Permütasyon Kombinasyon Binom Olasılık

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Permütasyon Kombinasyon Binom Olasılık"

Transkript

1 Permütasyon Kombinasyon Binom Olasılık Saymanın Temel İlkesi: A1, A2,..., A n kümeleri için s( A1 ) = a1, s( A2 ) = a2,.., s( An ) A xa x xa Kartezyen çarpımının eleman sayısı; s( A xa x... xa ) = s( A ). s ( A )... s ( A ) dir n 1 2 n 1 2 Ör: 60 dershanelik bir okulda her sınıfta 15 kişi varsa bu okulun mevcudu nedir? n = a olmak üzere n 60x 15 = 900 Ör: A,B,C sınıflarında sıra ile 18,24 ve 10 öğrenci vardır. Her sınıftan birer öğrenci alınarak kaç tane 3 kişilik gruplar oluşturulur? 10x18x 24 = 4320 Ör: 10 kişilik bir yönetim kurulu aralarında 1 başkan, 1 başkan yardımcısı ve 1 sekreter seçecektir. Seçim kaç değişik şekilde yapılır? 10x9x 8 = 720 Ör: 2,3,6,8 rakamlarını kullanarak, rakamları farklı kaç tane üç basamaklı çift sayı yazabiliriz? Bu dört rakamdan sadece 3 tanesi çift sayıdır. O halde birler basamağı için kullanılabilecek rakam sayısı 3 tanedir. Bunlardan birisi kullanıldıktan sonra kalan rakamların üçü de onlar basamağı için kullanılabilir. Sonrada kalan iki rakamın ikisi de yüzler basamağı için kullanılabilir = = 18 Ör: 5 ceket, 4 pantolon, 3 gömleği olan bir kişi = 60 değişik şekilde giyinebilir. Ör: Birbirinden farklı 10 mavi, 5 kırmızı ve 7 beyaz top arasından 1 mavi, 1 kırmızı ve 1 beyaz top seçimi kaç değişik şekilde yapılabilir? Ör: birbirinden farklı 12 roman, 5 dergi ve 8 gazete arasından 1 roman, 1 dergi ve bir gazete kaç değişik biçimde seçilebilir? 1

2 Ör: A kentinden B kentine 4 değişik yol, B den C ye 5 değişik yol vardır. A dan hareket eden bir yolcu B kentine uğramak kaydı ile; a. A dan C ye kaç farklı yoldan gidebilir? b. A dan C ye kaç farklı yoldan gidip gelebilir? c. Gittiği yoldan geri dönmemek kaydı ile kaç farklı yoldan gidip gelebilir? a. b. c. 4x 5 = 20 ( ) 2 4x5 x 5x 4 = 20 = 400 Gidiş Dönüş ( 4x5) x ( 4x 3 ) Gidiş Dönüş( Aynı Yolu Kullanmıyor.) Ör: A = { 0,1, 2,3, 4} kümesinin elemanları ile rakamları tekrarsız, üç basamaklı; a. Kaç sayı yazılabilir? b. Kaç çift sayı yazılabilir? c. 300 den büyük kaç çift sayı yazılabilir? Ör: { 1,2,3, 4,5 } kümesindeki rakamları kullanılarak; a. Üç basamaklı kaç tane sayı yazılabilir? b. Rakamları farklı üç basamaklı kaç tane sayı yazılabilir? c. Rakamları farklı üç basamaklı kaç tane tek sayı yazılabilir? d. Basamaklarında farklı rakam bulunacak biçimde, basamaklarından birisi 5 olan üç basamaklı kaç tane sayı yazılabilir? Ör: { 0,1,2,3, 4,5 } kümesindeki rakamları kullanarak; a. 5 ile bölünebilen üç basamaklı kaç tane sayı yazılabilir? b. Basamaklarında farklı rakam olacak şekilde üç basamaklı kaç tane tek sayı yazılabilir? Ör: Bir sürücü kartı iki belirgin harf ve birincisi sıfır olmayan üç rakamdan oluşsun. Bu durumda kaç tane ayırımlı yeterlilik belgesi basılabilir? 2

3 Tanım: n + N olmak üzere n n ( n ) 0! = 1 1! = 1 2! = 1.2 = 2 3! = = 6 ve ayrıca; Faktöriyel! = çarpımına n faktöriyel denir. Burada; = n( n ), n! 1! n + 1! = n + 1. n! şeklide de tanımlanır. 0!=1 Sıfır faktöriyel neden 1 dir. Bir pozitif tamsayının faktöriyeli kendisi ve kendisinden küçük bütün pozitif tamsayıların çarpımı olarak tanımlanır. Bu tanım 0! in tanımını içermez. Çünkü kendinden küçük bir pozitif tamsayı bulunmamakla beraber kendisi de pozitif değildir. 0! faktöriyel tanımının amaçlarına uygunluk olması açısından 1 olarak ayrıca tanımlanmıştır. Ayrıca, Faktöriyelin fiziksel olarak yorumu şöyledir; n!: n tane elemanın permütasyonlarının sayısıdır. Yani daha somut olarak: n tane kitabı bir rafa kaç farklı şekilde sıralarız sorusunun cevabıdır. İşte bu nedenle 0! = 1 olarak tanımlanmıştır. Çünkü 0 tane kitabı 1 rafa sıralamaya kalkarsanız elde edeceğiniz 1 yol vardır: boş raf. Sıralayacak bir şey yoktur. Ama ortaokul öğrencisine bunu sıralamadan bahsederek ya da tanımı öyledir diyerek kabul ettirmeye çalışmak pek uygun olmayabilir. Ama şunu denerseniz belki biraz daha başarılı bir sonuç elde edebilirsiniz. n! = n n 1. n Bunu şöyle yazabilirdik; n! = n. n 1! ( n ) ( n ) 1! i çekersek; 1! = n! ( n) Bu formülün n = 1 için nasıl çalıştığına bir bakın: 1! 1 1! = yani; 0! = 1 olarak bulunur. 1 Bu bir ispat değil. Ama 0! in neden 0, 9, 2000 ya da başka herhangi bir sayı olarak tanımlanmadığına ve bu tanım için matematikçilerin 1 rakamını uygun görmesine diğer bir ikna yoludur. 3

4 Ör: ( ) ! 9! 11! + 10! =? gerekir. Ör: 10! + 11! + 12! toplamının 33 ile bölünemediğini gösteriniz. 33 = 11.3 olduğundan bir sayının 33 ile bölünebilmesi için hem 3 hem de 11 ile bölünebilmesi 10! + 11! + 12! = 10!. ( ) = 10!.144 sayısının içerisinde 11 çarpanı yoktur. O halde bu sayı 11 ile bölünemez. Ör: 26! sayısının sondan kaç basamağı sıfırdır? (17! sayısındaki 2 ve 5 çarpanlarına bakmak yeterli olacaktır.) Ör: ( n + ) ( n ) 1! + = 1! 2 3n n 28 ise, n =? Ör: ( n ) ! 3 +. = 3 ( n 1 )! ( n + 1 )! n 1 2 ise, n =? Permütasyon n elemanlı bir A kümesi verilsin. r n olmak üzere A kümesinin birbirinden farklı r tane elemanlarından oluşan sıralı r lilerden her birine A kümesinin r li permütasyonu denir. r = n ise, A kümesinin permütasyonlarının sayısı n! dir. (, ) P n r = n! ( n r)! dir. Uyarı:,0 n! = = 1 n! P n, n n! = = n! 0! P n, r = n! n. ( n 1 ).( n 2 )...( n r 1) n r! + i. P ( n ) ii. iii. r tan eterim iv. Birbirinden farklı dizilişler ya da sıralama kavramı taşıyan ifadeler permütasyon ile çözülebilir. Permütasyonla çözülebilen her problem saymanın temel ilkesi ile de çözülebilir. P n, P n,1 = n + 49 ise, n =? Ör: + 1, + 1 = 10, =? Ör: P ( n r ) P ( n r) 4

