DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI"

Transkript

1 DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI PROJENİN ADI: OYUN TEORİSİ İLE İSTANBUL TRAFİĞİNİN İNCELENMESİ HAZIRLAYANLAR: ECE TUNÇKOL-BERKE OĞUZ AKIN MEV KOLEJİ ÖZEL BASINKÖY OKULLARI 1

2 İÇİNDEKİLER AMAÇ... GİRİŞ... YÖNTEM. SONUÇ.... TEŞEKKÜR.. KAYNAKLAR

3 AMAÇ: İstanbul karayolu taşıt trafiğinin oyun teorisiyle incelenmesi, bu süreçte Nash Dengesiyle toplu taşıma ve bireysel araçların denge noktasının tespit edilmesi amaçlanmıştır. GİRİŞ İstanbul trafiğine matematiksel bir çözüm olabileceğini düşündüğümüzde ilgili matematik konularını araştırmaya başladık. İlgili konuların bulanık kümeler ve oyun teorisi olduğunu öğrendik. Trafik probleminin genel olarak oyun teorisiyle incelendiğini öğrenince oyun teorisi kitaplarından ve internetten teorinin detaylarını, inceliklerini çalıştık. Oyun teorisinde oluşturulacak teorinin oyuncuları tespit edildikten sonra bu oyuncuların davranışlarını hangi kriterlere göre belirledikleri önemlidir. 1)Zaman(yolculuk süresi) 2)Para 3)Rahatlık 4)Park Yeri 5)Trafik Yoğunluğu 6)Çevreye Verilen Zarar Bu kriterlerin hangisinin daha önemli olduğunu anlayabilmek için Oyuncu 1 ve 2 lere anket uygulayarak gerçek oyunculardan fikir aldık. 3

4 Kriterlerin minimax ve maximin değerlerini anlayabilmek için araba ve toplu taşıma kullanan 100 kişiye anket uyguladık. Anket aşağıda verilmiştir. ANKET FORMU 1)İstanbul E-5 karayolunda arabanız ile yolculuk etmek istediğinizde, arabayı tercih etme ve etmeme sebebiniz olan faktörleri 100 üzerinden,olumsuz sebepleri negatif veya olumlu sebepleri pozitif olarak puanlayınız. Zaman(Yolculuk Süresi) Para Rahatlık Park Yeri Trafik yoğunluğu Sabah Öğle Akşam Çevreye verilen zarar 2) İstanbul E-5 karayolunda toplu taşıma ile yolculuk etmek istediğinizde, toplu taşımayı tercih etme ve etmeme sebebiniz olan faktörleri 100 üzerinden, olumsuz sebepleri negatif veya olumlu sebepleri pozitif olarak puanlayınız. Zaman(Yolculuk Süresi) Para Rahatlık Park Yeri Trafik yoğunluğu Çevreye verilen zarar Sabah Öğle Akşam 4

5 YÖNTEM Projemize başlamadan önce oyun teorisiyle ilgili temel bilgileri inceleyelim. Kaynakların kıt olduğu bir ortamda amaçlarını gerçeklemeye çalışan iki ya da daha fazla sayıda karar verici rekabet halindedirler. Diğer bir deyişle kaynakları paylaşım çabası içindedirler. Karar vericilerin bu paylaşımda kendilerine en yüksek getiriyi sağlamak için birbirlerine karşı kullandıkları stratejileri vardır ve bu stratejileri mümkün olan en akılcı şekilde kullanırlar. Projemizde araba kullananlar ve toplu taşıma kullananlar karar verici ve oyuncu olarak görev alacaktır. 5

6 Karar vericiler varsa, karar vericiler stratejilere sahiplerse, karar vericilerin stratejilerinin sayısal değerleri ölçülebiliyorsa ve karar vericiler her şartta akılcı hareket ediyorlarsa o halde karar vericiler arasındaki rekabet problemi matematiksel olarak modellenebilir ve çözülebilir yılında Neumann ve Morgenstern bu rekabet problemini rekabetçi (0 toplamlı) ve işbirlikçi durumlara göre formüle etmişler ve geliştirdikleri yönteme de Oyun Teorisi adını vermişlerdir. Daha sonra 1954 yılında Nash, hem rekabetçi hem de işbirlikçi oyunlarda kullanılabilecek bir denge kavramını ortaya çıkarmıştır. Oyun Teorisi, belirli bir hedefe yönelik karar verme gücüne sahip birimlerden oluşan sistemleri incelemekte kullanılan matematiksel bir yöntemdir. Oyun teorisi yeni bir matematik konusu olduğundan dolayı terminolojisinin verilmesinin faydalı olduğuna inanıyoruz. Oyun Teorisi Terminolojisi ve Varsayımları Aşağıda Oyun Teorisinde kullanılan bazı temel kavramlar ve varsayımlar açıklanmıştır. Oyuncular: Bir oyunda amaçlarını optimize etmeye çalışan kişi ya da kurumlar. Oyunda en az iki oyuncu bulunur ve akılcı hareket ettikleri gibi, kazanmak için en iyisini yaptıkları varsayılır. Projemizde Oyuncu1: kullanıcıları Oyuncu2: taşıma kullanıcılarıdır. Stratejiler: Her oyuncunun sahip oldukları eylem seçenekleri. Bir oyuncu için herhangi bir strateji kural olup, seçenekler oyunun seçimini belirler. Herhangi bir oyuncunun seçenekleri belirsiz sayıdaysa oyun sonlu değil süreklidir. Seçenek sayısı belirli ise oyun sonludur. 6

7 Projemizde tasarladığımız oyun sonludur. Kazanç veya Ödemeler: Oyunun sonucu kazanma, yitirme veya oyundan çekilme olabilir. Her sonuç veya ödeme, negatif, pozitif veya sıfır olmak üzere her oyuncunun rakibine karşı kazancını veya kaybını belirler. Projemizde kazanç ve ödemeleri(pozitif,negatif) her bir kriter için belirledik. Bir değer aşağıda örnek olarak verilmiştir. E 1 (A) için x 1 =0 => E 1 (A)=-2 X 2 =1 => E 1 (A)= 4 Ödemeler Matrisi: Bu matris, oyuncuların strateji seçimlerinin türlü bileşiminden sonuçlanan kazanç veya kayıpları gösterir. Ödeme matrisinin elemanları pozitif, negatif veya sıfıra eşit olabilir. Matrisin herhangi bir elemanı pozitif ise sütunda yer alan oyuncu, satırda yer alan oyuncuya bu miktarda ödeme yapar. Matrisin herhangi bir elemanı negatif ise satırdaki oyuncu, sütundaki oyuncuya bu negatif elemanın mutlak değerine eşit ödemede bulunur. Matrisin elemanı sıfır ise oyunculardan hiçbiri birbirine ödemede bulunmaz. Ödemeler matrisi sadece bir oyuncunun değerlerini temsil eder. Projemizde para kriteri için kazanç ve ödeme tablosu aşağıda verilmiştir. 7

