KAVİTASYON YAPAN SUALTI AKINTI TÜRBİN KANADININ HİDRODİNAMİK ANALİZİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "KAVİTASYON YAPAN SUALTI AKINTI TÜRBİN KANADININ HİDRODİNAMİK ANALİZİ"

Transkript

1 KAVİTASYON YAPAN SUATI AKINTI TÜRBİN KANADININ HİDRODİNAMİK ANAİZİ Karaalioğlu, Mehmet Salih 1, * Bal, Sakir 2 Özet: Bu çalışmanın amaı sualtı akıntı türbinlerinin hidrodinamik performansının kavitasyon açısından inelenmesidir. Sualtı akıntı türbinleri ile rüzgar türbinleri çalışma prensibi açısından birbirlerine benzerdir. Fakat sualtı akıntı türbinlerinin hidrodinamik performansına etki eden en önemli parametrelerden biri rüzgar türbinlerinden farklı olarak kavitasyon olgusudur. Bu çalışmada sualtı akıntı türbin kanatlarında meydana gelen kavitasyon olgusu, sınır elemanları yöntemi ile sayısal olarak inelenmiştir. Sayısal analizler potansiyel akım teorisi kabulleri altında yapılmıştır. Türbin kanadı üzerine düzgün akım geldiği varsayılmıştır. Kanat üzerinde oluşan kavitasyon şekli, kavitasyon hami ve kanadın kaldırma kuvveti ve direnç kuvveti katsayıları hesaplanmıştır. Kanat açıklık oranının ve kanat açıklığı boyuna kiriş boyunun değiştirilmesinin kavitasyon oluşumuna etkisi parametrik olarak inelenmiştir. Keywords: Kavitasyon, Sualtı akıntı türbini, Panel Yöntemi, Türbin Kanadı 1 GİRİŞ Artan enerji ihtiyaı dünyanın en büyük problemlerinden biridir. Günümüze kadar enerji ihtiyaı genellikle fosil yakıtlarda karşılanmaktaydı. İklim değişikliği, uluslararası anlaşmalar ve düzenlemeler, çevre kirliliği gibi nedenlerden dolayı yenilenebilir enerjiye olan ihtiyaç artmıştır. Dünyanın 1/3 ünden fazlasını kaplayan denizler, nehirler, içsular çok büyük enerji potansiyeline sahiptir. Bu potansiyel dalga enerjisi, güneş enerjisi, gel-git enerjisi gibi farklı formlarda bulunmakladır. Gel-git, okyanus akıntıları ve nehirler gibi iç su yollarında hareket eden su kütlelerinin sahip olduğu kinetik enerji önemli bir yenilenebilir enerjidir. Akıntı kinetik enerjisinden faydalanarak çalışan bu sistemlerin en önemli avantajı öngörülebilir ve düzenli bir karakteristiğe sahip olmasıdır. Yatay eksenli sualtı akıntı türbinleri (Horizontal axis marine urrent turbine-hamt) akıntı enerjisini kullanan sistemler arasında teknolojik ve ekonomik anlamda en uygulanabilir sistemlerden biridir. Geleekte dünyanın artan enerji ihtiyaında sualtı akıntı türbinleri önemli bir yere sahip olaaktır [21, 22]. Sualtı akıntı türbinleri ile rüzgâr türbinleri çalışma prensibi ve tasarım aşamaları açısından benzerdir [21]. Fakat iki sistem arasında önemli farklar mevuttur. Farklı Reynolds ve Froude sayıları (serbest su yüzeyi dalgaları etken ise) ve kavitasyon oluşma ihtimali gibi. Sualtı akıntı türbinleri performansını doğru bir şekilde tahmin etmek için bu farklılıklar üzerinde çalışılması gerekmektedir. Bu çalışmada kavitasyon oluşumunun sualtı akıntı türbin kanadı hidrodinamik performansı üzerindeki etkileri sınır elemanları yöntemi kullanılarak parametrik olarak inelenmiştir. Bugüne kadar iki boyutlu ve üç boyutlu kavitasyon yapan hidrofoil akımları için birçok farklı model kullanılmıştır. Burada bu çalışmalardan belli başlılarından bahsedilmiştir. Önelikle lineer teori kullanılarak iki boyutlu kavitasyon yapan hidrofoil akışları modellenmiştir [1, 7, 10]. ineer teoride kavitasyon boyutu, kesit kalınlığı arttıkça artmaktadır. Uhlman [20] tarafından geliştirilen lineer olmayan girdap yönteminde kalınlık arttıkça kavitasyon boyu ve hami küçülmektedir. ineer teoride, kavitasyon yapan hidrofoil ve kanatlar için giriş giriş uu düzeltmesi yapan çalışmalar da mevuttur [16]. İki ve üç boyutlu kesitler için kavitasyon üzerindeki sonlu derinlikte serbest su yüzeyi etkilerini ineleyen çalışmalar da mevuttur [2, 3, 4, 5, 6]. Dang ve Kuiper [7], iki boyutlu hidrofoil kesitler üzerinde kısmi kavitasyonlu akışı tahmin edebilmek için potansiyel temelli bir panel yöntemi geliştirmişlerdir. Kavitasyon yüzeyi üzerinde Dirihlet tipi dinamik sınır koşulu ve kavitasyon gösteren kesit üzerinde Neumann tipi kinematik sınır koşulu uygulanmıştır. Bu çalışmada, yeniden giriş jet kavitasyon sonlandırma modeli tanıtılmıştır. Kinnas vd. [14], hidrofoiller üzerinde kavitasyonlu akışı BEM e dayalı potansiyel bir yöntem ile inelemişlerdir. Bu sayısal yöntemde kavitasyon şekli, kavitasyon yüzeyi üzerinde kinematik ve dinamik sınır şartları tam olarak sağlanınaya kadar iteratif bir şekilde hesaplanmıştır. 2 MATEMATİK MODE Şekil 1 deki gibi uniform akım içinde kavitasyon yapan üç boyutlu bir kanat düşünülsün. U kanat üzerine gelen akımı temsil eder. X, gelen akımın, Y kanat açıklığının, Z kanat kesit kalınlık doğrultusunu gösterir. Şekil.1. Kavitasyon yapan üç boyutlu kanat geometrisi, koordinat sistemi ve kullanılan paneller.

2 Kanat etrafındaki akımın viskoz olmayan, sıkıştırılamaz ve döngüsüz (irrotational) olduğu kabul edilsin. Akım alanı, toplam potansiyel ve pertürbasyon potansiyeli insinden yazılabilir. ( x, y, z) ( x, y, z) U x (2.1) Pertürbasyon potansiyeli ve toplam potansiyelin aplae denklemini kütlenin korunumu yasası gereği sağlaması gerekmektedir (2.2) Yukarıda kabullere ek olarak pertürbasyon potansiyelinin aşağıdaki sınır şartlarını da sağlaması gerekmektedir [16]. (i) Kinematik sınır şartı: Akımın kanat ve kavitasyon yüzeyine teğet olması gerekmektedir [13]. in U n n n (2.3) (ii) Dinamik sınır şartı: Kavitasyon yüzeyinde basınç sabit ve buharlaştırma basınına ( p ) eşittir. Bernoulli denklemi kullanılarak kavitasyon yüzeyi üzerindeki hız değeri ( q ) aşağıdaki eşitlikte verilebilir. (iii) q U 1/2 (1 ) (2.4) Denklem 2.4 de kavitasyon sayısıdır [8]. p p (2.5) 1 2 U 2 Denklem 2.5 de p gelen akımın basını, p buharlaştırma basınıdır. Kutta şartı: Kanadın takip kenarındaki hız değerinin sonlu olması gerekmektedir. T. E. sonlu (2.6) (iv) Kavitasyon kapanma modeli: Kavitasyonun kendi çıkış kenarında kapanması gerekmektedir. Kavitasyon çıkış uunda meydana gelen karmaşık fiziksel olgu bir sonlandırma modeli ile temsil edilebilir [15]. Kavitasyon kapanma modelleri ile ilgili detaylı bilgi için kaynak [15] bakılabilir. 3 SAYISA ÇÖZÜM YÖNTEMİ Green teoreminin üçünü özdeşliği her bir panelin merkezinde sağlanmalıdır p ds w ds n R n R n R Skanatkavitasyon Siz (3.1) Kanat ve oluşan kavitasyon yüzeyi sabit şiddetli kaynak ve dipol tekilliklerinin kullanıldığı sonlu sayıda panel ile temsil edilir. Panellere dağıtılan kaynak ve dipol tekilliklerinin şiddeti lineer denklem sisteminin çözülmesi ile bulunur. ineer sistemin çözülmesi ile bulunan kaynak şiddetlerinin integrasyonu kavitasyon haminin değerini de vermektedir. Kavitasyon ve kanat yüzeyi üzerindeki hız değerleri potansiyel değerlerinin türevinin alınması ile bulunur. Bulunan hız değerinden Bernoulli denklemi kullanılarak basınç değerleri hesaplanır [11, 12]. Kavitasyon kalınlıkları integre edilerek kavitasyon haim değerleri, basınç değerleri integre edilerek kuvvetler hesaplanır [17, 18]. Sabit kavitasyon boyu yaklaşımı için, kavitasyon şekli yüzey üzerine dağıtılan paneller belli bir aralıkla deforme edilir. Elde edilen yeni kesit ve kavitasyon şekli her iterasyon için bu yöntem kullanılarak analiz edilir. Bu iteratif yöntem dinamik sınır şartının belli bir tolerans değeri içinde sağlanması ile son bulur. Son iterasyon ile basınç dağılımı ve nihai kavitasyon şekli elde edilir. Yöntemin detayları, deneyler ve diğer sayısal yöntemlerin sonuçları ile karşılaştırılması 4, 6, 7, 10, 16 numaralı kaynaklarda verilmiştir. Burada sayfa sayısından tasarruf etmek amaıyla tekrarlanmamıştır. Oluşturulan bu lineer olmayan çözüm düşük iterasyon sayılarında dahi çözüme ulaşmaktadır. 4 SAYISA SONUÇAR Bu bölümde, kanat geometrilerinde değişiklik yapılarak elde edilen grafikler karşılaştırılarak bu değişikliklerin kavitasyonla olan ilişkisi saptanmaya çalışılmıştır. Çalışmada yapılan hesaplamalarda kalkıntı (eğiklik) ve süpürme (çalıklık) değerleri tüm kesitler için sıfırdır. Kanat kesiti için NAA0024 geometrisi kullanılmıştır. Kanat açıklığı boyuna kullanılan kesitler aynıdır. Seçilen panel sayısının çözüme etkisinin olmadığını göstermek için dikdörtgensel bir kanat farklı panel sayıları için çözülmüş ve elde edilen kavitasyon şekilleri karşılaştırılmıştır. Şekil 2 e göre bundan sonra yapılan tüm hesaplamalarda kanat geometrisi açıklık (spanwise) boyuna 40, kiriş (hordwise) boyuna 20 panele ayrılmıştır. Panel