5 + ise, n Z değerlerinin toplamını bulunuz. Ör: 2. P ( n,2) 3. P( n 1, 2) P ( 6, 2) 2. P 2n 1,1 = P n + 1, 2 n =? Ör: Ör: ( n + 2 )! ( n 1 )!( n + 1) = 48 P n,2 =? n > olmak üzere P ( n n ) Ör: 6 + 3, 6 = 110 ise, n =? Ör: x N ve x > 2 olmak üzere, f ( x) = P ( x,0 ) + P ( x,1 ) + P ( x, 2) fonksiyonu veriliyor. f ( 2x ) fonksiyonunun f ( x ) cinsinden değerini bulunuz. Ör: 4 kişi 4 koltuğa kaç değişik şekilde oturabilir? P ( 4, 4) = = 24 Ör: 3 kişi 7 sandalyeye kaç değişik şekilde oturabilir? oturabildiğine dikkat ediniz. P ( 7,3) = = 210 (Burada 7 kişinin 3 sandalye yede P 7,3 = 210 değişik şekilde Ör: a, b, c, d, e isimli 5 kişi bir sırada; i. Kaç farklı biçimde dizilebilir? ii. a ile b daima yan yana olmak koşulu ile kaç farklı şekilde dizilebilir? i. P ( 5,5) = 5! = 120 ii. a ile b yi tek kişi olarak düşünürsek, toplamda 4 kişi yapar. 4!. 2! 2kişininkendi arasında yer değiştirmesi Ör: 5 kişi bir taksiye 2 si öne 3 ü arkaya olmak üzere kaç değişik şekilde oturabilir? 1. Yol: 2. Yol: P 5,3. P 2,2 = 120 Arkaya Kalanlar öne P 5,2. P 3,3 = 120 Öne Kalanlar arkaya veya; 5 kişi 5 koltuğa kaç değişik şekilde oturur ile aynı P ( 5,5) = 120 5

6 Ör: 3 Matematik, 4 Fizik ve 5 Kimyacı arasından 1 Matematik, 1 Fizik ve 1 Kimyacıdan oluşan 3 kişilik komisyonlar oluşturulacaktır. i. Kaç farklı komisyon olur? ii. Matematikten x isimli kişi ile Fizikten y isimli kişi birlikte bulunmazlar? i. Toplam komisyon sayısı = 60 olur. ii. Mat. x ile Fizikten y isimli kişinin birlikte olduğu komisyon sayısı 5 tanedir = 55 tanedir. = kümesinin 3 lü permütasyonlarının sayısının kaç tanesinde a bulunur? Ör: A { a, b, c, d, e} P ( 5,3) = 60 tüm 3 lü permütasyonlar. İçinde a olmayan 3 lü permütasyonlar; { b, c, d, e } Ör: A { a, b, c, d, e, f } P ( 4,3) = 24 tanedir. a olanlar; P P 5,3 4,3 = = 36 olur. = kümesinin 4 lü permütasyonlarından kaç tanesinde a veya b vardır? s( A B) = s ( A) + s ( B) s ( A B) P ( 6, 4) = = 360 tanedir. a ve b nin olmadığı 4 lü permütasyonlarının sayısı; P 4,4 = 24 dür. a veya b nin olduğu olur. = kümesinin 4 lü permütasyonlarının kaç tanesinde a veya b den birisi bulunur? Ör: A { a, b, c, d, e, f } a veya b den birisi demek, a varken b yok veya b varken a yok demektir. Buna göre; 2x 96 = 192 olur. b nin olmadığı 4 lü permütasyonlar; { a, c, d, e, f } de seçim yapılır. P P 5,4 4,4 = 96 a' nındaolmadığı 4lü permütasyonlar Aynı işlem a nın da olmadığı için yapılırsa o da 96 tane bulunur. 6

7 Ör: 4 öğretmen ve 3 öğrenci bir sırada oturacaklardır. Sağ ve sol tarafa oturanların öğretmen olması ve öğrencilerin hep yan yana olması koşulu ile bu 7 kişi kaç farklı şekilde dizilebilir? I. ara II. ara III. ara Öğretmen Öğretmen Öğretmen Öğretmen Öğretmen Öğretmen Öğretmen Öğretmen 4 öğretmen 4! şekilde sıralanır. 3 öğrenci kendi aralarında 3! şekilde sıralanır. Öğrenciler 3 araya da yerleşeceğine göre 4!.3!.3 = 432 olur. 4! öğretmenlerin dizilişi 3! öğrenciler kendi aralarında 3! 2 öğretmen ve öğrenciler Bu olmaz Çünkü öğretmenler zaten kendi aralarında yer değiştirmişti. Öğrenciler ile ikinci kez olmaz. Ör: 3 Fizik, 3 Kimya ve 4 matematik kitabı, aynı türden kitaplar bir arada ve matematik kitapları ortada olmak koşulu ile kaç değişik şekilde sıralanır? Matematik kitapları ortada ise toplam 2 kitap gibi düşünülür. Buna göre; Fizik Matematik 2!. 3!. 3!. 4! = 1728 olur. Mat. ortada İki tan ekalır Kimya Ör: 3 Fizik, 3 Kimya ve 4 matematik kitabı, matematik kitapları bir arada ve ortada (arada) olmak kaydı ile kaç değişik şekilde sıralanır? =3 3 Fizik 3 Mat. 3 Kimya Ortada 4 matematik kitabı bir kitap olarak düşünülür. Toplam 7 kitap vardır. 7!.4! tamamı olur. Matematik kitapları sağ ve sol başta olursa; 2 4!.6! ! 6tane 6tane 4! Mat Mat x olur. Buradan da 7!.4! ( 4!.6! x2) 6!.4!. ( 7 2) = olur. 7

8 Ör: 2 Fizik, 5 matematik kitabı bir rafa fizik kitapları yan yana gelmemek kaydı ile kaç değişik şekilde sıralanır? 7! 6!.2! = 6!.5 Tüm Dizilişler Fizikler yanyana olmak koşuluile Ör: {, L, K, M, A, N, T } kümesinin üçlü permütasyonlarının kaç tanesinde bulunur? P P 7,3 6,3 = 90 Tüm3lü Permütasyonlar ninolmadığı 3lü permütasyonlar Ör: Bir grup arkadaş, iki koltuğa 42 farklı şekilde oturabiliyorlar. Bu grup, 3 koltuğa kaç değişik şekilde oturabilir? (,2) = 42 x = 7 ise, P x P 7,3 = 210 olur. Ör: 4 seçenekli 10 sorudan oluşan bir sınavda, ardışık iki sorunun cevapları aynı olmayacak şekilde kaç farklı cevap anahtarı hazırlanır? olur. Ör: Her matematik kitabının iki yanında birer fizik kitabı olması koşulu ile 3 matematik, 4 fizik kitabı kaç farklı şekilde dizilebilir? F M F M F M F şeklinde dizilirler. 4!. 3! = 144 olur. Fizikler Matematikler Dönel Permütasyon Tanım: n elemanlı bir kümenin elamanlarının basit kapalı bir eğri üzerindeki farklı sıralanışlarının her birine, bu kümenin dönel permütasyonu (sıralaması) denir. n elemanlı bir kümenin dönel permütasyonlarının sayısı; P n 1, n 1 = n 1! olur. 8