8 Para -2, 4-2,3-2,3 0,3 Oyunlar: Oyunların sınıflandırılması genellikle oyuncuların sayılarına göre yapılır. İki kişilik, üç kişilik veya (n) kişilik oyunlar kurulabilir. n=2 ise oyun 2 kişilik, n 2 ise oyun n kişili oyundur. Ayrıca sıfır toplamlı, sabit toplamlı olmayan ve sıfır toplamlı olmayan oyunlar olarak da oyunlar sınıflandırılır. Projemiz 2 kişilik bir oyundur. Tam (arı) Stratejiler: Oyunun sonucunu tek bir strateji çiftinin oluşturması durumu. Söz konusu sonuç her oyuncu için olabilecek en iyi sonuçtur. Tam stratejiler, oyunun tepe (eyer) noktasını belirler. Projemizde en iyi sonuçları nash dengesi olarak belirledik. Karma Stratejiler: Oyunun sonucunu birden fazla strateji çiftinin belirlemesi durumu. Strateji çiftleri olasılık değerleri ile ifade edilir ve oyunun sonucunu oluşturan strateji çiftleri olasılık değerleri toplamı 1 dir. Projemizde olasılıkları değerlendirerek karma stratejileri belirledik. Beklenen Değer: Oyunun sonucunda herhangi bir oyuncunun elde edeceği değer. Beklenen değer strateji çiftlerinin gerçekleşme olasılıkları ile değerlerinin çarpımlarının toplamıdır. Projemizde beklenen değeri fonksiyon oluşturarak lineer denklem şeklinde yazdık. 8

9 Oyun Teorisinin Temel Mantığı Projemizdeki tabloları oluştururken nasıl karar verdiğimizi aşağıda açıklamak istiyoruz. Oyunun sonucu ister arı strateji ister karma strateji olsun çözüm süreci ödemeler matrisi üzerinde gerçekleştirilir. Çözüm süreci oyunun hangi oyuncu açısından değerlendirileceğinin seçimi ile başlar. Eğer ödemeler matrisinin satırlarını temsil eden oyuncu için çözüm gerçekleştirilecekse maximin (minimumların maksimumu) yöntemi, sütunlarını temsil eden oyuncu için çözüm gerçekleştirilecekse minimax (maksimumların minimumu) yöntemi uygulanır. Oyunun sonucunda maximin ve minimax değerleri birbirine eşitse, oyun arı stratejili bir oyundur. 9

10 Maximin yönteminde öncelikle ödemeler matrisinin her bir satırının en küçük elemanı seçilir. Daha sonra bu değerler arasından en büyüğü belirlenir. Bulunan değer ödemeler matrisinde satırları temsil eden oyuncunun beklenen değeridir. Çünkü oyuncu satırlardaki büyük değerin seçilmesi durumunun diğer oyuncu tarafından tercih edilmeyeceğini ve diğer oyuncunun oyunu terk edeceğini bilir. Bu oyuncu açısından en küçük değerlerin en büyüğü ise mantıklı bir sonuç olacaktır. Diğer bir deyişle bu oyuncu açısından geçerli strateji kötülerin iyisi olarak özetlenebilir. Sütunları temsil eden oyuncu açısından bakıldığında ise bu kez doğru mantık iyilerin kötüsü olacaktır. Çünkü sütunları temsil eden oyuncu diğer oyuncunun maximin stratejisini bilir ve oyunu minmax stratejisi ile oynar. Sütunları temsil eden oyuncu elemanlarını gözden geçirir ve her bir sütunun en büyük değerini seçer. Bu oyuncu açısından oyunun sonucu bu değerlerin en küçüğüdür. Karma Stratejili Oyunlar ve Çözüm Yöntemleri Karma stratejili oyunların belirgin özelliği, ödemeler matrisindeki maximin ve minimax değerlerinin birbirine eşit olmamasıdır. Bu durum ise oyunun sonucunun tek bir strateji çifti olmaması anlamına gelir. Eğer ödemeler matrisi B oyuncusu açısından (mx 2) ya da A oyuncusu açısından ( 2xn ) boyut şartlarından birini taşıyorsa ya da ödemeler matrisi matris işlemleriyle bu boyutlara indirgenebiliyorsa, oyun Grafik Yöntemle çözülebilir. Diğer deyişle satır ya da sütunları temsil eden oyunculardan biri 2 den fazla stratejiye sahip olmamalıdır. Burada Grafik Yöntem, satırları temsil eden oyuncunun (A oyuncusu) iki stratejiye sahip olması durumuna göre anlatılmıştır. 10

11 Koordinat sisteminin yatay ekseni 2 stratejiye sahip oyuncunun 1. stratejisinin gerçekleşme olasılığını ( x 1 ) gösterir. Söz konusu olasılık değeri doğal olarak 0 x 1 1 aralığında olacaktır. Bu durumda oyuncunun 2. stratejisinin olasılık değeri x2 1 x olacaktır. 1 Daha sonra A oyuncusunun, B oyuncusu nun stratejileri ( y j ) karşısındaki beklenen değerleri ( E j ( A)) hesaplanır. Beklenen değer, x satır vektörü ile ödemeler matrisindeki B 1 1 x 1 oyuncusunun ilgili stratejilerine karşılık gelen sütun vektörlerinin çarpımına eşittir. Diğer bir deyişle A oyuncusuna ilişkin ödemeler matrisi, a A a a a a a 1n 2n şeklinde ise beklenen değer formülü ile hesaplanabilir. E j( A) ( a1 j a2 j) x1 a2 j Görüldüğü gibi beklenen değerler doğru denklemi formatındadır. Daha sonra elde edilen doğru denklemleri grafik eksene işlenir. Koordinat sisteminin düşey ekseni beklenen değerleri gösterir. Koordinat sisteminin x 1 0 ve x 1 1 için iki düşey ekseni vardır. 11

