Biyomedikal Mühendisliği Bölümü TBM 203 Diferansiyel Denklemler* Güz Yarıyılı

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Biyomedikal Mühendisliği Bölümü TBM 203 Diferansiyel Denklemler* Güz Yarıyılı"

Transkript

1 Biomdikal Mühndiliği Bölümü TBM 0 Diranil Dnklmlr* Güz Yarıılı Pro. Dr. Yn Emr ERDEMLİ *B dr notları Yrd. Doç. Dr. Adnan SONDAŞ ın katkılarıla hazırlanmıştır.

2 Diranil Dnklmlr

3 Kanaklar Diranil Dnklmlr

4 Dr İçriği Birinci Mrtbdn Diranil Dnklmlr Dğişknlrin Arılabilir Diranil Dnklmlr Homojn Diranil Dnklmlr Linr Diranil Dnklmlr Brnolli Diranil Dnklmi Tam Diranil Dnklmlr İkinci Mrtbdn Diranil Dnklmlr n. Mrtbdn Diranil Dnklmlr Dğişkn Kataılı Diranil Dnklmlr Diranil Dnklm Sitmlri Laplac Dönüşümü Diranil Dnklmlr

5 Dğrlndirm Başarı Not = Ara Sınav%6+Kıa Sınav % + Final %0 Dvam Zornllğ = %70 Diranil Dnklmlr 5

6 Giriş Birçok mühndilik, izik v oal köknli problmlr matmatik trimlri il iad dildiği zaman b problmlr, Diranil Dnklmlr problmin dönüşür. B problmlr örnk olarak alınım problmlri, rokt, d v gzgnlrin harktlri, kimaal rakionlar, radoakti maddlrin parçalanmaı problmlri, lktrik dvrlri vb. götrilbilir. B drin amacı diranil dnklmlrl tanışmak v bait dnklmlrin çözümünü öğrnmktir. Diranil Dnklm Kavramı bağımız dğişkni, bilinmn = onkion v b onkionn türvlri,,,, n araındaki bağıntıa diranil dnklm dnir. B şitlikt türvlrl brabr = onkionnn kndii in bilinn onkionları v abitlr d blnabilir. Böl bir dnklm mbolik olarak, şklind götrilir. va Diranil Dnklmlr 6

7 Uglamalar Diranil Dnklmlr 7

8 Uglamalar Dnlr oncnda hrhangi bir radoakti maddnin, hrhangi bir andaki kütlinin dğişim hızının başka dişl cimin parçalanma hızının o andaki kütli il orantılı oldğ görülmüştür. Eğr anındaki kütl i, kütlnin dğişim hızı türvidir. Dnlr oncna gör, = k azılabilir. Brada k vrilmiş cim bağlı bilinn abit ngati bir aıdır. B aının ngati olmaının bbi, kütlinin zaman gçtikç azalmaının onc olarak türvinin ngati olmaıdır. Dolaııla radoakti kütlnin diranil dnklmi: - k = 0 Ytrli drcd ıınmış bir mtal ciim 0 lik bir ortamda örnğin, havada va da oğtlmaktadır. Dnlr götrior ki b drmda cimin oğma hızı, cimin o andaki ıcaklığı v ortamın ıcaklığı araındaki ark il orantılıdır. Eğr anındaki ıcaklık i = k 0 azılabilir. Brada k cim bağlı ngati bir abittir. Bölc oğmanın diranil dnklmi: = k 0 Diranil Dnklmlr 8

9 Diranil Dnklmlrd Sınılandırma Dğişkn aıına gör: i Adi ıradan di. dnklmlr Tk dğişknli ii Kımi Türvli di dnklmlr Birdn azla dğişknli Mrtb gör: i. Mrtbdn di. dnklmlr ii Yükk Mrtbdn di. dnklmlr Doğrallığa gör: i Doğral linr di. dnklmlr ii Doğral olmaan di. dnklmlr Kataılara gör: i Sabit Kataılı di dnklmlr ii Dğişkn Kataılı di dnklmlr Diranil Dnklmlr 9

10 Dğişkn Saıı Diranil dnklmdki bilinmn onkion tk dğişknli bir onkion i dnklm adi diranil dnklm, birdn azla dğişkn bağlı i kımi diranil dnklm dnir. adi diranil dnklm kımi diranil dnklm 0 z Diranil Dnklmlr

11 Diranil Dnklmin Mrtbi Dnklmdki n ükk mrtbli türvin dğrin diranil dnklmin mrtbi dnir. o I. Mrtbdn di. dnklm 5 III. Mrtbdn di. dnklm II. Mrtbdn di. dnklm n,,,,,... 0 n. Mrtbdn di. dnklm Not: Ykarıdaki dnklmlrd,, onkionları dğişkninin onkionlarıdır. Gnllikl, dnklm azılımında,,,... altındaki dğişkni azılmıor. Örnğin, - = 0 rin kıaca - = 0 azılır. Diranil Dnklmlr

12 Diranil Dnklmin Drci Bir diranil dnklmdki n ükk mrtbdki türvin kvvtin diranil dnklmin drci dnir. = /. Drcdn di. dnk. = / = 0. Drcdn di. dnk.. Drcdn di. dnk.. mrtb /. drc. mrtb /. drc. mrtb / drci tanımız!. mrtb /. drc Diranil Dnklmlr

13 Linr Doğral v Linr Olmaan Di. Dnk. * * Linr di. dnk. Linr olmaan di. dnk. Diranil Dnklmlr

14 Gnl, Özl v Tkil Çözümlr Bir diranil dnklmin çözümü; gnl çözüm, özl çözüm v tkil çözüm olmak üzr üç arılır. Diranil dnklmin c intgral abitin bağlı çözümün gnl çözüm; c dğrlr vrilrk ld diln çözüm özl çözüm dnir. Arıca b gnl çözümdki intgral abitin özl dğrlr vrilrk ld dilmn akat dnklmi ağlaan çözümlr d tkil çözüm dnir. in c gnl çözüm c c c 0 in in in özl çözüm tkil çözüm Diranil Dnklmlr

15 Gnl, Özl v Tkil Çözümlr İçriind ki abitlr içrn çözümlr gnl çözüm dnir. Gnl çözümdn, ki abit va abitlr dğrlr vrilmil ld diln çözümlr dnklmin özl çözüm dnir. GENEL ÇÖZÜM ÖZEL ÇÖZÜM Diranil Dnklmlr

16 . MERTEBEDEN DİFERANSİYEL DENKLEMLER Diranil Dnklmlr

17 Dğişknlrin Arılabiln Diranil Dnklmlr v g onkionları v nin birr onkionları olmak üzr; = g biçimind azılabiln dnklmlr dğişknlrin arılabiln diranil dnklmlr dnir. B dnklmlri çözbilmk için rin d/d azılarak dnklm aşağıdaki orma dönüştürülür. d d g daha onra hr iki taraın intgrali alınarak diranil dnklmin gnl çözümü blnr. d d g Diranil Dnklmlr

18 Örnk- d d co co i in gnl çözümünü blnz. d co. d in d co. d Diranil Dnklmlr

19 Örnk- 0 i in gnl çözümünü blnz. d d d d d d ln ln. c nidn bir ki abit oldğndan c rin in azarak gnl çözümü: = Diranil Dnklmlr

20 Örnk- in gnl çözümünü blnz. d d d d d d arcin c in c Diranil Dnklmlr

21 Örnk- k 0 dnklminin gnl çözümünü blnz. d d k 0 d 0 k. d d 0 k. d ln 0 k 0. k Gnl çözüm: k 0. Diranil Dnklmlr

22 Örnk-5 00 kadar ııtılmış bir mtal ciim 0 lik bir ortamda oğtlmaktadır. dakika onra cimin ıcaklığı 70 olmşa, 0 dakika onra cimin ıcaklığı kaç olr? Bir öncki orda oğmanın diranil dnklminin gnl çözümü = 0 + k olarak blnmşt. Başlangıçta cimin ıcaklığı 00 oldğndan 0 = 00 olr. B koşldan ararlanarak abitini blalım: Diranil Dnklmlr

23 Örnk-6 dr r tand 0 in gnl çözümünü blnz. dr r tand 0 dr r tand ln r ln o ln r o r Ao Diranil Dnklmlr

24 Örnk-7 0 in gnl çözümünü blnz. d d 0 d d 0 d d 0 ln ln ln. A Diranil Dnklmlr

25 Örnk-8 5 dnklminin gnl v özl çözümünü blnz. d d 5 d 5 d d 5 d 5 gnl çözüm özl çözüm Diranil Dnklmlr

26 ÖDEV Diranil Dnklmlr

27 ÖDEV 0 ormndaki bir diranil dnklmin gnl çözümünü blnz. d d d d d A B d A A 0 B A B d d d ln ln ln Diranil Dnklmlr

28 T Ü R E V F O R M Ü L L E R İ İ N T E G R A L F O R M Ü L L E R İ Diranil Dnklmlr

29 Dğişknlrin Arılabilir Hal Dönüştürülbiln Di. Dnk. a b ormndaki bir diranil dnklmd: a b dönüşümü apılıra: d d d d d d a d d ld dilir v diranil dnklm dğişknlrin arılabilir hal dönüştürülür. Diranil Dnklmlr

30 Örnk- in ormndaki bir diranil dnklmin gnl çözümünü blnz. dönüşümü apılıra: d d d d d d in d in. d d in. d co co K ld dilir. Blnan çözümd rin + azılıra: co K itnn gnl çözüm ld dilmiş olr. Diranil Dnklmlr

31 Örnk- co ormndaki bir diranil dnklmin gnl çözümünü blnz. dönüşümü apılıra: d d d d d d co d co d d co d tan Blnan çözümd rin λ+ azılıra: tan Diranil Dnklmlr

32 Örnk- 8 ormndaki bir diranil dnklmin gnl çözümünü blnz. 8 dönüşümü apılıra: d d d d d d arctan tan Blnan çözümd rin ++8 azılıra: tan 8 Diranil Dnklmlr