9 Ör: 7 kişi bir yuvarlak masa etrafına kaç farklı şekilde sıralanır? n = 7 n 1! = 6! olur. Ör: 3 kız, 6 erkek yuvarlak masa etrafında 1 kız, 2 erkek biçiminde kaç farklı şekilde oturabilir? K Bir kızı sabit alalım rkekler kendi aralarında 6! kızlar ise, 2! (1 i sabit ) 2!.6! = 1440 olur. K K Ör: 4 evli çift yuvarlak masa etrafında eşler daima yan yana olmak koşulu ile kaç farklı şekilde oturur? Çiftleri 1 er kişi sayarsak, 3! olur. Her çift kendi arasında 2! dir. Buna göre; 3!.2!.2!.2!.2! = 96 dır. 4çift Ör: 4 erkek, 3 bayan ve 3 çocuk yuvarlak masa etrafında erkekler, bayanlar ve çocuklar yan yana, olmak koşulu ile kaç değişik şekilde otururlar? 4 rkek 3 Bayan 3 Çocuk Toplam 3 Kişi 3 1!. 4!. 3!. 3! Bu durumda rkekler Bayanlar Çocuklar Kendi Aralarında olur. Ör: 6 anahtar yuvarlak ve maskotsuz bir anahtarlığa kaç farklı şekilde dizilir? Anahtarlık ters çevrilmese idi ( 6 1 )! = 5! olurdu. Fakat ters çevrileceği göz önüne alınırsa, 5! 60 2 = olur. 9

10 Ör: 5 erkek 3 kız yuvarlak masa etrafına i. Kaç değişik şekilde sıralanır? ii. rkekler bir arada olmak kaydı ile kaç değişik şekilde sıralanır? i = kişi, 8 1! = 7! olur. ii. rkekler 1 eleman gibi düşünülürse; 4 1!. 5! = 3!.5! olur. 4 kişi olur. rkekler Kendi Aralarında Ör: 4 erkek 4 kadın yuvarlak masa etrafında i. Hiçbir koşula bağlı olmadan ii. Belli iki kadın yan yana olmak kaydı ile iii. Kadınlar bir arada olmak kaydı ile iv. Bir kadın bir erkek olmak üzere kaç değişik şekilde sıralanırlar? i. ( 8 1 )! = 7! ii. 2 kadın bir kişi gibi düşünülürse, 7 1!. 2! = 6!.2! olur. iii. ( 5 1 )!.4! iv. Kadınlar Kendi Aralarında Kadınları yuvarlak masa etrafına aralarında birer boşluk olacak şekilde ( 4 1 )! şekilde sıralarız. Geriye kalan 4 boş yere 4 erkek 4! şekilde dizilir. (artık yuvarlak masa olayı ortadan kalkmıştır.) Buna göre; 3!.4! olur. 10

11 Ör: 4 kız 8 erkek yuvarlak masa etrafına, iki kız arasına iki erkek olmak koşulu ile kaç değişik şekilde otururlar? K K K 4 Kız 4 1!. 8! = 3!.8! olur. rkekler K Ör: 3 kız x erkekten oluşan bir grup yuvarlak masa etrafına, kızlar hep yan yana olmak koşulu ile 36 farklı şekilde oturabiliyorlar. Buna göre x =? x!.3! = 36 x = 3 olur. Ör: x kişi bir sıraya değişik biçimde, yuvarlak masa etrafına ise, 5040 değişik biçimde oturabiliyorsa x =? x! = x = 8 1! 5040 ( x ) olur. Tekrarlı Permütasyon Tanım: Genel olarak sıralanmış n elemandan n 1 tanesi bir türden, n 2 tanesi başka bir türden,, n r tanesi diğer bir türden olsun. Bu n elemanın yerlerinin değiştirilmesi ile oluşan farklı sıralamanın sayısı S ise, n n! S = = dir. n1, n2,..., nr n1!. n2!... nr! Ör: 3 mavi, 4 sarı, 5 yeşil kalem bir sırada yan yana kaç değişik şekilde sıralanır? Toplam Kalem sayısı 12 dir. Fakat mavi, sarı ve yeşil kalemlerin (aynı cins olduğu için) kendi aralarında sıralaması farklı bir sıralama olmayacağı için; 12! 3!.4!.5! olur. 11

12 Ör: MATMATİK kelimesinin harfleri yer değiştirdiğinde anlamlı ya da anlamsız 9 harfli kaç kelime yazılabilir? 9! 2!. 2!. 2! M harfi T harfi Aharfi olur. Ör: sayısının rakamlarının yerleri değiştirilerek, 7 basamaklı kaç sayı yazılır? 7! 2!. 2!. 3! 2' ler 0' lar 4ler için = 210 olur. Fakat 0 la başlayan sayılar tüm sayıların 2 sini oluşturduğu için = olur. Ör: sayısındaki rakamların yerlerini değiştirerek birbirinden farklı, 7 basamaklı kaç sayı yazılır? 300 Ör: PRSONL sözcüğündeki harflerin yerleri değiştirilerek, anlamlı ya da anlamsız R ile başlayıp, N ile biten 8 harfli kaç sözcük yazılabilir? R Geriye P,,S,O,,L kalıyor. 6! 2! ler için N = 360 olur. Ör: A dan B ye kaç farklı yoldan gidilebilir? B A 14! 8!.6! tane farklı yol vardır. 12

13 Genel Alıştırmalar 1. Her biri 5 cevap şıklı, 10 soruluk test hazırlanacaktır. Peş peşe aynı cevap şıkkı olmamak üzere, bu 18 testin kaç farklı cevap anahtarı olabilir? ( 5.2 ) 2. Büyükbaba ve 3 çocuklu bir aile yuvarlak masadaki 6 sandalyeye oturacaktır. Büyükbabanın, anne ve baba arasına oturması koşulu ile kaç türlü oturur? (12) 3. a ve b isimli iki kişinin de içinde bulunduğu 5 kişilik bir grup, bir sıradaki 5 koltuğa oturacaklarıdır. a ve b arasında en çok bir kişi oturacak şekilde bu koltuklara kaç farklı şekilde oturabilir? (84 ) 4. 3 kız, 3 erkek yuvarlak masa etrafına 2 kız arasına daima bir erkek olma koşulu ile kaç değişik şekilde sıralanır? (12) sayısının rakamları ile 6 basamaklı sayılar yazılıyor. Bu sayıların kaç tanesi 5 ile başlayıp 4 ile biter? ( 6 ) 6. LMNT kelimesindeki harflerin yer değiştirmesi ile elde edilen 7 harfli kelimelerin kaç tanesinde harflerinden iki tanesi yan yana bulunmaz? Çözüm: 7! = 840 tane yazılır. 3!... 5! = 120 ' ler 4tane tanesinde 3 ü bir arada olur. ' ler 5tan e... = 6! de 2 si ve 3 ü bir arada olur. Buna göre; ikisi yan yana olmayan 840 ( 6! 5! ) = 240 olur. 7. Bir daktilocu 1 den 999 a kadar olan sayıları yazarken 5 tuşuna toplam kaç kez basmıştır? (300 ) (96 ) 8. 4 kişi bir sıradaki 7 koltuğa aralarında boş yer kalmamak koşulu ile kaç değişik şekilde otururlar? 9. 6 kişi iki ayrı dalda yarışacaktır. Bu iki yarışın ilk üç derecesi kaç değişik şekilde oluşur? ( ) Çözüm: P 6,3. P 6, 3 = yarış 2. yarış profesör ile 3 asistan bir yuvarlak masa etrafına dizilecektir. Üç asistan yan yana gelmeyecek şekilde kaç türlü oturabilirler? (576 ) 13

14 Dosya adı: PRMUTASYON KONU ANLATIMI Dizin: C:\Users\TOLGA\Desktop\INTRNT\PRMUTASYON KOMBINASYON BINOM OLASILIK Şablon: C:\Users\TOLGA\AppData\Roaming\Microsoft\Templates\Nor mal.dotm Başlık: Permütasyon Kombinasyon Binom Olasılık Konu: Yazar: PRFCT PC1 Anahtar Sözcük: Açıklamalar: Oluşturma Tarihi: :38:00 Düzeltme Sayısı: 2 Son Kayıt: :38:00 Son Kaydeden: TOLGA Düzenleme Süresi: 2 Dakika Son Yazdırma Tarihi: :38:00 n Son Tüm Yazdırmada Sayfa Sayısı: 13 Sözcük Sayısı: 2.924(yaklaşık) Karakter Sayısı: (yaklaşık)

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

Örnek...5 : A = { a, b, c, d, e, f } kümesinin 4 lü perm ütas yonlarının kaç tanesinde,

Örnek...5 : A = { a, b, c, d, e, f } kümesinin 4 lü perm ütas yonlarının kaç tanesinde, PERMÜTASYON ( SIRALAMA OLAYI ) Birbirinden farklı n tane nesnenin r tanesinin farklı her dizilişine (sıralanışına) n nesnenin r li permütasyonları denir ve P(n,r)= n! (r n) (n r)! biçim inde gösterilir.