12 Koordinat sistemindeki mümkün çözüm noktaları doğruların kesiştiği noktalarda gerçekleşir. A oyuncusunun maximin yöntemine göre hareket ettiği göz önüne alındığında mümkün noktalardan optimal olanı, minimumların maksimumunda gerçekleşenidir. Önce oyuncu 1 ve 2 için seçtiğimiz kriterlerde ayrı ayrı minimax ve maksimin değerlerini anket sonuçlarına göre tespit edeceğiz. Projemizde her bir kriter için lineer minimax ve maximin değerlerini aşağıda belirttik. 1)Zaman kriteri için minimax ve maksimin değerleri: E 1 (A) için x 1 =0 => E 1 (A)=-4 X 2 =1 => E 1 (A)=0 E 2 (A) için x 1 =0 => E 2 (A)=-2 X 2 =1 => E 2 (A)=2 E 3 (A) için x 1 =0 => E 3 (A)=-2 X 2 =1 => E 3 (A)=2 E 4 (A) için x 1 =0 => E 4 (A)= 4 X 2 =1 => E 4 (A)=0 2)Para kriteri için minimax ve maksimin değerleri: 12

13 E 1 (A) için x 1 =0 => E 1 (A)=-2 X 2 =1 => E 1 (A)= 4 E 2 (A) için x 1 =0 => E 2 (A)=-2 X 2 =1 => E 2 (A)=3 E 3 (A) için x 1 =0 => E 3 (A)=-2 X 2 =1 => E 3 (A)=3 E 4 (A) için x 1 =0 => E 4 (A)=0 X 2 =1 => E 4 (A)=3 3)Rahatlık kriteri için minimax ve maksimin değerleri: E 1 (A) için x 1 =0 => E 1 (A)=4 X 2 =1 => E 1 (A)=1 E 2 (A) için x 1 =0 => E 2 (A)=4 X 2 =1 => E 2 (A)=-1 E 3 (A) için x 1 =0 => E 3 (A)=4 13

14 X 2 =1 => E 3 (A)=-1 E 4 (A) için x 1 =0 => E 4 (A)=0 X 2 =1 => E 4 (A)=-3 4)Park yeri kriteri için minimax ve maksimin değerleri: E 1 (A) için x 1 =0 => E 1 (A)=-4 X 2 =1 => E 1 (A)=0 E 2 (A) için x 1 =0 => E 2 (A)=-3 X 2 =1 => E 2 (A)=0 E 3 (A) için x 1 =0 => E 3 (A)=-3 X 2 =1 => E 3 (A)=0 E 4 (A) için x 1 =0 => E 4 (A)=0 X 2 =1 => E 4 (A)=0 14

15 5)Trafik yoğunluğu kriteri içim minimax ve maksimin değerleri E 1 (A) için x 1 =0 => E 1 (A)=-4 X 2 =1 => E 1 (A)=-2 E 2 (A) için x 1 =0 => E 2 (A)=-2 X 2 =1 => E 2 (A)=-1 E 3 (A) için x 1 =0 => E 3 (A)=-2 X 2 =1 => E 3 (A)=-1 E 4 (A) için x 1 =0 => E 4 (A)=0 X 2 =1 => E 4 (A)=-2 6)Çevreye verilen zarar kriteri için minimax ve maksimin değerleri E 1 (A) için x 1 =0 => E 1 (A)=-4 X 2 =1 => E 1 (A)=-4 E 2 (A) için x 1 =0 => E 2 (A)=-3 X 2 =1 => E 2 (A)=2 15

16 E 3 (A) için x 1 =0 => E 3 (A)=-3 X 2 =1 => E 3 (A)=2 E 4 (A) için x 1 =0 => E 4 (A)= 4 X 2 =1 => E 4 (A)= 2 16

17 Projemizde elde ettiğimiz değerleri oyun teorisinde kullanılan tablolar olarak aşağıda belirttik. Zaman(yolculuk süresi) -4,0-2,2-2,2 4,0 Para -2, 4-2,3-2,3 0,3 Rahatlık 4,1 4,-1 4,-1 0,-3 Park yeri -4,0-3,0-3,0 0,0 17

18 Trafik yoğunluğu -4,-2-2,-1-2,-1 0,-2 Çevreye verilen zarar -4,-4-3,2-3,2 4, 2 Genel olarak görülmektedir ki; (-), ( taşıma, toplu taşıma) seçtiğimiz parametreler açısından nash dengesi oluşturmamaktadır. (- taşıma) veya ( taşımaaraba) nash dengesi oluşturmaktadır. Not: (-), ( taşıma, taşıma) bazı açılardan avantajlı olsa da genel düşünüldüğünde denge oluşturmamaktadır. O yüzden (- taşıma) ve ( taşıma-) için fayda fonksiyonları bulunmaktadır. Fonksiyonumuzu oluşturmadan önce ibb sitesinden aldığımız resmi veriler aşağıda verilmiştir. 18

19 19

20 1 oyuncuya göre fayda fonksiyonu : a) 1.oyuncu: kullanan b) 2.oyuncu: taşıma kullanan n 3 a) u1 s1, s2,... s ) s s n i j n j 1 n n 3 3 u1. si s n n j i n= kullanan ve toplu taşımada olan trafikteki toplam yolcu sayısıdır. j Burada araba kullanan oyuncu, kendisi rahatlık ve zaman açısından 1 fayda sağlarsa, diğerlerine çevre ve trafik sıkışıklığı için, kendisine ise para açısından 3 zarar sağladığı düşünülmüştür. (1 ve 3 sayıları ankete göre seçilmiştir.) n>3 (n= yolcu sayısı) olduğundan fonksiyon negatif değer almamaktadır. b)eğer 2.oyuncu toplu taşımaya göre fayda fonksiyonu seçilecekse: n 2 u ( s, s,..., s ) s s i 1 2 n i j n j 1 n 2 2 n u s s i i j n n j 1 n= Toplam araba kullanan ve toplu taşıma kullananlar taşıma kullanan yolcu, çevre ve para açısından kar edecekken, rahatlık açısından zarardadır. taşımanın belirli bir seviyeden sonra sıkışıklık açısından toplu taşıma rahatsız edici olacağından bir optimum nokta olmalıdır. 20