33 Örnk- co 0 ormndaki diranil dnklmin gnl çözümü? dönüşümü apılıra: co 0 ilk dnklmd rin azılıra: co d co d arctan tan Blnan çözümd rin - azılıra: arctan Diranil Dnklmlr

34 Homojn Dnklmlr Eğr, bir onkion v t bir grçl aı i t,t=t n, özlliğin ahip n. drcdn homojn onkion dnir. Örnk, 5 onkion homojnmidir? t, t t tt 5 t t, t t t 5t t, t t 5 t, t t, onkion. drcdn homojndir. Diranil Dnklmlr

35 Örnk-, onkion homojn midir? t, t tt t t, t t t t, t t t t, t t, onkion homojn dğildir. Diranil Dnklmlr

36 Homojn Diranil Dnklmlr Eğr, onkion 0. drcdn homojn i: d d, homojn diranil dnklmdir. Homojn diranil dnklmlr, şklin gtirilbilirlr. B dnklmlrd =/ dönüşümü glanılarak dnklm çözülbilir. Gnl çözüm için haplanan intgrald =/ komak kaidir. Diranil Dnklmlr

37 Örnk- ormndaki diranil dnklmin gnl çözümü? d d arcin ln inln in ln Diranil Dnklmlr

38 Örnk- ormndaki diranil dnklmin gnl çözümünü? d d ln ln Diranil Dnklmlr

39 Örnk-. d d 0 ormndaki diranil dnklmin gnl çözümünü? d d arcin ln in ln.in ln c Diranil Dnklmlr

40 Diranil Dnklmlr 0 ÖDEV 0 d d ormndaki diranil dnklmin gnl çözümünü? d d ln arctan ln d d d d d ln arctan ln

41 Homojn Hal Gtirilbiln Di. Dnk. a b cd a b c d 0 Şklindki diranil dnklm homojn olmamaına rağmn bait bir dğişkn dönüşümü il homojn hal dönüştürülbilir. a a b b ab a b 0 oldğ takdird iki doğr birbirin paralldir. a b cd ka b c d 0 şklind azılabilir. B drmda =a+b, d=ad+bd dönüşümü apılarak dnklm homojn diranil dnklm halin dönüştürülbilir. Diranil Dnklmlr

42 Örnk- 5d 6 d 0 diranil dnklminin gnl çözümünü blnz oldğ için: 5d d 0 şklind azılır. d d d dönüşümü apılıra: d d 5d 0 d d 0 d d 0 8ln ln Diranil Dnklmlr

43 Diranil Dnklmlr Örnk- 0.. oldğ için: dönüşümü apılıra: 0 0 d d d d / d d d / 0 ln ln 9 c diranil dnklminin gnl çözümünü blnz. 0

44 Homojn Hal Gtirilbiln Di. Dnk. a b cd a b c d 0 Şklindki diranil dnklm homojn olmamaına rağmn bait bir dğişkn dönüşümü il homojn hal dönüştürülbilir. a a b b ab a b 0 oldğ takdird iki doğr α, β noktaında kişir. X Y d dx d dy dönüşümü glanarak homojn diranil dnklm çvrilir. Diranil Dnklmlr

45 Örnk- 7 d 7 7d 0 diranil dnklminin gnl çözümünü blnz oldğ için: doğrları,0 noktaında kişir. X d dx 0 Y d dy dönüşümlri apılıra dnklm aşağıdaki hal glir: dy dx Y 7X X 7Y Eld diln dnklm homojn diranil dnklmdir. Diranil Dnklmlr

46 Örnk- Dvam dy dx Y 7X X 7Y Y X dy dx d dx X dönüşümü apılıra: d dx X X 7X X 7X d dx X dx 5 d d 7 7 X X dx 5 ln ln ln X 5 A X 7 7 Y X 7 dönüşümü apılıra: Y X A Y X 5 X X Y tr dönüşümü apılıra: A 5 Diranil Dnklmlr

47 Diranil Dnklmlr

48 Tam Diranil Dnklmlr P, d Q, d 0 şklindki diranil dnklmd; P Q şartı grçklnir, b tip diranil dnklm Tam Diranil Dnklm dnir. Çözümü:, P, d S,, blndktan onra: S Q, ld dilir. Bradan:, şitliği blnr. Diranil Dnklmlr

49 Örnk-. d d 0 diranil dnklminin gnl çözümünü blnz., Q, P., P Q oldğ için dnklm tam diranildir., P, d. d. 0 Gnl çözüm:. Diranil Dnklmlr

50 Diranil Dnklmlr Örnk- diranil dnklminin gnl çözümünü blnz. 0 co in d d in, P Q co, Q P in d d P in,, co, Q, co co ln Gnl çözüm: ln co

51 Diranil Dnklmlr Örnk- diranil dnklminin gnl çözümünü blnz. 0 d b d a b P, a Q, Q P oldğ için dnklm tam diranildir. b d b d P,, Q, a a a Gnl çözüm: a b

52 Diranil Dnklmlr 5 ÖDEV 0 d d ormndaki diranil dnklmin gnl çözümünü? d d d d, d d d

53 Tam Diranil Hal Gtirilbiln Dnklmlr P P, d Q, d 0 şklindki diranil dnklmd; Q şartı grçklnmiora b dnklm tam diranil dnklm dğildir. B dnklm λ, intgraon çarpanı il çarpılarak tam diranil dnklm halin dönüştürülbilir., d. Q, d 0. P P Q Q P P Q Diranil Dnklmlr

54 Diranil Dnklmlr İntgral Çarpanının Sadc in Fonkion Olmaı Drm: 0 olacağına gör; Q P P Q 0. Q d d Q P d Q Q P d

55 Örnk- d d 0 P, Q, P, 9 Q, 6 dnklminin intgral çarpanını v gnl çözümünü blnz. oldğna gör vriln dnklm tam di. dnk. dğildir. P Q d 9 6 d d Q d d d Diranil Dnklmlr

56 Diranil Dnklmlr Örnk- Dvam 0 d d 0 d d dnklmi tam diranil dnklmdir. d,,,, Q 0 Gnl çözüm:

57 Örnk- d d 0 dnklminin intgral çarpanını v gnl çözümünü blnz. P, Q, P, Q, oldğna gör vriln dnklm tam di. dnk. dğildir. P Q d d d Q d d d Diranil Dnklmlr

58 Diranil Dnklmlr Örnk- Dvam 0 d d dnklmi tam diranil dnklmdir. d,,,, Q 0 Gnl çözüm: 0 d d

59 Örnk- d d 0 dnklminin intgral çarpanını v gnl çözümünü blnz. P, Q, P, Q, oldğna gör vriln dnklm tam di. dnk. dğildir. P Q d d d Q d d d Diranil Dnklmlr

60 Diranil Dnklmlr Örnk- Dvam 0 d d dnklmi tam diranil dnklmdir. d, ln,,, Q ln ln Gnl çözüm: 0 d d

61 Diranil Dnklmlr İntgral Çarpanının Sadc nin Fonkion Olmaı Drm: 0 olacağına gör; Q P P Q 0. P d d Q P d P Q P d

62 Diranil Dnklmlr Örnk- dnklminin intgral çarpanını v gnl çözümünü blnz. 0 d d P,, Q P, Q 6 6, oldğna gör vriln dnklm tam di. dnk. dğildir. d d d d d P Q P d Q P Q Sadc bağlı dğil Sadc bağlı

63 Diranil Dnklmlr Örnk- Dvam dnklmi tam diranil dnklmdir. d,,,, Q 6 6 Gnl çözüm: 0 d d

64 Örnk-5 d d 0 dnklminin intgral çarpanını v gnl çözümünü blnz. P, Q, P, Q, oldğna gör vriln dnklm tam di. dnk. dğildir. P Q d d d P d d d Diranil Dnklmlr

65 Diranil Dnklmlr Örnk-5 Dvam dnklmi tam diranil dnklmdir. d,,,, Q Gnl çözüm: 0 d d

66 ÖDEV. d d 0 dnklminin intgral çarpanını v gnl çözümünü blnz.. d d 0 dnklminin intgral çarpanını v gnl çözümünü blnz. Diranil Dnklmlr

67 . Mrtbdn Linr Diranil Dnklmlr h g şklindki diranil dnklm linr dnir. B dnklm il bölünür: P Q şklindki gnl linr dnklm orm ld dilir. B tiptki dnklmlrin çözümünd üç arı ol izlnir. Diranil Dnklmlr

68 . Mrtbdn Linr Diranil Dnklmlr A. =v dönüşümü il çözüm: v v v oldğ için: P v v Q B. µ=µ şklind bağlı intgraon çarpanı il çözümü: Pd Q. Pd d. Sabitin dğişimi mtod il çözümü: Diranil Dnklmlr

69 Örnk-.tan cot dnklminin gnl çözümünü =v dönüşümü il blnz. v v v v v v.tan cot 0 tan v v cot 0 0 tan 0 d tan. d v cot 0 vco cot 0 v in co v co in Diranil Dnklmlr

70 Örnk- dnklminin gnl çözümünü =v dönüşümü il blnz. v v v v vv v 0 v v v d d v v Diranil Dnklmlr

71 Örnk- dnklminin gnl çözümünü µ=µ intgraon çarpanı öntmi il blnz. P Q. d d d d. d d. d d. Diranil Dnklmlr

72 Diranil Dnklmlr Örnk- dnklminin gnl çözümünü µ=µ intgraon çarpanı il blnz. 0 d d Q P oldğ için tam bir diranil dnklmdir. Gnl çözüm: d Q Pd Pd. Q P d d d d ln ln ln d

73 Örnk-5 dnklminin gnl çözümünü abitin dğişimi mtod il blnz. Önclikl dnklmin ağ taraız çözümü blnr: 0 d d ln Daha onra abiti şklind çilrk: A Gnl çözüm: A Diranil Dnklmlr