Detaylı

PERMÜTASYON DERS NOTLARI. Sayma Yöntemleri. TEMEL SAYMA KURALLARI Toplama yoluyla sayma. Çarpma yoluyla sayma

PERMÜTASYON DERS NOTLARI. Sayma Yöntemleri. TEMEL SAYMA KURALLARI Toplama yoluyla sayma. Çarpma yoluyla sayma TEMEL SAYMA KURALLARI Toplama yoluyla sayma A ve B ayrık iki küme olsun. Bu iki kümenin birleşimlerinin eleman sayısı, bu kümelerin eleman sayılarının toplamına eşittir. Bu sayma yöntemine toplama yoluyla

Detaylı

TEMEL SAYMA KURALLARI

TEMEL SAYMA KURALLARI TEMEL SAYMA KURALLARI SAYMA Toplama Yoluyla Sayma A ve B sonlu ve ayrık kümeler olmak üzere, bu iki kümenin birleşiminin eleman sayısı; s(a,b) = s(a) + s(b) dir. Sonlu ve ayrık iki kümenin birleşiminin

Detaylı

PERMÜTASYON DÜZEY: 1 TEST : P(6, n) = 6! 1. P(6, 2) + P(4, 3)

PERMÜTASYON DÜZEY: 1 TEST : P(6, n) = 6! 1. P(6, 2) + P(4, 3) PERMÜTASYON DÜZEY: 1 TEST : 1 1. P(6, 2) + P(4, 3) işleminin sonucu kaçtır? A) 30 B) 44 C) 50 D) 54 5. P(6, n) = 6! eşitliğini sağlayan n doğal sayılarının kümesi aşağıdakilerden hangisidir? A) {7} B)

Detaylı

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25 1 İçindekiler 1. Bölüm: SIRALAMA (PERMÜTASYON)... 5 2. Bölüm: SEÇME (KOMBİNASYON)...13 3. Bölüm: BİNOM AÇILIMI...21 4. Bölüm: OLASILIK...25 5. Bölüm: FONKSİYONLARIN SİMETRİLERİ VE CEBİRSEL ÖZELLİKLERİ...37

Detaylı

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006 MC www.matematikclub.com, 2006 Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Permutasyon-Kombinasyon- Binom TEST I 1. Ankra'dan Đstanbul'a giden 10 farklı otobüs, Đstanbul'- dan Edirne'ye giden 6 farklı

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

140. 2< a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9 2,4 2,7 3,2 3,7. a a c b ve c a a b c

140. 2< a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9 2,4 2,7 3,2 3,7. a a c b ve c a a b c 138. a ve b gerçel sayılardır. a < a, 6a b 5= 0 b ne olabilir? (11) 4 5 8 11 1 139. < 0 olmak üzere, 4 3. =? ( 3 ) a 1 140. < a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9,4,7 3,

Detaylı

PERMÜTASYON - KOMBİNASYON

PERMÜTASYON - KOMBİNASYON PERMÜTASYON - KOMBİNASYON Sayma Yöntemleri Saymanın çeşitli yöntemleri vardır. Bunlardan biri eşleme yolu ile saymadır. Eşleme yolu ile sayma yönteminde sayma sayıları kümesinin elemanları sayılacak nesneler

Detaylı

1. BÖLÜM: PERMÜTASYON (SIRALAMA) BÖLÜM: KOMBİNASYON (SEÇME) A. SEÇME (KOMBİNASYON) B. KOMBİNASYON GEOMETRİ İLİŞKİSİ

1. BÖLÜM: PERMÜTASYON (SIRALAMA) BÖLÜM: KOMBİNASYON (SEÇME) A. SEÇME (KOMBİNASYON) B. KOMBİNASYON GEOMETRİ İLİŞKİSİ İçindekiler 1. BÖLÜM: PERMÜTASYON (SIRALAMA)... 10 A. SAYMA KURALLARI... 10 B. FAKTÖRİYEL... 14 C. n ELEMANLI BİR KÜMENİN r Lİ PERMÜTASYONLARI (Dizilişleri)... 17 Ölçme ve Değerlendirme...20 Kazanım Değerlendirme

Detaylı

4. Bir tabakta 3 elma, 4 armut ve 5 portakal vardır.

4. Bir tabakta 3 elma, 4 armut ve 5 portakal vardır. Saymanın Temel İlkesi Birinci elemanı A 1 kümesinden, ikinci elemanı A 2 kümesinden,..., n inci elemanı A n kümesinden alınmak koşulu ile; kaç değişik sıralı n li yazılabilir? 1. Aşağıdaki problemleri,

Detaylı

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK İÇİNDEKİLER Kümeler 5 44 Fonksiyonlar 1 45 88 Fonksiyonlar 2 89 124 Sayma Kuralları 125 140 Faktöriyel

Detaylı

Köklü Sayılar ,1+ 0,1+ 1, 6= m 10 ise m kaçtır? ( 8 5 ) 2x 3. + a =? (4)

Köklü Sayılar ,1+ 0,1+ 1, 6= m 10 ise m kaçtır? ( 8 5 ) 2x 3. + a =? (4) Köklü Sayılar.,+ 0,+, 6= m 0 ise m kaçtır ( 8 5 ). a= ise a + a (). : :... = 8 0 0... eşitliğini sağlayan değeri nedir (). 99.0+.6+ (75) 5. + : + 8 7 8 () 6. > 0 ve = olduğuna göre ( ) + a+ b 7. a, b R

Detaylı

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir.

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir. BÖLÜM 1 KÜMELER CEBİRİ Küme, iyi tanımlanmış ve farklı olan nesneler topluluğudur. Yani küme, belli bir kurala göre verilmiş nesnelerin listesidir. Nesneler reel veya kavramsal olabilir. Kümede bulunan

Detaylı

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler ORGANİZASYON ŞEMASI 1. BÖLÜM Mantık... 7. BÖLÜM Sayılar... 13 3. BÖLÜM Rasyonel Sayılar... 93 4. BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler... 103 5. BÖLÜM Mutlak Değer... 113 6. BÖLÜM Çarpanlara Ayırma...

Detaylı

PERMÜTASYON. Örnek: Çözüm: Örnek: Çözüm: B) Çarpma Kuralı. Benzer şekilde, a 1

PERMÜTASYON. Örnek: Çözüm: Örnek: Çözüm: B) Çarpma Kuralı. Benzer şekilde, a 1 ERMÜTASYON SAYMANIN TEMEL KURALI A) Toplama Kuralı Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin elemanlarının sayısına eşittir. Sonlu ve ayrık iki küme A ve B olsun.