21 (1 ve 2 ankete göre belirlenmiştir.) u i u eşitliğinden kesişim noktası bulunabilir. i 1 2 n 3 3 n 2 2 n2 n1 2 1 si s j si s j n2 n2 j i n1 n1 j i Ortak çözümü yapılarak denge noktası bulunabilir n toplu tasıma ile yolculuk edenler bir kişi birkac defa sayılabilir. n arabayla yoculuk edenler günlük bir kişi birkaç defa sayılabilir = = T. Taşıma n1 n SONUÇ: 1)İki fayda fonksiyonunun ortak çözümü yapıldığında günlük KİŞİ civarında arabayla yolculuk ettiğinde trafik probleminin azalacağı, 2) sayısı azaldığında çevreye verilen zararın azalacağı, 3) taşımanın daha yoğun kullanılmasıyla trafik yoğunluğundan kaynaklanan zaman kaybının azalacağı, 4) taşımanın fazla olması durumunda rahatlıktan dolayı araba sayısının tekrar artacağı sonuçlarına ulaşılmıştır. İstanbul trafiği için bu şekilde bir döngü oluşacağı için %100 bir trafik problemi çözümü olmayacaktır ama uygun nash dengeleri bulunarak trafik problemi minimuma indirilebilir. 21

22 5)Bölgesel çözümler bularak belli yerlerde ana park yerleri olusturulup merkezi yerlere araba girişi azaltılabilir. Zaman(yolculuk süresi) -4,0-2,2-2,2 4,0 Zaman için Nash dengesi A-T a12 dir. Para -2, 4-2,3-2,3 0,3 Para için Nash dengesi T-T a22 dir. Rahatlık 4,1 4,-1 4,-1 0,-3 Rahatlık için Nash dengesi T-A a12 dir. Park yeri -4,0-3,0 Park yeri için Nash dengesi T-T a22 dir. -3,0 0,0 22

23 Trafik yoğunluğu -4,-2-2,-1 Trafik yoğunluğu için Nash dengesi T-T a22 dir. -2,-1 0,-2 Çevreye verilen zarar -4,-4-3,2 Çevreye verilen zarar için Nash dengesi T-T a22 dir. -3,2 4, 2 Sonuç olarak her bir parametrenin ayrı bir Nash dengesi olmasından dolayı bütün parametreleri içine alan bir karmaşık strateji fonksiyonu yazılmalıdır. N:kriterin olma olasılığı K: Kriterlerin değeri ankete göre f(xi)= N1.K1+N2.K2.N3.K3+N4.K4+N5.K5+N6.K6 23

24 KAYNAKÇA: 1)E.S. VENTSELL - OYUN TEORİSİNE GİRİŞ 2)ENSAR YILMAZ OYUN TEORİSİ 3) 4) 5) 24

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü OYUN TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü TANIM ''Oyun Teorisi'', iki yada daha fazla rakibi belirli kurallar altında birleştirerek karşılıklı olarak çelişen olasılıklar

Detaylı

Oyun Teorisi IENG 456 Karar Vermede Analitik Yaklaşımlar

Oyun Teorisi IENG 456 Karar Vermede Analitik Yaklaşımlar Oyun Teorisi IENG 456 Karar Vermede Analitik Yaklaşımlar Bu ders notlarının hazırlanmasında Doç. Dr. İbrahim Çil in ders notlarından faydalanılmıştır. Yrd. Doç. Dr. Hacer GÜNER GÖREN Pamukkale Üniversitesi

Detaylı

Tam ve Karma Stratejili Oyunlar. İki Kişili Oyunlar için

Tam ve Karma Stratejili Oyunlar. İki Kişili Oyunlar için Tam ve Karma Stratejili Oyunlar İki Kişili Oyunlar için İki kişili-sıfır toplamlı oyunlar Sabit toplamlı oyunların bir türüdür, Sabit olan toplam 0 a eşittir. Temel Özellikleri Oyunculardan birinin kazancı

Detaylı

Toplam maliyete/gelire göre yer seçimi Faktör ağırlıklandırma Başabaş noktası analizi Oyun kuramı

Toplam maliyete/gelire göre yer seçimi Faktör ağırlıklandırma Başabaş noktası analizi Oyun kuramı Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2013-2014 Güz Dönemi Toplam maliyete/gelire göre yer seçimi Faktör ağırlıklandırma Başabaş

Detaylı

Oyun Teorisine (Kuramına) Giriş

Oyun Teorisine (Kuramına) Giriş Oyun Teorisi Oyun Teorisine (uramına) Giriş Şimdiye kadar, karar modellerinde bireysel kararlar ve çözüm yöntemleri ele alınmıştı. adece tek karar vericinin olduğu karar modellerinde belirsizlik ve risk

Detaylı

Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ. Oyun Teorisi Yaklaşımı

Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ. Oyun Teorisi Yaklaşımı Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ Oyun Teorisi Yaklaşımı Doç. Dr. İhsan KAYA Oyun Teorisi-Doç. Dr. İhsan KAYA 1 Tanım: Oyun teorisi «Birbiriyle rekabet halinde olan

Detaylı

KARAR TEORİSİ VE ANALİZİ. OYUN TEORİSİ Prof. Dr. İbrahim Çil

KARAR TEORİSİ VE ANALİZİ. OYUN TEORİSİ Prof. Dr. İbrahim Çil KARAR TEORİSİ VE ANALİZİ OYUN TEORİSİ Prof. Dr. İbrahim Çil Bu derste; Oyun teorisi konusu ele alınacak. Neden oyun teorisine gerek duyulduğu açıklanacak, statik oyunların yapısı ve çözüm yöntemleri üzerinde

Detaylı

KARAR TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

KARAR TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü KARAR TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü Karar Ortamları Karar Analizi, alternatiflerin en iyisini seçmek için akılcı bir sürecin kullanılması ile ilgilenir. Seçilen

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTIRMA MODELİNİN TANIMI Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

Karar Vermede Oyun Teorisi Tekniği Ve Bir Uygulama

Karar Vermede Oyun Teorisi Tekniği Ve Bir Uygulama 97 Karar Vermede Oyun Teorisi Tekniği Ve Bir Uygulama Bahman Alp RENÇBER * Özet Bu çalışmanın amacı, günümüzde rekabet ortamında karar verme durumunda olan sistemlerin araştırılmasıdır. Bu amaçla verileri

