Ulaştırma ve Atama. Konu 2. Ulaştırma Modeli. Doç. Dr. Fazıl GÖKGÖZ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Ulaştırma ve Atama. Konu 2. Ulaştırma Modeli. Doç. Dr. Fazıl GÖKGÖZ"

Transkript

1 Ulaştırma ve Atama Modelleri Konu 2 Ulaştırma Modeli 1. Farklı kaynaklardan temin edilen bir ürün, mümkün olan minimum maliyetle farklı istikametlere taşınmaktadır. 2. Her kaynak noktası sabit sayıda ürün arz ederken, her istikamet noktası da sabit sayıda talepte bulunmaktadır. 2 / 62 1

2 Örnek TALEP (TON) ARZ (TON) İSTANBUL SAMSUN ERZURUM İZMİR ANTALYA GAZİANTEP 3 / 62 Arz-Talep Tane Asansörü Arz 1. Samsun 2. Erzurum 3. Gaziantep Toplam ton Değirmen A. İstanbul B. İzmir C. Antalya Toplam Talep ton 4 / 62 2

3 Ulaşım Maliyetleri Ulaştırma Maliyetlerinin Durumu ($/ton) Tane Silosu 1. Samsun 2. Erzurum 3. Gaziantep Değirmen A. İstanbul B. İzmir C. Antalya $ 6 $ 7 $ 4 $ 8 $ 11 $ 5 $ 10 $ 11 $ 12 5 / 62 Lineer Programlama Modeli Dengelenmiş Ulaştırma problemlerinde; kaynağın arz miktarı ile talep edilen tutarlar birbiriyle eşittir. 6 / 62 3

4 Ulaştırma Tablosu 7 / 62 Ulaştırma Problemlerinde Kullanılan Yöntemler Çözüm için kullanılan yöntemler SS Atlama Taşı Yöntemi (Stepping Stone) MODI Geliştirilmiş Dağıtım Yöntemi Olurlu başlangıç çözümü Kuzeybatı Köşe Yöntemi Minimum Maliyetli Hücre Yöntemi VAM-Vogel in Vogel in Yaklaşımı Yöntemi 8 / 62 4

5 Kuzeybatı Köşe Yöntemi 9 / 62 Kuzeybatı Köşe Yöntemi ile Bulunan Olurlu Başlangıç Çözümü Başlangıç Çözümü Z = $5, / 62 5

6 11 / 62 Minimum Maliyetli Hücre Yöntemi Başlangıçtaki Minimum Maliyetli Hücrenin Dağıtımı 12 / 62 6

7 İkinci minimum maliyetli hücrenin yerleştirilmesi 13 / 62 Minimum Maliyetli Hücre Yöntemi ile Bulunan Olurlu Başlangıç Çözümü Başlangıç Çözümü Z = $4, / 62 7

8 15 / 62 Vogel in Yaklaşım Yöntemi Penaltı (Ceza) Maliyeti, her hangi bir sıra veya sütundaki en küçük ve ikinci en küçük maliyetin farkıdır. VAM tekniğinde en büyük ceza maliyetinin bulunduğu sıra veya sütundaki minimum maliyetli hücreye maksimum oranda yerleşim yapılır. 16 / 62 8

9 17 / / 62 9

10 19 / 62 Vogel in Yaklaşım Yöntemiyle Bulunan Olurlu Başlangıç Çözümü Başlangıç Çözümü Z = $5, / 62 10

11 21 / 62 Atlama Taşı Yöntemi 22 / 62 11

12 23 / / 62 12

13 1A 1B 3B 3A = $1 BA LANGIÇ ÇÖZÜMÜ OPTİMAL DEĞİLDİR 25 / / 62 13

14 / / 62 14

15 Hücre 1A için Öngörülen Atlama Taşı Yolu 29 / 62 Atlama Taşı Yöntemindeki İkinci Döngü (İterasyon) 30 / 62 15

16 31 / / 62 16

17 33 / / 62 17

18 35 / 62 Alternatif Optimal Çözüm 36 / 62 18

19 37 / 62 Geliştirilmiş Dağıtım Yöntemi (Modi) Minimum Maliyetli Hücre Yöntemiyle Bulunan Başlangıç Çözümü 38 / 62 19

20 Dağıtıma Tabi Olan Hücreler DOLU HÜCRELER 39 / 62 Tüm u i ve u j Değerleriyle Bulunan Başlangıç Çözümü 40 / 62 20

21 Boş Hücreler 41 / 62 MODI Çözüm Yöntemindeki İkinci Döngü (İterasyon) 42 / 62 21

22 43 / 62 İkinci İterasyon için Yeni u i ve u j Değerleri 44 / 62 22

23 45 / / 62 23

24 Dengelenmemiş Ulaştırma Modeli (Talep > Arz) 47 / 62 Dengelenmemiş Ulaştırma Modeli (Talep < Arz) 48 / 62 24

25 Dejenerasyon Durumu m sıra + n sütun 1 = Yerleşim yapılabilecek hücre sayısı 49 / 62 Minimum Maliyetli Hücre Yöntemiyle Bulunan Başlangıç Çözümü m sıra + n sütun 1 ; = 5 hücreye yerleşim yapılır. 50 / 62 25

26 Başlangıç Çözümü 51 / / 62 26

27 Atlama Taşı Yöntemi İkinci İterasyon 53 / 62 Atama Modeli Örneği Resmi Hakemlerin, Baketbol Maçlarının Yapılacağı Bölgelere Olan Seyahat Mesafesi Her satırdaki minimum değer; satırda yer alan tüm değerlerden çıkarılır. 54 / 62 27

28 Satır Azaltılması Sonucu Atama Tablosunun Son Durumu Her sütundaki minimum değer; sütunda yer alan tüm değerlerden çıkarılır. 55 / 62 Sütun Azaltılması Sonucu Atama Tablosunun Son Durumu 56 / 62 28