3 yerleştirmesi olarak hem açıklık boyuna hem de kiriş boyuna kosinüs tekniği uygulanmıştır. Tüm kesitlerde hüum açısı 5 olarak seçilmiştir Çalışmada dört farklı durum inelenmiştir. Şekil 4 de ise inelenen kanatlar üzerinde oluşan kavitasyon şekli gösterilmiştir. Aşağıdaki şekle göre kanadın ua doğru konikleşmesi, kavitasyonun uçlardan uzaklaşmasına neden olmaktadır.. Şekil. 2. Dikdörtgen kanadın farklı panel sayıları için çözümü. 4.1 Analiz I Türbin kanadının uundaki kiriş boyu sabit tutulup diğer uundaki kiriş genişliği değiştirilmiştir. Çalışmanın bu bölümünde üç farklı geometri inelenmiş, bu geometrilerin iki boyutlu çizimleri Şekil 3 de gösterilmiştir. Elde edilen grafiklerin daha anlaşılır olması için her durum için seçilen geometriler Kanat I, Kanat II, Kanat III olarak adlandırılmıştır. Değiştirilen kiriş genişliği sırasıyla iki birim, dört birim ve altı birim olarak belirlenmiştir. Böylee kanat uunun konikleştirilmesinin (tapered) hidrodinamik performansa etkisi analiz edilmiştir. Her üç durumda da kavitasyon sayısı 0.5 olarak seçilmiştir. Şekil. 4. Birini analiz için kanatlar üzerinde oluşan kavitasyon alanının karşılaştırılması. Tablo 1 de inelenen durumlar için kavitasyon hami, ve D değerleri de gösterilmiştir. Buna göre kanat uundaki kiriş boyunun artması ile kavitasyon hami ve, değerleri artmakta, D değeri azalmaktadır. Şekil 5 da ise kavitasyon ve kanat geometrileri üç boyutlu olarak gösterilmiştir. Tablo 2. Kavitasyon hami,, D değerleri Analiz I Kavitasyon Hami D I. Kanat II. Kanat III. Kanat Analiz II Bu analiz için üç farklı dikdörtgen kanat ele alınmıştır. Dikdörtgen kanatlarda kiriş boyu tüm kesitler için aynıdır. Dikdörtgen kanatların açıklığı sabit tutulup, kiriş boyları değiştirilerek, kanat yan (açıklık) oranının (aspet ratio) kavitasyona etkisi inelenmiştir. Bu durum için inelenen kanatların iki boyutlu çizimleri Şekil 6 de gösterilmiştir. Üç durumda da kanat boyu 10 birim olarak seçilmiş, kiriş genişlikleri sırasıyla iki, dört ve altı birim olarak belirlenmiştir. Hesaplamalarda kavitasyon sayısı 0.5 olarak seçilmiştir. Şekil.3. Birini analiz için inelenen kanatların üstten görünüşü.

4 İnelenen kanat geometrilerinin ve oluşan kavitasyonun üstten görünüşü Şekil 7 de gösterilmiştir. Her üç durumda da kavitasyon boyu kanat uuna yakın noktada başlayıp kanat ortasında en büyük değerini almaktadır. Şekil. 7. İkini analiz için kanatlar üzerinde oluşan kavitasyon alanının karşılaştırılması. Şekil. 5. Birini analiz için kanat ve oluşan kavitasyonun üç boyutlu gösterimi. Kavitasyon şekli her üç durum için de hemen hemen aynı karakteristiğe sahiptir. Anak boyları ve hami farklıdır. Tablo 2 de ikini durum için kavitasyon hami değerleri gösterilmiştir. Dikdörtgen kanat için açıklık oranı artıkça kavitasyon hami ve değeri artmaktadır. Kaldırma kuvvetindeki artışla birlikte oluşan kavitasyon daha büyük bir alanı kapsamaktadır. Tablo 2 den anlaşılaağı üzere kanadın alan değeri arttıkça kaldırma kuvveti, direnç değeri ve kavitasyon hami artmaktadır. Tablo 2. Kavitasyon hami,, D değerleri Analiz II Kavitasyon Hami D I. Kanat II. Kanat III. Kanat Şekil 8 da ise kavitasyon ve kanat geometrileri üç boyutlu olarak gösterilmiştir. 4.3 Analiz III Şekil 6. İkini analiz için inelenen kanatların üstten görünüşü. Dikdörtgen kanadın boyu sabit tutulup, genişliği değiştirilerek, kanat açıklık oranının kavitasyona etkisi inelenmiştir. İnelenen geometriler Şekil 9 de gösterilmiştir. İki durumda da kanat boyu 10 birim olarak seçilmiştir. Birini geometride kiriş boyu tüm kesitler için altı birimdir. İkini geometride kiriş boyu uçlarda sırasıyla altı ve sekiz birimdir. İnelenen iki kanadın alanı birbirine eşittir. Hesaplamalarda kavitasyon sayısı 0.5 olarak seçilmiştir.

5 Şekil. 10. Üçünü analiz için kanatlar üzerinde oluşan kavitasyon alanının karşılaştırılması. Konikleştirilmiş kanat için orta kesitte kavitasyon boyu kiriş boyundan büyüktür. Yani süperkavitasyon söz konusudur. İki durum için de kavitasyon kanat uçlarına yakın bölgede başlamıştır. Tablo 3 e göre kanadın konikleştirilmesi hem kavitasyon hem de elde edilen kaldırma kuvveti açısndan avantajlıdır. Aynı alana sahip iki kanatta konikleştirilmiş kanadın kavitasyon hami küçük ve değeri büyüktür. Şekil 11 de ise kavitasyon ve kanat geometrileri üç boyutlu olarak gösterilmiştir. Tablo 3. Kavitasyon hami,, D değerleri Şekil. 8. İkini analiz için kanat ve oluşan kavitasyonun üç boyutlu gösterimi. Analiz III Kavitasyon Hami D I. Durum II. Durum Şekil. 9. Üçünü analiz için inelenen kanatların üstten görünüşü. İnelenen durumların üstten görünüşü Şekil 10 de gösterilmiştir. Şekil. 11. Üçünü analiz için kanat ve oluşan kavitasyonun üç boyutlu gösterimi. 4.4 Analiz IV Üçünü durumda inelenen konikleştirilmiş kanat geometrisi farklı kavitasyon sayıları için inelenmiş ve sonuçlar karşılaştırılmıştır. İnelenen kavitasyon sayıları sırasıyla 0.4, 0.5, 0.6 ve 0.7 dir (Şekil 12).