Detaylı

yöneylem araştırması Nedensellik üzerine diyaloglar I

yöneylem araştırması Nedensellik üzerine diyaloglar I yöneylem araştırması Nedensellik üzerine diyaloglar I i Yayın No : 3197 Eğitim Dizisi : 149 1. Baskı Ocak 2015 İSTANBUL ISBN 978-605 - 333-225 1 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTıRMA MODELININ TANıMı Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

OYUN TEORİSİNE DOĞRU Yard.Doç.Dr.Deniz Giz

OYUN TEORİSİNE DOĞRU Yard.Doç.Dr.Deniz Giz OYUN TEORİSİNE DOĞRU Yard.Doç.Dr.Deniz Giz ÖZET Herhangi bir teori veya bir modelin amacı bir soruna çözüm bulmaktır. Bir oyunun çözümü oyuncuların nasıl karar vereceklerinin öngörülmesine bağlıdır. Oyuncular

Detaylı

END. İKTİSADI VE OYUN TEORİSİ (BİRİNCİ ÖDEV)

END. İKTİSADI VE OYUN TEORİSİ (BİRİNCİ ÖDEV) END. İKTİSADI VE OYUN TEORİSİ (BİRİNCİ ÖDEV) AÇIKLAMALAR Ödevlerinizin teslimi, 14 Kasim 2013 günü saat 09:30-12:30 da yapılacaktır. Sorular aynı gün örgün (13:15) ve ikinci öğretim (17:00) dersinde çözüleceği

Detaylı

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem 3.2. DP Modellerinin Simpleks Yöntem ile Çözümü 3.2.1. Primal Simpleks Yöntem Grafik çözüm yönteminde gördüğümüz gibi optimal çözüm noktası, her zaman uygun çözüm alanının bir köşe noktası ya da uç noktası

Detaylı

Yöneylem Araştırması Dersi OYUN TEORİSİ. Oyuncusu Stratejisi. Stratejileri. Oyuncusu Stratejisi Stratejisi Cı Cı (3 4

Yöneylem Araştırması Dersi OYUN TEORİSİ. Oyuncusu Stratejisi. Stratejileri. Oyuncusu Stratejisi Stratejisi Cı Cı (3 4 Yöneylem Araştırması Dersi OYUN TEORİSİ ÖRNEK 1- Satır oyuncusunun iki (Tı, T 2 ), sütun oyuncusunun dört (Y 1, Y 2, Y 3, Y 4 ) stratejisinin bulunduğu bir oyunun, satır oyuncusunun kazançlarına göre düzenlenen

Detaylı

SAĞLIK KURUMLARINDA OPERASYON YÖNETİMİ

SAĞLIK KURUMLARINDA OPERASYON YÖNETİMİ DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ. SAĞLIK KURUMLARINDA OPERASYON YÖNETİMİ

Detaylı

Öğrencilerde Akıllı Telefon Kullanımının Özellikleri Bakımından Oyun Teorisi ile Analiz Edilmesi

Öğrencilerde Akıllı Telefon Kullanımının Özellikleri Bakımından Oyun Teorisi ile Analiz Edilmesi Aksaray Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. 7(2). 67-76 2015 Aksaray Üniversitesi İktisadi ve İdari Bilimler Fakültesi http://iibfdergi.aksaray.edu.tr Öğrencilerde Akıllı Telefon

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss

Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss Jordan Yöntemi ve Uygulaması Performans Ölçümü 2 Bu çalışmada,

Detaylı

Risk ve Belirsizlik. 1. Karar Analizleri 2. Karar Ağaçları 3. Oyun Teorisi. Karar Verme Aşamasındaki Bileşenler

Risk ve Belirsizlik. 1. Karar Analizleri 2. Karar Ağaçları 3. Oyun Teorisi. Karar Verme Aşamasındaki Bileşenler Risk ve Belirsizlik Altında Karar Verme KONU 6 1. Karar Analizleri 2. Karar Ağaçları 3. Oyun Teorisi i Karar Verme Aşamasındaki Bileşenler Gelecekte gerçekleşmesi mümkün olan olaylar Olası Durumlar şeklinde

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

İKTİSAT BİLİMİ VE İKTİSATTAKİ TEMEL KAVRAMLAR

İKTİSAT BİLİMİ VE İKTİSATTAKİ TEMEL KAVRAMLAR İÇİNDEKİLER Önsöz BİRİNCİ BÖLÜM İKTİSAT BİLİMİ VE İKTİSATTAKİ TEMEL KAVRAMLAR 1.1.İktisat Bilimi 1.2.İktisadi Kavramlar 1.2.1.İhtiyaçlar 1.2.2.Mal ve Hizmetler 1.2.3.Üretim 1.2.4.Fayda, Değer ve Fiyat

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI PROJE ADI: TÜRKİYE DEKİ GELECEKTEKİ DOKTOR İHTİYACINI YÖNEYLEM ARASTIRMASI İLE BELİRLEMEK MEV KOLEJİ BASINKÖY OKULLARI

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

STRATEJİK DÜŞÜNCE OYUN KURAMI

STRATEJİK DÜŞÜNCE OYUN KURAMI STRATEJİK DÜŞÜNCE OYUN KURAMI OYUN KURAMI İLE İLGİLİ TEMEL KAVRAMLAR a.oyuncular: Oyunda en az iki oyuncu veya rakip olmalı ve onların akılcı hareket ettikleri ve kazanmak için en iyisini yaptıkları varsayılır.