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

Ünite 1: SAYMA Konu : Sıralama ve seçme Alt Konu : Toplama ve çarpma yolu ile sayma Neler öğreneceksiniz? Olayların gerçekleşme sayılarını toplama ve çarpma prensiplerini kullanarak hesaplamayı öğreneceksiniz.

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

PERMÜTASYON KOMBĐNASYON BĐNOM VE OLASILIK

PERMÜTASYON KOMBĐNASYON BĐNOM VE OLASILIK YILLAR 00 00 00 00 00 00 008 009 00 0 ÖSS - - - ÖYS PERMÜTASYON KOMBĐNASYON BĐNOM VE OLASILIK TEMEL SAYMA KURALLARI Örnek ( ) adet hediyeden üçü üç kişiye, her birine birer hediye vermek kaydıyla kaç değişik

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 1. ve y aralarında asal iki doğal sayıdır. 7 y 11 olduğuna göre, y farkı 5. 364 sayısının en büyük asal böleni A) 3 B) 7 C) 11 D) 13 E) 17 A) B) 3 C) 4

Detaylı

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ OLASILIĞA GİRİŞ DOÇ. DR. NİHAL ERGİNEL OLASILIĞA GİRİŞ - Bugün yağmur yağma olasılığı % 75 dir. - X marka bilgisayarın hiç servis gerektirmeden 100000 saat çalışması

Detaylı

6. Ali her gün cebinde kalan parasının (2009) a, b ve c farklı pozitif tamsayılar, 9. x, y, z pozitif gerçek sayılar,

6. Ali her gün cebinde kalan parasının (2009) a, b ve c farklı pozitif tamsayılar, 9. x, y, z pozitif gerçek sayılar, 1. 9 2 x 2 ifadesinin açılımında sabit x terim kaç olur? A) 672 B) 84 C) 1 D) -84.E) -672 6. Ali her gün cebinde kalan parasının %20 sini harcamaktadır. Pazartesi sabahı haftalığını alan Ali ni Salı günü

Detaylı

AÇIK UÇLU SORULAR ÜNİTE 1 VERİ, SAYMA VE OLASILIK. Bölüm 1 TEMEL SAYMA KLURALLARI

AÇIK UÇLU SORULAR ÜNİTE 1 VERİ, SAYMA VE OLASILIK. Bölüm 1 TEMEL SAYMA KLURALLARI ÜNİTE VERİ, SAYMA VE OLASILIK Bölüm TEMEL SAYMA KLURALLARI AÇIK UÇLU SORULAR. A = {0,,, 3, 4, } kümesindeki rakamlar kullanılarak 3 basamaklı rakamları farklı kaç farklı tek sayı yazılabilir? 48. A = {0,,

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

12-A. Sayılar - 1 TEST

12-A. Sayılar - 1 TEST -A TEST Sayılar -. Birbirinden farklı beş pozitif tam sayının toplamı 0 dur. Bu sayılardan sadece ikisi den büyüktür. Bu sayılardan üç tanesi çift sayıdır. Buna göre bu sayılardan en büyüğü en çok kaç

Detaylı

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir.

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir. TABAN ARĠTMETĠĞĠ Kullandığımız 10 luk sayma sisteminde sayılar {0,1,2,3,4,5,6,7,8,9} kümesinin elemanları (Rakam) kullanılarak yazılır. En büyük elemanı 9 olan, 10 elemanlı bir kümedir. Onluk sistemde;

Detaylı

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz.

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz. MATEMATİK ASAL ÇARPANLARA AYIRMA A S A L Ç A R P A N L A R A A Y I R M A T a n ı m : Bir tam sayıyı, asal sayıların çarpımı olarak yazmaya, asal çarpanlarına ayırma denir. 0 sayısını asal çarpanlarına

Detaylı

ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT

ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT PERMÜTASYON, KOMBİNASYON BİNOM, OLASILIK ve İSTATİSTİK ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT Permütasyon. Kazanım : Eşleme, toplama ve çarpma yoluyla sayma yöntemlerini açıklar. 2. Kazanım : n elemanlı

Detaylı

Örnek...1 : Yandaki bölme işlemin de bölüm ile kalanın toplamı kaçtır?

Örnek...1 : Yandaki bölme işlemin de bölüm ile kalanın toplamı kaçtır? BÖLME İŞLEMİ VE ÖZELLİKLERİ A, B, C, K doğal sayılar ve B 0 olmak üzere, BÖLÜNEN A B C BÖLEN BÖLÜM Örnek...4 : x sayısının y ile bölümündeki bölüm 2 ve kalan 5 tir. y sayısının z ile bölümündeki bölüm

Detaylı

1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir?

1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir? 1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir? 9. 4 çocuklu bir aile yan yana poz verecektir. Çocukların soldan sağa doğru boy sırasında olduğu kaç durum

Detaylı

LYS MATEMATÝK II Soru Çözüm Dersi Kitapçýðý 5 (MF-TM)

LYS MATEMATÝK II Soru Çözüm Dersi Kitapçýðý 5 (MF-TM) LYS MATEMATÝK II Soru Çözüm Dersi Kitapçýðý 5 (MF-TM) Permütasyon Kombinasyon Binom Açýlýmý Bu yayýnýn her hakký saklýdýr. Tüm haklarý bry Birey Eðitim Yayýncýlýk Pazarlama Ltd. Þti. e aittir. Kýsmen de

Detaylı

BİNOM AÇILIMI. Binom Açılımı. çözüm. kavrama sorusu. çözüm. kavrama sorusu. ö æ ö æ ö,,

BİNOM AÇILIMI. Binom Açılımı. çözüm. kavrama sorusu. çözüm. kavrama sorusu. ö æ ö æ ö,, BİNOM AÇILIMI Binom Açılımı n doğal sayı olmak üzere, (x+y) n ifadesinin açılımını pascal üçgeni yardımıyla öğrenmiştik. Pascal üçgenindeki katsayılar; (x+y) n ifadesi 1. Sütun: (x+y) n açılımındaki katsayılar

Detaylı

ÖZEL EGE LİSESİ 10. OKULLARARASI MATEMATİK YARIŞMASI 10. SINIFLAR SORULARI

ÖZEL EGE LİSESİ 10. OKULLARARASI MATEMATİK YARIŞMASI 10. SINIFLAR SORULARI 0 KULLARARASI MATEMATİK YARIŞMASI 0 SINIFLAR SRULARI (5xy) dört basamaklı sayıdır 5 x y 6 - a 3 Yukarıdaki bölme işlemine göre y nin alabileceği değerler toplamı kaçtır? 4 m pozitif bir tamsayı olmak üzere;

Detaylı

tmoz.info ozeldersci.com 1 PERMÜTASYON Not Örnek 1.1 FAKTÖRİYEL Örnek Örnek Çözüm Çözüm

tmoz.info ozeldersci.com 1 PERMÜTASYON Not Örnek 1.1 FAKTÖRİYEL Örnek Örnek Çözüm Çözüm Tüm hakları yazarı Bora Arslantürk'e aittir. Kaynak belirtmek şartı ile tüm öğretmen ve öğrencilerimizin - 1 permütasyon kombinasyon olasılık kullanımına açıktır.007 yılı sonuna dek kaynak belirtmek şartı

Detaylı

TEMEL SAYMA. Bill Gates

TEMEL SAYMA. Bill Gates Bölüm 1 TEMEL SAYMA YÖNTEMLERİ Firmamızın sahip olduğu tek şey insan düş gücüdür. Bill Gates Bu bölümde fazla kuramsal bilgi gerektirmeyen sayma problemleri üzerinde duracağız. Bu tür problemlerde sayma;

Detaylı

İÇİNDEKİLER TOPLAMA YOLUYLA SAYMA YÖNTEMİ...59-60... 01-01 ÇARPMA YOLUYLA SAYMA YÖNTEMİ...61-64... 02-03 FAKTÖRİYEL...65-66...