6 kavitasyon oluşmaktadır. Bu da sualtı türbin kanatları için önemli bir sonuçtur. Çalışmanın devamı olarak kesit geometrileri ve hüum açılarının kanat boyuna dağılımının değiştirilerek kavitasyon olgusuna ve ve D değerlerine etkileri ineleneektir. Yapılan bu çalışma bunun için de bir temel oluşturmuştur. REFERENES Şekil. 12. Farklı kavitasyon sayısı için kanat geometrisi ve kavitasyon şekli. Kavitasyon sayısı büyüdükçe kavitasyon hami ve alanı azalmaktadır. Şekil 13 te kanat ortasındaki kesit geometrisi ve kavitasyon şekli iki boyutlu olarak da verilmiştir. Kavitasyon sayısı 0.4 e eşit olduğunda kavitasyon hami en büyük değerini alır. 5 SONUÇAR VE DEĞERENDİRMEER Çalışmada potansiyel tabanlı panel yöntemi ile üç boyutlu kanat üzerinde oluşan kavitasyon oluşumu tahmin edilmiştir. Verilen kavitasyon sayısı için farklı kanat geometrilerine ait kavitasyon özellikleri bulunup birbirleriyle karşılaştırılmıştır. Çalışma sonuunda kanadın konikleştirilmesi dikdörtgen kanada göre daha avantajlıdır. Şekil. 13. Farklı kavitasyon sayısı için kavitasyon ve kesit geometrisi. Aynı alana sahip iki kanat karşılaştırıldığında, konikleştirilmiş olan kanadın üzerinde daha az [1] Arakeri, V. H.,Aosta, A: J., (1976) avitation Ineption observation on axisymmetri bodies at superritial Reynolds number. J. Ship Res. 20 (1) [2] Bal, S. (1998). A potential based panel method for 2-D hydrofoils. Oean Engineering. Vol 26. pp [3] Bal, S, (2005) ift and Drag harateristis of avitating Swept and V-Type Hydrofoils, Trans of RINA, International Journal of Maritime Engineering, Vol. 147, Part A, pp ,. [4] Bal, S., (2007) High-Speed Submerged and Surfae Piering avitating Hydrofoils, Inluding Tandem ase, Oean Engineering, Vol. 34, pp , Otober. [5] Bal, S. and Kinnas, A., (2003). A BEM for the predition of free surfae effets on avitating hydrofoils. omputational Mehanis. Vol 28. pp Springer-Verlag. [6] elik, F., Ozden, Y.A. and Bal, S., (2014). Numerial simulation of flow around two- and three-dimensional partially avitating hydrofoils. Oean Engineering. Vol. 78. pp [7] Dang, J., Kuiper, G., (1998) Re-entrant jet modeling of partial avity flow on threedimensional hydrofoils. In: Proeeding of ASME FEDSM 98. [8] Fine, N. E., (1994). Non-linear analysis of unsteady avitating flows around hydrofoils and propellers. PhD thesis, Department of Oean Engineering, MIT. [9] Fran, J.P. and Mihel, J.M. (2004). Fundamentals of avitation, volume 76, pp Springer Siene & Business Media. [10] Geurst, J., Timman, R., (1956) ineariazed theory of two-dimensional avitational flow around a wing setion. In:Proedings of the IX International ongress of Applied Mehanis. [11] Karaalioglu, M.S. and Bal, S., (2015). Numerial investigation avitation bukets for hydrofoil parametrially. Journal of maritime and marine sienes. Vol. 1(2). pp [12] Karaalioglu, M.S. (2015) Hidrofoillerin kavitasyon kovalarının sayısal-parametrik inelenmesi. MS thesis at Istanbul Tehnial University [13] Katz, J., and Plotkin, A. (2001). ow-speed aerodynamis. Vol. 13. pp ambridge University Press.

7 [14] Kinnas, S.A., (1993). Partially avitating & superavitating 2-D panel methods user s manual version 1.0. MIT [15] Kinnas, S.A., (1999). Fundamental of avity flow. Oean Engineering Group, Department of ivil Engineering, University of Texas Austin. [16] Newman, J.N., (1977). Marine Hydrodynamis. pp ISBN , MIT press. [17] Ozden, Y.A., Bal, S. and Dogrul, A., (2012). Predition of avitation on Two- and Three- Dimensional Hydrofoils by an Iterative BEM, Pro. 8th International Symposium on avitation (AV 2012), pp , Singapore, August 13-16, 2012 [18] Seber, S., Ekini, S and Bal, S., (2012) Numerial alulation of avitation Bukets for 2-D Hydrofoils, Sigma Journal of Engineering and Natural Sienes, YTU, Vol. 30, No:3, pp , [19] Tulin, M. P. (1963). Superavitating flows-small perturbation theory (No. TR121 3). Hydronautis In. aurel Md. [20] Uhlman JR, J. S. (1987). The surfae singularity method applied to partially avitating hydrofoils. Journal of ship researh, 31(2), pp [21] Uşar, D., and Ş. Bal. (2015). avitation simulation on horizontal axis marine urrent turbines. Renewable Energy 80. pp [22] Uşar, D, (2015). Sualtı akıntı türbinlerinin hidrodinamik analizi. Phd thesis at Istanbul Tehnial University. Authors addresses 1 KARAAİOĞU, Mehmet Salih, Araştırma Görevlisi, İstanbul Teknik Üniversitesi, İTÜ Ayazağa kampüsü, Gemi İnşaatı ve Deniz Bilimleri Fakültesi, karaalioglum@itu.edu.tr 2 BA, Sakir, Prof. Dr., İstanbul Teknik Üniversitesi, İTÜ Ayazağa kampüsü, Gemi İnşaatı ve Deniz Bilimleri Fakültesi, sbal@itu.edu.tr ontat person * 1 KARAAİOĞU, Mehmet Salih, Araştırma Görevlisi, İstanbul Teknik Üniversitesi, İTÜ Ayazağa kampüsü, Gemi İnşaatı ve Deniz Bilimleri Fakültesi, karaalioglum@itu.edu.tr

Research Article Journal of Maritime and Marine Sciences Volume: 1 Issue: 2 (2015) 28-40

Research Article Journal of Maritime and Marine Sciences Volume: 1 Issue: 2 (2015) 28-40 Research Article Journal of Maritime and Marine Sciences Volume: 1 Issue: 2 (2015) 28-40 Numerical Investigation Cavitation Buckets for Hydrofoil Parametrically Hidrofoillerin Kavitasyon Zarf Eğrilerinin

Detaylı

SU YÜZEYİNİ YIRTAN VE SİMETRİK OLMAYAN CİSİMLERİN (GEMİ, HİDROFOİL VS) DALGA DİRENCİNİN HESABI

SU YÜZEYİNİ YIRTAN VE SİMETRİK OLMAYAN CİSİMLERİN (GEMİ, HİDROFOİL VS) DALGA DİRENCİNİN HESABI SU ÜEİNİ IRTAN VE SİMETRİK OLMAAN CİSİMLERİN (GEMİ, HİDROFOİL VS) DALGA DİRENCİNİN HESABI Doç. Dr. Şakir Bal 1 ÖET Bu çalışmada, daha önce geliştirilen ve bazı uygulamaları yapılan iterative bir sınır

Detaylı

Pervane 10. PERVANE TEORİLERİ. P 2 v 2. P 1 v 1. Gemi İlerleme Yönü P 0 = P 2. Geliştirilmiş pervane teorileri aşağıdaki gibi sıralanabilir:

Pervane 10. PERVANE TEORİLERİ. P 2 v 2. P 1 v 1. Gemi İlerleme Yönü P 0 = P 2. Geliştirilmiş pervane teorileri aşağıdaki gibi sıralanabilir: . PEVANE TEOİLEİ Geliştirilmiş perane teorileri aşağıdaki gibi sıralanabilir:. Momentum Teorisi. Kanat Elemanı Teorisi 3. Sirkülasyon (Girdap) Teorisi. Momentum Teorisi Momentum teorisinde aşağıdaki kabuller

Detaylı

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii Last A Head xvii İ çindekiler 1 GİRİŞ 1 1.1 Akışkanların Bazı Karakteristikleri 3 1.2 Boyutlar, Boyutsal Homojenlik ve Birimler 3 1.2.1 Birim Sistemleri 6 1.3 Akışkan Davranışı Analizi 9 1.4 Akışkan Kütle

Detaylı

BÜYÜK ORANDA ŞEKİL DEĞİŞTİREBİLEN KANATLARIN ÖN TASARIM SÜRECİNDE AERODİNAMİK VE YAPISAL ANALİZLERİNİN EŞLENMESİ

BÜYÜK ORANDA ŞEKİL DEĞİŞTİREBİLEN KANATLARIN ÖN TASARIM SÜRECİNDE AERODİNAMİK VE YAPISAL ANALİZLERİNİN EŞLENMESİ IV. ULUSAL HAVACILIK VE UZAY KONFERANSI 12-14 Eylül 2012, Hava Harp Okulu, İstanbul BÜYÜK ORANDA ŞEKİL DEĞİŞTİREBİLEN KANATLARIN ÖN TASARIM SÜRECİNDE AERODİNAMİK VE YAPISAL ANALİZLERİNİN EŞLENMESİ D. Sinan

Detaylı

Sigma 30, 266-280, 2012 Research Article / Araştırma Makalesi NUMERICAL CALCULATION OF CAVITATION BUCKETS FOR 2-D HYDROFOILS