Detaylı

Sloan Yönetim Okulu 15.010/15.011 Massachusetts Teknoloji Enstitüsü Güzl 2004 Professors Berndt, Chapman, Doyle ve Stoker

Sloan Yönetim Okulu 15.010/15.011 Massachusetts Teknoloji Enstitüsü Güzl 2004 Professors Berndt, Chapman, Doyle ve Stoker Sloan Yönetim Okulu 15.010/15.011 Massachusetts Teknoloji Enstitüsü Güzl 2004 Professors Berndt, Chapman, Doyle ve Stoker ÖDEV #5 ÇÖZÜMLER 1. a. Oyun Analizi i. Nash Dengesi Bir çift hamle Nash dengesidir

Detaylı

9. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

9. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 9. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.8. TAM REKABET PİYASALARI A.8.1. Temel Varsayımları Atomisite Koşulu: Piyasada alıcı ve satıcılar,

Detaylı

GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015

GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015 GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015 Algoritmalar Ders 9 Dinamik Programlama SMY 544, ALGORİTMALAR, Güz 2015 Ders#9 2 Dinamik Programlama Böl-ve-fethet

Detaylı

Özdeğer ve Özvektörler

Özdeğer ve Özvektörler Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin

Detaylı

14.12 Oyun Teorisi Ders Notları

14.12 Oyun Teorisi Ders Notları 4.2 Oyun Teorisi Ders Notları Muhamet Yıldız Ders 2-3 Tekrarlı Oyunlar Bu ders notlarında, daha küçük bir oyunun tekrarlandığı ve bu tekrarlanan küçük oyunun statik oyun adını aldığı oyunları tartışacağız.

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I 1/19 İçerik Yöneylem Araştırmasının Dalları Kullanım Alanları Yöneylem Araştırmasında Bazı Yöntemler Doğrusal (Lineer) Programlama, Oyun Teorisi, Dinamik Programlama, Tam Sayılı

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

14.12 Oyun Teorisi Ders Notları

14.12 Oyun Teorisi Ders Notları 14.1 Oyun Teorisi Ders Notları Muhamet Yıldız Ders 15-18 1 Eksik Bilgili Statik Oyunlar Şu ana kadar, herhangi bir oyuncu tarafından bilinen herhangi bir bilgi parçasının tüm oyuncular tarafından bilindiği

Detaylı

Karar Verme. Karar Verme ve Oyun Teorisi. Kararların Özellikleri. Karar Analizi

Karar Verme. Karar Verme ve Oyun Teorisi. Kararların Özellikleri. Karar Analizi Karar Verme Karar Verme ve Oyun Teorisi Yrd.Doç.Dr. Gökçe BAYSAL TÜRKÖLMEZ Belirli bir amaca ulaşabilmek için, Değişik alternatiflerin belirlenmesi ve Bunlar içinden en etkilisinin seçilmesi işlemidir.

Detaylı

OYUN KURAMI İLE SÜPER LİGİN ÜÇ BÜYÜK İSTANBUL TAKIMI İÇİN SEZONU DURUM ANALİZİ. Nehir NUMANOĞLU

OYUN KURAMI İLE SÜPER LİGİN ÜÇ BÜYÜK İSTANBUL TAKIMI İÇİN SEZONU DURUM ANALİZİ. Nehir NUMANOĞLU OYUN KURAMI İLE SÜPER LİGİN ÜÇ BÜYÜK İSTANBUL TAKIMI İÇİN 2009-2010 SEZONU DURUM ANALİZİ Nehir NUMANOĞLU YÜKSEK LİSANS TEZİ EKONOMETRİ ANA BİLİM DALI UYGULAMALI YÖNEYLEM ARAŞTIRMASI BİLİM DALI GAZİ ÜNİVERSİTESİ

Detaylı

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ 25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ a-) Routh Hurwitz Kararlılık Ölçütü b-) Kök Yer Eğrileri Yöntemi c-) Nyquist Yöntemi d-) Bode Yöntemi 1 2 3 4 a) Routh Hurwitz Kararlılık

Detaylı

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir.

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir. Matrisler Satır ve sütunlar halinde düzenlenmiş tabloya matris denir. m satırı, n ise sütunu gösterir. a!! a!" a!! a!" a!! a!! a!! a!! a!" m=n şeklindeki matrislere kare matris adı verilir. [2 3 1] şeklinde,

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Hessien Matris-Quadratik Form Mutlak ve Bölgesel Maksimum-Minimum Noktalar Giriş Kısıtlı ve kısıtsız fonksiyonlar için

Detaylı

KESİN PROJE RAPORU PROJENİN ADI PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ DANIŞMAN ÖĞRETMEN

KESİN PROJE RAPORU PROJENİN ADI PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ DANIŞMAN ÖĞRETMEN KESİN PROJE RAPORU PROJENİN ADI HANGİ ADAYI SEÇELİM? PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ ÖZEL KÜLTÜR FEN LİSESİ ATAKÖY 9.-10. KISIM, 34156 BAKIRKÖY - İSTANBUL DANIŞMAN ÖĞRETMEN

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ SİMPLEKS TABLONUN YORUMU MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ Şu ana kadar verilen bir DP probleminin çözümünü ve çözüm şartlarını inceledik. Eğer orijinal modelin parametrelerinde bazı değişiklikler

Detaylı

JEODEZİK AĞLARIN OPTİMİZASYONU

JEODEZİK AĞLARIN OPTİMİZASYONU JEODEZİK AĞLARIN OPTİMİZASYONU Jeodezik Ağların Tasarımı 10.HAFTA Dr.Emine Tanır Kayıkçı,2017 OPTİMİZASYON Herhangi bir yatırımın gerçekleştirilmesi sırasında elde bulunan, araç, hammadde, para, işgücü

Detaylı

Karar değişkenlere ilişkin fonksiyonların ve bu fonksiyonlara ilişkin sınırlamaların tanımlanması

Karar değişkenlere ilişkin fonksiyonların ve bu fonksiyonlara ilişkin sınırlamaların tanımlanması İNŞAAT PROJELERİNİN PROGRAMLAMA, TASARIM VE YAPIM SÜRECİNDE OPTİMİZASYON Doğrusal Optimizasyon Optimizasyon Kuramı (Eniyileme Süreci) Doğrusal Olmayan Optimizasyon Optimizasyon en iyi çözümü bulma sürecidir.

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I /0 İçerik Matematiksel Modelin Kurulması Grafik Çözüm DP Terminolojisi DP Modelinin Standart Formu DP Varsayımları 2/0 Grafik Çözüm İki değişkenli (X, X2) modellerde kullanılabilir,

Detaylı

ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR

ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR SELİM HADAR DANIŞMAN ÖĞRETMEN SANDRA GÜNER ULUS ÖZEL MUSEVİ

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

= 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz dengenin istikrarlı olup olmadığını tespit ediniz.