İÇİNDEKİLER TOPLAMA YOLUYLA SAYMA YÖNTEMİ...59-60... 01-01 ÇARPMA YOLUYLA SAYMA YÖNTEMİ...61-64... 02-03 FAKTÖRİYEL...65-66... İÇİNDEKİLER Sayfa No Test No 3-PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK TOPLAMA YOLUYLA SAYMA YÖNTEMİ...59-60... 01-01 ÇARPMA YOLUYLA SAYMA YÖNTEMİ...61-64... 0-03 FAKTÖRİYEL...65-66...

Detaylı

2. (v+w+x+y+z) 8 ifadesinin açılımında kaç terim vardır? 3. log 5 0, 69897 olduğuna göre 50 10 sayısı kaç basamaklıdır?

2. (v+w+x+y+z) 8 ifadesinin açılımında kaç terim vardır? 3. log 5 0, 69897 olduğuna göre 50 10 sayısı kaç basamaklıdır? Ayrık Hesaplama Yapıları A GRUBU 3.03.0 Numarası Adı Soyadı : CEVAP : ANAHTARI SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI YGS - LYS SAYILAR KONU ÖZETLİ LÜ SORU BANKASI ANKARA ÖN SÖZ Sevgili Öğrenciler, ÖSYM nin son yıllarda yaptığı sınavlardaki matematik sorularının eski sınav sorularından çok farklı olduğu herkes tarafından

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak sayfası İÇİNDEKİLER. ÜNİTE SAYMA Sıralama ve Seçme... 4 Toplama Yolu ile Sayma... 4 Çarpma Yolu ile Sayma... 4 Permütasyon (Sıralama)... 5 Konu Testleri - -... 9 Kombinasyon (Seçme)... 4 Konu Testleri

Detaylı

Cebir Notları. Permutasyon. www.mustafayagci.com, 2005. Mustafa YAĞCI, yagcimustafa@yahoo.com

Cebir Notları. Permutasyon. www.mustafayagci.com, 2005. Mustafa YAĞCI, yagcimustafa@yahoo.com www.mustafayagci.com, 005 Cebir Notları Mustafa YAĞCI, yagcimustafa@yahoo.com Matematikçiler üçe ayrılır: Sayı saymayı bilenler ve bilmeyenler Matematikle ilk tanışmamız sayı saymayla başlamıştır desek

Detaylı

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde 1. Aşağıdaki kümelerden hangisi sonsuz küme belirtir? A) A = { x 4 < x < 36,x N} B) B = { x 19 < x,x asal sayı} C) C = { x x = 5k,0 < x < 100,k Z} D) D = { x x = 5, x Z} E) E = { x x < 19,x N}. A, B ve

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINAV SORULARI 1. 1999 ÖSS a, b, c pozitif gerçel (reel) sayılar olmak üzere a+ b ifadesindeki her sayı 3 ile çarpılırsa aşağıdakilerden hangisi elde c edilir? 3 a+ b A) B) c a+ 3b C)

Detaylı

BÖLÜNEBĐLME KURALLARI

BÖLÜNEBĐLME KURALLARI YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS - 2 2-2 1 1-1 1 kalanı bulmak için sağdan ve + ile başlamak gerekir BÖLÜNEBĐLME KURALLARI 2 Đle Bölünebilme: tüm çift sayılar, yani birler

Detaylı

5. A ve B gibi iki cümleden A nın bir, B nin iki elemanı A B cümlesinin elemanı değildir. dışında A. 9. A ve B iki kümedir.

5. A ve B gibi iki cümleden A nın bir, B nin iki elemanı A B cümlesinin elemanı değildir. dışında A. 9. A ve B iki kümedir. 1. KÜMELER 5. A ve B gibi iki cümleden A nın bir, B nin iki elemanı A B cümlesinin elemanı değildir. dışında A B nin alt cümleleri sayısı 63 olduğuna göre, A B cümlesinin alt cümleleri sayısı kaçtır? (51)

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Kombinasyon

Mustafa YAĞCI, yagcimustafa@yahoo.com Kombinasyon Mustafa YAĞCI www.mustafayagci.com.tr, 2011 Cebir Notları Mustafa YAĞCI, yagcimustafa@yahoo.com Kombinasyon K ombinasyon. n tane farklı elemandan oluşan bir kümenin altkümelerine birer kombinasyon denir.

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84 N 0,1,,... Sayı kümesine doğal sayı kümesi denir...., 3,, 1,0,1,,3,... sayı kümesine tamsayılar kümesi denir. 1,,3,... saı kümesine sayma sayıları denir.pozitif tamsayılar kümesidir. 15 y z x 3 5 Eşitliğinde

Detaylı

8. 2 x+1 =20 x. 9. x 3 +6x 2-4x-24=0 10.

8. 2 x+1 =20 x. 9. x 3 +6x 2-4x-24=0 10. MAT-1 EK SORULAR-2 1. 6. A)7 B)8 C)15.D)56 E)64 Olduğuna göre x.a)1 B)2 C)3 D)4 E)6 7. 2. Birbirinden farklı x ve y gerçek A)5.B)6 C)7 D)8 E)9 sayıları için; x 2 +2009y=y 2 +2009x eşitliği sağlandığına

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

2. Aşağıdaki pseudocode ile verilen satırlar işletilirse, cnt isimli değişkenin son değeri ne olur?

2. Aşağıdaki pseudocode ile verilen satırlar işletilirse, cnt isimli değişkenin son değeri ne olur? Numarası : Adı Soyadı : SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem ile yazınız. Sınavın ilk 30 dakikasında sınıftan çıkılmayacaktır.

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ 1. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için

Detaylı

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1 1. BÖLÜM Sayılarda Temel Kavramlar Bölme - Bölünebilme - Faktöriyel EBOB - EKOK Kontrol Noktası 1 Isınma Hareketleri 1 Uygun eşleştirmeleri yapınız. I. {0, 1, 2,..., 9} II. {1, 2, 3,...} III. {0, 1, 2,

Detaylı

BÖLME ve BÖLÜNEBİLME

BÖLME ve BÖLÜNEBİLME BÖLME ve BÖLÜNEBİLME A. BÖLME A, B, C, K birer doğal sayı ve B 0 olmak üzere, bölme işleminde, A ya bölünen, B ye bölen, C ye bölüm, K ya kalan denir. A = B. C + K dır. Kalan, bölenden küçüktür. (K < B)

Detaylı

Tanım: (1. Tip Üretken Fonksiyonlar) (a r ) = (a 1, a 2, a 3,,a r, ) sayı dizisi olmak üzere, (a r ) dizisinin 1. Tip üretken fonksiyonu

Tanım: (1. Tip Üretken Fonksiyonlar) (a r ) = (a 1, a 2, a 3,,a r, ) sayı dizisi olmak üzere, (a r ) dizisinin 1. Tip üretken fonksiyonu Üretken Fonksiyonlar Ali İlker Bağrıaçık Üretken fonksiyonlar sayma problemlerinin çözümünde kullanılan önemli yöntemlerden biridir. Üretken fonksiyonların temeli Moivre nin 1720 yıllarındaki çalışmalarına

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

TEST-8. Yandaki at resminin bir bölümü silinmiştir. Aşağıdaki şekillerden hangisi bu resmi tamamlar? A) B) C) D)

TEST-8. Yandaki at resminin bir bölümü silinmiştir. Aşağıdaki şekillerden hangisi bu resmi tamamlar? A) B) C) D) TEST-8 Matematik Yarışmalarına Hazırlık 1 Yandaki at resminin bir bölümü silinmiştir. Aşağıdaki şekillerden hangisi bu resmi tamamlar? A) B) C) D) 2 Yandaki kareden çizgiler boyunca kesilerek çeşitli şekiller

Detaylı

5. BÖLÜM EKİ SAYMANIN TEMEL PRENSİPLERİ

5. BÖLÜM EKİ SAYMANIN TEMEL PRENSİPLERİ 5 ÖLÜM EKİ SYMNIN TEMEL PRENSİPLERİ elirli bir takım deneylerde olanaklı tüm sonuçları belirlemek için geliştirilmiş tekniklere kombinasyon analizi denir Örneğin iki farklı denemede 1 denemenin m 2 denemenin

Detaylı

Örnek...4 : A = { a, b, c, d, {a}, {b,c}} kümesi veriliyor. Aşağıdakilerin doğru mu yanlış mı olduğunu yazınız.