74 Örnk-6 dnklminin gnl çözümünü abitin dğişimi mtod il blnz. Önclikl dnklmin ağ taraız çözümü blnr: d d 0 ln arctan Daha onra abiti şklind çilrk: arctan arctan arctan arctan arctan arctan arctan arctan arctan A Gnl çözüm: arctan arctan arctan A A arctan Diranil Dnklmlr

75 Linr Hal Gtirilbiln Di. Dnklmlr P Q şklindki diranil dnklmin çözümü; dönüşümü il; P Q dnklm tipin indirgnir. Diranil Dnklmlr

76 Örnk-7 in dnklminin gnl çözümünü blnz. dönüşümü glanıra; in ormndaki linr diranil dnklm ld dilir. d 0 d 0 ln in in co A co A co A Diranil Dnklmlr

77 Örnk-8 in co.co co dnklminin gnl çözümünü blnz. co in dönüşümü glanıra; co co ormndaki linr diranil dnklm ld dilir. d co 0 co. d 0 ln in in in in in co.. in in in in co.. co.. co co in in in A A arcco A in Diranil Dnklmlr

78 Diranil Dnklmlr Örnk-9 dnklminin gnl çözümünü blnz. dönüşümü glanıra; ormndaki linr diranil dnklm ld dilir. 0 0 d d ln... A A A

79 BERNOULLİ DİFERANSİYEL DENKLEMİ P Q n şklindki diranil dnklm Brnolli diranil dnklmi dnir. Çözüm aşamaında dnklmin hr iki taraı n il bölünür. n P n Q daha onra n n n dönüşümü il np nq doğral dnklm ormna dönüştürülür. Diranil Dnklmlr

80 Diranil Dnklmlr Sor dnklminin gnl çözümünü blnz. 0 d d d d ln ln ln A d A A

81 Diranil Dnklmlr Sor dnklminin gnl çözümünü blnz. 0 d d d d. ln ln. A A A

82 Diranil Dnklmlr Sor dnklminin gnl çözümünü blnz. in in in Ykarıdaki linr diranil dnklmi çözüldüğünd: co A co A

83 Diranil Dnklmlr Sor dnklminin gnl çözümünü blnz. Ykarıdaki linr diranil dnklmi çözüldüğünd:

84 Diranil Dnklmlr

85 Diranil Dnklmlr

86 Örnk Sor- Örnk Sor- Diranil Dnklmlr

87 . MERTEBEDEN SABİT KATSAYILI LİNEER DİFERANSİYEL DENKLEMLER A, B, kataıları abittir. A B D F F= 0 i homojn diranil dnklm olarak adlandırılır. Karaktritik Dnklminin Çıkarılmaı c c c A B D Ac c Bc 0 Dc A B D 0 0 Karaktritik Dnklm

88 Karaktritik Dnklm Bağlı Çözümlr F B A 0 B A Diranil Dnklm: Karaktritik Dnklm: 0 A B A B, 0 A B in co A B, A B A 0 A B A B, A B

89 Sor Karaktritik Dnklm: dnklminin gnl v özl çözümünü blnz. 0, 5 Gnl Çözüm: Özl Çözüm: 5 6

90 Sor Karaktritik Dnklm: dnklminin gnl v özl çözümünü blnz., 9 Gnl Çözüm: 0 0 Özl Çözüm:

91 Sor / 0 Karaktritik Dnklm: co in 0 dnklminin gnl v özl çözümünü blnz., i 6 i Gnl Çözüm: co in 0 / 0 Özl Çözüm: co in

92 Sor 0 dnklminin gnl çözümünü blnz. Karaktritik Dnklm: 0.. 0, co in α i β i Gnl Çözüm: co in

93 Sor Karaktritik Dnklm: dnklminin gnl v özl çözümünü blnz., 0, Gnl Çözüm: 0 0 Özl Çözüm:

94 Yükk Mrtbli, Sabit Kataılı, Linr Diranil Dnklmlr

95 YÜKSEK MERTEBELİ SABİT KATSAYILI DİFERANSİYEL DENKLEMLER n d n d n d d a... a a F n n n d d ormndaki diranil dnklmdir. a, a,, a n-, a n kataıları abittir. F= 0 i homojn diranil dnklm olarak adlandırılır. Karaktritik Dnklminin Çıkarılmaı c c c c n d n d c n d d a... a 0 a n n n d d n n a a a 0... n n n c n Karaktritik Dnklm

96 Diranil Dnklm: Karaktritik Dnklm: Karaktritik Dnklm Bağlı Çözümlr n n d d d a... a a n n n n d d d n n a... an an 0 0 Eğr karaktritik dnklmin λ=α gibi tk katlı bir rl kökü vara, çözüm A α tir. Eğr karaktritik dnklmin λ=α olan r-katlı rl kökü vara, çözüm:,,..., r Eğr karaktritik dnklmin λ=α±iβ olan tk-katlı bir şlnik köklri vara, çözüm: co v in Eğr karaktritik dnklmin λ=α±iβ olan -katlı şlnik köklri vara, çözüm: co, in, co, in,..., co, in 5 Gnl çözüm b ormların bir araa glmindn d olşabilir.

97 5 6 0 Karaktritik Dnklm: Sor dnklminin gnl v özl çözümünü blnz. Gnl Çözüm: / 5 / 5 Özl Çözüm: 5 5

98 0 Karaktritik Dnklm: Sor 0 0 dnklminin gnl v özl çözümünü blnz. 0 i i Gnl Çözüm: in co / / / 6 Özl Çözüm: co 6 in

99 Sor dnklminin gnl çözümünü blnz. 0. Gnl Çözüm: 0 0 0,, Gnl Çözüm: B dnklm iki arı abit-kataılı doğral diranil dnklmin çarpımından olşan v dolaııla doğral olmaan bir diranil dnklmdir. Bna gör, b şitliği ağlaan iki arı çözüm onkion mvcttr. Vriln diranil dnklm doğral olmadığından, aşağıda ld dilmiş doğral dnklm bilşnlrinin çözüm onkionları üpr pozion mantığıla toplanamaz.

100 BELİRSİZ KATSAYILAR YÖNTEMİ Gnl çözüm, homojn çözüm il özl çözüm onçlarının toplamı il ld dilir. h p Özl çözüm apılırkn, önclikl gn ormdaki bir çözüm önrilir v önriln b çözümdki bilinmn kataılar tpit dilir.

101 Sor dnklminin gnl çözümünü blnz. Homojn Çözüm: 0 0 h h h h Özl Çözüm: p p p p A p A p 9A 9 A A A A / p Gnl Çözüm: h p

102 Sor dnklminin gnl çözümünü blnz. Homojn Çözüm: h h h h Özl Çözüm: p 5 p 6 p 5 p p A A B p A B 6A 0A 6B A5B 6 A / B p Gnl Çözüm: h p 6 9 6

103 9 Sor 6 dnklminin gnl çözümünü blnz. Homojn Çözüm: 0 h 0, 0 h Özl Çözüm: p 9 p A B p A B p A 6B A A / p 6B B 9 Gnl Çözüm: h p

104 co Sor 7 dnklminin gnl çözümünü blnz. Homojn Çözüm: 0 0 h h h, h Özl Çözüm: p p p co p Ain Bco p Aco Bin p Ain Bco A B co A B co in A 5 B 9 5 Gnl Çözüm: 5 9 p in co h p in co

105 ÖDEV 5 6 in dnklminin gnl çözümünü blnz.

106 Diranil Dnklm Sitmlri Bir dğişkni il bnn iki va daha azla onkion v b onkionların gör türvlrindn mdana gln itm Diranil Dnklm Sitmi dnir. F,,,,..., z, z, z,... 0 G,,,,..., z, z, z,... 0 Diranil Dnklm Sitminin Çözümü F,, z,, z 0 G,, z,, z 0 Ykarıdaki gibi. mrtbdn diranil dnklm itmini çözmk, türv alınarak b itmi tk bir diranil dnklm indirgmkl mümkündür.

107 z z 0 0 Sor dnklm itmind v z nin gnl çözümlrini blnz. İlk dnklmin gör iki kz türvi alınır. Karaktritik Dnklm: 0 0 +, z 0 z 0 0, i Gnl Çözüm: co in Blnan b çözüm. dnklmd rin konlra: z co ld dilir. kz intgral alınıra: z in in co Gnl Çözüm: z co in

108 Sor dnklm itmind v z nin gnl çözümlrini blnz. z z z 9 z z 9 İlk dnklmin gör türvi alınır. + z 6 z Gnl Çözüm: 6 8 Blnan b çözüm. dnklmd rin konlra: 5 z ld dilir. kz intgral alınıra: 5 z Gnl Çözüm: İkinci dnklm il çarpılır İkinci dnklmin türvi alınıra: z 5

109 Sor dnklm itmind v z nin gnl çözümlrini blnz z z z 0 z z İkinci dnklmin gör türvi alınır. _ 0 8 z z z 0 8 z Gnl Çözüm: z Blnan b çözüm. dnklmd rin konlra: Gnl Çözüm: İkinci dnklmdn: z z 0 z z

110 Laplac Dönüşümü il Diranil Dnklm Çözümü İşlm Sıraı Diranil dnklm, Laplac dönüşümün tabi ttlarak cbirl dnklm dönüştürülür. birl dnklm çözülür birl dnklm çözümü,tr Laplac dönüşümü il diranil dnklm çözümünü vrir.

111 Laplac Dönüşümü 0 L F 0.. d

112 Sor abit onkionn Laplac dönüşümünü blnz 0.. d L F L L F L

113 onkionn Laplac dönüşümünü blnz Sor d L F L v d dv d d v d v dv,, d L F L

114 onkionn Laplac dönüşümünü blnz a Sor d L F L a a 0 a a a L F L a a 0 a 0.d a

115

116 Laplac Dönüşümünün Özlliklri Linrlik Özlliği Fonkionların abitlr il çarpımlarının toplamının laplac dönüşümü, b onkionların laplac dönüşümlrinin anı abitlr il çarpımına şittir. Örnk- 5in F L 5in L L5in. L 5. Lin 5 0 F

117 Ötlm Özlliği Bir onkionn ±a il çarpımının laplac dönüşümünü blmak için, onkionn laplac dönüşümünd in rin - +aazmak trlidir. Örnk- F 5 5. F

118 Skalr Dğişm Özlliği Örnk- F. F F L a F a a L..

119 in Skalr Dğişm Özlliği Örnk- F in. F F L a F a a L....