Sigma 30, 266-280, 2012 Research Article / Araştırma Makalesi NUMERICAL CALCULATION OF CAVITATION BUCKETS FOR 2-D HYDROFOILS Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Sigma 30, 266-280, 2012 Research Article / Araştırma Makalesi NUMERICAL CALCULATION OF CAVITATION BUCKETS FOR 2-D HYDROFOILS

Detaylı

YÜKSEK FROUDE SAYILARINDA ÇALIŞAN HİDROFOİLLER ÜZERİNDE SERBEST SU YÜZEYİ ETKİSİ ÖZET

YÜKSEK FROUDE SAYILARINDA ÇALIŞAN HİDROFOİLLER ÜZERİNDE SERBEST SU YÜZEYİ ETKİSİ ÖZET YÜKSEK FROUDE SAYILARINDA ÇALIŞAN HİDROFOİLLER ÜZERİNDE SERBEST SU YÜZEYİ ETKİSİ Ferdi ÇAKICI 1, Ömer Kemal KINACI 2 ÖZET Su altında seyreden yapıların veya hidrodinamik destek sağlayan takıntıların serbest

Detaylı

Research Article / Araştırma Makalesi INVESTIGATION OF FREE SURFACE EFFECTS OF A 2-D SOURCE MOVING WITH CONSTANT VELOCITY

Research Article / Araştırma Makalesi INVESTIGATION OF FREE SURFACE EFFECTS OF A 2-D SOURCE MOVING WITH CONSTANT VELOCITY Sima J En & Nat Sci 6 (1), 2015, 149-156 Paper Produced from PhD Thesis Presented at Graduate School of Natural and Applied Sciences, Yıldız Technical University Yıldız Teknik Üniversitesi, Fen Bilimleri

Detaylı

KANAT PROFİLİ ETRAFINDAKİ SIKIŞTIRILAMAZ AKIŞ

KANAT PROFİLİ ETRAFINDAKİ SIKIŞTIRILAMAZ AKIŞ KANAT PROFİLİ ETRAFINDAKİ SIKIŞTIRILAMAZ AKIŞ Uçağı havada tutan kanadın oluşturduğu taşıma kuvvetidir. Taşıma kuvvetinin hesaplanması, hangi parametrelere bağlı olarak değiştiğinin belirlenmesi önemlidir.

Detaylı

ÇATI ARALARINDA MEYDANA GELEN DOĞAL TAŞINIMLA ISI TRANSFERİNİN ÇATI KATINDAKİ ISIL KONFORA ETKİSİNİN SAYISAL ANALİZİ

ÇATI ARALARINDA MEYDANA GELEN DOĞAL TAŞINIMLA ISI TRANSFERİNİN ÇATI KATINDAKİ ISIL KONFORA ETKİSİNİN SAYISAL ANALİZİ ÇATI ARALARINDA MEYDANA GELEN DOĞAL TAŞINIMLA ISI TRANSFERİNİN ÇATI KATINDAKİ ISIL KONFORA ETKİSİNİN SAYISAL ANALİZİ Birol ŞAHİN Karadeniz Teknik Üniversitesi Beşikdüzü Meslek Yüksekokulu, 61800 Beşikdüzü/TRABZON

Detaylı

Akışkanlar Mühendisliği 1. Giriş ve genel bilgiler. İçerik: Jet Motoru

Akışkanlar Mühendisliği 1. Giriş ve genel bilgiler. İçerik: Jet Motoru AKI KAN MÜHENDİSİĞİ Uçak Aerodinamiği: Akışkanın uçak uygulamasındaki rolleri Jet Motoru Y.O Yakıt K T 1 İçerik: Akışkanlar Mühendisliği 1. Giriş ve genel bilgiler -Giriş ve genel bilgiler -Akışkan özellikleri

Detaylı

İdeal Akışkanların 2 ve 3 Boyutlu Akımları

İdeal Akışkanların 2 ve 3 Boyutlu Akımları AKM 204 / Kısa Ders Notu H11-S1 İdeal Akışkanların 2 ve 3 Boyutlu Akımları Kütlenin Korunumu Prensibi : Süreklilik Denklemi Gözönüne alınan ortam ve akışkan özellikleri; Permanan olmayan akım ortamında

Detaylı

DENİZ HARP OKULU GEMİ İNŞAATI VE GEMİ MAKİNELERİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

DENİZ HARP OKULU GEMİ İNŞAATI VE GEMİ MAKİNELERİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ DENİZ HARP OKULU GEMİ İNŞAATI VE GEMİ MAKİNELERİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS Gemi Direnci ve Sevki GİM-414 4/I 3+0 3 4

Detaylı

GENELLEŞTİRİLMİŞ DİFERANSİYAL QUADRATURE METODUNUN KİRİŞLERİN SERBEST TİTREŞİM ANALİZİNE UYGULANMASI

GENELLEŞTİRİLMİŞ DİFERANSİYAL QUADRATURE METODUNUN KİRİŞLERİN SERBEST TİTREŞİM ANALİZİNE UYGULANMASI PAMUKKALE ÜİVERSİTESİ MÜHEDİ SLİK FAKÜLTESİ PAMUKKALE UIVERSITY EGIEERIG COLLEGE MÜHEDİSLİK B İ L İ MLERİ DERGİSİ JOURAL OF EGIEERIG SCIECES YIL CİLT SAYI SAYFA : : : 3 : 37-35 GEELLEŞTİRİLMİŞ DİFERASİYAL

Detaylı

İNSANSIZ HAVA ARACI PERVANELERİNİN TASARIM, ANALİZ VE TEST YETENEKLERİNİN GELİŞTİRİLMESİ

İNSANSIZ HAVA ARACI PERVANELERİNİN TASARIM, ANALİZ VE TEST YETENEKLERİNİN GELİŞTİRİLMESİ IV. ULUSAL HAVACILIK VE UZAY KONFERANSI 12-14 Eylül 212, Hava Harp Okulu, İstanbul İNSANSIZ HAVA ARACI PERVANELERİNİN TASARIM, ANALİZ VE TEST YETENEKLERİNİN GELİŞTİRİLMESİ Oğuz Kaan ONAY *, Javid KHALILOV,

Detaylı

AKIŞKANLAR MEKANİĞİ-II

AKIŞKANLAR MEKANİĞİ-II AKIŞKANLAR MEKANİĞİ-II Şekil 1. Akışa bırakılan parçacıkların parçacık izlemeli hızölçer ile belirlenmiş cisim arkasındaki (iz bölgesi) yörüngeleri ve hızlarının zamana göre değişimi (renk skalası). Akış

Detaylı

LİNEER DALGA TEORİSİ. Page 1

LİNEER DALGA TEORİSİ. Page 1 LİNEER DALGA TEORİSİ Giriş Dalgalar, gerçekte viskoz akışkan içinde, irregüler ve değişken geçirgenliğe sahip bir taban üzerinde ilerlerler. Ancak, çoğu zaman akışkan hareketi neredeyse irrotasyoneldir.

Detaylı

HİDROLİK MAKİNALAR YENİLENEBİLİR ENERJİ KAYNAKLARI

HİDROLİK MAKİNALAR YENİLENEBİLİR ENERJİ KAYNAKLARI HİDROLİK MAKİNALAR YENİLENEBİLİR ENERJİ KAYNAKLARI HİDROLİK TÜRBİN ANALİZ VE DİZAYN ESASLARI Hidrolik türbinler, su kaynaklarının yerçekimi potansiyelinden, akan suyun kinetik enerjisinden ya da her ikisinin

Detaylı

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM Yavaş değişen akımların analizinde kullanılacak genel denklem bir kanal kesitindeki toplam enerji yüksekliği: H = V g + h + z x e göre türevi alınırsa: dh d V = dx dx

Detaylı

KAVİTASYON YAPAN GEMİ PERVANESİNİN HİDRODİNAMİK KARAKTERİSTİKLERİNİN SAYISAL BİR YÖNTEMLE İNCELENMESİ

KAVİTASYON YAPAN GEMİ PERVANESİNİN HİDRODİNAMİK KARAKTERİSTİKLERİNİN SAYISAL BİR YÖNTEMLE İNCELENMESİ GEMİ İNŞTI VE DENİZ TEKNOLOJİSİ TEKNİK KONGRESİ 8 İLDİRİLER KİTI KVİTSYON YPN GEMİ PERVNESİNİN HİDRODİNMİK KRKTERİSTİKLERİNİN SYISL İR YÖNTEMLE İNCELENMESİ Şakir L * ÖZET u çalışmada, kavitasyon yapan

Detaylı

SES-ÜSTÜ KANARD KONTROLLÜ FÜZELER İÇİN SERBEST DÖNEN KUYRUĞUN ŞEKİL OPTİMİZASYONU

SES-ÜSTÜ KANARD KONTROLLÜ FÜZELER İÇİN SERBEST DÖNEN KUYRUĞUN ŞEKİL OPTİMİZASYONU VI. ULUSAL HAVACILIK VE UZAY KONFERANSI 28-30 Eylül 2016, Kocaeli Üniversitesi, Kocaeli UHUK-2016-116 SES-ÜSTÜ KANARD KONTROLLÜ FÜZELER İÇİN SERBEST DÖNEN KUYRUĞUN ŞEKİL OPTİMİZASYONU Erhan Feyzioğlu 1