= 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz dengenin istikrarlı olup olmadığını tespit ediniz. Siyasal Bilgiler Fakültesi İktisat Bölümü Matematiksel İktisat Ders Notu Prof. Dr. Hasan Şahin Faz Diyagramı Çizimi Açıklamarı = 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

Bekleme Hattı Teorisi

Bekleme Hattı Teorisi Bekleme Hattı Teorisi Sürekli Parametreli Markov Zincirleri Tanım 1. * +, durum uzayı * +olan sürekli parametreli bir süreç olsun. Aşağıdaki özellik geçerli olduğunda bu sürece sürekli parametreli Markov

Detaylı

Evrimsel ekoloji. Erol Akçay. Proximate mechanisms and the evolution of cooperation. University of Pennsylvania.

Evrimsel ekoloji. Erol Akçay. Proximate mechanisms and the evolution of cooperation. University of Pennsylvania. Evrimsel ekoloji Erol Akçay Proximate mechanisms and the evolution of cooperation University of Pennsylvania eakcay@sas.upenn.edu Matematiksel Evrim Yazokulu 9 Eylül 2013 Nesin Matematik Köyü, Şirince,

Detaylı

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN Mukavemet-II PROF. DR. MURAT DEMİR AYDIN KAYNAK KİTAPLAR Cisimlerin Mukavemeti F.P. BEER, E.R. JOHNSTON Mukavemet-2 Prof.Dr. Onur SAYMAN, Prof.Dr. Ramazan Karakuzu Mukavemet Mehmet H. OMURTAG 1 SİMETRİK

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9 OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 015 01 1 Eylül 18 Eylül Kümelerde Temel Kavramlar 1. Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler.

Detaylı

Dr. Y. İlker TOPCU. Dr. Özgür KABAK web.itu.edu.tr/kabak/

Dr. Y. İlker TOPCU. Dr. Özgür KABAK web.itu.edu.tr/kabak/ Dr. Y. İlker TOPCU www.ilkertopcu.net www.ilkertopcu.org www.ilkertopcu.info facebook.com/yitopcu twitter.com/yitopcu instagram.com/yitopcu Dr. Özgür KABAK web.itu.edu.tr/kabak/ GİRİŞ Tek boyutlu (tek

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

2. Cournot Modeli: iki firma aynı anda homojen bir ürünün çıktı miktrı üzerine rekabet ediyorsa ne olur

2. Cournot Modeli: iki firma aynı anda homojen bir ürünün çıktı miktrı üzerine rekabet ediyorsa ne olur Sloan Yönetim Okulu 15.010/15.011 Massachusetts Teknoloji Enstitüsü PROBLEM ÇÖZME NOTLARI #7 Temel Oyun Teorisi Cuma - Kasım 5, 2004 BUGÜNÜN PROBLEM ÇÖZMEIN ÖZETİ 1. Oyun teorisi tanımları: oyun teorisindeki

Detaylı

4- Turbo Pascal Bilgisayar Programlamada Kullanılan Şart Yapıları

4- Turbo Pascal Bilgisayar Programlamada Kullanılan Şart Yapıları 4- Turbo Pascal Bilgisayar Programlamada Kullanılan Şart Yapıları Şart yapıları bir bilgisayar programının olmazsa olmazlarındandır. Şart yapıları günlük hayatımızda da çok fazla karşılaştığımız belirli

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı

Finansal Yatırım ve Portföy Yönetimi. Ders 7 Modern Portföy Teorisi

Finansal Yatırım ve Portföy Yönetimi. Ders 7 Modern Portföy Teorisi Finansal Yatırım ve Portföy Yönetimi Ders 7 Modern Portföy Teorisi Kurucusu Markowitz dir. 1990 yılında bu çalışmasıyla Nobel Ekonomi ödülünü MertonH. Miller ve William F. Sharpe ilepaylaşmıştır. Modern

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Bibliography 9 Index 13 CONTENTS 5 0.1 Doğru, Düzlem, Uzay Bu derste sık sık doğru, düzlem ve

Detaylı

Bir Doğrusal Programlama Modelinin Genel Yapısı

Bir Doğrusal Programlama Modelinin Genel Yapısı Bir Doğrusal Programlama Modelinin Genel Yapısı Amaç Fonksiyonu Kısıtlar M i 1 N Z j 1 N j 1 a C j x j ij x j B i Karar Değişkenleri x j Pozitiflik Koşulu x j >= 0 Bu formülde kullanılan matematik notasyonların

Detaylı

30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 )

30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 ) 3 NİSAN-4 MAYIS ZEYNEP KAYAR MATEMATİK BÖLÜMÜ LİNEER CEBİR-II DERSİ ÖDEV 4 Soru I: Aşağıda verilen dönüşümlerin lineer olup olmadığını gösteriniz. ) L : R 3 R, L(x, x, x 3 ) = ( 3x + x 3 4x 4, x + x 3x

Detaylı

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ 1

Detaylı

Oyun Teorisi (KAM 425) Ders Detayları

Oyun Teorisi (KAM 425) Ders Detayları Oyun Teorisi (KAM 425) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Oyun Teorisi KAM 425 Her İkisi 3 0 0 3 6 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 5 Eğilmede Kirişlerin Analizi ve Tasarımı Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM Yavaş değişen akımların analizinde kullanılacak genel denklem bir kanal kesitindeki toplam enerji yüksekliği: H = V g + h + z x e göre türevi alınırsa: dh d V = dx dx

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 1- GİRİŞ Doç. Dr. Ali Rıza YILDIZ 1 Mühendislikte, herhangi bir fiziksel sistemin matematiksel modellenmesi sonucu elde edilen karmaşık veya analitik çözülemeyen denklemlerin

Detaylı

2009 S 4200-1. Değeri zamanın belirli bir anında ölçülen değişkene ne ad verilir? ) Stok değişken B) içsel değişken C) kım değişken D) Dışsal değişken E) Fonksiyonel değişken iktist TEORisi 5. Yatay eksende

Detaylı

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR Kısıtlı ve kısıtsız fonksiyonlar için maksimum veya minimum (ekstremum) noktalarının belirlenmesinde diferansiyel hesabı kullanarak çeşitli

Detaylı

10. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

10. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 10. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.9. TEKEL (MONOPOL) Piyasada bir satıcı ve çok sayıda alıcının bulunmasıdır. Piyasaya başka