120 Türvlrin Laplac Dönüşümlri F L 0. F L F L F L n n n n n n F L....

121 Örnk-5 F? L F L 0 0.

122 Örnk-6 in F L? L. F in0.co0 in0

123 n il Çarpma Özlliği F L n n n d n n.. F. F L d n Örnk-5 in F.in d F. d.. 9 L.in 6 9

124 5 Örnk-6 5 F d d F 5 5. L

125 Ödvlr 5? in 7co5?.?.in? 5..in F d / d 9

126 Laplac Dönüşümü il Diranil Dnklmlrin Çözümü

127 Sor Klaik Yöntm dnklminin özl çözümünü blnz. d d 0 d. d d. d ln

128 Sor Laplac Dönüşümü dnklminin özl çözümünü Laplac dönüşümü il blnz. L L0 L L L0 Y. 0. Y 0. Y 0 Y 0 5 L 5 Y L 5. L 5

129 Sor dnklminin özl çözümünü Laplac dönüşümü il blnz L L L L L Y Y Y Y B A L L L A B A 5, B A

130 Sor dnklminin özl çözümünü Laplac dönüşümü il blnz. co co L L 0 co L L L 0. Y Y. Y Y B A... L L L L in co A B B A B A

131 0 Sor dnklminin özl çözümünü Laplac dönüşümü il blnz. L. Y L L L L 0. Y. Y Y F ; F ; F F F F F * * * * * * 8

132 Sor 5 dnklminin özl çözümünü blnz. t t L L 0 0 t L L L L Y Y Y. Y Y B A Y 0

133 B A Y Lim A 8. Lim B. Lim Y t t t t

134 6. Sint L L Sor L6. Sint L 6. LSin t. Y. 0 0 Y. Y A B D dnklminin özl çözümünü blnz. Y A 0; B ; D Y t. Sint. Sin t

135

136

137 0 0 z z z z z 9 Diranil Dnklm Sitmlri z z z

138

139

140

Eğitim-Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Dersi Çalışma Soruları 1

Eğitim-Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Dersi Çalışma Soruları 1 006-007 Eğitim-Öğrtim Yılı Güz Dönmi Difransil Dnklmlr Drsi Çalışma Soruları 1 1) d/dt +sint difransil dnklmini çözünüz. ) (4+t)d/dt + 6+t difransil dnklmini çözünüz. ) d/dt-7 difransil dnklmini (0)15

Detaylı

UYGULAMALI DİFERANSİYEL DENKLEMLER

UYGULAMALI DİFERANSİYEL DENKLEMLER UYGULAMALI DİFERANSİYEL DENKLEMLER GİRİŞ Birçok mühendislik, fizik ve sosal kökenli problemler matematik terimleri ile ifade edildiği zaman bu problemler, bilinmeen fonksionun bir vea daha üksek mertebeden

Detaylı

y xy = x şeklinde bir özel çözümünü belirleyerek genel

y xy = x şeklinde bir özel çözümünü belirleyerek genel Difransil Dnklmlr I / 94 A Aşağıdaki difransil dnklmlrin çözümlrini bulunuz d d -( + ) 7 + n( ) +, () + n ( + ) 4 + - + 5 6 - ( - ) + 8 9 - - + + - ( -) d- ( + ) d + Not: Çözüm mtodu olarak: Tam difdnk

Detaylı

Mühendisler İçin DİFERANSİYEL DENKLEMLER

Mühendisler İçin DİFERANSİYEL DENKLEMLER Mühndislr İçin DİFERANSİYEL DENKLEMLER Doç. Dr. Tahsin Engin Prof. Dr. Yunus A. Çngl Sakara Ünivrsitsi Makina Mühndisliği Bölümü Elül 8 SAKARYA - - Mühndislr İçin Difransil Dnklmlr İÇİNDEKİLER BÖLÜM BİRİNCİ

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matmatk Dnm Sınavı. Bir saıı,6 il çarpmak, bu saıı kaça bölmktir? 6. a, b, c saıları sırasıla,, saıları il trs orantılı a b oranı kaçtır? a c 7. v pozitif tamsaılardır.! ifadsi bir asal saıa şittir.

Detaylı

DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 2007 SORULARI

DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 2007 SORULARI DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 007 SORULARI Doğuş Ünivrsitsi Matmatik Kulübü tarafından düznlnn matmatik olimpiyatları, fn lislri takım yarışması sorularından bazıları

Detaylı

BÖLÜM 7 TÜRBÜLANSLI SINIR TABAKALAR

BÖLÜM 7 TÜRBÜLANSLI SINIR TABAKALAR BÖLÜM 7 TÜRBÜLANSLI SINIR TABAKALAR sabit-oğnlkl, sabit-özllikli, harici, türbülanslı sınır tabaka akımları ZB 386 Sınır Tabaka Drs notları - M. TÜRBÜLANSLI SINIR TABAKALAR Türbülans analizindki grksinimlr

Detaylı

İ.Ü. Fen Fakültesi Matematik Bölümü Diferansiyel Denklemler I (örgün i.ö)

İ.Ü. Fen Fakültesi Matematik Bölümü Diferansiyel Denklemler I (örgün i.ö) İÜ Fen Fakültesi Matematik Bölümü Diferansiel Denklemler I (örgün iö) Ekim04 Ödevler - Çalışma Sorları - Arasınav Hazırlık Sorları Hazırlaan: YrdDoçDr Serkan İLTER http://avesistanbledtr/ilters/dokmanlar

Detaylı

{ } { } Ters Dönüşüm Yöntemi

{ } { } Ters Dönüşüm Yöntemi KESĐKLĐ DAĞILIMLARDAN RASGELE SAYI ÜRETME Trs Dönüşüm Yöntmi F dağılım fonksiyonuna sahip bir X rasgl dğişknin dağılımından sayı ürtmk için n çok kullanılan yöntmlrdn biri, F dağılım fonksiyonunun gnllştirilmiş

Detaylı

3) dy/dt 3y=7 diferansiyel denklemini y(0)=15 başlangıç koşulu için çözünüz.

3) dy/dt 3y=7 diferansiyel denklemini y(0)=15 başlangıç koşulu için çözünüz. 04/10/ 011 011 01 Eğitim Öğretim Yılı Güz Dönemi Diferansiel Denklemler Dersi Çalışma Sorları denklemini çözünüz. 1) d + ( cot + sin ) d 0 denklemini çözünüz. ) (4+t)d/dt + 6+t diferansiel denklemini çözünüz.

Detaylı

BÖLÜM 7. Sürekli hal hatalarının değerlendirilmesinde kullanılan test dalga şekilleri: Dalga Şekli Giriş Fiziksel karşılığı. Sabit Konum.

BÖLÜM 7. Sürekli hal hatalarının değerlendirilmesinde kullanılan test dalga şekilleri: Dalga Şekli Giriş Fiziksel karşılığı. Sabit Konum. 9 BÖLÜM 7 SÜRELİ HAL HATALARI ontrol itmlrinin analizind v dizaynında üç özlliğ odaklanılır, bunlar ; ) İtniln bir gçici hal cvabı ürtmk. ( T, %OS, ζ, ω n, ) ) ararlı olmaı. ıaca kutupların diky knin olunda

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

BÖLÜM 3 LAMİNER SINIR TABAKANIN DİFERANSİYEL DENKLEMLERİ VE TAM ÇÖZÜMLERİ

BÖLÜM 3 LAMİNER SINIR TABAKANIN DİFERANSİYEL DENKLEMLERİ VE TAM ÇÖZÜMLERİ BÖLÜM 3 LAMİNER SINIR TABAKANIN DİFERANSİYEL DENKLEMLERİ VE TAM ÇÖZÜMLERİ - Nair Stos dnlmlri - Nair Stos dnlmlrinin tam çözümlri - Daimi, ii-botl, laminr sınır tabaa dnlmlri - Daimi, ii-botl, laminr sınır

Detaylı

formundadır. Burada verilen bir f fonksiyonu F fonksiyonuna dönüşür ve F fonksiyonuna f in fonksiyon dönüşümü denir. K(s,t) ye çekirdek denir.

formundadır. Burada verilen bir f fonksiyonu F fonksiyonuna dönüşür ve F fonksiyonuna f in fonksiyon dönüşümü denir. K(s,t) ye çekirdek denir. LPLCE DÖNÜŞÜMÜ Lpl dönüşümü yrdımı il ğ rflı difrniyl dnklmin ğ rfınd bulunn fonkiyonun ürkliliği bozul bil(bmk,impul fonkiyonu) difrniyl dnklmlr çözülbilkir. Bu ip dnklmlrl lkrik imlrini çözrkn krşılşılır.