Örnek...4 : A = { a, b, c, d, {a}, {b,c}} kümesi veriliyor. Aşağıdakilerin doğru mu yanlış mı olduğunu yazınız. KÜME KAVRAMI Küme matematiğin tanımsız bir kavramıdır. Ancak kümeyi, iyi tanımlanmış kavram veya nesneler topluluğu diye tarif edebiliriz. Kümeler A, B, X, K,... gibi büyük harflerle gösterilir. Bir kümeyi

Detaylı

Cebir Notları Mustafa YAĞCI, Tekrarlı Permutasyon

Cebir Notları Mustafa YAĞCI, Tekrarlı Permutasyon www.mustafayagci.com.tr, 01 ebir Notları Mustafa ĞI, yagcimustafa@yahoo.com ekrarlı Permutasyon G eçen dersimizde n kişinin n! kadar değişik şekilde sıralanabileceğini öğrenmiştik. Şimdiyse bu n kişinin

Detaylı

A) 18 B) 19 C) 20 D) 21 A) 1226 B) 1225 C) 1224 D) 1223

A) 18 B) 19 C) 20 D) 21 A) 1226 B) 1225 C) 1224 D) 1223 . İlk 2 pozitif doğal sayıdan oluşan {, 2, 3,,...,, 2} kümesi veriliyor. u kümeden 3 eleman çıkartıldığında geriye kalan elemanların sayı değerleri çarpımı tam kare oluyor. una göre, çıkartılan sayıların

Detaylı

BÖLÜNEBİLME ÇÖZÜMLÜ SORULAR

BÖLÜNEBİLME ÇÖZÜMLÜ SORULAR BÖLÜNEBİLME ÇÖZÜMLÜ SORULAR 1) Rakamları birbirinden farklı dört basamaklı 435a sayısı 2 ile tam bölünüyor fakat 4 ile tam bölünemiyor ise a'nın alabileceği değerler toplamı kaçtır? A) 2 B) 4 C) 6 D) 8

Detaylı

TEMEL KAVRAMLAR Test -1

TEMEL KAVRAMLAR Test -1 TEMEL KAVRAMLAR Test -1 1. 6 ( ) 4 A) B) 3 C) 4 D) 5 E) 6 5. 4 [1 ( 3). ( 8)] A) 4 B) C) 0 D) E) 4. 48: 8 5 A) 1 B) 6 C) 8 D) 1 E) 16 6. 4 7 36:9 18 : 3 A) 1 B) 8 C) D) 4 E) 8 3. (4: 3 + 1):4 A) 3 B) 5

Detaylı

MANTIK. 3. p 0, q 1 ve r 1 iken aşağıdaki önermelerin doğruluk değerlerini bulunuz. p q q. q b. ( ) ' c. ( p q) r

MANTIK. 3. p 0, q 1 ve r 1 iken aşağıdaki önermelerin doğruluk değerlerini bulunuz. p q q. q b. ( ) ' c. ( p q) r MANTIK 1. p : Ali esmerdir., q : Ali bir avukattır. Önermeleri verildiğine göre, sembolik olarak gösterilen aşağıdaki ifadeleri yazıya çeviriniz. a. p b. p q c. p q d. p q e. p q. p 1 ve q iken aşağıdaki

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

2000 Birinci Aşama Sınav Soruları

2000 Birinci Aşama Sınav Soruları 2000 irinci şama Sınav Soruları Lise 1 Soruları 1 369 sayısı bir kaç ardışık doğal sayının toplamı olarak kaç farklı biçimde yazılabilir? )2 )3 )4 )5 )7 2 ve sayıları 2000 sayısının pozitif bölenleri olmak

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI

Ortak Akıl MATEMATİK DENEME SINAVI Ortak kıl YGS MTEMTİK ENEME SINVI 040- Ortak kıl dem ÇİL yhan YNĞLIŞ arış EMİR elal İŞİLİR eniz KRĞ Engin POLT Ersin KESEN Eyüp ULUT Fatih SĞLM Fatih TÜRKMEN Hakan KIRI Kadir LTINTŞ Köksal YİĞİT Muhammet

Detaylı

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI SERİMYA - 4 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI. 4? 4 4. A B denkleminde A ve B birbirinden farklı pozitif tam sayılar olduğuna göre, A + B toplamı kaçtır? işleminin sonucu kaçtır? A) 6 B) 8 C) D)

Detaylı

3)Aşağıdaki tabloda gruplandırılmış bir veri kümesi bulunmaktadır. Bu veri kümesinin mutlak ortalamadan sapması aşağıdakilerden hangisidir?

3)Aşağıdaki tabloda gruplandırılmış bir veri kümesi bulunmaktadır. Bu veri kümesinin mutlak ortalamadan sapması aşağıdakilerden hangisidir? İSTATİSTİK SORU VE CEVAPLARI 1)Tabloda 500 kişinin sahip oldukları akıllı telefon markalarını gösteren bilgiler verilmiştir.bu tabloda ki bilgileri yansıtan daire grafiği aşağıdakilerden hangisidir? TELEFON

Detaylı

ales dört bin soru tarzına en yakın EŞİT AĞIRLIK ve SAYISAL ADAYLARA ALES SORU BANKASI Kenan Osmanoğlu - Kerem Köker - Savaş Doğan

ales dört bin soru tarzına en yakın EŞİT AĞIRLIK ve SAYISAL ADAYLARA ALES SORU BANKASI Kenan Osmanoğlu - Kerem Köker - Savaş Doğan ales 2015 tarzına en yakın dört bin soru EŞİT AĞIRLIK ve SAYISAL ADAYLARA ALES SORU BANKASI Kenan Osmanoğlu - Kerem Köker - Savaş Doğan Kenan Osmanoğlu - Kerem Köker - Savaş Doğan ALES Eşit Ağırlık ve

Detaylı

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ 1

Detaylı

Fikret ÇELENK & Merve ÇELENK

Fikret ÇELENK & Merve ÇELENK İLK SÖZ Herşeyin çok hızlı tüketildiği bir zamanda hayatımıza giren YENİ liklerin birçoğu daha anlaşılmadan tekno çöplüklere dönüşüyor. BİLGİ ise artık eskisi gibi değil, heryerde; zamandan ve mekandan

Detaylı

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :.