Detaylı

SONLU FARKLAR GENEL DENKLEMLER

SONLU FARKLAR GENEL DENKLEMLER SONLU FARKLAR GENEL DENKLEMLER Bir elastik ortamın gerilme probleminin Airy gerilme fonksiyonu ile formüle edilebilen halini göz önüne alalım. Problem matematiksel olarak bölgede biharmonik denklemi sağlayan

Detaylı

14.12 Oyun Teorisi. 3. Geriye doğru tümevarım. Yol haritası. 1. Maliyetli aramalı Bertrand rekabeti. 2. Ufak sınav. 4.

14.12 Oyun Teorisi. 3. Geriye doğru tümevarım. Yol haritası. 1. Maliyetli aramalı Bertrand rekabeti. 2. Ufak sınav. 4. 14.12 Oyun Teorisi Muhamet Yıldız Güz 2005 Ders 8: Geriye Doğru tümevarım Yol haritası 1. Maliyetli aramalı Bertrand rekabeti 2. Ufak sınav 3. Geriye doğru tümevarım 4. Ajanda seçimi 5. Stackelberg rekabeti

Detaylı

OYUNLAR TEORİSİNİN MADEN ARAMALARINA UYGULANMASI

OYUNLAR TEORİSİNİN MADEN ARAMALARINA UYGULANMASI OYUNLAR TEORİSİNİN MADEN ARAMALARINA UYGULANMASI Hüsnü KALE Maden Tetkik ve Arama Enstitüsü, Ankara GİRİŞ İki rakip satranç masası başına oturduğu zaman, her ikisi de kendi kullandıkları taktiklere karşı,

Detaylı

ATAMA (TAHSİS) MODELİ

ATAMA (TAHSİS) MODELİ ATAMA (TAHSİS) MODELİ ATAMA (TAHSİS) MODELİ Doğrusal programlamada kullanılan bir başka hesaplama yöntemidir. Atama problemleri, doğrusal programlama (simpleks yöntem) veya transport probleminin çözüm

Detaylı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1 Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı Mart 2015 0 SORU 1) Bulanık Küme nedir? Bulanık Kümenin (fuzzy

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR ÖZEL BÜYÜKÇEKMECE ÇINAR KOLEJİ 19 Mayıs Mah. Bülent Ecevit Cad. Tüyap Yokuşu

Detaylı

Başlangıç Temel Programının Bilinmemesi Durumu

Başlangıç Temel Programının Bilinmemesi Durumu aşlangıç Temel Programının ilinmemesi Durumu İlgili kısıtlarda şartlar ( ) ise bunlara gevşek (slack) değişkenler eklenerek eşitliklere dönüştürülmektedir. Ancak sınırlayıcı şartlar ( ) veya ( = ) olduğu

Detaylı

Final Sınavı. Güz 2005

Final Sınavı. Güz 2005 Econ 159a/MGT 522a Ben Polak Güz 2005 Bu defter kitap kapalı bir sınavdır. Sınav süresi 120 dakikadır (artı 60 dakika okuma süresi) Toplamda 120 puan vardır (artı 5 ekstra kredi). Sınavda 4 soru ve 6 sayfa

Detaylı

Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method)

Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method) Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method) Konular Düğüm Gerilimleri Yöntemi o Temel Kavramlar o Yönteme Giriş o Yöntemin Uygulanışı o Yöntemin Uygulanması o Örnekler

Detaylı

SAYISAL KARARLILIK. Zaman Uzayı Sonlu Farklar Yöntemi

SAYISAL KARARLILIK. Zaman Uzayı Sonlu Farklar Yöntemi Dr. Serkan Aksoy SAYISAL KARARLILIK Sayısal çözümlerin kararlı olması zorunludur. Buna göre ZUSF çözümleri de uzay ve zamanda ayrıklaştırma kapsamında kararlı olması için kararlılık koşullarını sağlaması

Detaylı

Tarımda Mühendislik Düşünce Sistemi. Prof. Dr. Ferit Kemal SÖNMEZ

Tarımda Mühendislik Düşünce Sistemi. Prof. Dr. Ferit Kemal SÖNMEZ Tarımda Mühendislik Düşünce Sistemi Prof. Dr. Ferit Kemal SÖNMEZ Sistem Aralarında ilişki veya bağımlılık bulunan elemanlardan oluşan bir yapı veya organik bütündür. Bir sistem alt sistemlerden oluşmuştur.

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x Çalışma Soruları. Aşağıdaki denklemleri çözünüz: 7x = 4x + b) x 7x = x 4 c) x 4 x + = 0. Aşağıdaki eşitsizliklerin çözüm kümelerini belirleyiniz ve aralıklar cinsinden ifade ediniz: 4x > 9 b) x 4 < - c)

Detaylı

Lineer Denklem Sistemleri

Lineer Denklem Sistemleri Lineer Denklem Sistemleri Yazar Yrd. Doç.Dr. Nezahat ÇETİN ÜNİTE 3 Amaçlar Bu üniteyi çalıştıktan sonra; Lineer Denklem ve Lineer Denklem Sistemleri kavramlarını öğrenecek, Lineer Denklem Sistemlerinin

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

EĞİTİM-ÖĞRETİM YILI 12. SINIF İLERİ DÜZEL MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

EĞİTİM-ÖĞRETİM YILI 12. SINIF İLERİ DÜZEL MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ KASIM EKİM 2017-2018 EĞİTİM-ÖĞRETİM YILI 12. SINIF İLERİ DÜZEL MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ 1 4 TÜREV 12.1.1.1. Bir fonksiyonun bir noktadaki limiti, soldan limiti

Detaylı

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde 1. Aşağıdaki kümelerden hangisi sonsuz küme belirtir? A) A = { x 4 < x < 36,x N} B) B = { x 19 < x,x asal sayı} C) C = { x x = 5k,0 < x < 100,k Z} D) D = { x x = 5, x Z} E) E = { x x < 19,x N}. A, B ve

Detaylı

Ayrık Fourier Dönüşümü

Ayrık Fourier Dönüşümü Ayrık Fourier Dönüşümü Tanım: 0 n N 1 aralığında tanımlı N uzunluklu bir dizi x[n] nin AYRIK FOURIER DÖNÜŞÜMÜ (DFT), ayrık zaman Fourier dönüşümü (DTFT) X(e jω ) nın0 ω < 2π aralığında ω k = 2πk/N, k =

Detaylı