Detaylı

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri DERS 9 Grafik Çizimi, Maksimum Minimum Problmlri Bundan öncki drst bir fonksiyonun grafiğini çizmk için izlnbilck yol v yapılabilck işlmlr l alındı. Bu drst, grafik çizim stratjisini yani grafik çizimind

Detaylı

BÖLÜM 4 LİNEER DİFERANSİYEL DENKLEM SİSTEMLERİ

BÖLÜM 4 LİNEER DİFERANSİYEL DENKLEM SİSTEMLERİ BÖLÜM LİNEER DİFERANSİYEL DENKLEM SİSTEMLERİ GİRİŞ Dnklm sismlrin linr cbir drsindn şin olmlısınız Anck bu ür dnklmlrd hrhngi bir difrnsiyl büyüklük vy ürv bulunmz Bşk bir dyişl cbirsl dnklm sismi, y (

Detaylı

FARKLI SICAKLIKLARDAKİ GÖZENEKLİ İKİ LEVHA ARASINDA AKAN AKIŞKANIN İKİNCİ KANUN ANALİZİ

FARKLI SICAKLIKLARDAKİ GÖZENEKLİ İKİ LEVHA ARASINDA AKAN AKIŞKANIN İKİNCİ KANUN ANALİZİ FARKLI ICAKLIKLARDAKİ GÖZEEKLİ İKİ LEVHA ARAIDA AKA AKIŞKAI İKİCİ KAU AALİZİ Fthi KAMIŞLI Fırat Ünivrsit Mühndislik Fakültsi Kimya Mühndisliği Bölümü, 39 ELAZIĞ, fkamisli@firat.du.tr Özt Farklı sıcaklıklara

Detaylı

TG 12 ÖABT İLKÖĞRETİM MATEMATİK

TG 12 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞREMENLİK ALAN İLGİSİ ESİ İLKÖĞREİM MAEMAİK ÖĞREMENLİĞİ G ÖA İLKÖĞREİM MAEMAİK u tstlrin hr hakkı saklıdır. Hangi amaçla olursa olsun, tstlrin tamamının va bir kısmının İhtiaç

Detaylı

DERS 9. Grafik Çizimi, Maksimum-Minimum Problemleri. 9.1. Grafik çiziminde izlenecek adımlar. y = f(x) in grafiğini çizmek için

DERS 9. Grafik Çizimi, Maksimum-Minimum Problemleri. 9.1. Grafik çiziminde izlenecek adımlar. y = f(x) in grafiğini çizmek için DERS 9 Grafik Çizimi, Maksimum-Minimum Problmlri 9.. Grafik çizimind izlnck adımlar. y f() in grafiğini çizmk için Adım. f() i analiz diniz. (f nin tanım kümsi, f() in tanımlı olduğu tüm rl sayıların oluşturduğu

Detaylı

DERS 7. Türev Hesabı ve Bazı Uygulamalar II

DERS 7. Türev Hesabı ve Bazı Uygulamalar II DERS 7 Türv Hsabı v Bazı Uygulamalar II Bu rst bilşk fonksiyonlarının türvi il ilgili zincir kuralını, üstl v logaritmik fonksiyonların türvlrini, ortalama v marjinal ortalama ğrlri; rsin sonuna oğru,

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz.

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz. D DİFERANSİYEL DENKLEMLER ÇALIŞMA SORULARI Fakülte No:................................................... Adı ve Soyadı:................................................. Bölüm:...................................................................

Detaylı

Eğitim Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Çalışma Soruları

Eğitim Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Çalışma Soruları 0 0 Eğiim Öğreim Yılı Güz Dönemi Diferansiel Denklemler Çalışma Soruları 0/0/0 ) 3 8 diferansiel denklemini çözünüz. ) a) d d ( ) diferansiel denklemini çözünüz. b) 3 5 diferansiel denklemini çözünüz.

Detaylı

Diferensiyel Denklemler I Uygulama Notları

Diferensiyel Denklemler I Uygulama Notları 2004 Diferensiyel Denklemler I Uygulama Notları Mustafa Özdemir İçindekiler Temel Bilgiler...................................................................... 2 Tam Diferensiyel Denklemler........................................................4

Detaylı

İ.T.Ü. Makina Fakültesi Mekanik Ana Bilim Dalı Bölüm 7. Seviye Düzlemi

İ.T.Ü. Makina Fakültesi Mekanik Ana Bilim Dalı Bölüm 7. Seviye Düzlemi İTÜ Makina Fakültsi Ağırlığın Potansiyl Enrjisi W=, δh kadar yukarıya doğru yr dğiştirsin, Virtül iş, δu = Wδh= δh NOT: Eğr cisi aşağıya doğru δh yr dğişii yapıyorsa v +h aşağıya doğru is δu = Wδh= δh

Detaylı

IKTI 102 25 Mayıs, 2010 Gazi Üniversitesi-İktisat Bölümü

IKTI 102 25 Mayıs, 2010 Gazi Üniversitesi-İktisat Bölümü DERS NOTU 10 (Rviz Edildi, kısaltıldı!) ENFLASYON İŞSİZLİK PHILLIPS EĞRİSİ TOPLAM ARZ (AS) EĞRİSİ TEORİLERİ Bugünki drsin içriği: 1. TOPLAM ARZ, TOPLAM TALEP VE DENGE... 1 1.1 TOPLAM ARZ EĞRİSİNDE (AS)

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 18 Haziran Matematik Soruları ve Çözümleri

Lisans Yerleştirme Sınavı 1 (Lys 1) / 18 Haziran Matematik Soruları ve Çözümleri Lisans Yrlşirm Sınavı (Lys ) 8 Haziran Mamaik Soruları v Çözümlri. (,5) işlminin sonucu kaçır?, A) 5 B) C) 5 D) E) Çözüm (,5), 5 ( ) ( ) 5 ( ) ( ).( ) 5 ( ) 5 5 6 . < < olduğuna gör, aşağıdakilrdn hangisi

Detaylı

Cevap: B. x + y = 5 ve y + z = x = 3z y. x + y = 5 z + y = 3 x t = 2 bulunur. 7x 9y = y 3x 10x = 8y. 3/ 3y = x + z 15k = 4k + z + Cevap: B

Cevap: B. x + y = 5 ve y + z = x = 3z y. x + y = 5 z + y = 3 x t = 2 bulunur. 7x 9y = y 3x 10x = 8y. 3/ 3y = x + z 15k = 4k + z + Cevap: B 6 LYS/MAT MATEMATİK ÇÖZÜMLERİ DENEME. ( ab) ( ab) 6( ab) 6. 6 y z ( ab) ( ab) 6( ab) 6 6 6y y z 6y ( ab) 6 6( y) ( y z) ab.. olur. y v y z. 7 z y / y z k k z y z y t bulunur. 7 9y y 8y k, y k zk A) y 8,

Detaylı

e sayısı. x için e. x x e tabanında üstel fonksiyona doğal üstel fonksiyon (natural exponential function) denir. (0,0)

e sayısı. x için e. x x e tabanında üstel fonksiyona doğal üstel fonksiyon (natural exponential function) denir. (0,0) DERS 4 Üstl v Logaritik Fonksionlar 4.. Üstl Fonksionlar(Eponntial Functions). > 0, olak üzr f ( ) = dnkli il tanılanan fonksiona taanında üstl fonksion (ponntial function with as ) dnir. Üstl fonksionun

Detaylı

ETİL ASETAT ÜRETİMİNİN YAPILDIĞI TEPKİMELİ DAMITMA KOLONUNUN AYIRIMLI ( DECOUPLING ) PID KONTROLÜ

ETİL ASETAT ÜRETİMİNİN YAPILDIĞI TEPKİMELİ DAMITMA KOLONUNUN AYIRIMLI ( DECOUPLING ) PID KONTROLÜ Onuncu Ulual Kimya Mühndiliği Kongri, 3-6 Eylül 2012, Koç Ünivriti, İtanbul ETİL ASETAT ÜRETİMİNİN YAPILDIĞI TEPKİMELİ DAMITMA KOLONUNUN AYIRIMLI ( DECOUPLING ) PID KONTROLÜ Abdulwahab GIWA, Sülyman KARACAN

Detaylı

DERS 11. Belirsiz İntegral

DERS 11. Belirsiz İntegral DERS Blirsiz İnral.. Blirsiz İnral. B rs ürvi bilinn bir onksiyonn ynin inşasını l alacağız. Türvi bilinn bir onksiyonn ynin inşası işlmin rs ürv işlmi aniirniaion nir. v F onksiyonlar, F is, F y nin rs

Detaylı

ÖZEL KONU ANLATIMI SENCAR Başarının sırrı, bilginin ışığı

ÖZEL KONU ANLATIMI SENCAR Başarının sırrı, bilginin ışığı GENİŞLETİLMİŞ GERÇEL SAYILARDA LİMİT R = Q I küsin Rl Sayılar Küsi dniliyor. Rl Sayılar Küsid; = Tanısız v = olduğunu biliyorduk. -- R = R { -, + } gnişltiliş grçl sayılar küsind: li = -, - = -, li = +

Detaylı

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9 İÇİNDEKİLER Ön Söz... Adi Diferansiyel Denklemler... Birinci Mertebeden ve Birinci Dereceden Diferansiyel Denklemler...9 Homojen Diferansiyel Denklemler...15 Tam Diferansiyel Denklemler...19 Birinci Mertebeden

Detaylı

Bilgi Tabanı (Uzman) Karar Verme Kontrol Kural Tabanı. Bulanık. veya. Süreç. Şekil 1 Bulanık Denetleyici Blok Şeması

Bilgi Tabanı (Uzman) Karar Verme Kontrol Kural Tabanı. Bulanık. veya. Süreç. Şekil 1 Bulanık Denetleyici Blok Şeması Bulanık Dntlyicilr Bilgi Tabanı (Uzman) Anlık (Kskin) Girişlr Bulandırma Birimi Bulanık µ( ) Karar Vrm Kontrol Kural Tabanı Bulanık µ( u ) Durulama Birimi Anlık(Kskin) Çıkış Ölçklm (Normali zasyon) Sistm

Detaylı

VOLEYBOLCULARIN FARKLI MAÇ PERFORMANSLARI İÇİN TEKRARLANAN ÖLÇÜMLER YÖNTEMİNİN KULLANILMASI

VOLEYBOLCULARIN FARKLI MAÇ PERFORMANSLARI İÇİN TEKRARLANAN ÖLÇÜMLER YÖNTEMİNİN KULLANILMASI 96 OLEBOLCULAIN FAKLI MAÇ PEFOMANSLAI İÇİN TEKALANAN ÖLÇÜMLE ÖNTEMİNİN KULLANILMASI ÖET Gürol IHLIOĞLU Süha KAACA Farklı yr, zaman v matryallr üzrind tkrarlanan dnylr il bir vya birdn fazla faktörün tkisi