29 Çizgi Testi ile Fırsat Maliyeti Tablosunun Elde Edilmesi 35 Atamaların sayısı, satır veya sütunların sayısından düşük olduğu takdirde çizgi testi kullanılmalıdır. Sıfırların bulunduğu satır ve sütunlar kesiştirilir ve geriye kalan sayılardan minimum olan değer (15) diğer kesişmeyen değerlerden çıkarılır. 57 / 62 İkinci Aşamadaki İterasyon 35 Söz konusu minimum değer (15) sıfırların bulunduğu satır ve sütunların kesiştiği noktalara ilave edilir. Sonuçta fırsat maliyeti tablosunda sıfır değer alan noktalar seçim yapılabilecek değerler setini oluşturur. 58 / 62 29

30 59 / / 62 30

31 61 / 62 ÖDEV 2 Ulaştırma Modeli (Teslim Tarihi : ) Üç farklı bölgede bulunan çelik üretimi gerçekleştiren fabrikaların üretim bilgileri aşağıdadır ; Bölge Haftalık Üretim (ton) A 150 B 210 C 320 Toplam 680 Söz konusu şirketlerin sağladığı çelik dört farklı şehirdeki üretici tesislere sevkedilmektedir. ehir Haftalık Talep (ton) I 130 II 70 III 180 IV 240 Toplam / 62 31

32 ÖDEV 2 Ulaştırma Modeli (Teslim Tarihi : ) Çeliğin ton başına nakliye maliyetleri ise aşağıdaki gibidir ; Çelik Fabrikası I Ulaştırma Birim Maliyetleri ($/ton) Üretim Tesisleri Bu kapsamda, nakliye yapan firmaların grevde olması nedeniyle, B bölgesinden III nolu şehre ulaştırma yapılamamakta olduğu göz önüne alınarak; a) Ulaştırma tablosunu hazırlayınız ve başlangıç çözümü yapınız, b) Problemin başlangıç değerlerini MODI yöntemiyle çözünüz, c) Çoklu optimal sonuçlar var mıdır? Açıklayınız ve varsa tanımlayınız, d) Problemi genel lineer programlama modeli olarak da formule ediniz. II III IV A B C / 62 ÖDEV 2 Ulaştırma Modeli (Teslim Tarihi : ) Bir çimento şirketi, ürettiği çimentoyu 3 farklı tesisten 3 farklı inşaat bölgesine sevk etmektedir. Her üç tesise ilişkin kapasite verileri ve bu tesislerden istenilen miktarlar ve birim ulaştırma maliyetleri ($/ton) verilmektedir. Gerekli başlangıç ve çözüme yönelik Ulaştırma Modelini uygulayarak optimal maliyet değerlerini ve çözümü bulunuz. İnşaat Alanları (Ulaştırma Birim Maliyetleri ($/ton) Tesis A B C Arz (Ton) Talep (Ton) / 62 32

33 ÖDEV 1 Tamsayılı Programlama Ödevlerinin Değerlendirilmesi Çözümler X1 X2 DP gevşetilmiş Tamsayılı prog. 1 5 Yuvarlanmış 1 6 Amaç fonksiyonunun değiştirilmemesi ve sonuçların X 1 ve X 2 nin değerleri olduğu hususu (Zmax. = 1.3X X 2 değil Zmax. = 2X 1 + 3X 2 ) Soruda yuvarlanmış çözümün olurlu alan içerisinde olması gerektiği yazılmamıştır. Bu nedenle, cevap (X 1 :1,X 2 :6) olup, söz konusu sonucun olurlu alan içerisinde bulunmadığının ifade edilmesi gereklidir. 65 / 62 33

Konu 2. Y. Doç. Dr. Fazıl GÖKGÖZ

Konu 2. Y. Doç. Dr. Fazıl GÖKGÖZ Ulaştırma ve Atama Modelleri Konu 2 Ulaştırma Modeli 1. Farklı kaynaklardan kl temin edilen bir ürün, mümkün olan minimum maliyetle farklı istikametlere taşınmaktadır. 2. Her kaynak noktası sabit sayıda

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTIRMA MODELİNİN TANIMI Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTıRMA MODELININ TANıMı Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ

DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ TRANSPORTASYON (TAŞIMA, ULAŞTIRMA) TRANSİT TAŞIMA (TRANSSHIPMENT) ATAMA (TAHSİS) TRANSPORTASYON (TAŞIMA) (ULAŞTIRMA) TRANSPORTASYON Malların birden fazla üretim (kaynak,

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I 1/71 İçerik n Bulunması Kuzey-Batı Köşe Yöntemi En Küçük Maliyetli Göze Yöntemi Sıra / Sütun En Küçüğü Yöntemi Vogel Yaklaşım Metodu (VAM) Optimum Çözümün Bulunması Atlama Taşı

Detaylı

ATAMA (TAHSİS) MODELİ

ATAMA (TAHSİS) MODELİ ATAMA (TAHSİS) MODELİ ATAMA (TAHSİS) MODELİ Doğrusal programlamada kullanılan bir başka hesaplama yöntemidir. Atama problemleri, doğrusal programlama (simpleks yöntem) veya transport probleminin çözüm

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I /0 İçerik Matematiksel Modelin Kurulması Grafik Çözüm DP Terminolojisi DP Modelinin Standart Formu DP Varsayımları 2/0 Grafik Çözüm İki değişkenli (X, X2) modellerde kullanılabilir,

Detaylı

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER I. ATAMA PROBLEMLERİ PROBLEM 1. Bir isletmenin en kısa sürede tamamlamak istediği 5 işi ve bu işlerin yapımında kullandığı 5 makinesi vardır. Aşağıdaki

Detaylı

Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1

Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1 İÇİNDEKİLER Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1 1.1. Yöneticilik / Komutanlık İşlevi ve Gerektirdiği Nitelikler... 2 1.1.1. Yöneticilik / Komutanlık

Detaylı

yöneylem araştırması Nedensellik üzerine diyaloglar I

yöneylem araştırması Nedensellik üzerine diyaloglar I yöneylem araştırması Nedensellik üzerine diyaloglar I i Yayın No : 3197 Eğitim Dizisi : 149 1. Baskı Ocak 2015 İSTANBUL ISBN 978-605 - 333-225 1 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları

Detaylı

Maksimizasyon s.t. İşçilik, saat) (Kil, kg)