Detaylı

GEMİ EĞİLME MOMENTİ ve KESME KUVVETİ KESİT ZORLARININ BUREAU VERITAS KURALLARI ve NÜMERİK YÖNTEM ile ANALİZİ

GEMİ EĞİLME MOMENTİ ve KESME KUVVETİ KESİT ZORLARININ BUREAU VERITAS KURALLARI ve NÜMERİK YÖNTEM ile ANALİZİ GEMİ EĞİLME MOMENTİ ve KESME KUVVETİ KESİT ZORLARININ BUREAU VERITAS KURALLARI ve NÜMERİK YÖNTEM ile ANALİZİ Erhan ASLANTAŞ 1 ve Aydoğan ÖZDAMAR 2 ÖZET Gemilerin ön dizayn aşamasında, boyuna mukavemet

Detaylı

AÇIK KANAL AKIMI. Hopa Yukarı Sundura Deresi-ARTVİN

AÇIK KANAL AKIMI. Hopa Yukarı Sundura Deresi-ARTVİN AÇIK KANAL AKIMI Hopa Yukarı Sundura Deresi-ARTVİN AÇIK KANAL AKIMI (AKA) Açık kanal akımı serbest yüzeyli akımın olduğu bir akımdır. serbest yüzey hava ve su arasındaki ara yüzey @ serbest yüzeyli akımda

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

ĠSTANBUL BOĞAZINDAKĠ AKINTI ENERJĠSĠ YARDIMIYLA ELEKTRĠK ELDESĠ Onur TULGAS Prof.Dr. Ayşen DEMİRÖREN, Prof. Dr. Ömer GÖREN, Y.Doç.Dr.

ĠSTANBUL BOĞAZINDAKĠ AKINTI ENERJĠSĠ YARDIMIYLA ELEKTRĠK ELDESĠ Onur TULGAS Prof.Dr. Ayşen DEMİRÖREN, Prof. Dr. Ömer GÖREN, Y.Doç.Dr. 1. Giriş ĠSTANBUL BOĞAZINDAKĠ AKINTI ENERJĠSĠ YARDIMIYLA ELEKTRĠK ELDESĠ Onur TULGAS Prof.Dr. Ayşen DEMİRÖREN, Prof. Dr. Ömer GÖREN, Y.Doç.Dr.Özgür ÜSTÜN Dünyamızda gerçekleşen ve hızla ilerleyen teknolojik

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi COMPUTIONAL FLUID DYNAMICS (CFD) APPLICATION FOR DUCTED PROPELLER

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi COMPUTIONAL FLUID DYNAMICS (CFD) APPLICATION FOR DUCTED PROPELLER Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Sigma 2005/2 COMPUTIONAL FLUID DYNAMICS (CFD) APPLICATION FOR DUCTED PROPELLER Fahri ÇELİK *, Mesut GÜNER Yıldız Teknik

Detaylı

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. Akışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde

Detaylı

9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir.

9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir. 9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir. 9.15 Bu bölümde verilen koordinat dönüşümü uygulanırsa;

Detaylı

Derece Alan Üniversite Yıl Lisans Hidrodinamik, Gemi Model İstanbul Teknik Üniversitesi 1997-2001

Derece Alan Üniversite Yıl Lisans Hidrodinamik, Gemi Model İstanbul Teknik Üniversitesi 1997-2001 ÖZGEÇMİŞ ve YAYIN LİSTESİ 1. Adı Soyadı : Serhan GÖKÇAY 2. Doğum Tarihi : 23.05.1979 3. Unvanı : Yrd. Doç. Dr. 4. Öğrenim Durumu: Derece Alan Üniversite Yıl Hidrodinamik, Gemi Model İstanbul Teknik Üniversitesi

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. kışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde

Detaylı

KAYSERİ PINARBAŞİ RÜZGAR POTANSİYELİNE UYGUN KÜÇÜK ÖLÇEKLİ RÜZGAR TÜRBİNİ AERODİNAMİK TASARIMI

KAYSERİ PINARBAŞİ RÜZGAR POTANSİYELİNE UYGUN KÜÇÜK ÖLÇEKLİ RÜZGAR TÜRBİNİ AERODİNAMİK TASARIMI KAYSERİ PINARBAŞİ RÜZGAR POTANSİYELİNE UYGUN KÜÇÜK ÖLÇEKLİ RÜZGAR TÜRBİNİ AERODİNAMİK TASARIMI Onur KOŞAR, M. Serdar GENÇ, Gökhan ÖZKAN, İlyas KARASU 1 SUNUMUN İÇERİĞİ Rüzgar Türbini Teknolojisi Pal Elemanı

Detaylı

KLİMA SANTRALLERİNDEKİ BOŞ HÜCRELER İÇİN TASARLANAN BİR ANEMOSTAT TİP DİFÜZÖRÜN AKIŞ ANALİZİ

KLİMA SANTRALLERİNDEKİ BOŞ HÜCRELER İÇİN TASARLANAN BİR ANEMOSTAT TİP DİFÜZÖRÜN AKIŞ ANALİZİ KLİMA SANTRALLERİNDEKİ BOŞ HÜCRELER İÇİN TASARLANAN BİR ANEMOSTAT TİP DİFÜZÖRÜN AKIŞ ANALİZİ Ahmet KAYA Muhammed Safa KAMER Kerim SÖNMEZ Ahmet Vakkas VAKKASOĞLU Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik

Detaylı

ANOVA MÜHENDİSLİK LTD. ŞTİ.

ANOVA MÜHENDİSLİK LTD. ŞTİ. ÇOK KADEMELİ POMPA PERFORMANSININ CFD YÖNTEMİYLE BELİRLENMESİ Ahmet AÇIKGÖZ Mustafa GELİŞLİ Emre ÖZTÜRK ANOVA MÜHENDİSLİK LTD. ŞTİ. KISA ÖZET Bu çalışmada dört kademeli bir pompanın performansı Hesaplamalı

Detaylı

TEKNOLOJİK ARAŞTIRMALAR

TEKNOLOJİK ARAŞTIRMALAR www.teknolojikarastirmalar.org ISSN:1304-4141 Makine Teknolojileri Elektronik Dergisi 2004 (2) 50-55 TEKNOLOJİK ARAŞTIRMALAR Teknik Not Civata-Somun bağlantı sistemlerinde temas gerilmelerinin üç boyutlu

Detaylı

Fiziksel Sistemlerin Matematik Modeli. Prof. Neil A.Duffie University of Wisconsin-Madison ÇEVİRİ Doç. Dr. Hüseyin BULGURCU 2012

Fiziksel Sistemlerin Matematik Modeli. Prof. Neil A.Duffie University of Wisconsin-Madison ÇEVİRİ Doç. Dr. Hüseyin BULGURCU 2012 Fiziksel Sistemlerin Matematik Modeli Prof. Neil A.Duffie University of Wisconsin-Madison ÇEVİRİ Doç. Dr. Hüseyin BULGURCU 2012 Matematik Modele Olan İhtiyaç Karmaşık denetim sistemlerini anlamak için

Detaylı

KAYMA GERİLMESİ (ENİNE KESME)

KAYMA GERİLMESİ (ENİNE KESME) KAYMA GERİLMESİ (ENİNE KESME) Demir yolu traversleri çok büyük kesme yüklerini taşıyan kiriş olarak davranır. Bu durumda, eğer traversler ahşap malzemedense kesme kuvvetinin en büyük olduğu uçlarından

Detaylı

GEMİ DİRENCİ ve SEVKİ

GEMİ DİRENCİ ve SEVKİ GEMİ DİRENCİ ve SEVKİ 1. GEMİ DİRENCİNE GİRİŞ Geminin istenen bir hızda seyredebilmesi için, ana makine gücünün doğru bir şekilde seçilmesi gerekir. Bu da gemiye etkiyen su ve hava dirençlerini yenebilecek

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 2

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 2 T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 2 DOĞAL VE ZORLANMIŞ TAŞINIMLA ISI TRANSFERİ DENEYİ ÖĞRENCİ NO: ADI SOYADI:

Detaylı

GEMİ İNŞAATI VE DENİZ TEKNOLOJİSİ TEKNİK KONGRESİ AYNA KIÇIN YÜKSEK SÜRATLİ TEKNE DİRENCİNE ETKİSİ

GEMİ İNŞAATI VE DENİZ TEKNOLOJİSİ TEKNİK KONGRESİ AYNA KIÇIN YÜKSEK SÜRATLİ TEKNE DİRENCİNE ETKİSİ GEMİ İNŞAATI VE DENİZ TEKNOLOJİSİ TEKNİK KONGRESİ AYNA KIÇIN YÜKSEK SÜRATLİ TEKNE DİRENCİNE ETKİSİ Eyüp Mete ŞİRELİ 1, Kaya TÜMER 2, Ömer GÖREN 3, Mustafa İNSEL 4 ÖZET Bu çalışma beş formdan oluşan yuvarlak