Detaylı

Eğitim-Öğretim Güz Yarıyılı Diferansiyel Denklemler Dersi Çalışma Soruları

Eğitim-Öğretim Güz Yarıyılı Diferansiyel Denklemler Dersi Çalışma Soruları - Eğiim-Öğrim Güz rıılı Difril Dklmlr Dri Çlışm Sorlrı 6 // Aşğıd vril kvv rilrii kıklık rıçplrıı lirliiz. = = di ok civrıd kvv rii rdımıl vril difril dklmlri çözüüz. - -= - + -= - + += dklmii kil oklrıı

Detaylı

Makine Öğrenmesi 4. hafta

Makine Öğrenmesi 4. hafta ain Öğrnmsi 4. hafta Olasılı v Koşullu Olasılı ays Tormi Naïv ays Sınıflayıcı Olasılı Olasılı ifadsinin birço ullanım şli vardır. Rasgl bir A olayının hrhangi bir olaydan bağımsız olara grçlşm ihtimalini

Detaylı

SİSTEM DİNAMİĞİ VE KONTROL

SİSTEM DİNAMİĞİ VE KONTROL ABANT İZZET BAYSA ÜNİVERSİTESİ MÜHENDİSİK MİMARIK FAKÜTESİ MAKİNE MÜHENDİSİĞİ BÖÜMÜ SİSTEM DİNAMİĞİ VE KONTRO. aplac Dönüşümli Yd. Doç. D. Tuan ŞİŞMAN - BOU . APACE DÖNÜŞÜMERİ.. Giiş Doğual dianiyl dnklmlin

Detaylı

Ünite 4. Doç. Dr. Hasan TATLI NEM

Ünite 4. Doç. Dr. Hasan TATLI NEM Ünit 4 Doç. Dr. Haan TATLI NEM 104 DOYMUŞ BUHAR BASINCI Buhar Baıncı: Hava bir gaz karışımı olduğundan, hr bir gazın toplam baınca olan katkıına kımi baıncı dnir. Su buharı da bir gaz olduğundan, onun

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

Örnek...4 : Örnek...5 : Örnek...6 : Örnek...7 : ( 3x2 + x 3) dx=? Örnek...1 : Örnek...2 : Örnek...8 : ln2 (e 2x +e x )dx=? ln1. Örnek...

Örnek...4 : Örnek...5 : Örnek...6 : Örnek...7 : ( 3x2 + x 3) dx=? Örnek...1 : Örnek...2 : Örnek...8 : ln2 (e 2x +e x )dx=? ln1. Örnek... KURALLARI. f ( )= f ( ). f ( )= Örnk... : ( + 7+ )=? 7. k. f ( ) =k. f ( ) Örnk... : sin =?. (f ( )±g ( ))= f ( )± g( ). c f ( )= f ( )+f ( ), c c< 6. (-).min(f())< f ( )=

Detaylı

MATEMATİK ÖĞRETMENLİĞİ

MATEMATİK ÖĞRETMENLİĞİ T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 77 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 597 MATEMATİK ÖĞRETMENLİĞİ Analitik Gomtri Yazar: Doç.Dr. Hüsin AZCAN Editör: Doç.Dr. Hüsin AZCAN Bu kitabın basım, aım v

Detaylı

ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ

ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ ÖZEL EGE LİSESİ ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ HAZIRLAYAN ÖĞRENCİ: ATAHAN ÖZDEMİR DANIŞMAN ÖĞRETMEN: DEFNE

Detaylı

ÇÖZÜMLÜ SORULAR. ÇÖZÜM Boşluk miktarı: 100,25 100 2 Mil ile yatağın temas alanı : e 2. Hız gradyanı: Kayma gerilmesi:

ÇÖZÜMLÜ SORULAR. ÇÖZÜM Boşluk miktarı: 100,25 100 2 Mil ile yatağın temas alanı : e 2. Hız gradyanı: Kayma gerilmesi: LÜ SOULA SOU. Şekilde gösterilen D m = mm çapında bir mil D =,5 mm çapında ve L = mm genişliğinde bir atak içerisinde eksenel doğrltda kp lk bir kvvetle anak,5 m/s ızla areket ettirilebilior. Bna göre

Detaylı

İntegratör ve Ölü Zaman Etkili Sistemler İçin Bir Seri Ardışıl Kontrol Yapısı

İntegratör ve Ölü Zaman Etkili Sistemler İçin Bir Seri Ardışıl Kontrol Yapısı İntgratör v Ölü Zaman Etkili Sitmlr İçin Bir Sri Ardışıl ontrol Yapıı Oman Çakıroğlu, Müjd Güzlkaya, İbrahim Ekin ontrol Mühndiliği Bölümü Elktrik-Elktronik Fakülti İtanbul knik Ünivriti, 4469, Malak,

Detaylı

İKİ SAFHALI ÖRNEKLEME YÖNTEMİNDE ORTALAMA TAHMİN EDİCİLERİ MEAN ESTIMATORS IN TWO PHASE SAMPLING

İKİ SAFHALI ÖRNEKLEME YÖNTEMİNDE ORTALAMA TAHMİN EDİCİLERİ MEAN ESTIMATORS IN TWO PHASE SAMPLING İİ SAFHALI ÖRNELEME ÖNTEMİNDE ORTALAMA TAHMİN EDİİLERİ MEAN ESTIMATORS IN TWO PHASE SAMPLING NİLGÜN ÖGÜL Hacttp Ünivrsitsi Lisansüstü Eğitim-Öğrtim v Sınav öntmliğinin İSTATİSTİ Anabilim Dalı İçin Öngördüğü

Detaylı

ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü

ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü ESM406- Elektrik Enerji Sitemlerinin Kontrolü. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü.. Hedefler Bu bölümün hedefleri:. Komplek değişkenlerin tanıtılmaı.. Laplace Tranformayonun tanıtılmaı..

Detaylı

diferansiyel hale getiren) bir integrasyon çarpanı olur? belirleyiniz, bu çarpanı kullanarak denklemin çözümünü bulunuz.

diferansiyel hale getiren) bir integrasyon çarpanı olur? belirleyiniz, bu çarpanı kullanarak denklemin çözümünü bulunuz. Diferansiel Denklemler I /8 Çalışma Soruları 9.0.04 A. Aşağıda istenilenleri elde ediniz!. ( e +. d + ( e + k. d 0 denkleminin tam diferansiel denklem olabilmesi için ugun k saısını belirleiniz. Bu k saısı

Detaylı

Kayıplı Dielektrik Cisimlerin Mikrodalga ile Isıtılması ve Uç Etkileri

Kayıplı Dielektrik Cisimlerin Mikrodalga ile Isıtılması ve Uç Etkileri Kayıplı Dilktrik Cisimlrin Mikrodalga il Isıtılması v Uç Etkilri Orhan Orhan* Sdf Knt** E. Fuad Knt*** *Univrsity of Padrborn, Hinz ixdorf Institut, Fürstnall, 3302 Padrborn, Almanya orhan@hni.upb.d **Istanbul

Detaylı

TG Haziran 2013 KAMU PERSONEL SEÇME SINAVI LİSANS ÖĞRETMENLİK ALAN BİLGİSİ İLKÖĞRETİM MATEMATİK TESTİ ÇÖZÜM KİTAPÇIĞI

TG Haziran 2013 KAMU PERSONEL SEÇME SINAVI LİSANS ÖĞRETMENLİK ALAN BİLGİSİ İLKÖĞRETİM MATEMATİK TESTİ ÇÖZÜM KİTAPÇIĞI KAMU PERSONEL SEÇME SINAVI LİSANS ÖĞRETMENLİK ALAN BİLGİSİ İLKÖĞRETİM MATEMATİK TESTİ ÇÖZÜM KİTAPÇIĞI T.C. KİMLİK NUMARASI : ADI : SOYADI : TG 9 Haziran DİKKAT! ÇÖZÜMLERLE İLGİLİ AŞAĞIDA VERİLEN UYARILARI

Detaylı

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında ılmaarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören çocuklarımızın ana ve babalarına da avrularının öğreniminin tamamlanması

Detaylı

MAT 202-DİFERENSİYEL DENKLEMLER-Güz Dönemi. Ders Uygulama Planı. -

MAT 202-DİFERENSİYEL DENKLEMLER-Güz Dönemi. Ders Uygulama Planı. - MAT 202-DİFERENSİYEL DENKLEMLER-Güz 2016-2017 Dönemi Ders Uygulama Planı 04 02 ve 03 01 Öğretim Üyesi Prof. Dr. Ömer AKIN (Ders Koordinatörü) Prof. Dr. Abdullah ALTIN Doç. Dr. Niyazi ŞAHİN Ofis No 226

Detaylı

BÖLÜM 7 TÜRBÜLANSLI SINIR TABAKALAR

BÖLÜM 7 TÜRBÜLANSLI SINIR TABAKALAR BÖLÜM 7 TÜRBÜLANSLI SINIR TABAKALAR 7.1- Giriş 7.- Mühndisliğin türbülans analizindki grksinimlri 7.3- Ortalama akımla ilgili ampirik bilgilr 7.3.1- Düz lvha üzrindki akım 7.4- Sçilmiş ampirik türbülans

Detaylı

TG 13 ÖABT İLKÖĞRETİM MATEMATİK

TG 13 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN İLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖAT İLKÖĞRETİM MATEMATİK u tstlrin hr hakkı saklıdır. Hangi amaçla olursa olsun, tstlrin tamamının va bir kısmının

Detaylı

- BANT TAŞIYICILAR -

- BANT TAŞIYICILAR - - BANT TAŞIYICILAR - - YAPISAL ÖZELLİKLER Bir bant taşıyıcının nl örünümü aşağıdaki şkild vrilmiştir. Bant taşıyıcıya ismini vrn bant (4) hm taşınacak malzmyi için alan bir kap örvi örn, hm d harkt için

Detaylı

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012 Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi e Ku ru lu Baş kan lı ğı nın.8. ta rih ve sa ı lı ka ra rı ile ka bul edi len ve - Öğ re tim Yı lın dan iti ba ren u gu lana cak olan prog ra ma gö re ha zır

Detaylı

Anaparaya Dönüş (Kapitalizasyon) Oranı

Anaparaya Dönüş (Kapitalizasyon) Oranı Anaparaya Dönüş (Kapitalizasyon) Oranı Glir gtirn taşınmazlar gnl olarak yatırım aracı olarak görülürlr. Alıcı, taşınmazı satın almak için kullandığı paranın karşılığında bir gtiri bklr. Bundan ötürü,

Detaylı

DENEY 5 İkinci Dereceden Sistem

DENEY 5 İkinci Dereceden Sistem DENEY 5 İkici Drcd Sitm DENEYİN AMACI. İkici drcd itmi karaktritiklrii alamak.. Söüm oraı ζ i, ikici drcd itm üzridki tkiii gözlmlmk. 3. Doğal frka i, ikici drcd itm üzridki tkiii gözlmlmk. GENEL BİLGİLER

Detaylı

DESTEK DOKÜMANI. Mali tablo tanımları menüsüne Muhasebe/Mali tablo tanımları altından ulaşılmaktadır.

