalarla ilgili prensipler ve kanunlar Isı Transfer ve Termodinamik derslerinde verilmiştir. İlgili konular gözden geçirilmelidir.

2. Teori Hesaplamalarla ilgili prensipler ve kanunlar Isı Transfer ve Termodinamik derslerinde verilmiştir. İlgili konular gözden geçirilmelidir. PANEL RADYATÖR DENEYİ 1. Deneyin Amacı Binalarda ısıtma amaçlı kullanılan bir panel radyatörün ısıtma gücünü oda sıcaklığından başlayıp kararlı rejime ulaşana kadar zamana bağlı olarak incelemektir. 2.

Detaylı

Soru No Puan Program Çıktısı 3, ,8 3,10 1,10

Soru No Puan Program Çıktısı 3, ,8 3,10 1,10 Öğrenci Numarası Adı ve Soyadı İmzası: CEVAP ANAHTARI Açıklama: Sınavda ders notları ve dersle ilgili tablolar serbesttir. SORU. Tersinir ve tersinmez işlemi tanımlayınız. Gerçek işlemler nasıl işlemdir?

Detaylı

Buhar Sıkıştırmalı Soğutma Çevrimlerinde Enerji ve Ekserji Analizi

Buhar Sıkıştırmalı Soğutma Çevrimlerinde Enerji ve Ekserji Analizi esisat Mühendisliği Dergisi Sayı: 94, s. 4-3, 006 Buhar Sıkıştırmalı Soğutma Çevrimlerinde Enerji ve Ekserji Analizi Uğur AKBULU* Olcay KINCAY** Özet Buhar sıkıştırmalı soğutma çevrimi, soğutma makinelerinde,

Detaylı

TERMAL ve ENERJİ MÜHENDİSLİĞİ. Rıdvan YAKUT

TERMAL ve ENERJİ MÜHENDİSLİĞİ. Rıdvan YAKUT TERMAL ve ENERJİ MÜHENDİSLİĞİ Rıdvan YAKUT Termal ve Enerji Mühendisliği Bu bölümde, içten yanmalı motorlar, uçak itki sistemleri, ısıtma ve soğutma sistemleri, yenilenebilir enerji kaynakları, yenilenemez

Detaylı

TOPRAK KAYNAKLI ISI POMPALARI. Prof. Dr. İlhami Horuz Gazi Üniversitesi TEMİZ ENERJİ ARAŞTIRMA VE UYGULAMA MERKEZİ (TEMENAR)

TOPRAK KAYNAKLI ISI POMPALARI. Prof. Dr. İlhami Horuz Gazi Üniversitesi TEMİZ ENERJİ ARAŞTIRMA VE UYGULAMA MERKEZİ (TEMENAR) TOPRAK KAYNAKLI ISI POMPALARI Prof. Dr. İlhami Horuz Gazi Üniversitesi TEMİZ ENERJİ ARAŞTIRMA VE UYGULAMA MERKEZİ (TEMENAR) 1. Hava 2. Su (deniz, göl, nehir, dere, yeraltı suyu-jeotermal enerji) 3. Toprak

Detaylı

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ Bölüm 3 SAF MADDENİN ÖZELLİKLERİ 1 Amaçlar Saf madde kavramının tanıtılması Faz değişimi işleminin fizik ilkelerinin incelenmesi Saf maddenin P-v-T yüzeylerinin ve P-v, T-v ve P-T özelik diyagramlarının

Detaylı

BÜYÜK KAPASİTELİ SOĞUTMA SİSTEMLERİNDE KOJENERASYON KULLANIMININ DEĞERLENDİRİLMESİ

BÜYÜK KAPASİTELİ SOĞUTMA SİSTEMLERİNDE KOJENERASYON KULLANIMININ DEĞERLENDİRİLMESİ BÜYÜK KAPASİTELİ SOĞUTMA SİSTEMLERİNDE KOJENERASYON KULLANIMININ DEĞERLENDİRİLMESİ Dr. Canan CİMŞİT, Prof. Dr. İlhan Tekin ÖZTÜRK Kocaeli Üniversitesi Bu çalışmada kojenerasyon sisteminden elde edilen