Detaylı

AERODİNAMİK KUVVETLER

AERODİNAMİK KUVVETLER AERODİNAMİK KUVVETLER Prof.Dr. Mustafa Cavcar Anadolu Üniversitesi, Sivil Havacılık Yüksekokulu, 26470 Eskişehir Bir uçak üzerinde meydana gelen aerodinamik kuvvetlerin bileşkesi ( ); uçağın etrafından

Detaylı

Şekil 1:Havacılık tarihinin farklı dönemlerinde geliştirilmiş kanat profilleri

Şekil 1:Havacılık tarihinin farklı dönemlerinde geliştirilmiş kanat profilleri TEORİ Şekil 1:Havacılık tarihinin farklı dönemlerinde geliştirilmiş kanat profilleri İlk motorlu uçuşun yolunu açan ihtiyaç duyulan taşımayı sağlayacak kanat profillerinin geliştirilmesi doğrultusunda

Detaylı

7. BÖLÜMLE İLGİLİ ÖRNEK SORULAR

7. BÖLÜMLE İLGİLİ ÖRNEK SORULAR 7. BÖLÜMLE İLGİLİ ÖRNEK SORULAR 1) Denver, Colorao da (rakım 1610 m) yerel atmosfer basıncı 8.4 kpa dır. Bu basınçta ve 0 o C sıcaklıktaki hava, 120 o C sıcaklıkta ve 2.5m 8m boyutlarında düz bir plaka

Detaylı

YAPI ZEMİN DİNAMİK ETKİLEŞİMİNDE GEOMETRİK NARİNLİK ETKİSİ. Mustafa KUTANİS 1, Muzaffer ELMAS 2

YAPI ZEMİN DİNAMİK ETKİLEŞİMİNDE GEOMETRİK NARİNLİK ETKİSİ. Mustafa KUTANİS 1, Muzaffer ELMAS 2 YAPI ZEMİN DİNAMİK ETKİLEŞİMİNDE GEOMETRİK NARİNLİK ETKİSİ Mustafa KUTANİS 1, Muzaffer ELMAS 2 kutanis@sakarya.edu.tr, elmas@sakarya.edu.tr Öz: Bu çalışmada, zemin-yapı dinamik etkileşimi problemlerinde,

Detaylı

İTÜ LİSANSÜSTÜ DERS KATALOG FORMU (GRADUATE COURSE CATALOGUE FORM)

İTÜ LİSANSÜSTÜ DERS KATALOG FORMU (GRADUATE COURSE CATALOGUE FORM) İTÜ LİSANSÜSTÜ DERS KATALOG FORMU (GRADUATE COURSE CATALOGUE FORM) Dersin Adı Gemi Hidrodinamiğinde Sınır Elemanları Yöntemleri Course Name Boundary Element Methods in Ship Hydrodynamics Kodu (Code) GEM517E

Detaylı

AKM BÖLÜM 11 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı

AKM BÖLÜM 11 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı AKM 205 - BÖLÜM 11 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı 1. Bir arabanın 1 atm, 25 C ve 90 km/h lik tasarım şartlarında direnç katsayısı büyük bir rüzgar tünelinde tam ölçekli test ile

Detaylı

MIT 8.02, Bahar 2002 Ödev # 6 Çözümler

MIT 8.02, Bahar 2002 Ödev # 6 Çözümler Adam S. Bolton bolton@mit.edu MIT 8.02, Bahar 2002 Ödev # 6 Çözümler 5 Nisan 2002 Problem 6.1 Dönen Bobin.(Giancoli 29-62) Bobin, yüzü manyetik alana dik olarak başlar (daha bilimsel konuşmak gerekirse,

Detaylı

BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ

BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ Gerçek akışkanın davranışı viskoziteden dolayı meydana gelen ilave etkiler nedeniyle ideal akışkan akımlarına göre daha karmaşık yapıdadır. Gerçek akışkanlar hareket

Detaylı

Yrd. Doç. Dr. Tolga DEMİRCAN. Akışkanlar dinamiğinde deneysel yöntemler

Yrd. Doç. Dr. Tolga DEMİRCAN. Akışkanlar dinamiğinde deneysel yöntemler Yrd. Doç. Dr. Tolga DEMİRCAN e-posta 2: tolgademircan@gmail.com Uzmanlık Alanları: Akışkanlar Mekaniği Sayısal Akışkanlar Dinamiği Akışkanlar dinamiğinde deneysel yöntemler Isı ve Kütle Transferi Termodinamik

Detaylı

NACA 23012 VE NREL S 809 KANAT KESİTLERİNİN HAD İLE ANALİZİ ANALYSING OF NACA 23012 AND NREL S 809 AIRFOILS BY CFD

NACA 23012 VE NREL S 809 KANAT KESİTLERİNİN HAD İLE ANALİZİ ANALYSING OF NACA 23012 AND NREL S 809 AIRFOILS BY CFD Electronic Journal of Vocational Colleges-May/Mayıs 015 301 VE NREL S 809 KANAT KESİTLERİNİN HAD İLE ANALİZİ Mehmet BAKIRCI 1, Hüseyin CEYLAN, Sezayi YILMAZ 3 ÖZET Bu çalışmada, 301 ve NREL S809 kanat

Detaylı

RETScreen International ve ALWIN Yazılımları Kullanılarak Rüzgar Enerji Santrali Proje Analizi

RETScreen International ve ALWIN Yazılımları Kullanılarak Rüzgar Enerji Santrali Proje Analizi RETScreen International ve ALWIN Yazılımları Kullanılarak Rüzgar Enerji Santrali Proje Analizi Egemen SULUKAN, Tanay Sıdkı UYAR Marmara Üniversitesi Makine Mühendisliği Bölümü Enerji Ana Bilim Dalı Göztepe,

Detaylı

SORU #1. (20 p) (İlişkili Olduğu / Ders Öğrenme Çıktısı: 1,5,6 Program Çıktısı: 1)

SORU #1. (20 p) (İlişkili Olduğu / Ders Öğrenme Çıktısı: 1,5,6 Program Çıktısı: 1) Süre 90 dakikadır. T.C. SAKARYA ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ DERSİ 2015-2016 GÜZ FİNAL SINAVI (Prof.Dr. Tahsin ENGİN - Doç.Dr. Nedim Sözbir - Yrd.Doç.Dr. Yüksel KORKMAZ Yrd.Doç.Dr.

Detaylı

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ EKİM 07-08 EĞİTİM - ÖĞRETİM YILI 0. SINIF MATEMATİK DERSİ 0... Olayların gerçekleşme sayısını toplama ve çarpma prensiplerini kullanarak hesaplar. 0... Sınırsız sayıda tekrarlayan nesnelerin dizilişlerini

Detaylı

RÜZGAR TÜNELĐNDEKĐ KANAT PROFĐLĐNĐN DĐKEY HAREKETĐNĐN MODELLENMESĐ

RÜZGAR TÜNELĐNDEKĐ KANAT PROFĐLĐNĐN DĐKEY HAREKETĐNĐN MODELLENMESĐ makale RÜZGAR TÜNELĐNDEKĐ KANAT PROFĐLĐNĐN DĐKEY HAREKETĐNĐN MODELLENMESĐ Cem ONAT, Şaban ÇETĐN Yıldız Teknik Üniversitesi, Makina Fakültesi Yatay eksenli rüzgar türbinlerinde, pervane kanatlarına etkiyen

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İçerik Tanımlar

Detaylı

ÇEV-220 Hidrolik. Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT

ÇEV-220 Hidrolik. Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT ÇEV-220 Hidrolik Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT Borularda Türbülanslı Akış Mühendislik uygulamalarında akışların çoğu türbülanslıdır ve bu yüzden türbülansın

Detaylı

Fiziksel bir olayı incelemek için çeşitli yöntemler kullanılır. Bunlar; 1. Ampirik Bağıntılar 2. Boyut Analizi, Benzerlik Teorisi 3.