DESTEK DOKÜMANI. Mali tablo tanımları menüsüne Muhasebe/Mali tablo tanımları altından ulaşılmaktadır. Mali Tablolar Mali tablo tanımları mnüsün Muhasb/Mali tablo tanımları altından ulaşılmatadır. Mali tablolarla ilgili yapılabilc işlmlr ii gruba ayrılır. Mali Tablo Tanımları Bu bölümd firmanın ullanacağı

Detaylı

SİSTEMLER. Sistemlerin Sınıflandırılması

SİSTEMLER. Sistemlerin Sınıflandırılması Sinallr & Sismlr - Sismlr SİSTEMLER Sism ori, bir fnomn im olarak, isiplinlr arası ilişkilrin bilimsl aklaşımlarla inclniği bir oriir. Bnn için ilişkinin varlığı va rcsi, ilgili olğ sosal v fn alanlarına

Detaylı

( ) ( ) Be. β - -bozunumu : +β - + ν + Q - Atomik kütleler cinsinden : (1) β + - bozunumu : nötral atom negatif iyon leptonlar

( ) ( ) Be. β - -bozunumu : +β - + ν + Q - Atomik kütleler cinsinden : (1) β + - bozunumu : nötral atom negatif iyon leptonlar 6.. BETA BOZUUU Çkirdğin pozitif vya ngatif lktron yayması vya atomdan bir lktron yakalaması yolu il atom numarası ± 1 kadar dğişir. β - -bozunumu : ( B 4 4 ( B 4 nötral atom Atomik kütllr insindn : (

Detaylı

SONLU ELEMANLAR YÖNTEMİ İLE TEK FAZLI TRANSFORMATÖRÜN ÇALIŞMA NOKTASININ BELİRLENMESİ. Ali İhsan ÇANAKOĞLU

SONLU ELEMANLAR YÖNTEMİ İLE TEK FAZLI TRANSFORMATÖRÜN ÇALIŞMA NOKTASININ BELİRLENMESİ. Ali İhsan ÇANAKOĞLU Sonlu Elmanlar Yöntmi İl Tk Falı Transformatörün 7. Sayı Aralık 008 Çalışma Noktasının Blirlnmsi SONLU ELEMANLAR YÖNTEMİ İLE TEK FAZLI TRANSFORMATÖRÜN ÇALIŞMA NOKTASININ BELİRLENMESİ Ali İhsan ÇANAKOĞLU

Detaylı

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI LYS- MATEMATİK (MF-TM). Bu testte Matematik ile ilgili soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz..

Detaylı

FONKSİYONEL DERECELENDİRİLMİŞ KONİK KESİTLİ MİKRO-KİRİŞLERİN SERBEST TİTREŞİM ANALİZİ

FONKSİYONEL DERECELENDİRİLMİŞ KONİK KESİTLİ MİKRO-KİRİŞLERİN SERBEST TİTREŞİM ANALİZİ FONKSİYONEL DERECELENDİRİLMİŞ KONİK KESİTLİ MİKRO-KİRİŞLERİN SERBEST TİTREŞİM ANALİZİ FREE VIBRATION ANALYSIS OF FUNCTIONALLY GRADED MICRO-BEAMS WITH TAPERED CROSS SECTION DUYGU İPCİ PROF. DR. BORA YILDIRIM

Detaylı

Sayısal Kontrol Sistemleri

Sayısal Kontrol Sistemleri Sayıal Kontrol Sitmlri Bölüm Ayrı Zaman inyallr v Sitmlr. Kapalı çvrim ayıal ontrol itmi. Ayrı aman inyallr.3 Ayrı aman itmlr.4 Sürli aman itmlrin ayrılaştırılmaı Sayıal türv v uygulama örnlri Sayıal intgral

Detaylı

Hafta 8: Ayrık-zaman Fourier Dönüşümü

Hafta 8: Ayrık-zaman Fourier Dönüşümü Hafta 8: Ayrı-zama ourir Döüşümü El Alıaca Aa Koular Ayrı-zama ourir döüşümü Ayrı-zama priyodi işartlr içi ourir döüşümü Ayrı-zama ourir döüşümüü özllilri Doğrusal, sabit atsayılı far dlmlriyl taımlaa

Detaylı

YERYUVARININ DIŞ ÇEKİM ALANININ ELİPSOİDAL HARMONİKLERE AÇINIMI: KÜRESEL HARMONİKLERDEN ELİPSOİDAL HARMONİKLERE DÖNÜŞÜM

YERYUVARININ DIŞ ÇEKİM ALANININ ELİPSOİDAL HARMONİKLERE AÇINIMI: KÜRESEL HARMONİKLERDEN ELİPSOİDAL HARMONİKLERE DÖNÜŞÜM Slçk Ünivrsitsi Jodi v Fotoramtri Mühndisliği Öğrtimind 3. Yõl Smpom,6-8 Ekim, Kona SUNULMUŞ BİLDİRİ YERYUARININ DIŞ ÇEKİM ALANININ ELİSOİDAL HARMONİKLERE AÇINIMI: KÜRESEL HARMONİKLERDEN ELİSOİDAL HARMONİKLERE

Detaylı

YERALTI ENERJİ KABLOLARINDA MEYDANA GELEN ARIZALARDA, ARIZA MESAFESİNİN YAPAY SİNİR AĞLARI (YSA) KULLANILARAK BELİRLENMESİ

YERALTI ENERJİ KABLOLARINDA MEYDANA GELEN ARIZALARDA, ARIZA MESAFESİNİN YAPAY SİNİR AĞLARI (YSA) KULLANILARAK BELİRLENMESİ ERALTI ENERJİ KABLOLARINDA MEDANA GELEN ARIZALARDA, ARIZA MESAESİNİN APA SİNİR AĞLARI (SA) KULLANILARAK BELİRLENMESİ * edat GÜN, ** Sedi akka ÜSTÜN *Celal Baar Ünv., **Celal Baar Ünv. Müh. ak. vedat.gun@baar.edu.tr,

Detaylı

8.SINIF CEBirsel ifadeler

8.SINIF CEBirsel ifadeler KAZANIM : 8..1.3. Özdeşlikleri modellerle açıklar. Özdeşlik 3 + = + 3 eşitliğinin özdeşlik olup olmadığını inceleelim. İçerdiği değişken vea değişkenlerin alabileceği her gerçek saı değeri için doğru olan

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS MTEMTİK TESTİ. Bu testte soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. d + n - d + n d - + n- d + + n işleminin sonucu kaçtır?., R olmak üzere, + +

Detaylı

FZM450 Elektro-Optik. 3. Hafta. Işığın Elektromanyetik Tanımlanması-2: Madde Ortamında Elektromanyetik Dalgalar

FZM450 Elektro-Optik. 3. Hafta. Işığın Elektromanyetik Tanımlanması-2: Madde Ortamında Elektromanyetik Dalgalar FZM450 Elktr-Optik 3. Hafta Işığın Elktrmanytik Tanımlanması-: Madd Ortamında Elktrmanytik Dalgalar 008 HSarı 1 3. Hafta Drs İçriği Madd içind Maxwll Dnklmlri Dilktrik Ortamda Maxwll dnklmlri Mtal Ortamda

Detaylı

f(1)=1 2-4 x 1+20=17 f ' (x)=2 x- 4 f ' (1)=2 x 1-4= -2 y= -2 x (-2) x y= -2x +19

f(1)=1 2-4 x 1+20=17 f ' (x)=2 x- 4 f ' (1)=2 x 1-4= -2 y= -2 x (-2) x y= -2x +19 Notlar: - dzleminde iki on vardir. 1)pozitif on, 2)negatif on Ornek olarak =f()= 2-4+20 fonksion icin 0 =10 noktasindan pozitif onnde gidersek ( e artan degerler verirsek) fonksionn degeri artar, negatif

Detaylı

Sistem Dinamiği ve Modellemesi

Sistem Dinamiği ve Modellemesi Sitm Diamiği v Modllmi aplac Traformayou v Trafr Fokiyou aplac Traformu : Bir itmi diamik davraışı, o itmi matmatikl modlii ifad d difraiyl dklmlri çözümüd kullaıla bir matmatikl yötmdir. f(t foiyouu aplac

Detaylı

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü 8. KAALILIK ESM 6 Elktrik Erji Sitmlrii Kotrolü 8. Kouu Amaç v Kapamı Bir itmi ıırlı hr giriş cvabı ıırlı i o itm kararlıdır. Sitm giriş, rfra dğrid vya bozucu dğrd olabilir. Karalılığı diğr bir taımı

Detaylı

UFUK ÖZERMAN- 2012-2013 Page 1

UFUK ÖZERMAN- 2012-2013 Page 1 - GÜZ P,Q,R fokiolrı poliom olmk üzr d d P Q R d d v P d d Q d P d R P p q dklmi içi P şrıı ğl = okı di ok dir, çözümlri di okıı civrıd şklid rrız. =+-+- +... = = okı; p=q/ P, q= R/ P fokiolrı okıd liik

Detaylı

ANALİZ ÇÖZÜMLÜ SORU BANKASI

ANALİZ ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİZ ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİZ ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı a da bir kısmı, azarın izni olmaksızın, elektronik, mekanik, fotokopi a da herhangi bir