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. SAYILAR BASAMAK KAVRAMI İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. Üç basamaklı rakamları farklı en küçük sayı :. SORU 5 MATEMATİK KAF03 TEMEL KAVRAM 01 Üç basamaklı birbirinden

Detaylı

AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES)

AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES) 00000000001 AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES) plam cevaplama süresi 150 akikadır. (,5 saat) SAYISAL BÖLÜM SAYISAL - 1 TESTİ Sınavın bu bölümünden alacağınız standart puan, Sayısal

Detaylı

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersin Adı SINIFI: KONU: Olasılık Dersin Konusu. Bir kutudaki 7 farklı boncuğun içinden iki tanesi seçiliyor. Buna göre, örneklem uzayının eleman sayısı A) 7 B)! 7. madeni

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

YGS MATEMAT K DENEME SINAVI

YGS MATEMAT K DENEME SINAVI MATEMAT K DENEME SINAVI I Muharrem ŞAHİN muharrem49@gmail.com Maatteemaatti ikk Deeneemee Sınaavvı I Muhaarrrreem Şaahi in. 9 8 0 0 0 0 5 işleminin sonucu kaçtır? x x 3. 0, 0, 3 0, 0, olduğuna göre, x

Detaylı

4BÖLÜM. ASAL SAYILAR, BÖLÜNEBİLME ve ÇARPANLARA AYIRMA

4BÖLÜM. ASAL SAYILAR, BÖLÜNEBİLME ve ÇARPANLARA AYIRMA 4BÖLÜM ASAL SAYILAR, BÖLÜNEBİLME ve ÇARPANLARA AYIRMA ASAL SAYILAR, BÖLÜNEBİLME ve ÇARPANLARA AYIRMA TEST 1 1) Aşağıdaki sayılardan kaç tanesi 80 sayısının çarpanıdır? 1,2,3,4,5,6,7,8,9,10,12,15,18,20,25,30,40,45,80

Detaylı

Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1

Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1 Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1 Öğrenci Adı Soyadı Sınıfı Ödev Teslim Tarihi Öğretmen Görüşü Soru 1 Aşağıda sayma pulları ile modellenen matematik işlemlerini bulunuz. Soru 2 Aşağıda

Detaylı

MATEMATİK VE ZEKA KİTABI

MATEMATİK VE ZEKA KİTABI OLİMPİK ÇOCUK -1. 4. Sınıflar için MATEMATİK VE ZEKA KİTABI Bilsem Sınavlarına Hazırlık Matematik Yarışmalarına Hazırlık TÜBİTAK Sınavlarına Hazırlık Özel Okul Sınavlarına Hazırlık, Okula Yardımcı Dikkat

Detaylı

Ali ERGİN, Mustafa YAĞCI, yagcimustafa@yahoo.com Saymanın Temel Prensibi

Ali ERGİN, Mustafa YAĞCI, yagcimustafa@yahoo.com Saymanın Temel Prensibi Mustafa YAĞCI www.mustafayagci.com.tr, 011 Cebir Notları Ali ERGİN, Mustafa YAĞCI, yagcimustafa@yahoo.com Saymanın Temel Prensibi M atematikle ilk tanışmamız sayı saymayla başlamıştır desek sanırım yanılmış

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. Problem 5. PURPLE COMET MATEMATİK BULUŞMASI Nisan c Copyright Titu Andreescu and Jonathan Kane

Problem 1. Problem 2. Problem 3. Problem 4. Problem 5. PURPLE COMET MATEMATİK BULUŞMASI Nisan c Copyright Titu Andreescu and Jonathan Kane PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 İLKÖĞRETİM - PROBLEMLERİ c Copyright Titu Andreescu and Jonathan Kane Çeviri Sibel Kılıçarslan CANSU ve Fatih Kürşat CANSU Problem 1 Eğer 125 + n + 135 + 2n

Detaylı

2. (x 1 + x 2 + x 3 + x 4 + x 5 ) 10 ifadesinin açılımında kaç terim vardır?

2. (x 1 + x 2 + x 3 + x 4 + x 5 ) 10 ifadesinin açılımında kaç terim vardır? Numarası : Adı Soyadı : SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem ile yazınız. Sınavın ilk 30 dakikasında sınıftan çıkılmayacaktır.

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

Olimpiyat Eğitimi TUĞBA DENEME SINAVI

Olimpiyat Eğitimi TUĞBA DENEME SINAVI TUSİ Ortaöğretim Öğretmenleri için Olimpiyat Eğitimi TUĞBA DENEME SINAVI 10.01.2014-17.01.2014 2 1. Tuğba üç test yapar. İlkinde, 25 sorudan %60 ını, ikinci de 30 sorudan ve %70 ini ve son olarak 45 sorudan

Detaylı

ALES EŞİT AĞIRLIK VE SAYISAL ADAYLAR İÇİN ALES SORU BANKASI. Kenan Osmanoğlu - Kerem Köker - Savaş Doğan. Eğitimde

ALES EŞİT AĞIRLIK VE SAYISAL ADAYLAR İÇİN ALES SORU BANKASI. Kenan Osmanoğlu - Kerem Köker - Savaş Doğan. Eğitimde ALES 2017 EŞİT AĞIRLIK VE SAYISAL ADAYLAR İÇİN ALES SORU BANKASI Kenan Osmanoğlu - Kerem Köker - Savaş Doğan Eğitimde 30. yıl Kenan Osmanoğlu - Kerem Köker - Savaş Doğan ALES Eşit Ağırlık ve Sayısal Soru

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

Tek Doğal Sayılar; Çift Doğal Sayılar

Tek Doğal Sayılar; Çift Doğal Sayılar Bölüm BÖLÜNEBİLME VE ÇARPANLARA AYIRMA. Bölünebilme Kuralları Bir a doğal sayısı bir b sayma sayısına bölündüğünde bölüm bir doğal sayı ve kalan sıfır ise, a doğal sayısı b sayma sayısına bölünebilir.

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

ÖZEL EGE LİSESİ 12. OKULLAR ARASI MATEMATİK YARIŞMASI 6. SINIF ELEME SINAVI TEST SORULARI A) B) X C) 2X D) 3X

ÖZEL EGE LİSESİ 12. OKULLAR ARASI MATEMATİK YARIŞMASI 6. SINIF ELEME SINAVI TEST SORULARI A) B) X C) 2X D) 3X . < a < b < < c 2 sıralamasında birbirini izleyen sayılar arasındaki farklar eşittir. Buna göre, a+c toplamı kaçtır? 3. X=.+3.3+5.5+ +5.5 Y=.3+3.9+5.5+ +5.53 ise Y X farkının X cinsinden değeri kaçtır?

Detaylı

14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI

14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI 14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI - 008 SORU -1 1 0.7 0.1 0.48 = 0.018 0.8 0. eşitliğini sağlayan sayısı kaçtır? [ 0.15] SORU - c d d c a b 4 c d b b a ifadesinin i i sayısal ldeğeri

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 6. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 6. SINIF TEST SORULARI 1. a ve b birer pozitif tamsayıdır. 12. a = b³ olduğuna göre, a + b toplamının alabileceği en küçük değer kaçtır? A) 21 B) 23 C) 24 D) 25 3. Beş kişinin yaşlarının aritmetik ortalaması 24 tür. Aşağıda

Detaylı

2BÖLÜM DOĞAL SAYILAR ve DÖRT İŞLEM

2BÖLÜM DOĞAL SAYILAR ve DÖRT İŞLEM 2BÖLÜM DOĞAL SAYILAR ve DÖRT İŞLEM DOĞAL SAYILAR ve DÖRT İŞLEM TEST 1 1) Güzelyurt ta oturan bir aile piknik için arabayla Karpaz a gidip, geri dönüyor. Bu yolculuk sonunda arabanın km göstergesini kontrol

Detaylı

ÖZEL EGE LİSESİ 11. MATEMATİK YARIŞMASI 9. SINIF ELEME SINAVI TEST SORULARI 3. (abc) üç basamaklı, (bc) iki basamaklı doğal sayılardır.

ÖZEL EGE LİSESİ 11. MATEMATİK YARIŞMASI 9. SINIF ELEME SINAVI TEST SORULARI 3. (abc) üç basamaklı, (bc) iki basamaklı doğal sayılardır. . A = {,,,4,5,6 } kümesinin boş olmayan bütün alt kümelerindeki en küçük elemanların aritmetik ortalaması kaçtır? 6 7 8 9 40 A) B) C) D) E) 9 0 0 ÖZEL EGE LİSESİ. MATEMATİK YARIŞMASI. (abc) üç basamaklı,

Detaylı