Fiziksel bir olayı incelemek için çeşitli yöntemler kullanılır. Bunlar; 1. Ampirik Bağıntılar 2. Boyut Analizi, Benzerlik Teorisi 3. Fiziksel bir olayı incelemek için çeşitli yöntemler kullanılır. Bunlar; 1. Ampirik Bağıntılar 2. Boyut Analizi, Benzerlik Teorisi 3. Benzetim Yöntemi (Analoji) 4. Analitik Yöntem 1. Ampirik Bağıntılar:

Detaylı

SOLIDWORKS SIMULATION EĞİTİMİ

SOLIDWORKS SIMULATION EĞİTİMİ SOLIDWORKS SIMULATION EĞİTİMİ Kurs süresince SolidWorks Simulation programının işleyişinin yanında FEA teorisi hakkında bilgi verilecektir. Eğitim süresince CAD modelden başlayarak, matematik modelin oluşturulması,

Detaylı

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: 1- (24 Puan) Şekildeki 5.08 cm çaplı 38.1 m uzunluğunda, 15.24 cm çaplı 22.86 m uzunluğunda ve 7.62 cm çaplı

Detaylı

BİR OFİS İÇİN TERMAL KONFOR ANALİZİNİN HESAPLAMALI AKIŞKANLAR DİNAMİĞİ YÖNTEMİ İLE MODELLENMESİ VE SAYISAL ÇÖZÜMÜ

BİR OFİS İÇİN TERMAL KONFOR ANALİZİNİN HESAPLAMALI AKIŞKANLAR DİNAMİĞİ YÖNTEMİ İLE MODELLENMESİ VE SAYISAL ÇÖZÜMÜ BİR OFİS İÇİN TERMAL KONFOR ANALİZİNİN HESAPLAMALI AKIŞKANLAR DİNAMİĞİ YÖNTEMİ İLE MODELLENMESİ VE SAYISAL ÇÖZÜMÜ Hazırlayan : Kadir ÖZDEMİR No : 4510910013 Tarih : 25.11.2014 KONULAR 1. ÖZET...2 2. GİRİŞ.........3

Detaylı

34. Dörtgen plak örnek çözümleri

34. Dörtgen plak örnek çözümleri 34. Dörtgen plak örnek çözümleri Örnek 34.1: Teorik çözümü Timoshenko 1 tarafından verilen dört tarafından ankastre ve merkezinde P=100 kn tekil yükü olan kare plağın(şekil 34.1) çözümü 4 farklı model

Detaylı

FARKLI PANEL TİPLERİ İÇİN EŞDEĞER DEVRE MODELİNİN PARAMETRE DEĞERLERİNİN BULUNMASI

FARKLI PANEL TİPLERİ İÇİN EŞDEĞER DEVRE MODELİNİN PARAMETRE DEĞERLERİNİN BULUNMASI FARKLI PANEL TİPLERİ İÇİN EŞDEĞER DEVRE MODELİNİN PARAMETRE DEĞERLERİNİN BULUNMASI Erdem ELİBOL Melih AKTAŞ Nedim TUTKUN Özet Bu çalışmada fotovoltaik güneş panellerinin matematiksel eşdeğer devrelerinden

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR-II BORU ve DİRSEKLERDE ENERJİ KAYBI DENEYİ 1.Deneyin Adı: Boru ve dirseklerde

Detaylı

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 7 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 7. HAFTA Kapsam: Parçacık Kinetiği, Kuvvet İvme Yöntemi Newton hareket

Detaylı

ÇİFT CAMLI PENERELERDE ISI GEÇİŞİNİN İNCELENMESİ

ÇİFT CAMLI PENERELERDE ISI GEÇİŞİNİN İNCELENMESİ ÇİFT CAMI PENEREERDE ISI GEÇİŞİNİN İNCEENMESİ Müslüm Arıcı, Ömer Oğuz Tozkoparan, Hasan Karabay Kocaeli Üniversitesi Mühendislik Fakültesi Makina Mühendisliği Bölümü, KOCAEİ muslumarici@gmail.com,tozkoparano@hotmail.com,

Detaylı

GRAVİTE-MANYETİK VERİLERİNE ÇEŞİTLİ MODELLERLE YAKLAŞIM AN APPROACH FOR THE GRAVITY-MAGNETIC DATA WITH VARIOUS MODELS

GRAVİTE-MANYETİK VERİLERİNE ÇEŞİTLİ MODELLERLE YAKLAŞIM AN APPROACH FOR THE GRAVITY-MAGNETIC DATA WITH VARIOUS MODELS GRAVİTE-MANYETİK VERİLERİNE ÇEŞİTLİ MODELLERLE YAKLAŞIM AN APPROACH FOR THE GRAVITY-MAGNETIC DATA WITH VARIOUS MODELS AŞÇI, M. 1, YAS, T. 1, MATARACIOĞLU, M.O. 1 Posta Adresi: 1 Kocaeli Ünirsitesi Mühendislik

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 1- GİRİŞ Doç. Dr. Ali Rıza YILDIZ 1 Mühendislikte, herhangi bir fiziksel sistemin matematiksel modellenmesi sonucu elde edilen karmaşık veya analitik çözülemeyen denklemlerin

Detaylı

Esin Ö. ÇEVİK Prof. Dr. cevik@yildiz.edu.tr

Esin Ö. ÇEVİK Prof. Dr. cevik@yildiz.edu.tr İSTANBUL BOĞAZI NDA AKINTI İKLİMİ ÇALIŞMASI Yalçın, YÜKSEL Prof. Dr. yuksel@yildiz.edu.tr Berna AYAT bayat@yildiz.edu.tr M. Nuri ÖZTÜRK meozturk@yildiz.edu.tr Burak AYDOĞAN baydogan@yildiz.edu.tr Işıkhan

Detaylı

KAYMALI YATAKLAR I: Eksenel Yataklar

KAYMALI YATAKLAR I: Eksenel Yataklar KAYMALI YATAKLAR I: Eksenel Yataklar Prof. Dr. İrfan KAYMAZ Mühendislik Fakültesi Makine Mühendisliği Bölümü Giriş Bu bölüm sonunda öğreneceğiniz konular: Eksenel yataklama türleri Yatak malzemeleri Hidrodinamik

Detaylı

L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI

L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI T.C DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI BİTİRME PROJESİ KADİR BOZDEMİR PROJEYİ YÖNETEN PROF.

Detaylı

Radyatör Arkalarına Yerleştirilen Yansıtıcı Yüzeylerin Radyatör Etkisi

Radyatör Arkalarına Yerleştirilen Yansıtıcı Yüzeylerin Radyatör Etkisi mert:sablon 31.12.2009 14:25 Page 49 Radyatör Arkalarına Yerleştirilen Yansıtıcı Yüzeylerin Radyatör Etkisi Mert TÜKEL Araş. Gör. Müslüm ARICI Mehmet Fatih BİNGÖLLÜ Öğr. Gör. Hasan KARABAY ÖZET Bu çalışmada

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

FLOWING FLUIDS and PRESSURE VARIATION

FLOWING FLUIDS and PRESSURE VARIATION 4. FLOWING FLUIDS and PRESSURE VARIATION Akışkan Kinematiği Akışkan kinematiği, harekete neden olan kuvvet ve momentleri dikkate almaksızın, akışkan hareketinin tanımlanmasını konu alır. Yapı üzerindeki

Detaylı

UÇUŞ SIRASINDA BUZLANMA ANALİZLERİNDE DAMLACIK YÖRÜNGELERİNİN PARALEL HESAPLAMA YÖNTEMİYLE BELİRLENMESİ

UÇUŞ SIRASINDA BUZLANMA ANALİZLERİNDE DAMLACIK YÖRÜNGELERİNİN PARALEL HESAPLAMA YÖNTEMİYLE BELİRLENMESİ VI. ULUSAL HAVACILIK VE UZAY KONFERANSI 28-30 Eylül 2016, Kocaeli Üniversitesi, Kocaeli UÇUŞ SIRASINDA BUZLANMA ANALİZLERİNDE DAMLACIK YÖRÜNGELERİNİN PARALEL HESAPLAMA YÖNTEMİYLE BELİRLENMESİ Mert TOKEL

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

CASA CN 235 UÇAĞININ DIŞ AERODİNAMİK YÜKLERİNİN HESAPLANMASI

CASA CN 235 UÇAĞININ DIŞ AERODİNAMİK YÜKLERİNİN HESAPLANMASI HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ OCAK 25 CİLT 2 SAYI (9-7) CASA CN 235 UÇAĞININ DIŞ AERODİNAMİK YÜKLERİNİN HESAPLANMASI Zafer MERCAN Hava Kuvvetleri Komutanlığı Per.D.Bşk.lığı Bakanlıklar-ANKARA

Detaylı

TÜMLEŞİK KANAT ELEMANI - HESAPLAMALI AKIŞKANLAR DİNAMİĞİ YÖNTEMİ İLE DİKEY RÜZGAR TÜRBİNİ PERFORMANSININ HESAPLANMASI

TÜMLEŞİK KANAT ELEMANI - HESAPLAMALI AKIŞKANLAR DİNAMİĞİ YÖNTEMİ İLE DİKEY RÜZGAR TÜRBİNİ PERFORMANSININ HESAPLANMASI III. ULUSAL HAVACILIK VE UZAY KONFERANSI 16-18 Eylül 2010, Anadolu Üniversitesi, Eskişehir TÜMLEŞİK KANAT ELEMANI - HESAPLAMALI AKIŞKANLAR DİNAMİĞİ YÖNTEMİ İLE DİKEY RÜZGAR TÜRBİNİ PERFORMANSININ HESAPLANMASI

Detaylı

ÇATI MAKASINA GELEN YÜKLER

ÇATI MAKASINA GELEN YÜKLER ÇATI MAKASINA GELEN YÜKLER Bir yapıyı dış etkilere karşı koruyan taşıyıcı sisteme çatı denir. Belirli aralıklarla yerleştirilen çatı makaslarının, yatay taşıyıcı eleman olan aşıklarla birleştirilmesi ile