Detaylı

Bölüm 10 BUHARLI VE BİRLEŞİK GÜÇ ÇEVRİMLERİ. Bölüm 10: Buharlı ve Birleşik Güç Çevrimleri

Bölüm 10 BUHARLI VE BİRLEŞİK GÜÇ ÇEVRİMLERİ. Bölüm 10: Buharlı ve Birleşik Güç Çevrimleri Bölüm 10 BUHARLI VE BİRLEŞİK GÜÇ ÇEVRİMLERİ 1 Bölüm 10: Buharlı ve Birleşik Güç Çevrimleri Amaçlar İş akışkanının çevrimde dönüşümlü olarak buharlaştırıldığı ve yoğuşturulduğu buharlı güç çevrimlerini

Detaylı

7. Bölüm: Termokimya

7. Bölüm: Termokimya 7. Bölüm: Termokimya Termokimya: Fiziksel ve kimyasal değişimler sürecindeki enerji (ısı ve iş) değişimlerini inceler. sistem + çevre evren Enerji: İş yapabilme kapasitesi. İş(w): Bir kuvvetin bir cismi

Detaylı

GİRİŞ TURBO MAKİNALARIN TANIMI SINIFLANDIRMASI KULLANIM YERLERİ

GİRİŞ TURBO MAKİNALARIN TANIMI SINIFLANDIRMASI KULLANIM YERLERİ GİRİŞ TURBO MAKİNALARIN TANIMI SINIFLANDIRMASI KULLANIM YERLERİ Turbo kelimesinin kelime anlamı Turbo yada türbin kelimesi latince kökenli olup anlamı bir eksen etrafında dönen parçadır. 1 TANIM Turbo

Detaylı

ISI POMPASI. Abdunnur GÜNAY / FENTEK Müh.Ltd.Şti.

ISI POMPASI. Abdunnur GÜNAY / FENTEK Müh.Ltd.Şti. ISI POMPASI Abdunnur GÜNAY / Mak.M.Müh. Ş Neden Isı Pompası? Tükenen enerji kaynakları / artan fiyatlar! Ekonomik nedenler Artan Enerji talepleri Çevre dostluğu Güvenlik Bir evin enerji giderleri Isı Kaynakları

Detaylı

Buna göre bir işlemde transfer edilen q ısısı, sistemde A dan B ye giderken yapılan adyabatik iş ile nonadyabatik bir iş arasındaki farka eşittir.

Buna göre bir işlemde transfer edilen q ısısı, sistemde A dan B ye giderken yapılan adyabatik iş ile nonadyabatik bir iş arasındaki farka eşittir. 1 1. TANIMLAR (Ref. e_makaleleri) Enerji, Isı, İş: Enerji: Enerji, iş yapabilme kapasitesidir; çeşitli şekillerde bulunabilir ve bir tipten diğer bir şekle dönüşebilir. Örneğin, yakıt kimyasal enerjiye

Detaylı

Sonuç olarak; gerçek gazların ideallikten sapma eğilimleri sıcaklık düştükçe ve basınç arttıkça

Sonuç olarak; gerçek gazların ideallikten sapma eğilimleri sıcaklık düştükçe ve basınç arttıkça GERÇEK GAZLAR 1.GERÇEK GAZLAR: Gaz moleküllerinin kendi hacimleri ( öz hacim ) toplam hacim yanında ihmal edilebilecek kadar küçük olan ve molekülleri arasında etkileşme bulunmayan gazlar ideal gaz varsayımına

Detaylı

KOJENERASYON. Prof. Dr. İlhan Tekin Öztürk. Kocaeli Üniversitesi

KOJENERASYON. Prof. Dr. İlhan Tekin Öztürk. Kocaeli Üniversitesi KOJENERASYON Prof. Dr. İlhan Tekin Öztürk Kocaeli Üniversitesi Kojenerasyon nedir? Aynı anda elektrik ve ısı tüketimine ihtiyaç duyulan bir tesiste, ısı ve elektriğin ayrı ayrı santrallerde üretilerek

Detaylı

OTOMOTİV TEKNOLOJİLERİ

OTOMOTİV TEKNOLOJİLERİ OTOMOTİV TEKNOLOJİLERİ Prof. Dr. Atatürk Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Erzurum Otomotivde Isıtma, Havalandırma ve Amaç; - Tüm yolcular için gerekli konforun sağlanması,

Detaylı

4. ÇEVRİMLER (Ref. e_makaleleri)

4. ÇEVRİMLER (Ref. e_makaleleri) 4. ÇEVRİMLER (Ref. e_makaleleri) Rankine Çevrimi Basit güç ünitelerinin ideal veya teorik çevrimi, Şekil-1 de görülen Rankine çevrimi ile tanımlanır. Çevrim, uygun bir şekilde bağlantılanmış dört cihazdan

Detaylı

6. Kütlesi 600 g ve öz ısısı c=0,3 cal/g.c olan cismin sıcaklığı 45 C den 75 C ye çıkarmak için gerekli ısı nedir?

6. Kütlesi 600 g ve öz ısısı c=0,3 cal/g.c olan cismin sıcaklığı 45 C den 75 C ye çıkarmak için gerekli ısı nedir? ADI: SOYADI: No: Sınıfı: A) Grubu Tarih.../.../... ALDIĞI NOT:... ( ) a) Termometreler genleşme ilkesine göre çalışır. ( ) b) Isı ve sıcaklık eş anlamlı kavramlardır. ( ) c) Fahrenheit ve Celsius termometrelerinin

Detaylı

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

Adı- Soyadı: 01.12.2015 Fakülte No :

Adı- Soyadı: 01.12.2015 Fakülte No : Adı- Soyadı: 01.12.2015 Fakülte No : Gıda Mühendisliği Bölümü, 2015/2016 Öğretim Yılı, Güz Yarıyılı 00391-Termodinamik Dersi, Ara Sınavı Soru ve Çözümleri Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20) 5 (20)

Detaylı

(karbondioksit), CH CI (metilalkol), C H 5 CI (etil klorür), C H 6 (etan) ve (CH ) CH (izo bütan) gibi soğutucu akışkanlar yaygın olarak kullanılmakta

(karbondioksit), CH CI (metilalkol), C H 5 CI (etil klorür), C H 6 (etan) ve (CH ) CH (izo bütan) gibi soğutucu akışkanlar yaygın olarak kullanılmakta 0. BÖLÜM SOĞUTMA ÇEVRİMİ Ters Carnot Çevrimi Soğutma; çevre sıcaklığından daha düşük sıcaklıktaki ortamlar elde etmek ve bu düşük sıcaklığı muhafaza etmek amacıyla gerçekleştirilen işlemler topluluğundan

Detaylı

Deneyin Adı: İklimlendirme Sistemi Test Ünitesi (Yaz Çalışması)

Deneyin Adı: İklimlendirme Sistemi Test Ünitesi (Yaz Çalışması) Deneyin Adı: İklimlendirme Sistemi Test Ünitesi (Yaz Çalışması) Deneyin yapılacağı yer: Enerji Sistemleri Mühendisliği Bölümü Laboratuar Binası, Giriş Kat 1) Deneyin Amacı İklimlendirme sistemleri günümüzde

Detaylı

Halit YAŞAR. Doç. Dr. Makina Mühendisliği Bölümü Otomotiv Anabilim Dalı Öğretim Üyesi

Halit YAŞAR. Doç. Dr. Makina Mühendisliği Bölümü Otomotiv Anabilim Dalı Öğretim Üyesi PROJECT MOTORLAR TITLE Doç. Dr. Halit YAŞAR Makina Mühendisliği Bölümü Otomotiv Anabilim Dalı Öğretim Üyesi 1/44 MOTORLAR DERS NOTLARINI FOTOKOPİDEN TEMİN EDEBİLİRSİNİZ 2/44 KAYNAKLAR 1) HEYWOOD, J.H.,

Detaylı