Maksimizasyon s.t. İşçilik, saat) (Kil, kg) Simplex ile Çözüm Yöntemi Doç. Dr. Fazıl GÖKGÖZ 1 Doğrusal Programlama Modeli Maksimizasyon s.t. İşçilik, saat) (Kil, kg) 2 Doç. Dr. Fazıl GÖKGÖZ Yrd.Doç. Dr. Fazıl GÖKGÖZ 1 Modelin Standard Hali Maksimizasyon

Detaylı

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

TAMSAYILI PROGRAMLAMA

TAMSAYILI PROGRAMLAMA TAMSAYILI PROGRAMLAMA Doğrusal programlama problemlerinde sık sık çözümün tamsayı olması gereken durumlar ile karşılaşılır. Örneğin ele alınan problem masa, sandalye, otomobil vb. üretimlerinin optimum

Detaylı

Üretim/İşlemler Yönetimi 5

Üretim/İşlemler Yönetimi 5 Üretim/İşlemler Yönetimi 5 Kuruluş Yeri ir işletmenin gerek kuruluşu sırasında, gerekse daha sonra faaliyet devam ederken ek tesisler vb. gereksinimler doğrultusunda verilmesi gereken en önemli kararlardan

Detaylı

Bir Doğrusal Programlama Modelinin Genel Yapısı

Bir Doğrusal Programlama Modelinin Genel Yapısı Bir Doğrusal Programlama Modelinin Genel Yapısı Amaç Fonksiyonu Kısıtlar M i 1 N Z j 1 N j 1 a C j x j ij x j B i Karar Değişkenleri x j Pozitiflik Koşulu x j >= 0 Bu formülde kullanılan matematik notasyonların

Detaylı

EBEKE MODELLERİ. ebeke Yapısına Giriş. Konu 3

EBEKE MODELLERİ. ebeke Yapısına Giriş. Konu 3 EBEKE MODELLERİ Konu ebeke Yapısına Giriş Elektriksel yapıların bulunduğu şebekeler Ulaşım sistemi Ulaştırma modeli İstasyonlardan oluşan sistem - Televizy zyon şebekesi ebeke Problemi Bir şebeke problemi

Detaylı

Her bir polis devriyesi ancak bir çağrıyı cevaplayabilir. Bir çağrıya en fazla bir devriye atanabilir.

Her bir polis devriyesi ancak bir çağrıyı cevaplayabilir. Bir çağrıya en fazla bir devriye atanabilir. 7. Atama Modelleri: Atama modelleri belli işlerin veya görevlerin belli kişi veya kurumlara atanması ile alakalıdır. Doğrusal programlama modellerinin bir türüdür ve yapı itibariyle ulaştırma modellerine

Detaylı

FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama

FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama Uygulamalar 1. İhtiyaç Hesaplama 2. Sipariş ve Parti Büyüklüğü Hesaplama 3. Dolaşım Akış Çizelgeleme/Terminleme

Detaylı

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ SİMPLEKS TABLONUN YORUMU MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ Şu ana kadar verilen bir DP probleminin çözümünü ve çözüm şartlarını inceledik. Eğer orijinal modelin parametrelerinde bazı değişiklikler

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA (NLP)

DOĞRUSAL OLMAYAN PROGRAMLAMA (NLP) DOĞRUSAL OLMAYAN PROGRAMLAMA (NLP) 1. Non-lineer kar analizi, 2. Kısıtlı optimizasyon, 3. Yerine koyma (substitution) yöntemi, 4. Lagranj Çarpanları Yöntemi 5. Başabaş Analizleri ve Duyarlılık Testleri

Detaylı

Ulaştırma Problemleri

Ulaştırma Problemleri Ulaştırma Problemleri Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir. Bu modelde, malların kaynaklardan (fabrika gibi )hedeflere (depo gibi) taşınmasıyla ilgilenir. Buradaki amaç

Detaylı

ĐST 349 Doğrusal Programlama ARA SINAV I 15 Kasım 2006

ĐST 349 Doğrusal Programlama ARA SINAV I 15 Kasım 2006 ĐST 49 Doğrusal Programlama ARA SINAV I 15 Kasım 006 Adı Soyadı:KEY No: 1. Aşağıdaki problemi grafik yöntemle çözünüz. Đkinci kısıt için marjinal değeri belirleyiniz. Maximize Z X 1 + 4 X subject to: X

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BİR AKARYAKIT DAĞITIM DİZGESİNİN ULAŞTIRMA GİDERİNİN DOĞRUSAL PROGRAMLAMA YOLUYLA EN AZA İNDİRGENMESİ Mihrican KOCAOĞLU KİMYA MÜHENDİSLİĞİ

Detaylı

KONU 3: DOĞRUSAL PROGRAMLAMA PROBLEMLERİ İLE İLGİLİ ÖRNEKLER

KONU 3: DOĞRUSAL PROGRAMLAMA PROBLEMLERİ İLE İLGİLİ ÖRNEKLER KONU 3: DOĞRUSAL PROGRAMLAMA PROBLEMLERİ İLE İLGİLİ ÖRNEKLER Örnek 1: Bir boya fabrikası hem iç hem dış boya üretiyor. Boya üretiminde A ve B olmak üzere iki tip hammadde kullanılıyor. Bir günde A hammaddesinden

Detaylı

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem 3.2. DP Modellerinin Simpleks Yöntem ile Çözümü 3.2.1. Primal Simpleks Yöntem Grafik çözüm yönteminde gördüğümüz gibi optimal çözüm noktası, her zaman uygun çözüm alanının bir köşe noktası ya da uç noktası

Detaylı

YUVARLAMA FONKSİYONLARI

YUVARLAMA FONKSİYONLARI YUVARLAMA FONKSİYONLARI Fonksiyon Çalışma Prensibi fix(x) x ondalık sayısını sıfır yönündeki ilk tamsayıya round(x) x ondalık sayısını kisine en yakın ilk tamsayıya ceil(x) x ondalık sayısını + yönündeki

Detaylı

ş ç ö ç ç ş ş ö ş ş ç ö ö ş ç ç ş ö ö ö ş ş ş ş ş ş ş ö ö ç ç ç ş ş ö ş ö ö ş ö ö ö ş ö ş Ö Ü Ç ö ö Ğ ş ş ö Ö ö ç Ğ ş ş ö Ö ş ş şş ö ş ç ç ö ö ç ş ç ç ç Ö ç ç Ö ç ç ş ş Ö ç ö ş Ö ş ç ç ö ş ö ö ş ö ç ç

Detaylı

Öğr. Gör. Cansu AYVAZ GÜVEN VERİTABANI-II. Değişken Tanımlama Ve Akış Kontrol Deyimleri

Öğr. Gör. Cansu AYVAZ GÜVEN VERİTABANI-II. Değişken Tanımlama Ve Akış Kontrol Deyimleri Öğr. Gör. Cansu AYVAZ GÜVEN VERİTABANI-II Değişken Tanımlama Ve Akış Kontrol Deyimleri Değişken Nedir? Değişkenler, programın veya kodların icra süresince belirli bir değer tutan ve istenilirse bu değer

Detaylı

28 C j -Z j /2 0

28 C j -Z j /2 0 3.2.6. Dual Problem ve Ekonomik Yorumu Primal Model Z maks. = 4X 1 + 5X 2 (kar, pb/gün) X 1 + 2X 2 10 6X 1 + 6X 2 36 8X 1 + 4X 2 40 (işgücü, saat/gün) (Hammadde1, kg/gün) (Hammadde2, kg/gün) 4 5 0 0 0

Detaylı

Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin

Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin DUYARLILIK ANALİZİ Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin değişmesinin problemin optimal çözümü üzerine etkisini incelemektedir. Oluşturulan modeldeki

Detaylı

Sayısal Yöntemler (MGMT 214T) Ders Detayları

Sayısal Yöntemler (MGMT 214T) Ders Detayları Sayısal Yöntemler (MGMT 214T) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Sayısal Yöntemler MGMT 214T Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin Dili

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I 1/19 İçerik Yöneylem Araştırmasının Dalları Kullanım Alanları Yöneylem Araştırmasında Bazı Yöntemler Doğrusal (Lineer) Programlama, Oyun Teorisi, Dinamik Programlama, Tam Sayılı

Detaylı

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL)

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL) DOĞRUSAL PROGRAMLAMA (GENEL) Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik biçiminde verilmesi durumunda amaca

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY)

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) 1 DOĞRUSAL PROGRAMLAMADA İKİLİK (DUALİTE-DUALITY) Doğrusal programlama modelleri olarak adlandırılır. Aynı modelin değişik bir düzende oluşturulmasıyla Dual (İkilik)

Detaylı

Ders 12. Karma Kısıtlamalı Doğrusal programlama problemleri Alıştırmalar 12. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 1...

Ders 12. Karma Kısıtlamalı Doğrusal programlama problemleri Alıştırmalar 12. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 1... 114 Bölüm 12 Ders 12 Karma Kısıtlamalı Doğrusal programlama problemleri 12.1 Alıştırmalar 12 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 1.... 1. Aşağıdaki problemlerde; (i) Aylak, artık ve yapay değişkenleri

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: IND 3907

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: IND 3907 Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: MATEMATİKSEL MODELLEME ve UYGULAMALARI Dersin Orjinal Adı: MATHEMATICAL MODELING AND APPLICATIONS Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans,

Detaylı

43-b) 4. sırada teklif veren Özçınarlar İnşaat Turizm Ticaret Limited Şirketinin İş Hacmini Gösteren Belgeleri incelenir.

43-b) 4. sırada teklif veren Özçınarlar İnşaat Turizm Ticaret Limited Şirketinin İş Hacmini Gösteren Belgeleri incelenir. 43-b) 4. sırada teklif veren Özçınarlar İnşaat Turizm Ticaret Limited Şirketinin İş Hacmini Gösteren Belgeleri incelenir. İstekli firmanın bitirilen hizmet işlerinin parasal tutarını gösteren ihalenin

Detaylı

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak TP Çözümü TP problemlerinin çözümü için başlıca iki yaklaşım vardır kesme düzlemleri (cutting planes) dal sınır (branch and bound) tüm yaklaşımlar tekrarlı

Detaylı

BİLGİSAYAR PROGRAMLAMA. Yrd. Doç. Dr. Beytullah EREN beren@sakarya.edu.tr 0264 295 5642

BİLGİSAYAR PROGRAMLAMA. Yrd. Doç. Dr. Beytullah EREN beren@sakarya.edu.tr 0264 295 5642 BİLGİSAYAR PROGRAMLAMA Yrd. Doç. Dr. Beytullah EREN beren@sakarya.edu.tr 0264 295 5642 EXCEL DE GRAFİK UYGULAMA GRAFİKLER Grafikler, çok sayıda verinin ve farklı veri serileri arasındaki ilişkinin anlaşılmasını

Detaylı

İstenilen sayıdaki varlığı yuvarlak içine al. 2 I 3 2 " 4 tane olanı yuvarlak içine al 4 4 4 4 4 4 5 Tane olanı yuvarlak içine al 5 5 5 5 "" " "" Legolarla toplama işlemlerini

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

KÜTLELER DİYAGRAMI VE TOPRAK DAĞITIMI. Toprak İşleri. Toprak Dağıtımının Amaçları

KÜTLELER DİYAGRAMI VE TOPRAK DAĞITIMI. Toprak İşleri. Toprak Dağıtımının Amaçları KÜTLELER DİYAGRAMI VE TOPRAK DAĞITIMI Toprak Dağıtımının Amaçları 1) Toprak işlerinde en ekonomik dengelemeyi sağlamak 2) Dolgu yapımı için kullanılacak kazıların taşımasında ortalama taşıma mesafesini

Detaylı

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü OYUN TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü TANIM ''Oyun Teorisi'', iki yada daha fazla rakibi belirli kurallar altında birleştirerek karşılıklı olarak çelişen olasılıklar

Detaylı

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ 25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ a-) Routh Hurwitz Kararlılık Ölçütü b-) Kök Yer Eğrileri Yöntemi c-) Nyquist Yöntemi d-) Bode Yöntemi 1 2 3 4 a) Routh Hurwitz Kararlılık

Detaylı

Sürekli Rastsal Değişkenler

Sürekli Rastsal Değişkenler Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım

Detaylı

*İlk aşamada, bahsedilen problemin matematiksel modelinin kurulması gerekmektedir. İlgili modelin açık ve kapalı formunu birlikte veriniz.

*İlk aşamada, bahsedilen problemin matematiksel modelinin kurulması gerekmektedir. İlgili modelin açık ve kapalı formunu birlikte veriniz. Yöneylem Araştırması Proje Ödevi Teslim Tarihi: 04.12.2017 *İlk aşamada, bahsedilen problemin matematiksel modelinin kurulması gerekmektedir. İlgili modelin açık ve kapalı formunu birlikte veriniz. Filo

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

Çok Yollu Ağaçlar: B*-Trees B*-Trees

Çok Yollu Ağaçlar: B*-Trees B*-Trees Çok Yollu Ağaçlar: B*-Trees B*-Trees B-tree lerde bir node dolunca bölme işlemi yapılmaktadır Bölme sonucunda oluşan iki node da yarı yarıya doludur B*-tree lerde bölme işlemi geciktirilerek node ların

Detaylı

Taşıma Probleminde Optimum (En Uygun) Çözüm Bulanması

Taşıma Probleminde Optimum (En Uygun) Çözüm Bulanması Taşıma Probleminde Optimum (En Uygun) Çözüm Bulanması Tevfik GÜYAGÜLER {*) GİRİŞ Bu yazıda çeşitli üretim merkezlerinde üretilen malların birden fazla tüketim merkezlerine nakledilmesinde taşıma maliyetini

Detaylı

KARAYOLLARI GENEL MÜDÜRLÜĞÜ İNÖNÜ BULVARI 06100 YÜCETEPE / ANKARA

KARAYOLLARI GENEL MÜDÜRLÜĞÜ İNÖNÜ BULVARI 06100 YÜCETEPE / ANKARA İNÖNÜ BULVARI 06100 YÜCETEPE / ANKARA DEVLET SU İŞLERİ GENEL MÜDÜRLÜĞÜ İNÖNÜ BULVARI 06100 YÜCETEPE/ANKARA TALATPAŞA BULVARI 06330 GAR / ANKARA MEVLANA BULVARI ( KONYA YOLU ) NO:186 06520 BALGAT / ANKARA

Detaylı

Tablo7.1.1 Bismarck için Kaynak Gereksinimleri Ürün İşçilik (Saat) Kumaş (Yard Kare) Gömlek 3 4 Şort 2 3 Pantolon 6 4

Tablo7.1.1 Bismarck için Kaynak Gereksinimleri Ürün İşçilik (Saat) Kumaş (Yard Kare) Gömlek 3 4 Şort 2 3 Pantolon 6 4 ISLE403 YÖNEYLEM ARAŞTIRMASI I DERS VII NOTLAR Günümüzün iş dünyasında şirketler sermaye mallarını satın almak yerine finansal kiralama yoluyla edinmeyi değerlendiriyorlar. Finansal kiralama sabit maliyetler

Detaylı

İNŞAAT TEKNOLOJİSİ BÖLÜMÜ

İNŞAAT TEKNOLOJİSİ BÖLÜMÜ İNŞAAT TEKNOLOJİSİ BÖLÜMÜ MALZEME VE MALZEME İŞLEME TEKNOLOJİSİ BÖLÜMÜ BİLGİSAYAR TEKNOLOJİSİ BÖLÜMÜ MAKİNA VE METAL TEKNOLOJİLERİ BÖLÜMÜ 19:10-20:00 20:10-21:00 ELEKTRİK VE ENERJİ TEKNOLOJİLERİ BÖLÜMÜ

Detaylı

SİSTEM MÜHENDİSLİĞİ DOĞRUSAL PROGRAMLAMA MODEL KURMA ÖRNEKLERİ

SİSTEM MÜHENDİSLİĞİ DOĞRUSAL PROGRAMLAMA MODEL KURMA ÖRNEKLERİ SİSTEM MÜHENDİSLİĞİ DOĞRUSAL PROGRAMLAMA MODEL KURMA ÖRNEKLERİ Örnek (2-5) Güzel-Giyim konfeksiyon piyasaya ceket, etek ve elbise yapmaktadır. Konfeksiyoncu, ceketi, eteği ve elbiseyi kendisinin A1, A2

Detaylı

GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015

GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015 GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015 Algoritmalar Ders 9 Dinamik Programlama SMY 544, ALGORİTMALAR, Güz 2015 Ders#9 2 Dinamik Programlama Böl-ve-fethet

Detaylı

1/5000 ÖLÇEKLİ NAZIM İMAR PLANI AÇIKLAMA RAPORU

1/5000 ÖLÇEKLİ NAZIM İMAR PLANI AÇIKLAMA RAPORU 1/5000 ÖLÇEKLİ NAZIM İMAR PLANI AÇIKLAMA RAPORU Alanın Tanımı: Planlama Alanı Bursa, Nilüfer İlçesi nin güneyinde yer alan İnegazi Köyü, h21c13a4 pafta 101 ada 22,23,25 ve 26 numaralı parsellerde yer alan

Detaylı

Ġşlem tablosu kavramını tanımlamak ve işlem tablolarının işlevlerini öğrenmek. Ġşlem tablolarının temel kavramlarını tanımlamak.

Ġşlem tablosu kavramını tanımlamak ve işlem tablolarının işlevlerini öğrenmek. Ġşlem tablolarının temel kavramlarını tanımlamak. Amaçlarımız 2 Ġşlem tablosu kavramını tanımlamak ve işlem tablolarının işlevlerini öğrenmek. Ġşlem tablolarının temel kavramlarını tanımlamak. Microsoft Excel 2010 da bilgi girişi yapabilmek. Excel de

Detaylı

GENEL İŞLETME. Yrd. Doç. Dr. Hasan ALKAN KURULUŞ YERİ SEÇİMİ

GENEL İŞLETME. Yrd. Doç. Dr. Hasan ALKAN KURULUŞ YERİ SEÇİMİ GENEL İŞLETME Yrd. Doç. Dr. Hasan ALKAN KURULUŞ YERİ SEÇİMİ KURULUŞ YERİ İşletmenin faaliyette bulunduğu yerdir. Çeşitli alternatifler arasında en uygun kuruluş yerine karar verme önemli ve zor bir karardır.

Detaylı

Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss

Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss Jordan Yöntemi ve Uygulaması Performans Ölçümü 2 Bu çalışmada,

Detaylı

BÖLÜM I: Hedef Programlama. Prof.Dr. Bilal TOKLU. HEDEF PROGRAMLAMAYA GİRİŞ HEDEF PROGRAMLAMA MODELLERİNİN ÇÖZÜMÜ

BÖLÜM I: Hedef Programlama. Prof.Dr. Bilal TOKLU. HEDEF PROGRAMLAMAYA GİRİŞ HEDEF PROGRAMLAMA MODELLERİNİN ÇÖZÜMÜ Yöneylem Araştırması III Prof.Dr. Bilal TOKLU btoklu@gazi.edu.tr Yöneylem Araştırması III BÖLÜM I: Hedef Programlama HEDEF PROGRAMLAMAYA GİRİŞ ÖNCELİKSİZ HEDEF PROGRAMLAMA ÖNCELİKLİ HEDEF PROGRAMLAMA HEDEF

Detaylı

FORMÜL ADI (FONKSİYON) FORMÜLÜN YAZILIŞI YAPTIĞI İŞLEMİN AÇIKLAMASI

FORMÜL ADI (FONKSİYON) FORMÜLÜN YAZILIŞI YAPTIĞI İŞLEMİN AÇIKLAMASI 1 SIKÇA KULLANILAN EXCEL FORMÜLLERİ 1 AŞAĞI YUVARLAMA =aşağıyuvarla(c7;2) 2 YUKARI YUVARLAMA =yukarıyuvarla(c7;2) 3 YUVARLAMA =yuvarla(c7;2) 4 TAVANA YUVARLAMA =tavanayuvarla(c7;5) 5 TABANA YUVARLAMA =TABANAYUVARLA(E2;5)

Detaylı

Ders 10. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay. Simpleks Yöntemine Giriş Alıştırmalar 10

Ders 10. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay. Simpleks Yöntemine Giriş Alıştırmalar 10 Bölüm 10 Ders 10 Simpleks Yöntemine Giriş 10.1 Alıştırmalar 10 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 197 198 BÖLÜM 10. DERS 10 1. Soru 1 1. Aşağıda verilen simpleks tablolarında temel, temel olmayan,

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme

Detaylı

VERĐTABANI YÖNETĐM SĐSTEMLERĐ

VERĐTABANI YÖNETĐM SĐSTEMLERĐ VERĐTABANI YÖNETĐM SĐSTEMLERĐ Öğr.Gör.Sedat Telçeken ANADOLU ÜNĐVERSĐTESĐ FEN FAKÜLTESĐ MATEMATĐK BÖLÜMÜ 2005 2006 Bahar Dönemi SQL Fonksiyonları Fonksiyonlar SQL içinde bazı hesaplamaları yapabilmektedir.

Detaylı

İNŞAAT MÜHENDİSLİĞİ TEKNİK RESİM DERSİ ÖĞR. GÖR. BERIVAN POLAT

İNŞAAT MÜHENDİSLİĞİ TEKNİK RESİM DERSİ ÖĞR. GÖR. BERIVAN POLAT İNŞAAT MÜHENDİSLİĞİ TEKNİK RESİM DERSİ ÖĞR. GÖR. BERIVAN POLAT Kesit çıkarma ve Merdivenler MERDİVENLER Bir yapıda birbirinden farklı iki seviye arasında muntazam aralıklı, yatay

Detaylı

Excel de çalışma alanı satır ve sütunlardan oluşur. Satırları rakamlar, sütunları ise harfler temsil eder. Excel çalışma sayfası üzerinde toplam

Excel de çalışma alanı satır ve sütunlardan oluşur. Satırları rakamlar, sütunları ise harfler temsil eder. Excel çalışma sayfası üzerinde toplam Microsoft Excel Microsoft Office paket programı ile bizlere sunulan Excel programı bir hesap tablosu programıdır. her türlü veriyi tablolar yada listeler halinde tutmak ve bu veriler üzerinde hesaplamalar

Detaylı

SORGULAR. Öğr.Gör.Volkan Altıntaş

SORGULAR. Öğr.Gör.Volkan Altıntaş SORGULAR Öğr.Gör.Volkan Altıntaş SORGULAR VE ÇEŞİTLERİ Seçme Sorguları: En sık kullanılan sorgu türüdür. Seçme sorguları, bilgileri veri sayfası görünümü nde gösteren veri tabanı nesnesi türüdür. Sorgu,

Detaylı

ENM 525 İleri Üretim Planlama ve Kontrolü PAÜ Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı

ENM 525 İleri Üretim Planlama ve Kontrolü PAÜ Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı ENM 525 İleri Üretim Planlama ve Kontrolü PAÜ Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı Bu ders notları, 2012-2013 ve 2013-2014 Bahar yarıyılında PAÜ Endüstri Mühendisliği bölümünde

Detaylı

TRANSPORT PROBLEMLERĠ ĠÇĠN FARKLI BĠR ATAMA YAKLAġIMI

TRANSPORT PROBLEMLERĠ ĠÇĠN FARKLI BĠR ATAMA YAKLAġIMI Yönetim, Yıl: 19, Sayı: 59, Şubat 28 TRANSPORT PROBLEMLERĠ ĠÇĠN FARKLI BĠR ATAMA YAKLAġIMI Yrd. Doç. Dr. Ergün EROĞLU ArĢ. Grv. Fatma LORCU İstanbul Üniversitesi İşletme Fakültesi Sayısal Yöntemler Anabilim

Detaylı

Tanımı Rolü Temel Fonksiyonları Afet Yönetiminde Lojistik. Afete Hazırlık Süreci Afet Müdahale Süreci Afet Müdahale Sonrası

Tanımı Rolü Temel Fonksiyonları Afet Yönetiminde Lojistik. Afete Hazırlık Süreci Afet Müdahale Süreci Afet Müdahale Sonrası AFET LOJİSTİĞİ LOJİSTİK Tanımı Rolü Temel Fonksiyonları Afet Yönetiminde Lojistik Afete Hazırlık Süreci Afet Müdahale Süreci Afet Müdahale Sonrası Kızılay Lojistik Yönetim Sistemi LOJİSTİK NEDİR? İhtiyaçları

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak GAMS Giriş GAMS (The General Algebraic Modeling System) matematiksel proglamlama ve optimizasyon için tasarlanan yüksek seviyeli bir dildir. Giriş dosyası:

Detaylı

Tedarik Zincirlerinde Yer Seçimi Kararları (Location Decisions)

Tedarik Zincirlerinde Yer Seçimi Kararları (Location Decisions) Tedarik Zincirlerinde Yer Seçimi Kararları (Location Decisions) Öğr. Üyesi: Öznur Özdemir Kaynak: Waters, D. (2009). Supply Chain Management: An Introduction to Logistics, Palgrave Macmillan, New York

Detaylı

Türk-Alman Üniversitesi. Ders Bilgi Formu

Türk-Alman Üniversitesi. Ders Bilgi Formu Türk-Alman Üniversitesi Ders Bilgi Formu Dersin Adı Dersin Kodu Dersin Yarıyılı Yöneylem Araştırması WNG301 5 ECTS Ders Uygulama Laboratuar Kredisi (saat/hafta) (saat/hafta) (saat/hafta) 6 2 2 0 Ön Koşullar

Detaylı

2016/1.DÖNEM YEMİNLİ MALİ MÜŞAVİRLİK SINAVLARI YÖNETİM MUHASEBESİ 28 Mart 2016-Pazartesi 18:00

2016/1.DÖNEM YEMİNLİ MALİ MÜŞAVİRLİK SINAVLARI YÖNETİM MUHASEBESİ 28 Mart 2016-Pazartesi 18:00 2016/1.DÖNEM YEMİNLİ MALİ MÜŞAVİRLİK SINAVLARI YÖNETİM MUHASEBESİ 28 Mart 2016-Pazartesi 18:00 SORULAR Soru 1 Aşağıdaki kavramları kısaca açıklayınız (25 puan) a. Fırsat maliyeti (5 puan) b. Faaliyet kaldıracı

Detaylı

Duyarlılık Analizi, modelde veri olarak kabul edilmiş parametrelerde meydana gelen değişimlerin optimum çözüme etkisinin incelenmesidir.

Duyarlılık Analizi, modelde veri olarak kabul edilmiş parametrelerde meydana gelen değişimlerin optimum çözüme etkisinin incelenmesidir. ISLE 403 YÖNEYLEM ARAŞTIRMASI I DERS IV NOTLAR Bağlayıcı Kısıtlar ve Bağlayıcı Olmayan Kısıtlar: Bağlayıcı Kısıtlar, denklemleri optimum çözüm noktasında kesişen kısıtlardır. Bağlayıcı-Olmayan Kısıtlar,

Detaylı

TAM ZAMANINDA ÜRETİM (JUST IN TIME MANUFACTURING)

TAM ZAMANINDA ÜRETİM (JUST IN TIME MANUFACTURING) TAM ZAMANINDA ÜRETİM (JUST IN TIME MANUFACTURING) TAM ZAMANINDA ÜRETİM (JUST IN TIME MANUFACTURING) İstenilen zamanda İstenilen miktarda Her türlü kaynak israfını önleyecek şekilde yapılan üretim Tam Zamanında

Detaylı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN30 OTOMATİK KONTROL 00 Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı Sınav Süresi 90 dakikadır. Sınava Giren Öğrencinin AdıSoyadı :. Prof.Dr.

Detaylı

EXCEL de her bir çalışma alanı bir sayfa olarak adlandırılırken, birden fazla sayfa ise kitap olarak adlandırılır.

EXCEL de her bir çalışma alanı bir sayfa olarak adlandırılırken, birden fazla sayfa ise kitap olarak adlandırılır. EXCEL Bu programın çalışma alanı satır ve sütunların kesişmesinden meydana gelen hücrelerden oluşmaktadır. Satırlar rakamlar ile, sütunlar alfabetik harfler ile temsil edilirler. EXCEL de her bir çalışma

Detaylı

Sloan Yönetim Okulu / Massachusetts Teknoloji Enstitüsü ÖDEV SETİ #1 ÇÖZÜMLER. (a) YANLIŞ

Sloan Yönetim Okulu / Massachusetts Teknoloji Enstitüsü ÖDEV SETİ #1 ÇÖZÜMLER. (a) YANLIŞ Sloan Yönetim Okulu 15.010/15.011 Massachusetts Teknoloji Enstitüsü ÖDEV SETİ #1 ÇÖZÜMLER 1. (a) YANLIŞ Bazı tüketiciler Kola veya Pepsi için güçlü tercihlere sahiplerdir, fakat büyük bir sayısı Kola ve

Detaylı

T.C. KIRIKKALE VALİLİĞİ İL GIDA TARIM VE HAYVANCILIK MÜDÜRLÜĞÜ ARALIK 2013 KIRSAL KALKINMA YATIRIMLARININ DESTEKLENMESİ PROGRAMI

T.C. KIRIKKALE VALİLİĞİ İL GIDA TARIM VE HAYVANCILIK MÜDÜRLÜĞÜ ARALIK 2013 KIRSAL KALKINMA YATIRIMLARININ DESTEKLENMESİ PROGRAMI T.C. KIRIKKALE VALİLİĞİ İL GIDA TARIM VE HAYVANCILIK MÜDÜRLÜĞÜ ARALIK 2013 KIRSAL KALKINMA YATIRIMLARININ DESTEKLENMESİ PROGRAMI RECEP KIRBAŞ İL GIDA TARIM VE HAYVANCILIK MÜDÜRÜ Kırsal Kalkınma Yatırımlarının

Detaylı

SERMAYE PİYASASI KURULU

SERMAYE PİYASASI KURULU SERMAYE PİYASASI KURULU 2008/15 HAFTALIK BÜLTEN 07/04/2008 11/04/2008 A. 02.01.2008 11.04.2008 TARĠHLERĠ ARASINDA KAYDA ALMA KARARI VERĠLEN ĠHRAÇ TALEPLERĠ: Tablo: 1 (YTL) Talep Edilen Kurul Kaydına Alınan

Detaylı

International Olympiad in Informatics 2013

International Olympiad in Informatics 2013 International Olympiad in Informatics 2013 6-13 July 2013 Brisbane, Australia Day 2 tasks game Turkish 1.1 Bazza ve Shazza bir oyun oynuyorlar. Oyun alanı Grid şeklinde düzenlenmiş hücrelerden oluşmaktadır.

Detaylı

Hızlı Düzey Küme Yöntemine Bağlı Retinal Damar Bölütlemesi. Bekir DİZDAROĞLU. KTÜ Bilgisayar Mühendisliği Bölümü

Hızlı Düzey Küme Yöntemine Bağlı Retinal Damar Bölütlemesi. Bekir DİZDAROĞLU. KTÜ Bilgisayar Mühendisliği Bölümü Bekir DİZDAROĞLU KTÜ Bilgisayar Mühendisliği Bölümü bekir@ktu.edu.tr 1/29 Tıbbi imge bölütleme klasik yaklaşımları a) Piksek tabanlı b) Kenar tabanlı c) Bölge tabanlı d) Watershed (sınır) tabanlı e) Kenar

Detaylı

SQL PROGRAMLAMA. Bir batch, bir arada bulunan bir dizi SQL deyimidir. Batch ayıracı GO deyimidir.

SQL PROGRAMLAMA. Bir batch, bir arada bulunan bir dizi SQL deyimidir. Batch ayıracı GO deyimidir. SQL PROGRAMLAMA BATCH Bir batch, bir arada bulunan bir dizi SQL deyimidir. Batch ayıracı deyimidir. SELECT. UPDATE...... DELETE.. BATCH BATCH Özellikleri 1- Bir batch içinde bir deyimde yazım hatası olduğunda

Detaylı

Sayısal Yöntemler (MGMT 214) Ders Detayları

Sayısal Yöntemler (MGMT 214) Ders Detayları Sayısal Yöntemler (MGMT 214) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Sayısal Yöntemler MGMT 214 Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin Dili Dersin

Detaylı

SQL e Giriş. Uzm. Murat YAZICI

SQL e Giriş. Uzm. Murat YAZICI SQL e Giriş Uzm. Murat YAZICI SQL (Structured Query Language) - SQL Türkçe de Yapısal Sorgulama Dili anlamına gelmektedir ve ilişkisel veritabanlarında çok geniş bir kullanım alanına sahiptir. - SQL ile

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DOĞRUSAL PROGRAMLAMA USULLERİNİN ARAZi VE BÜRO ÇALIŞMALARINA UYGULANMASI

DOĞRUSAL PROGRAMLAMA USULLERİNİN ARAZi VE BÜRO ÇALIŞMALARINA UYGULANMASI DOĞRUSAL PROGRAMLAMA USULLERİNİN ARAZi VE BÜRO ÇALIŞMALARINA UYGULANMASI Hüsnü KALE Maden Tetkik ve Arama Enstitüsü, Ankara l. DOĞRUSAL (LİNEER) PROGRAMLAMANIN MADEN İŞLETMECİLİĞİNE UYGULANMASI Teknik

Detaylı

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS KOMBİNATORİK ENİYİLEME ESYE

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS KOMBİNATORİK ENİYİLEME ESYE DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS KOMBİNATORİK ENİYİLEME ESYE621 3+0 3 7 Ön Koşul Dersleri ISE222 veya eşdeğer bir optimizasyona giriş dersi Dersin Dili Dersin Seviyesi Dersin Türü İngilizce

Detaylı

Öğr. Gör. S. M. Fatih APAYDIN

Öğr. Gör. S. M. Fatih APAYDIN Öğr. Gör. S. M. Fatih APAYDIN Dersle İlgili Konular Üretim Yönetimi Süreç Yönetimi Tedarik Zinciri Yönetimi Üretim Planlama ve Kontrolü Proje Yönetimi Kurumsal Kaynak Planlaması-ERP Kalite Yönetimi Modern

Detaylı

1 ÜRETİM VE ÜRETİM YÖNETİMİ

1 ÜRETİM VE ÜRETİM YÖNETİMİ İÇİNDEKİLER ÖNSÖZ III Bölüm 1 ÜRETİM VE ÜRETİM YÖNETİMİ 13 1.1. Üretim, Üretim Yönetimi Kavramları ve Önemi 14 1.2. Üretim Yönetiminin Tarihisel Gelişimi 18 1.3. Üretim Yönetiminin Amaçları ve Fonksiyonları

Detaylı

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü Yrd.Doç.Dr. Kemal ÜÇÜNCÜ

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü Yrd.Doç.Dr. Kemal ÜÇÜNCÜ Öğrenci Numarası Adı ve Soyadı SORU 1. İnsan makine sistemine ilişkin bir şema çizerek insan üzerinde etkili faktörleri gösteriniz. Duyusal işlevlerdeki bir eksiklik kontrolü nasıl etkiler, belirtiniz.

Detaylı

Boole Cebri. (Boolean Algebra)

Boole Cebri. (Boolean Algebra) Boole Cebri (Boolean Algebra) 3 temel işlem bulunmaktadır: Boole Cebri İşlemleri İşlem: VE (AND) VEYA (OR) TÜMLEME (NOT) İfadesi: xy, x y x + y x Doğruluk tablosu: x y xy 0 0 0 x y x+y 0 0 0 x x 0 1 0

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Gezgin Satıcı Problemi 9. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Gezgin Satıcı Problemi Soru n tane şehri olan bir

Detaylı

SIKLIK VE ÇETELE TABLOSU

SIKLIK VE ÇETELE TABLOSU Adım:.. Soyadım: MATEMATİK DERSİ SIKLIK VE ÇETELE TABLOSU (EV ÖDEVİ)ETKİNLİĞİ SIKLIK VE ÇETELE TABLOSU 1. ETKİNLİK 3/C sınıfı öğrencilerine en çok hangi oyunu seviyorsun diye sorulduğunda; 3 kişi saklambaç,

Detaylı