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

ÜÇ BOYUTLU SINIR TABAKA AKIŞLARININ KARARLILIK ÖZELLİKLERİNİN DOĞRUSAL KARARLILIK TEORİSİ YAKLAŞIMI İLE BELİRLENMESİ

ÜÇ BOYUTLU SINIR TABAKA AKIŞLARININ KARARLILIK ÖZELLİKLERİNİN DOĞRUSAL KARARLILIK TEORİSİ YAKLAŞIMI İLE BELİRLENMESİ V. ULUSAL HAVACILIK VE UZAY KONFERANSI 8-10 Eylül 2014, Erciyes Üniversitesi, Kayseri ÜÇ BOYUTLU SINIR TABAKA AKIŞLARININ KARARLILIK ÖZELLİKLERİNİN DOĞRUSAL KARARLILIK TEORİSİ YAKLAŞIMI İLE BELİRLENMESİ

Detaylı

Deprem Etkisi Altında Tasarım İç Kuvvetleri

Deprem Etkisi Altında Tasarım İç Kuvvetleri Prof. Dr. Günay Özmen gunayozmen@hotmail.com Deprem Etkisi Altında Tasarım İç Kuvvetleri 1. Giriş Deprem etkisi altında bulunan çok katlı yapılarda her eleman için kendine özgü ayrı bir elverişsiz deprem

Detaylı

ÇOK KATLI BİNALARIN DEPREM ANALİZİ

ÇOK KATLI BİNALARIN DEPREM ANALİZİ ÇOK KATLI BİNALARIN DEPREM ANALİZİ M. Sami DÖNDÜREN a Adnan KARADUMAN a a Selçuk Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Mühendisliği Bölümü Konya Özet Bu çalışmada elips, daire, L, T, üçgen,

Detaylı

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Kimya Mühendisliği Bölümü Kimya Mühendisliği Laboratuvarı Venturimetre Deney Föyü Hazırlayan Arş.Gör. Orhan BAYTAR 1.GİRİŞ Genellikle herhangi bir akış

Detaylı

Kılavuz Rayları ve Emniyet Freni Mekanizmaları Üzerindeki Gerilmelere Dair Araştırma

Kılavuz Rayları ve Emniyet Freni Mekanizmaları Üzerindeki Gerilmelere Dair Araştırma Kılavuz Rayları ve Emniyet Freni Mekanizmaları Üzerindeki Gerilmelere Dair Araştırma Dr. C. Erdem Đmrak 1, Said Bedir 1, Sefa Targıt 2 1 Đstanbul Teknik Üniversitesi, Makine Mühendisliği Fakültesi, Makine

Detaylı

DİNAMİK - 1. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK - 1. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 1 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü http://acikders.ankara.edu.tr/course/view.php?id=190 1. HAFTA Kapsam:

Detaylı

MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ. Akışkanlar Mekaniği MK-312 3/Güz (3+1+0) 3.5 7

MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ. Akışkanlar Mekaniği MK-312 3/Güz (3+1+0) 3.5 7 MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS Akışkanlar Mekaniği MK-312 3/Güz (3+1+0) 3.5 7 Dersin Dili : İngilizce Dersin Seviyesi

Detaylı

VENTURİMETRE DENEYİ 1. GİRİŞ

VENTURİMETRE DENEYİ 1. GİRİŞ VENTURİMETRE DENEYİ 1. GİRİŞ Genellikle herhangi bir akış esnasında akışkanın tabakaları farklı hızlarda hareket ederler ve akışkanın viskozitesi, uygulanan kuvvete karşı direnç gösteren tabakalar arasındaki

Detaylı

3. GEMİ DİRENCİ, GEMİ DİRENCİNİN BİLEŞENLERİ, SINIR TABAKA

3. GEMİ DİRENCİ, GEMİ DİRENCİNİN BİLEŞENLERİ, SINIR TABAKA 3. GEMİ DİRENCİ, GEMİ DİRENCİNİN BİLEŞENLERİ, SINIR TABAKA 3.1 Gemi Direnci Bir gemi viskoz bir akışkanda (su + hava) v hızıyla hareket ediyorsa, gemiye viskoziteden kaynaklanan yüzeye teğet sürtünme kuvvetleri

Detaylı

DİNAMİK Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 11 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 11. HAFTA Kapsam: İmpuls Momentum yöntemi İmpuls ve momentum ilkesi

Detaylı

Yatay Eksenli Yelkapan Palasında Tasarım Parametrelerinin Gerilme Dağılımına Etkisi

Yatay Eksenli Yelkapan Palasında Tasarım Parametrelerinin Gerilme Dağılımına Etkisi Yatay Eksenli Yelkapan Palasında Tasarım Parametrelerinin Gerilme Dağılımına Etkisi Ercüment LYNK EN Mühendislik Danışmanlık Enerji Makina ve Yelkapan San. Tic. Ltd. Şti. ODTÜ KOSGE Teknoloji Geliştirme

Detaylı

Saf Eğilme(Pure Bending)

Saf Eğilme(Pure Bending) Saf Eğilme(Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki şekil değiştirmesini/ deformasyonları incelenecek. Burada çıkarılacak formüller

Detaylı

Bölüm 7: Boyut Analizi ve Modelleme

Bölüm 7: Boyut Analizi ve Modelleme Bölüm 7: Boyut Analizi ve Modelleme Eğer belirli bir yükseklikten bir elmayı atar ve bu yüksekliği değiştirirsek elma için düşme zamanı nasıl değişir? h 1 h 2 Amaçlar Tekrarlayan değişkenler yöntemini

Detaylı

RCRCR KAVRAMA MEKANİZMASININ KİNEMATİK ANALİZİ Koray KAVLAK

RCRCR KAVRAMA MEKANİZMASININ KİNEMATİK ANALİZİ Koray KAVLAK Selçuk-Teknik Dergisi ISSN 130-6178 Journal of Selcuk-Technic Cilt, Sayı:-006 Volume, Number:-006 RCRCR KAVRAMA MEKANİZMASININ KİNEMATİK ANALİZİ Koray KAVLAK Selçuk Üniversitesi, Mühendislik-Mimarlık Fakültesi,

Detaylı

DERS BÖLÜMLERİ VE 14 HAFTALIK DERS KONULARI. Ders Sorumluları: Prof.Dr. Muammer ÖZGÖREN, Yrd. Doç.Dr. Faruk KÖSE

DERS BÖLÜMLERİ VE 14 HAFTALIK DERS KONULARI. Ders Sorumluları: Prof.Dr. Muammer ÖZGÖREN, Yrd. Doç.Dr. Faruk KÖSE DERS BÖLÜMLERİ VE 14 HAFTALIK DERS KONULARI Ders Sorumluları: Prof.Dr. Muammer ÖZGÖREN, Yrd. Doç.Dr. Faruk KÖSE 1.HAFTA: GİRİŞ ENERJİNİN TANIMI VE ÇEŞİTLERİ ENERJİ DÖNÜŞÜM SİSTEMLERİ DÜNYA ENERJİ KAYNAKLARI

Detaylı

RÜZGAR ÇİFTLİĞİ POTANSİYELİNİN GÜVENİLİRLİĞE DAYALI TEORİK DAĞILIMI

RÜZGAR ÇİFTLİĞİ POTANSİYELİNİN GÜVENİLİRLİĞE DAYALI TEORİK DAĞILIMI RÜZGAR ÇİFTLİĞİ POTANSİYELİNİN GÜVENİLİRLİĞE DAYALI TEORİK DAĞILIMI Serkan Eryılmaz 1 ve Femin Yalçın 2 1 Atılım Üniversitesi, Endüstri Mühendisliği Bölümü, serkan.eryilmaz@atilim.edu.tr 2 İzmir Katip

Detaylı

YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ UYGULAMALI MÜHENDİSLİK MODELLEMESİ

YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ UYGULAMALI MÜHENDİSLİK MODELLEMESİ YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ UYGULAMALI MÜHENDİSLİK MODELLEMESİ RAPOR 21.05.2015 Eren SOYLU 100105045 ernsoylu@gmail.com İsa Yavuz Gündoğdu 100105008

Detaylı

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER 1.1. Fiziksel Kanunlar ve Diferensiyel Denklemler Arasındaki İlişki... 1 1.2. Diferensiyel Denklemlerin Sınıflandırılması ve Terminoloji...

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI ERİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI DENEY FÖYÜ DENEY ADI KOMPANZASYON DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEYİ YAPTIRAN

Detaylı

Prof. Dr. Cengiz DÜNDAR

Prof. Dr. Cengiz DÜNDAR Prof. Dr. Cengiz DÜNDAR TABLALI KESİTLER Betonarme inşaatın monolitik özelliğinden dolayı, döşeme ve kirişler birlikte çalışırlar. Bu nedenle kesit hesabı yapılırken, döşeme parçası kirişin basınç bölgesine

Detaylı