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

Kamuoyuna, Emek Taşınmaz Değerleme ve Danışmanlık A.Ş. İstanbul, 5 Ocak 2015

Kamuoyuna, Emek Taşınmaz Değerleme ve Danışmanlık A.Ş. İstanbul, 5 Ocak 2015 Emk Taşınmaz Dğrlm v Danışmanlık A.Ş. İstanbul, 5 Ocak 2015 Kamuoyuna, Ektki rapor Bankacılık Düznlm v Dntlm Kurumu tarafından 1 Kasım 2006 tarih v 26333 sayılı Rsmi Gazt d yayımlanan Bankalara Dğrlm Hizmti

Detaylı

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ BİTİRME ÖDEVİ I ARASINAV SORULARININ ÇÖZÜMLERİ - 6 GÜZ DÖNEMİ ADI SOYADI :... NO :... A A A A A A A SINAV TARİHİ VE SAATİ : Bu sınav 4 sorudan oluşmaktadır ve sınav

Detaylı

S4 u(x, y) = ln ( sin y. S5 u(x, y) = 2α 2 sec(α(x 4α 2 t)) fonksiyonunun

S4 u(x, y) = ln ( sin y. S5 u(x, y) = 2α 2 sec(α(x 4α 2 t)) fonksiyonunun Kısmi Türevli Denklemler Problem Seti-I S1 u = u(x, y ve a, b, c R olmak uzere, ξ = ax + by ve η = bx ay degisken degistirmesi yaparak n cozunuz. au x + bu y + cy = 0 S2 Aşa gidaki denklemleri Adi Diferensiyel

Detaylı

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x.

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x. - TÜREV KAVRAMI - TÜREV KAVRAMI 7 iadesinin türevini alınız. Çözüm lim lim 7 7 lim 7 7 lim lim onksionunun türevini alınız. Tanım onksionunda değişkeni artımını alırken de kadar artsın. oranının giderken

Detaylı

BÖLÜM 5: MATEMATİKSEL KARTOGRAFYA HARİTA PROJEKSİYONLARI KURAMI

BÖLÜM 5: MATEMATİKSEL KARTOGRAFYA HARİTA PROJEKSİYONLARI KURAMI Kartografya Ders Not Bölüm 5 BÖLÜM 5: MATEMATİKSEL KATOGAFYA HAİTA POJEKSİYONLAI KUAMI Türkay Gökgöz (www.yildiz.ed.tr/~gokgoz) 5 Kartografya Ders Not Bölüm 5 İÇİNDEKİLE 5. Harita Projeksiyonlarında Deformasyon.

Detaylı

π βk F -F 0.4 0.3 0.2 0.1 0 0.01 0.02 0.03 0.04 kayma 1 2 F + F 1 2 Döndüren kasnak Döndürülen kasnak

π βk F -F 0.4 0.3 0.2 0.1 0 0.01 0.02 0.03 0.04 kayma 1 2 F + F 1 2 Döndüren kasnak Döndürülen kasnak TİMAK-Taarım İmalat Analiz Kongri 6-8 Nian 006 - BALIKESİ KAYIŞ KASNAK MEKANİZMALAINDA KAYMA OLAYINI ETKİLEYEN AKTÖLEİN ANALİZİ M. Ndim GEGE Maina Mühndiliği Bölümü Mühndili aülti -Balıir/Türi Özt Kaış

Detaylı

Diferansiyel Denklemler I (M) Çalışma Soruları

Diferansiyel Denklemler I (M) Çalışma Soruları Diferansiel Denklemler I (M Çalışma Soruları 800 ( A Aşağıdaki diferansiel denklemlerin çözümlerini bulunuz ( ( = d n d 0 d ( sin cos d = 0 3 ( cos sin d sin d = 0 4 5 6 7 ( 5 d ( 5 d = 0 ( ( = d d 0 =

Detaylı

metal (bakır) metaloid (silikon) metal olmayan (cam) iletken yar ı iletken yalıtkan

metal (bakır) metaloid (silikon) metal olmayan (cam) iletken yar ı iletken yalıtkan 1 YARI İLETKENLER Enstrümantal Analiz ir yarı iltkn, iltknliği bir iltkn il bir yalıtkan arasında olan kristal bir malzmdir. Çok çşitli yarıiltkn malzm vardır, silikon v grmanyum, mtalimsi bilşiklr (silikon

Detaylı

doldurulması sırasında yayınlanan karakteristik X-ışınlarını bulması

doldurulması sırasında yayınlanan karakteristik X-ışınlarını bulması BETA () BOZUNUMU Çkirdklrin lktron yayınlamaları yy ilk gözlnn radyoaktif olaylardan birisidir. Çkirdğin atom lktronlarından birisini yakalaması, 1938 d Amrikalı fizikci Luis Waltr Alvarz in çkirdk k tarafından

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 12.MATEMATİK YARIŞMASI 8. SINIF FİNAL SORULARI Dikkat: Yanıtlarınızı size verilen yanıt kağıtlarına yazınız.

ÖZEL EGE LİSESİ OKULLAR ARASI 12.MATEMATİK YARIŞMASI 8. SINIF FİNAL SORULARI Dikkat: Yanıtlarınızı size verilen yanıt kağıtlarına yazınız. OKULLAR ARASI 1.MATEMATİK YARIŞMASI 8. SINIF FİNAL SORULARI Dikkat: Yanıtlarınızı size verilen anıt kağıtlarına azınız. 1) Yukarıdaki şekilde AH BC BE DE m (BÂH) = m(aĉb) AH = BE BD = DC ve m (CBE) = dir.

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. Üç basamaklı doğal saılardan kaç tanesi, 8 ve ile tam bölünür? 8 9. ile in geometrik ortası z dir. ( z). ( z ). z aşağıdakilerden hangisidir?. 9 ifadesinin cinsinden değeri

Detaylı

BÖLÜM 2 LAMİNER SINIR TABAKA İNTEGRAL DENKLEMLERİ VE ÇÖZÜMLERİ

BÖLÜM 2 LAMİNER SINIR TABAKA İNTEGRAL DENKLEMLERİ VE ÇÖZÜMLERİ BÖLÜM LAMİNER SINIR ABAKA İNEGRAL DENKLEMLERİ VE ÇÖZÜMLERİ.1- Giriş.- İntgral momntm nklmi.- İntgral momntm nklminin çözümü..1- Pohlhasn öntmi..-haits-walz öntmi..-emmli v njksionl akımlar.4- İntgral nrji

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İSANBUL EKNİK ÜNİVERSİESİ FEN BİLİMLERİ ENSİÜSÜ SABİ KANAL DİKEY İNİŞ KALKŞ İNSANSZ HAVA ARAÇLAR BENZEİM VE KONROLÜ YÜKSEK LİSANS EZİ Uçak Müh Zafr ÖZNALBAN (511051027 zin Enstitüy Vrildiği arih: 2 mmuz

Detaylı

Asenkron Makinanın Alan Yönlendirme Kontrolünde FPGA Kullanımı ALAN İ., AKIN Ö.

Asenkron Makinanın Alan Yönlendirme Kontrolünde FPGA Kullanımı ALAN İ., AKIN Ö. Asnkron Makinanın Alan Yönlndirm Kontrolünd FPGA Kullanımı ALAN İ., AKIN Ö. ABSTRACT In this study, th fasibility of usag of fild programmabl gat arrays (FPGA) in th fild orintd control (FOC) of induction

Detaylı

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu 016-017 Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları 1) 3. [15 3(8: )] 9 =? a) 16 b) 14 c) 0 d) 14 e) 16 6)

Detaylı

BÖLÜM 3 LAMİNER AKIMIN DİFERANSİYEL DENKLEMLERİ

BÖLÜM 3 LAMİNER AKIMIN DİFERANSİYEL DENKLEMLERİ BÖLÜM 3 LAMİNER AKIMIN DİFERANSİYEL DENKLEMLERİ 3.1- Giriş 3.. Külenin kornm: Süreklilik denklemi 3.3. Momenmn kornm: Momenm denklemi 3.3.1 Laminer kama gerilmesinin modellenmesi 3.3. Momenm denkleminin

Detaylı

AKIŞ ÖLÇME EĞİTİM SETİ DENEY FÖYÜ

AKIŞ ÖLÇME EĞİTİM SETİ DENEY FÖYÜ KIŞ ÖLÇME EĞİTİM SETİ DENEY FÖYÜ ÇORUM-05 ) DENEY CİHZININ ŞEMSI B) CİHZD KULLNILN MLZEMELER SNO MLZEMENİN DI DEDİ MRKSI E ÖZELLİĞİ S tankı 50x50x50 mm, 5 litre Sirkülasyon oması larko NO 3 entürimetre

Detaylı

BÖLÜM 7 BORULARDA GERÇEK AKIM

BÖLÜM 7 BORULARDA GERÇEK AKIM BÖLÜM 7 BORULARA GERÇEK AKIM Enkesitin tamamen dol olarak aktığı akımlara basınçlı akım denir. Basınç altında sıvı nakleden kapalı akış yollarına bor adı verilmektedir. Borlar çeşitli enkesitlere sahip

Detaylı

ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI

ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı a da bir kısmı, azarın izni olmaksızın, elektronik, mekanik,

Detaylı

3. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

3. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 3 HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 BÖLÜM 2 EŞ-ANLI DENKLEM SİSTEMLERİ Bu bölümde analitik ve grafik olarak eş-anlı denklem sistemlerinin

Detaylı

Zeminlerin Farklı Yöntemlerle Tanımı

Zeminlerin Farklı Yöntemlerle Tanımı 2-FİZKSEL ÖZELLİKLER 7.1.215 Zminlrin Farklı Yöntmlrl Tanımı A) Tüm Zminlr a) Rnk b) Homojnlik B) Kaba Danli Zminlr a) Dan büyüklüğü b) Dan şkli c) Dan boyutlarının dağılımı d) İçriln inc danlrin oranı

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı