Belirli ntegral Uygulamalar

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Belirli ntegral Uygulamalar"

Transkript

1 iv

2

3 CHAPTER 4 Belirli ntegrl Uygulmlr Belirli integrlin b³lc uygulmlr ³unlrdr. (1) Uzunluk () Düzlemsel e rilerin uzunlu u (2) Aln (3) () Düzlemde iki e ri rsnd kln ln (b) Dönel yüzeylerin ln (4) Ortlm de erler () Fonksiyonun ortlm de eri (b) ntegrl hesbn ortlm de eri (5) Hcim () Dönel cisimlerin hcmi (b) Dilimleme Yöntemiyle hcim Hesplm (c) Kbuk yöntemiyle hcim hesb (6) Fiziksel Uygulmlr () Yo unluk (b) Kütle merkezi (c) Moment (d) i³ (e) Sv bsnc (f) Pppus Teormleri 4.1. Düzlemsel E rilerin Uzunlu u Kendi kendisini kesmeyen sürekli bir C e irisi dü³ünelim. Bu e ri y = f(x), < x < b fonksiyonunun gr i olsun. [, b] rl nn bir P bölüntüsü (4.1) = t < t 1 < t 2 <... < t n = b olsun. P i = (x(t i ), y(t i ) = (x i, y i ) i =, 1, 2,... n noktlr C e risi üzerindedir. imdi P, P 1, P 2,... P n noktlrn rd³k birle³tiren çokgeni dü³ünelim. Bu çokgenin kenrlr küçüldükçe, kenrlrnn uzunluklr toplm C yynn uzunlu un ykl³cktr: Çokgenin kenr uzunlklr toplm P i 1 P i dir. Çokgenin kenr uzunluklrn t i ile göstelim. M = mx{ t i }, olmk üzere L = lim P i 1 P i M limiti vrs, C e risi ölçülebilir (rectible) denilir. 53 i = 1, 2,,..., n

4 54 4. BELIRLI ÐNTEGRAL UYGULAMALARž Fonksiyonun sürekli olms e risinin ölçülebilir olms için yeterli ko³ul de ildir. O nedenle, fonksiyonun sürekli türeve ship olms ko³ulunu koyc z. Düzlemde iki nokt rsndki uzklk formülünden P i 1 P i = lim (xi x i 1 ) 2 + (y i y i 1 ) 2 m oldu unu gözönüne lrsk, x(t i ) x(t i 1 = x (u i ) t i (t i 1 < u i < t i ) y(t i ) y(t i 1 = y (v i ) t i (t i 1 < v i < t i ) konumuyl, (xi x i 1 ) 2 + (y i y i 1 ) 2 [x (u i )] 2 + [y (v i ] 2 t i L = lim M [x i (t)]2 + [y i (t)]2 Çokgenin en uzun kenrnn uzunlu u sfr ykl³rken, yni M iken u i, v i, n olc ndn L = [x (t)] 2 + [y (t)] 2 t i (4.2) (4.3) (4.4) = = = = [x (t)] 2 + [y (t)] 2 (dx ) 2 + ( ) 2 dy 1 + dx 1 + y 2 ( ) 2 dy çkr. Bunlr C yynn uzunlu unu veren formüller olur. Örnek 4.1. Yrçp r oln çemberin uzulu unu bulunuz. Çemberin prmetrik denklemi x = rcost, y = rsint ( t 2π) dir. Burdn t prmetreine göre türev lrsk, dx = rsint, dy = rcost ( t 2π)

5 4.1. DÜZLEMSEL E RILERIN UZUNLU U 55 olur. (4.2)'nin ilk formülünden L = = r = r 2i 2i 2i = 2πr ( rsint)2 + (rcost) 2 sin2 t + cos 2 t bulunur. Son e³itlik çemberin uzunluk formülü olrk kullnlblir: (4.5) L = 2πr Örnek 4.2. Prmetric denklemi oln stroidin yy uzulu unu bulunuz. x = rcos 3 t, y = rsin 3 t ( t 2π, > ) (4.2)'nin ilk formülünü kullnlm: Bu formülü kullnbilmek için olur. Burdn 2 L = 4 [x (t)] 2 + [y (t)] 2 dx = 3cos2 tsint, dy = 3sin2 tcost ( ) 2 dx + de ri (4.2) formülünde kullnlrs, ( ) 2 dy = 9 2 (cos 4 tsin 2 t + sin 4 cos 2 t) = 9 2 cos 2 tsin 2 t(cos 2 t + sin 2 t) = 9 2 cos 2 tsin 2 t 2 L = 12 costsint 2 = 6 costsint = 3cos2t π 2 = 6

6 56 4. BELIRLI ÐNTEGRAL UYGULAMALARž 4.2. Aln hesplr Örnek 4.3. y = 4 x 2 prbol e risi ile Ox ekseni rsnd kln düzlemsel bölgenin lnn bulunuz. (4.6) (4.7) (4.8) (4.9) A = +2 )4 x 2 ) dx = 4 +2 dx = 4(2 ( 2)) 1 3 (23 ( 2) 3 ) = = 32 3 x 2 dx Örnek 4.4. Yrçp r oln kürenin yüzey lnn hesplynz. Küre yüzeyini, ypçp r oln x = rcost, y = rsint ( t π) yr çemberinin Ox ekseni etrfnd dönmesiyle olu³n bir dönel yüzey olrk dü³ünebiliriz. ( ) gere ince, A = 2π y ( dx )2 + ( dx )2 olur. = 2π = 2πr 2 sint = 2πr 2 cost π = 4πr 2 rsint ( rsint) 2 + (rcost) 2 Örnek 4.5. C e risi y = 1 2 x2 ( x 1) olrk veriliyor. Bu yyn Ox etrfnd bir tm dönü³ ypmsyl ³ekildeki gibi borzn benzer bir dönel cisim olur. Bu cismin dönel yüzey lnn bulunuz. ( ) uyrnc A = 2π y = πx x 2 dx 1 + ( dy dx )2 dx

7 4.4. FOKSIYONUN ORTA DE ERI 57 x = tnu, dx = sec 2 u konumuyl A = π = π 4 4 tn 2 u 1 + tn 2 u sec 2 u du tn 2 usec 3 u du = π 1 4 sec3 utnu 1 8 secutnu 1 8 ln secu + tnu π 4 = π ( ) ln( 2 + 1) 4.3. Kutupsl Koordintlrd Aln r = f(θ), (α θ β) fonksiyonu sürekli ise, e ri üzerinde P (r, θ) nokts ile Q(r + r, θ + θ) noktlrn dü³ünelim. OP Q bölgesinin A lnn bulmk istiyoruz. Bu ln OP P ile OQQ lnlr rsnddr. Dolysyl, πr 2 θ 2π A π(r + r)2 θ 2π 1 2 r2 θ A 1 2 (r + r)2 θ yzlbilir. Ardki ln delta ile gösterirsek, 1 2 r2 A A θ 1 (r + r)2 2 e³itsizli i elde edilir. r = f(θ) sürekli oldu undn θ iken olur. Dolysyl, 1 A 2 r2 lim θ δθ 1 2 (r)2 δa θ = 1 2 r2 = 1 2 (f(θ))2 A = 1 2 r2 dθ olur. O hlde (α θ β) tnm rl n kr³lk gelen ln (4.1) A = da = 1 et r 2 dθ 2 olcktr. lph (4.11) 4.4. Foksiyonun Ort De eri Tnm 4.6. [, b] rl nd tnml ve integrllenebilen f fonksiyonu için 1 b e³itli ini s lyn bir c [, b] de eri vrdr. f(x)dx

8 58 4. BELIRLI ÐNTEGRAL UYGULAMALARž Bu de ere fonksiyonun ort de eri (verge) denilir. Bu de er Rolle teoremindeki ortlm de erden frkldr. spt: f fonksiyonu kpl [, b] rl nd minimum m ve mksimum M de erlerini lr. Dolysyl, lnlr rsnd m(b ) b nts vrdr. Her trf (b ) ile bölersek, m 1 (b ) f(x) M(b ) f(x) dx M çkr. Fonksiyonun ortlm de erini s ile gösterelim. Yukrdki e³itsizlikten s ortlm de erinin [m, M] rl nd oldu u sonucu çkr. Kpl bir rlkt sürekli fonksiyon min ve mx rsndki bütün de erleri lc ndn; e er s = m ise s = f(u) olck biçimde bir u [, b] olmldr. Benzer olrk, s = M ise s = f(w) olck biçimde bir w [, b] olmldr. De ilse m < s < M olur. Bu durumd yine r de er teoremi uyrnc s = f(c) e³itli ini s lyn bir c [, b] nokts vrdr. Örnek 4.7. f(x) = x fonksiyonunun [ 2, 1] rl ndki ort (verge) de erini bulunuz. Tnm uygulrsk, f vg = = 2 2 (x 2 + 1) dx (x 2 ) dx + 2 dx = 1 ( 1 3 ( 2) 3) + (1 ( 2)) 3 = = 6 Örnek 4.8. f(x) = x 2 5x + 6cos(πx) fonksiyonunun [ 1, 5 2 ] rl ndki ortlmsn bulunuz f vg = 5 2 ( 1) ( ) dx = 7 ( x3 5 2 x π sin(πx) 2 1 = 12 7π 13 6 = =

9 4.5. DÖNEL CISIMLERI HACIMLERIN 59 Örnek 4.9. f(x) = x 2 + 3x + 2 fonksiyonunun [1,4] rl ndki ortsn bulunuz. 4 f vg = 1 (x 2 + 3x + 2) dx = 1 3 x x3 + 2x = = Örnek 4.1. f(x) = x 2 + x + 1 fonksiyonunun [1,3] rl ndki ortsn bulunuz. 4 f vg = 1 (x 2 + 3x + 2) dx = 1 3 x x2 + 2x = = Dönel Cisimleri Hcimlerin Düzlemsel bir R bölgesinin, kendisini kesmeyen bir do ru etrfnd dönmesiyle olu³n cisme dönel kt cisim denilir. Bu cisim gerçekte uxyd vr olmyn m hyl etti imiz bir cisimdir. Düzlemsel R bölgesinin D do rusun göre üst snr f(x) fonksiyonu ile belirlensin. R bölgesinin her noktsndn onu kesmeyen D do rusun dikmeler inelim. R bölgesi prçl de ilse, dikmelerin yklr D do rusu üzerinde bir [, b] rl olu³turur. D do rusunu koordint ekseni olrk lrsk, [, b] rl f fonksiyonunun tnm bölgesi içinde olcktr. Dikmelerin yklrn içeren [, b] rl nn bir bölüntüsünü (prtition) P ile gösterelim: (4.12) = x < x 1 < x 2 <... < x n = b (4.13) x i = x i x i 1, M = mx{ x i i = 1, 2,..., n} olsun. Her bölüntü içinde bir x i 1 t i x i olck ³ekilde bir t i nokts seçelim. imdi tbn x i ve yüksekli h i = f(t i ) oln dikörtgenin D do rusu etrfnd bir tm dönü³ ypt n vrsylm. Yrçp h i oln bir silindir olu³ur. Bu silindirin hcmi (4.14) πh 2 i x i = πf(t i ) 2 x i 1

10 6 4. BELIRLI ÐNTEGRAL UYGULAMALARž olcktr. Bunlrn toplm d sl S cisminin hcmine ykn olcktr. (4.15) V πf(t i ) 2 x i E er M = mx{ x i } iken (4.15) toplmnn limiti vrs, bu limit (4.16) V = π f 2 (x) dx = π y 2 dx integrli ile ifde edilir ve bu intgrl S cisminin hcmine e³it olur. Dönme ekseni de i³irse, Ox ile Oy eksenlerini yer de i³tirebiliriz: (4.17) V = π d c g 2 (y) dy = π d c x 2 dy imdi dönen R düzlemsel bölgesinin üstten y = f(x), lttn y = g(x) fonksiyonlr ile snrl oldu unu dü³ünelim. Bu düzlem prçsnn bir tm dönü³ ypmsyl olu³n dönel kt cismin hcm f ile g fonksiyonlrn kr³lk gelen iki dönel kt cismin hcimleri frkdr. Dolysyl; (4.18) V = V f V g = π ( f 2 (x) g 2 (x) ) dx 4.6. Dilimleme Yöntemiyle Hcim Bulm ekilde hcmi hesplnck bir cisim görülüyor. Uygun bir Ox- ekseni seçelim. Eksenin hngi konumd seçildi i nck prtik de er t³r. Cismin her noktsndn D do rusun dikmeler inildi ini vrsylm. Dikmelerin yklrn içeren [, b] rl nn bir bölüntüsünü (prtition) P ile gösterelim: (4.19) = x < x 1 < x 2 <... < x n = b (4.2) x i = x i x i 1, M = mx{ x i i = 1, 2,..., n} olsun. x i noktsndn D do rusun dikey olck biçimde çizilen düzlem S cismiyle kesi³ir ve onunl rkesiti düzlemsel bir R i bölgesi olu³turur. R i bölgesinin lnn A(x i ) diyelim. Bölüntünün rd³k x i 1, x i noktlrndn deçen dikey düzlemlerin S ile rkesitleri rsnd kln dilimi dü³ünelim. Bu dilimin hcm ykl³k olrk, x i = x i x i 1 olmk üzere, (4.21) V (x i ) A(x i ). x i olcktr. Bu ykl³k hcimlerin toplm S cisminin V hcmine ykn olur: (4.22) V V (x i ) = A(x i ) x i i= x i bölüntü rlklrnn M mksimum uzunlu u sifr giderken (4.22) toplmnn limiti vrs söz konusu limit (4.23) V = i= A(x) dx integrline e³it olur. Bu de er S cismini hcmidir.

11 4.7. SILINDIRIK KABUKLAR YÖNTEMI Silindirik Kbuklr Yöntemi y = f(x), x =, x = b ve Ox ekseni ile çevrili düzlemsel bölgenin Oy ekseni çevresinde bir tm dönü³ ypt n dü³ünelim. [, b] rl nn bir bölüntüsünü (prtition) P ile gösterelim: (4.24) = x < x 1 < x 2 <... < x n = b (4.25) x i = x i x i 1, M = mx{ x i i = 1, 2,..., n} t i (xi, xi+ xi) oln bir t i nokts seçelim. her t i [, b] için t i noktsndn geçen silindirin ynl ln A(t i ) olsun. Tbn [x i, x i + x i ] ve yüksekli i y i = f(t i ) oln dikdötgen biçimindeki R i bölgesinin Oy ekseni çevresinde dönmesiyle, klnl en çok x i oln silindirik bir cisim olu³ur. Bun kbuk diyelim. Bu silindirin simetri ekseni Oy ekseni, iç yrç x ve d³ yrçp t i dir. Sözkonusu dönü³ esnsnd t i [, b] noktsnn çizdi i çemberin uzunlu u 2πt i olcktr. O hlde t i 'in çizdi i çember üzerinde kuruln silindirin ynl yüzey ln 2πt i f(t i ) = 2πt i y i olur. Ynl yüzeyi çp bir düzlem prçs hline getirelim. Kbu un klnl en çok x i oldu un göre, kbu un hcm en çok V i = A(t i ). x i = 2πt i y i x i olur. Bütün [x i, x i + x i ] bölüntü rlklr için elde edilen kbuklrn toplm ykl³k olrk cismin V hcmine e³it olmldr: (4.26) V V i A(t i ). x i = 2πt i y i x i E er, bölüntü rlklrnn en uzunu sfr ykl³rkek, yni mx M = mx{ x i } iken (4.26) toplmnn limiti vrs, o limit (4.27) V = 2π xy dx integrlidir. Bu integrlin de eri cismin V hcmine e³it olur. E er dönel cisim Ox ekseni etrfnd dönüyors (4.27) yerine, simetriden doly, (4.28) V = 2π d c xy dy formülü elde edilir. imdi R düzlemsel bölgesinin üstten y = f(x), lttn y = g(x), soldn x =, s dn x = b ile snrlnd n vrsylm. R bölgsi Oy ekseni etrfnd bir tm dönme ypt nd olu³n cismin hcmi üstten y = f(x) e risi, lttn Ox ekseni, soldn x =, s dn x = b ile snrl bölgenin bir tm dönü³ü esnsnd olu³n V f hcmi ile üstten y = g(x) e risi, lttn Ox ekseni, soldn x =, s dn x = b ile snrl bölgenin bir tm dönü³ü esnsnd olu³n V g hcminin frkn e³it olcktr: (4.29) V = V f V g = 2π olur. x (f(x) g(x)) dx Örnek y = 2 prbolü ile y = x 3 e risi rsnd kln düzlemsel R bölgesi Oy ekseni etrfnd döndürülüyor. Olu³n kt cismin hcmini bulunuz.

12 62 4. BELIRLI ÐNTEGRAL UYGULAMALARž R bölgesi birinci dörtte birlik bilgededir: ( x 1) dir. Dönel cismin hcmi için (4.29) formülünü uygulybiliriz: ( ) x 4 1 2π 4 x5 5 π 1 V = 2π x(x 2 x 3 ) dx = 2π (x 3 x 4 ) dx Örnek y = (x 1)(x 3) 2 e risi ile Ox ekseni rsnd kln düzlemsel R bölgesi Ox ekseni etrfnd döndürülüyor. Olu³n kt cismin hcmini bulunuz. R bölgesi birinci dörtte birlik bilgededir: ( x 8) dir. Dönel cisim Ox ekseni etrfnd döndü üne göre hcim için (4.29) formülünü uygulybiliriz: ( ) x 4 1 2π 4 x5 5 π 1 V = 2π x(x 2 x 3 ) dx = 2π (x 3 x 4 ) dx Örnek y = 3 x, (, 8) e risi ile Ox ekseni rsnd kln düzlemsel R bölgesi Oy ekseni etrfnd döndürülüyor. Olu³n kt cismin hcmini bulunuz. R bölgesi birinci dörtte birlik bilgededir Fonksiyonu x = f(y) = y 3 biçiminde yzbiliriz. ( x 2) dir. Dönme eylemi Ox ekseni etrfnd oldu un göre dönel cismin hcmi için (4.28) formülünü uygulybiliriz: ( 2π 4y 2 1 ) 2 5 y5 96π 5 V = 2π 2 y(8 y 3 ) dy = 2π 4.8. Hcim hesplr 2 (8y y 4 ) dy Tbn yrçp r ve yüksekli i h oln dik diresel koninin hcmini bulunuz.

13 4.8. HACIM HESAPLARž 63 Koniyi dönel bir cisim olrk dü³ünmek için, koninin simetri eksenini Ox eksenini ve koninin tepe nontsn O b³lngç nokts seçelim. Herhngi bir x [, h] noktsnd Ox eksenine dik düzlemle koninin rkesiti bir çemberdir. Koninin Oy ekseni boyunc oln yn yrtn y = f(x) ile gösterelim. ekildeki OBX üçgeni OB'H üçgenine benzer oldu undn, yni OBX OB H benzerli inden yzlbilir. Burdn y r = x h y = r h x çkr ve sözkonusu dilimin (rkesit) ln (4.3) A(x) = πr2 h 2 x2 olur. Burdn (4.31) V = formülü çkr. h A8x)dx = πr2 h 2 h x 2 dx = 1 3 πr2 h

14

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

TEST - 1 KATI BASINCI. I. yarg do rudur. II. yarg yanl flt r. Buna göre, fiekil-i de K ve L cisimlerinin yere yapt klar bas nçlar eflit oldu una göre,

TEST - 1 KATI BASINCI. I. yarg do rudur. II. yarg yanl flt r. Buna göre, fiekil-i de K ve L cisimlerinin yere yapt klar bas nçlar eflit oldu una göre, TI BSINCI TEST - 1 1 1 π dir π Bun göre, 4 > 1 CEV B de ve cisimlerinin e ypt klr s nçlr eflit oldu un göre, SX S Z + 4 8 S Y I II III CEV B Tu llr n X, Y ve Z noktlr n ypt s nç, X S Y S Z S dir Bun göre,

Detaylı

İntegralin Uygulamaları

İntegralin Uygulamaları Bölüm İntegrlin Uygulmlrı. Aln f ve g, [, b] rlığındki her x için f(x) g(x) eşitsizliğini sğlyn sürekli fonksiyonlr olmk üzere y = f(x), y = g(x) eğrileri, x = ve x = b düşey doğrulrı rsındki S bölgesini

Detaylı

SORU SORU. ABCDEF... düzgün çokgenin ard fl k köfleleridir. m(ebf) = 12 ise

SORU SORU. ABCDEF... düzgün çokgenin ard fl k köfleleridir. m(ebf) = 12 ise GMR erginin bu sy s nd Çokgenler ve örtgenler konusund çözümlü sorulr yer lmktd r. u konud, ÖSS de ç kn sorulr n çözümü için gerekli temel bilgileri ve prtik yollr, sorulr m z n çözümü içinde ht rltmy

Detaylı

Do ufl Üniversitesi Matematik Kulübü Fen Liseleri Yar flmas 2005 Soru ve Yan tlar

Do ufl Üniversitesi Matematik Kulübü Fen Liseleri Yar flmas 2005 Soru ve Yan tlar Mtemtik ünys, 005 Güz o ufl Ünirsitesi Mtemtik Kulübü en Liseleri Yr flms 005 Soru Yn tlr 1. 005 006 sy s n n 11 e bölümünden kln kçt r? Çözüm: 005 3(mod 11) oldu undn 005 006 3 006 = (3 5 ) 401 3 3 (mod

Detaylı

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi Kesir.. Trlı lnı gösteren kesri bulunuz. kesrini ile genişlettiğimizde elde edilecek kesri bulunuz.. Yndki şekilde bir bütün 8 eş prçy bölünmüş ve bu prçlrdn tnesi trnmıştır. Trlı lnı gösteren kesir syısı

Detaylı

1.BÖLÜM SORU. (x+3) (4x 2 13) = 3(x+3) denklemini sa layan x de- erlerinin çarp m kaçt r? x+3 kümesi afla dakilerden hangisidir?

1.BÖLÜM SORU. (x+3) (4x 2 13) = 3(x+3) denklemini sa layan x de- erlerinin çarp m kaçt r? x+3 kümesi afla dakilerden hangisidir? 1.BÖLÜM MATEMAT K Derginin u s s nd kinci Dereceden Denklemler, Eflitsizlikler ve Prol konusund çözümlü sorulr er lmktd r. Bu konud, ÖSS de ç kn sorulr n çözümü için gerekli temel ilgileri ve prtik ollr,

Detaylı

1. Hafta Uygulama Soruları

1. Hafta Uygulama Soruları . Hafta Uygulama Soruları ) x ekseni, x = doğrusu, y = x ve y = x + eğrileri arasında kalan alan nedir? ) y = x 3 ve y = 4 x 3 parabolleri arasında kalan alan nedir? 3) y = x, x y = 4 eğrileri arasında

Detaylı

Şekil 23.1: Düzlemsel bölgenin alanı

Şekil 23.1: Düzlemsel bölgenin alanı Bölüm Belirli İntegral Şekil.: Düzlemsel bölgenin alanı Düzlemde kare, dikdörtgen, üçgen, çember gibi iyi bilinen geometrik şekillerin alanlarını bulmak için uygun formüller kullanıyoruz. Ama, uygulamada

Detaylı

SORULAR. 1. Aşa¼g daki limitleri bulunuz. Cevab n z n aşamalar n belirtiniz. lim. 1 n sin. lim. q 1 x 1+x

SORULAR. 1. Aşa¼g daki limitleri bulunuz. Cevab n z n aşamalar n belirtiniz. lim. 1 n sin. lim. q 1 x 1+x SOULA. Aşa¼g daki limitleri bulunuz. Cevab n z n aşamalar n belirtiniz. lim! lim sin(t )dt sin 4 np n! i= n sin i n. q + arcsin belirli integralini hesalay n z. Cevab n z n aşamalar n belirtiniz. 3. 4

Detaylı

1993 ÖYS. 1. Rakamları birbirinden farklı olan üç basamaklı en büyük tek sayı aşağıdakilerden hangisine kalansız bölünebilir?

1993 ÖYS. 1. Rakamları birbirinden farklı olan üç basamaklı en büyük tek sayı aşağıdakilerden hangisine kalansız bölünebilir? ÖYS. Rkmlrı birbirinden frklı oln üç bsmklı en büyük tek syı şğıdkilerden hngisine klnsız bölünebilir? D) 8 E) 7. +b= b olduğun göre, b kçtır? D) 8 E). İki bsmklı, birbirinden frklı pozitif tmsyının toplmı

Detaylı

BELÝRLÝ (SINIRLI) ÝNTEGRAL

BELÝRLÝ (SINIRLI) ÝNTEGRAL Blirli Ýntgrl BELÝRLÝ (SINIRLI) ÝNTEGRAL f, fonksiyonu [, ] rlðnd intgrllniln ir fonksiyon, (, ) olsun, ifdsin f() fonksiyonun (, ) rlðndki lirli intgrli vy = v = doðrulr il snrl f() ðrisi il o ksni rsndki

Detaylı

Bahçe Mah. Soğuksu Cad. No:73 MERSİN www.sratanitim.com info@sratnitim.com. Tel :0.324 336 41 24 :0.324 336 41 26 Gsm :0.

Bahçe Mah. Soğuksu Cad. No:73 MERSİN www.sratanitim.com info@sratnitim.com. Tel :0.324 336 41 24 :0.324 336 41 26 Gsm :0. Tnıtım Bhçe Mh. Soğuksu Cd. No:73 MERSİN www.srtnitim.com info@srtnitim.com Tel :0.324 336 41 24 :0.324 336 41 26 Gsm :0.532 592 60 05 çık hvdki prestijiniz 1 Tnıtım ,Büfe Durk Rket 118 x 178 cm Gintbord

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

Mat Matematik II / Calculus II

Mat Matematik II / Calculus II Mat - Matematik II / Calculus II Çalışma Soruları Çok Değişkenli Fonksiyonlar: Seviye eğri ve yüzeyler, Limit ve süreklilik wolframalpha.com uygulamasında bir fonksiyonun tanım kümesini bulmak için: x

Detaylı

LYS 2016 MATEMATİK ÇÖZÜMLERİ

LYS 2016 MATEMATİK ÇÖZÜMLERİ LYS 06 MATEMATİK ÇÖZÜMLERİ 6.. 5. 5. ( ) 8 6 65 buluruz. 5. 5 5 Doğru Cevp: C Şıkkı 8 7 ()... 9 buluruz. Doğru Cevp : D Şıkkı 9 8 8 9 8 9 8 9 9 9 9 9 8 buluruz. 8 8 8 8 8 Doğru Cevp : A Şıkkı (n )! (n

Detaylı

ÇÖZÜM SORU. Küpün yan yüzünü açal m. En k sa yol, do rusal uzakl k oldu undan, Bir dikdörtgenler prizmas n n ayr tlar a, b, c dir.

ÇÖZÜM SORU. Küpün yan yüzünü açal m. En k sa yol, do rusal uzakl k oldu undan, Bir dikdörtgenler prizmas n n ayr tlar a, b, c dir. GMTR eginin bu sy s nd Uzy Geometi, isimlein ln ve Hcimlei konusund çözümlü soul ye lmktd. u konud, ÖSS de ç kn soul n çözümü için geekli temel bilgilei ve ptik yoll, soul m z n çözümü içinde t ltmy mçld

Detaylı

GEOMETR 7 ÜN TE III S L ND R

GEOMETR 7 ÜN TE III S L ND R ÜN TE III S L ND R 1. S L ND R K YÜZEY VE TANIMLAR 2. S L ND R a. Tan m b. Silindirin Özelikleri 3. DA RESEL S L ND R N ALANI a. Dik Dairesel Silindirin Alan I. Dik Dairesel Silindirin Yanal Alan II. Dik

Detaylı

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan KAT CİSİMLERİN HACİMLERİ Örnek...2 : =2, =4, =2, = 5 doğrulrı rsınd kln ölgenin O ekseni etrfınd 360 o döndürülm esi le oluşck ktı cism in hcm ini ulunuz İNTEGRAL İLE HACİM HESAB 1. X EKSENİNDE DÖNDÜRMELER

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

GEOMETR 7 ÜN TE IV KON

GEOMETR 7 ÜN TE IV KON ÜN TE IV KON 1. KON K YÜZEY VE TANIMLAR 2. KON a. Tan m b. Dik Dairesel Koni I. Tan mlar II. Dik Dairesel Koninin Özelikleri III. Dönel Koni c. E ik Dairesel Koni 3. D K DA RESEL KON N N ALANI 4. DA RESEL

Detaylı

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ LYS / GOMTRİ NM ÇÖZÜMLRİ eneme -. m ( ) + m( ) > 0 m ( ) + m ( ) > 90 + m ( ) + m ( ) + m( ) + m ( ) > 0 m ( ) > 40 4444444444 0 O hlde, çısının çısının ölçüsünün lbileceği en küçük tmsı değeri 4 evp.

Detaylı

Final sınavı konularına aşağıdaki sorular dahil değildir: 1, 2, 3, 4, 5, 6, 7, 19, 20, 21, 25, 27, 28, 29, 30, 33-b.

Final sınavı konularına aşağıdaki sorular dahil değildir: 1, 2, 3, 4, 5, 6, 7, 19, 20, 21, 25, 27, 28, 29, 30, 33-b. Final sınavı konularına aşağıdaki sorular dahil değildir:,,,, 5, 6, 7, 9,,, 5, 7, 8, 9,, -b. MAT -MATEMATİK (- GÜZ DÖNEMİ) FİNAL ÇALIŞMA SORULARI. Tabanı a büyük eksenli, b küçük eksenli elips ile sınırlanan

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

Uzunluklar Ölçme. Çevre. Alan. Zaman Ölçme. S v lar Ölçme. Hacmi Ölçme

Uzunluklar Ölçme. Çevre. Alan. Zaman Ölçme. S v lar Ölçme. Hacmi Ölçme MTEMT K Uzunluklr Ölçme Çevre ln Zmn Ölçme S v lr Ölçme Hcmi Ölçme Temel Kynk 5 Uzunluklr Ölçme UZUNLUKLRI ÖLÇME Çevremizde metre, sntimetre, milimetre vey bunlr n herhngi ikisi ile söyledi imiz uzunluklr

Detaylı

GEOMETR 7 ÜN TE V KÜRE

GEOMETR 7 ÜN TE V KÜRE ÜN TE V KÜRE 1. KÜRE a. Tan m b. Bir Kürenin Belirli Olmas c. Bir Küre ile Bir Düzlemin Ara Kesiti 2. KÜREN N ALANI 3. KÜREN N HACM 4. KÜREDE ÖZEL PARÇALAR a. Küre Kufla I. Tan m II. Küre Kufla n n Alan

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise; 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise;

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK (10+10 p.) 2. (15 p.) 3. (7+8 p.) 4. (15+10 p.) 5. (15+10 p.) TOPLAM

MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK (10+10 p.) 2. (15 p.) 3. (7+8 p.) 4. (15+10 p.) 5. (15+10 p.) TOPLAM TOBB-ETÜ, MATEMATİK BÖLÜMÜ, GÜZ DÖNEMİ 2014-2015 MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK 2014 Adı Soyadı: No: İMZA: 1. 10+10 p.) 2. 15 p.) 3. 7+8 p.) 4. 15+10 p.) 5. 15+10 p.) TOPLAM 1. a) NOT: Tam

Detaylı

Hacimler ve Çift Katlı İntegraller

Hacimler ve Çift Katlı İntegraller Hacimler ve Çift Katlı İntegraller Kapalı bir Hacimler ve Çift Katlı İntegraller R [a, b] [c, d] {(x, y) R 2 a x b, c y d} dikdörtgeninde tanımlı iki değişkenli bir f fonksiyonunu göz önüne alalım ve önce

Detaylı

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x Çalışma Soruları. Aşağıdaki denklemleri çözünüz: a) 7x = 4x + b) x 7x = x 4 c) x 4 x + = 0. Aşağıdaki eşitsizliklerin çözüm kümelerini belirleyiniz ve aralıklar cinsinden ifade ediniz: a) 4x > 9 b) x 4

Detaylı

[ AN ] doğrusu açıortay olduğundan;

[ AN ] doğrusu açıortay olduğundan; . Bir havuzu bir musluk 6 saatte, başka bir musluk 8 saatte dolduruyor. Bu iki musluk kapalı iken, havuzun altında bulunan üçüncü bir musluk, dolu havuzu saatte boşaltabiliyor. Üç musluk birden açılırsa,boş

Detaylı

ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN

ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN ÖZEL EGE ORTAOKULU ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN HAZIRLAYAN ÖĞRENCĠLER: Olçr ÇOBAN Sevinç SAYAR DANIġMAN ÖĞRETMEN: Gizem GÜNEL AÇIKSÖZ ĠZMĠR 2014 ĠÇĠNDEKĠLER 1. PROJENĠN AMACI... 2 2. GĠRĠġ... 2 3.

Detaylı

Hacimler ve Çift Katlı İntegraller. Kapalı bir. alalım ve önce f(x, y) 0 varsayalım. f nin grafiği, denklemi z = f(x, y) olan bir yüzeydir.

Hacimler ve Çift Katlı İntegraller. Kapalı bir. alalım ve önce f(x, y) 0 varsayalım. f nin grafiği, denklemi z = f(x, y) olan bir yüzeydir. Hacimler ve C ift Katlı Integraller Hacimler ve Çift Katlı İntegraller Kapalı bir R = [a, b] [c, d] = {(x, y) R 2 a x b, c y d} dikdörtgeninde tanımlı iki değişkenli bir f fonksiyonunu göz önüne alalım

Detaylı

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. ise fonksiyonu için, = b olduğuna göre, a b kaçtır? = 1 olur.

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. ise fonksiyonu için, = b olduğuna göre, a b kaçtır? = 1 olur. Öğrenci Seçme Sınavı (Öss) 8 Haziran 6 Matematik II Soruları ve Çözümleri. f (x) + x lim f ( x) a x x ve, x ise fonksiyonu için,, x lim f ( x) b olduğuna göre, a b kaçtır? x A) B) C) D) E) Çözüm x x için,

Detaylı

1.BÖLÜM SORU SORU. Reel say larda her a ve b için a 2 b 2 = (a+b) 2 2ab biçiminde bir ifllemi tan mlan yor.

1.BÖLÜM SORU SORU. Reel say larda her a ve b için a 2 b 2 = (a+b) 2 2ab biçiminde bir ifllemi tan mlan yor. .BÖLÜM MATEMAT K Derginin u sy s n fllem ve Moüler Aritmetik konusun çözümlü sorulr yer lmkt r. Bu konu, ÖSS e ç kn sorulr n çözümü için gerekli temel ilgileri ve prtik yollr, sorulr m z n çözümü içine

Detaylı

( x y ) 2 = 3 2, x. y = 5 tir. x 2 + y 2 2xy = 9. x 2 + y 2 = 19 bulunur. Cevap D / 24 / 0 ( mod 8 ) Pikaçu.

( x y ) 2 = 3 2, x. y = 5 tir. x 2 + y 2 2xy = 9. x 2 + y 2 = 19 bulunur. Cevap D / 24 / 0 ( mod 8 ) Pikaçu. eneme - / YT / MT MTMTİK NMSİ. I. KK (, ) = : Z II. KK (, ) = : Z III. KK ( 8, ) = 7 7 : Z. - - = = ( ) ile. rlrınd sl ise ( ) =,. = tir. + = + = bulunur. evp evp. + / / ( mod 8 ) Pikçu. M n + n n + 8

Detaylı

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK G O M T R İ www.kdemivizyon.com.tr. ÖÜM Prlelkenr ve şkenr örtgen. PRNR rşılıklı kenrlrı prlel oln dörtgenlere prlelkenr denir. [] // [] [] // [] = =. PRNRIN ÖZ İRİ. rşılıklı çılr eş ve rdışık çılr ütünlerdir.

Detaylı

Ö rendiklerimizi Nerelerde Kullanabiliriz? Alan tahmin etmede kullanabiliriz.

Ö rendiklerimizi Nerelerde Kullanabiliriz? Alan tahmin etmede kullanabiliriz. 4.1 Aln Neler Ö renece iz? Geometrik flekillerin lnlr n hesplyc z. Ö rendiklerimizi Nerelerde Kullnbiliriz? Aln thmin etmede kullnbiliriz. Söz Vrl Prlelkenrsl bölge Bir y içinde yklfl k lt metre krelik

Detaylı

JOVO STEFANOVSKİ NAUM CELAKOSKİ. Sekizyıllık İlköğretim

JOVO STEFANOVSKİ NAUM CELAKOSKİ. Sekizyıllık İlköğretim JOVO STEFNOVSKİ NUM CELKOSKİ Sekizyıllık İlköğretim Syın Öğrenci! u kitp, ders proğrmınd öngörülen ders mlzemesini öğrenmek için yrdımcı olcktır. Vektörler, öteleme ve dönme hkkınd yeni ilginç bilgiler

Detaylı

Milli Eğitim Bakanlığı, Talim ve Terbiye Kurulu Bakanlığı'nın 30.12.2010 tarih ve 330 sayılı kararı ile kabul edilen ve 2011 2012 Öğretim Yılından

Milli Eğitim Bakanlığı, Talim ve Terbiye Kurulu Bakanlığı'nın 30.12.2010 tarih ve 330 sayılı kararı ile kabul edilen ve 2011 2012 Öğretim Yılından Milli ğitim knlığı, Tlim ve Terbie urulu knlığı'nın 0.1.010 trih ve 0 sılı krrı ile kbul edilen ve 011 01 Öğretim Yılındn itibren ugulnck progrm göz önüne lınrk hzırlnmıştır. u kitb n her hkk skl d r ve

Detaylı

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2 1. 1 =? Lys 1 7. x + y = (6k) (x k) + y = (k 5) olduğuna göre x y =?. 6 a.b = ise a + 1 b. b 1 a =? 1k 8. x ve y birbirinden farklı pozitif gerçel sayılar olmak üzere, x y y x. x.y = (x y) ise x y =?.

Detaylı

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ BİTİRME ÖDEVİ I ARASINAV SORULARININ ÇÖZÜMLERİ - 6 GÜZ DÖNEMİ ADI SOYADI :... NO :... A A A A A A A SINAV TARİHİ VE SAATİ : Bu sınav 4 sorudan oluşmaktadır ve sınav

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinnd P. Beer E. Russell Johnston, Jr. Ders Notu: Hri ACAR İstnbul Teknik Üniveristesi Tel: 85 1 46 / 116 E-mil: crh@itu.edu.tr Web: http://tls.cc.itu.edu.tr/~crh

Detaylı

(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC

(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC ÜÇGNLR TRİGONOMTRİK ÖZLLİKLR. Kosinüs Teoremi: Herhngi ir üçgeninin, kenr uzunluklrı,, ise; = +... os = +... os = +... os İspt: Şekilde görüldüğü üçgeni, köşesi ile orijin, kenrı ile ekseni ile çkışk şekilde

Detaylı

A A A A A TEMEL MATEMAT K TEST. + Bu bölümdeki cevaplar n z cevap ka d ndaki "TEMEL MATEMAT K TEST " bölümüne iflaretleyiniz. 4.

A A A A A TEMEL MATEMAT K TEST. + Bu bölümdeki cevaplar n z cevap ka d ndaki TEMEL MATEMAT K TEST  bölümüne iflaretleyiniz. 4. TEMEL MTEMT K TEST KKT! + u bölümde cevplyc n z soru sy s 40 t r + u bölümdeki cevplr n z cevp k d ndki "TEMEL MTEMT K TEST " bölümüne iflretleyiniz.. ( + )y + = 0 (b ) + 4y 6 = 0 denklem sisteminin çözüm

Detaylı

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. = 1 olur.

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. = 1 olur. Öğrenci Seçme Sınavı (Öss) / 8 Haziran 6 Matematik II Soruları ve Çözümleri x, x. f(x) x ise fonksiyonu için,, x olduğuna göre, a b kaçtır? lim + x f ( x) a ve lim x f ( x) b A) B) C) D) E) Çözüm x x için

Detaylı

HİPERBOL. Merkezi O noktası olan hiperbole merkezil hiperbol denir. F ve F' noktalarına hiperbolün odakları denir.

HİPERBOL. Merkezi O noktası olan hiperbole merkezil hiperbol denir. F ve F' noktalarına hiperbolün odakları denir. Merkezi Hiperoll HİPERBL Merkezi noktsı oln hiperole merkezil hiperol denir. F ve F' noktlrın hiperolün odklrı denir. dklr rsı uzklık FF' dir. odklr rsı uzklık e sl eksen uzunluğu değerine hiperolün dış

Detaylı

Kontak İbreli Termometreler

Kontak İbreli Termometreler E-mil: Fx: +49 661 6003-607 www.jumo.net www.jumo.co.uk www.jumo.us Veri Syfsı 608523 Syf 1/8 Kontk İbreli Termometreler Özellikler Pnel montj vey ek cihz gibi proses değeri göstergeli sıcklık kontrolörü

Detaylı

f fonksiyonuna bir üç değişkenli fonksiyon adı verilir. Daha çok değişkenli fonksiyonlar benzer şekilde tanımlanır.

f fonksiyonuna bir üç değişkenli fonksiyon adı verilir. Daha çok değişkenli fonksiyonlar benzer şekilde tanımlanır. Çok Değişkenli Fonksiyonlar Tanım 1. D düzlemin bir bölgesi, f de D nin her bir (x, y) noktasına bir f(x, y) reel sayısı karşılık getiren bir fonksiyon ise f fonksiyonuna bir iki değişkenli fonksiyon adı

Detaylı

a 2 =h 2 +r 2 DERS: MATEMATĐK 8 KONU:KONĐ FORMÜLLERĐ ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN ADI: SOYADI:

a 2 =h 2 +r 2 DERS: MATEMATĐK 8 KONU:KONĐ FORMÜLLERĐ ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN ADI: SOYADI: 1) KONĐ: Bi çembein bütün noktlının çembein dışındki bi nokt ile bileştiilmesinden elde edilen cisme koni deni. Kısc Koni, tbnı die oln pimitti. DĐK KONĐ PĐRAMĐT 1-A)DĐK KONĐ: Bi dik üçgenin, dik kenlındn

Detaylı

BÖLÜM 5. MATRİS ve DETERMİNANTLAR 5.1. MATRİSLER. Taşkın, Çetin, Abdullayeva. reel sayılardan oluşan. olmak üzere tüm a.

BÖLÜM 5. MATRİS ve DETERMİNANTLAR 5.1. MATRİSLER. Taşkın, Çetin, Abdullayeva. reel sayılardan oluşan. olmak üzere tüm a. MTEMTİK BÖLÜM 5 Tşkın, Çetin, bdullyev MTRİS ve DETERMİNNTLR 5 MTRİSLER Tnım : mni,,, j + olmk üzere tüm ij reel syılrdn oluşn m m n n mn tblosun m x n tipinde bir mtrisi denir ve kısc şeklinde gösterilir

Detaylı

Komisyon. ALES EŞİT AĞRILIK ve SAYISAL ADAYLARA TAMAMI ÇÖZÜMLÜ 10 DENEME ISBN 978-605-364-214-5

Komisyon. ALES EŞİT AĞRILIK ve SAYISAL ADAYLARA TAMAMI ÇÖZÜMLÜ 10 DENEME ISBN 978-605-364-214-5 Komisyon LES EŞİT ĞRILIK ve SYISL DYLR TMMI ÇÖZÜMLÜ 10 DENEME ISBN 97-605-36-1-5 Kitpt yer ln ölümlerin tüm sorumluluğu yzrın ittir. Pegem kdemi Bu kitın sım, yyın ve stış hklrı Pegem kdemi Yy. Eğt. Dn.

Detaylı

Bir Fonksiyonun İlkeli. fonksiyonuna I üzerinde f nin ilkeli denir.

Bir Fonksiyonun İlkeli. fonksiyonuna I üzerinde f nin ilkeli denir. Bir Fonksiyonun İlkeli Tanım: Eğer bir I aralığındaki her x için F (x) = f(x) ise, F fonksiyonuna I üzerinde f nin ilkeli denir. Bir Fonksiyonun İlkeli Örneğin, f = x 2 olsun. Eğer Kuvvet Kuralı nı aklımızda

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =?

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =? Lisns Yerleştirme Sınvı (Ls ) 6 Hirn Mtemtik Sorulrının Çöümleri 8 sı tnınd verilen ( ) 8 sısının sı tnınd ılışı? Bu durumd ( ) 8 sısı önce tnın çevrilir Sonr tnınd ılır ( ) 8 8 8 8 Bun göre ( ) 8 ( )

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

Hiperbolde Yolculuk (ve Poncelet Teoremleri)

Hiperbolde Yolculuk (ve Poncelet Teoremleri) Kpk Konusu: oncele Teoremleri Hiperbolde Yolculuk (ve oncele Teoremleri) Bu yz d hiperbolleri ele lc z. Tek bfl n... Yz m zdki her fley. Nzmi lker le Nâz m Terzio lu nun yzd Konikler [fiirkei üreibiye

Detaylı

TYT / MATEMATİK Deneme - 6

TYT / MATEMATİK Deneme - 6 . Herbir hücrenin sol üst köşesinde kreler içine yzıln syılrın işlemin sonucunu verdiğine dikkt ederek syılrı yerleştirmeliyiz. 7 6 T N M 5 6 T X. ^ h ^ h bulur. M N. 0 6 6 6 0 5 5 5 6 6 5 5 ^5h ^5h ^h

Detaylı

Yükseköğretime Geçiş Sınavı (Ygs) / 1 Nisan 2012. Matematik Soruları ve Çözümleri

Yükseköğretime Geçiş Sınavı (Ygs) / 1 Nisan 2012. Matematik Soruları ve Çözümleri Yükseköğretime Geçiş Sınvı (Ygs) / Nisn 0 Mtemtik Sorulrı ve Çözümleri. 0,5, işleminin sonuu kçtır? 0,5 0, A) 5 B) 5,5 C) 6 D) 6,5 E) 7 Çözüm 0,5 0,5, 0, 05 50 5.5.4 5.5. 4 4 0 5 .. 4.6 6 işleminin sonuu

Detaylı

2 olur. ADI: SOYADI: DERS: MATEMATĐK KONU: KESĐK PĐRAMĐT KONU ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN

2 olur. ADI: SOYADI: DERS: MATEMATĐK KONU: KESĐK PĐRAMĐT KONU ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN 1)KESĐK PĐRAMĐT: Bir pirmit, tbn prlel bir düzlem ile kesildiğinde, tbn düzlemi ile kesit üzei rsınd kln kısım kesik pirmit denir. KESĐK PĐRAMĐDĐN YANAL YÜZ ALANI: Bir düzgün kesik pirmidin nl lnı, lt

Detaylı

MAT MATEMATİK I DERSİ

MAT MATEMATİK I DERSİ MATEMATİK BÖLÜMÜ MAT 0 - MATEMATİK I DERSİ ÇALIŞMA SORULARI Bölüm : Fonksiyonlar. Tanım Kümesi ) f() = ln fonksiyonu verilsin. Tanım kümesini bulunuz. ((0, )\{}) Bölüm : Limit ve Süreklilik.. Limit L Hospital

Detaylı

Mil li E i tim Ba kan l Ta lim ve Ter bi ye Ku ru lu Bafl kan l n n 30.12.2009 ta rih ve 334 sa y l ka ra r ile ka bul edi len ve 2010-2011 Ö re tim

Mil li E i tim Ba kan l Ta lim ve Ter bi ye Ku ru lu Bafl kan l n n 30.12.2009 ta rih ve 334 sa y l ka ra r ile ka bul edi len ve 2010-2011 Ö re tim Mil li i tim kn l T lim ve Ter bi ye u ru lu fl kn l n n 0..009 t rih ve s y l k r r ile k bul edi len ve 00-0 Ö re tim Y l n dn iti b ren uy gu ln ck oln prog r m gö re h z r ln m flt r. Genel Müdür Temel

Detaylı

FONKS YONLAR. Fonksiyon. Fonksiyon Olma Şartları. çözüm. kavrama sorusu. çözüm. kavrama sorusu. çözüm. kavrama sorusu

FONKS YONLAR. Fonksiyon. Fonksiyon Olma Şartları. çözüm. kavrama sorusu. çözüm. kavrama sorusu. çözüm. kavrama sorusu FONKS YONLR Fonksion ve o olmn iki küme olsun. krtezen çrp m n n lt kümelerine nt denir. u nt lrdn dki rtlr s lnlr kümesinden kümesine tn mlnm onksion denir. Fonksionlr genelde, g, h gii küçük hrlerle

Detaylı

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik)

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik) ÜÇGN LN Üçgende ln Şekilde verilen üçgeninde,, üçgenin köşeleri, [], [], [] üçgenin kenrlrıdır. c b üçgeninin kenrlrı dlndırılırken, her kenr krşısınd bulunn köşenin hrfi ile isimlendirilir. üçgeninin

Detaylı

T I M U R K A R A Ç AY- H AY D A R E Ş - İ B R A H I M İ B R A H I M O Ğ L U C A L C U L U S S E Ç K I N YAY I N C I L I K

T I M U R K A R A Ç AY- H AY D A R E Ş - İ B R A H I M İ B R A H I M O Ğ L U C A L C U L U S S E Ç K I N YAY I N C I L I K T I M U R K A R A Ç AY- H AY A R E Ş - İ B R A H I M İ B R A H I M O Ğ L U C A L C U L U S S E Ç K I N YAY I N C I L I K Copyright 7 Timur Karaçay-Haydar Eş-İbrahim İbrahimoğlu BU KITAP BAŞKENT ÜNIVERSITESINE

Detaylı

ANALİTİK GEOMETRİ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI

ANALİTİK GEOMETRİ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİTİK GEOMETRİ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİTİK GEOMETRİ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı ya da bir kısmı, yazarın izni olmaksızın,

Detaylı

MAT MATEMATİK I DERSİ

MAT MATEMATİK I DERSİ MATEMATİK BÖLÜMÜ MAT 0 - MATEMATİK I DERSİ ÇALIŞMA SORULARI Bölüm : Fonksiyonlar. Tanım Kümesi ) f() = ln fonksiyonu verilsin. Tanım kümesini bulunuz. ((0, )\{}) Bölüm : Limit ve Süreklilik.. Limit L Hospital

Detaylı

S4 u(x, y) = ln ( sin y. S5 u(x, y) = 2α 2 sec(α(x 4α 2 t)) fonksiyonunun

S4 u(x, y) = ln ( sin y. S5 u(x, y) = 2α 2 sec(α(x 4α 2 t)) fonksiyonunun Kısmi Türevli Denklemler Problem Seti-I S1 u = u(x, y ve a, b, c R olmak uzere, ξ = ax + by ve η = bx ay degisken degistirmesi yaparak n cozunuz. au x + bu y + cy = 0 S2 Aşa gidaki denklemleri Adi Diferensiyel

Detaylı

12. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI

12. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI 12. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI Progrmın öğrencilerde geliştirmeyi hedeflediği becerilerle 12. sınıf mtemtik öğretim progrmı ilişkisi Modelleme/Problem çözme Mtemtiksel Süreç Becerileri

Detaylı

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ LYS / GOMRİ NM ÇÖZÜMLRİ eneme -. 9 9 de [] hem çı oty hem yükseklik olduğu için ikizken üçgen u duumd 9 cm ve olu. de [ ] ot tbn olduğu için cm. α 0 0 α 0 m ^ h α olsun. 0 - - 90 üçgenini çizip desek ve

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

ÖZEL EGE LİSESİ PEDAL DÖRTGENLERİNDE GEOMETRİK EŞİTSİZLİKLER

ÖZEL EGE LİSESİ PEDAL DÖRTGENLERİNDE GEOMETRİK EŞİTSİZLİKLER ÖZEL EGE LİEİ PEDAL DÖRTGENLERİNDE GEOMETRİK EŞİTİZLİKLER HAZIRLAYAN ÖĞRENCİLER: Güneş BAŞKE Zeynep EZER DANIŞMAN ÖĞRETMEN: ereny ŞEN İZMİR 06 İçindekiler yf. Giriş.... Amç.... Ön Bilgiler...... 3. Yöntem....

Detaylı

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10 Diferenisyel Geometri 2 Yazokulu 2010 AdıSoyadı: No : 1. ϕ (u, v) = ( u + 2v, v + 2u, u 2 v ) parametrizasyonu ile verilen M kümesinin bir regüler yüzey olduğunu gösteriniz. (15 puan) 3. V, R 3 ün açık

Detaylı

KUTUPSAL KOORDİNATLAR

KUTUPSAL KOORDİNATLAR KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.

Detaylı

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ ÜZGÜN ŞGN ( ÜZGÜN ŞGN TNII, ÖZİRİ ĞRNİRR ) ÜZGÜN ŞGN ÖZİ 3 TNI V ÖZİRİ enr syısı 5 oln düzgün çokgene öşe düzgün beşgen denir. üzgün beşgenin; köşeleri,,, ve dir, kenrlrı [], [], β θ [], [] ve [] dır,

Detaylı

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90 G O M T R İ. ÖLÜM Üçgende çılr. ÜÇGN oğrusl olmyn üç noktyı birleştiren doğru prçlrının birleşim kümesine üçgen denir. ış çı ış çı ış çı. ÇILRIN GÖR ÜÇG N ÇŞİTLR İ r çılı Üçgen Üç çının ölçüsü de 90 den

Detaylı

Ders 05. Çok değişkenli Fonksiyonlar. Kısmi Trevler. 5.1 Çözümler:Alıştırmalar 05. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay

Ders 05. Çok değişkenli Fonksiyonlar. Kısmi Trevler. 5.1 Çözümler:Alıştırmalar 05. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 48 Bölüm 5 Ders 05 Çok değişkenli Fonksiyonlar. Kısmi Trevler 5.1 Çözümler:Alıştırmalar 05 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 1. Soru 1 Aşağıda verilen soru işaretlerinin yerine gelmesi gereken değerleri

Detaylı

Ox ekseni ile sınırlanan bölge, Ox ekseni

Ox ekseni ile sınırlanan bölge, Ox ekseni DERSİN ADI: MATEMATİK II MAT II (06) ÜNİTE: BELİRLİ İNTEGRALLERİN UYGULAMALARI. HACİM HESABI GEREKLİ ÖN BİLGİLER 1. Eğri Çizimleri. İntegrl formülleri KONU ANLATIMI. HACİM HESABI ) Disk Yöntemi = f ()

Detaylı

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500 984 ÖYS. + + a a + a + a işleminin sonucu nedir? a A) +a B) a C) +a D) a E) +a a b ab. ifadesinin kısaltılmış biçimi a b + a b + ab a + b A) a b a b D) a b B) a b a + b E) ab(a-b) C) a b a + b A) 87 B)

Detaylı

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir.

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir. FONKSİYONLAR Boş kümeden frklı oln A ve B kümeleri verildiğinde, A kümesindeki her elemnı B kümesindeki ir elemn krşı getiren ğıntıy A dn B ye fonksiyon denir. y=f(x) ile gösterilir. Bir diğer ifdeyle

Detaylı

ÖLÜM 3 DENGE, İR KUVVETİN MOMENTİ 3.1 ir Kuvvetin Momenti elirli bir doğrultu ve şiddete sahip bir kuvvetin, bir cisim üzerine etkisi, kuvvetin etki çizgisine bağlıdır. Şekil.3.1 de F 1 kuvveti cismi sağa

Detaylı

BÖLÜM 1. stanbul Kültür Üniversitesi. Fonksiyonlar - Özellikleri ve Limit Kavram. ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir.

BÖLÜM 1. stanbul Kültür Üniversitesi. Fonksiyonlar - Özellikleri ve Limit Kavram. ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir. BÖLÜM 1 0, Q 1. f() = 1, R/Q, Fonksiyonlar - Özellikleri ve Limit Kavram ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir. Buna göre a³a da verilen tanm bölgeleri altnda görüntü cümlelerini

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

( ) ( ) ÖABT Analitik Geometri KONU TESTİ Noktanın Analitik İncelemesi. Cevap D. Cevap C. noktası y ekseni üzerinde ise, a + 4 = 0 A 0, 5 = 1+

( ) ( ) ÖABT Analitik Geometri KONU TESTİ Noktanın Analitik İncelemesi. Cevap D. Cevap C. noktası y ekseni üzerinde ise, a + 4 = 0 A 0, 5 = 1+ ÖABT Analitik Geometri KONU TESTİ Noktanın Analitik İncelemesi. a+ = b 4. a = b 0+ a b a b = b a+ b = 0. A ( a + 4, a) noktası y ekseni üzerinde ise, ( + ) a + 4 = 0 A 0, 5 a = 4 B b, b 0 noktası x ekseni

Detaylı

ATALET MOMENTİ. Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması.

ATALET MOMENTİ. Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması. ATALET MOMENTİ Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması. UYGULAMALAR Şekilde gösterilen çark büyük bir kesiciye bağlıdır. Çarkın kütlesi, kesici bıçağa

Detaylı

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir.

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir. 1 İNTEGRAL BİR FONKSİYONUN DİFERANSİYELİ Tanım: f: [a,b] R, x f(x) fonksiyonu (a,b) aralığında türevli olmak üzere, x değişkeninin değişme miktarı x ise f '(x). x ifadesine f(x) fonksiyonunun diferansiyeli

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x Çalışma Soruları. Aşağıdaki denklemleri çözünüz: 7x = 4x + b) x 7x = x 4 c) x 4 x + = 0. Aşağıdaki eşitsizliklerin çözüm kümelerini belirleyiniz ve aralıklar cinsinden ifade ediniz: 4x > 9 b) x 4 < - c)

Detaylı

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır. LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden

Detaylı

Ders Çözümler: 9.2 Alıştırmalar Prof.Dr.Haydar Eş. 2. Prof.Dr.Timur Karaçay /1a: Kritik noktalar:

Ders Çözümler: 9.2 Alıştırmalar Prof.Dr.Haydar Eş. 2. Prof.Dr.Timur Karaçay /1a: Kritik noktalar: 100 Bölüm 9 Ders 09 9.1 Çözümler: 1. Prof.Dr.Haydar Eş 2. Prof.Dr.Timur Karaçay 9.2 Alıştırmalar 9 1. 215 /1a: Kritik noktalar: f (x) = 3x 2 + 6x = 0 = x 1 = 0, x 2 = 2 Yerel max değer: ( 2,1) Yerel min

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI A R, a A ve f de A da tanımlı bir fonksiyon olsun. Eğer f(x) f(a) lim x a x a limiti veya x=a+h koymakla elde edilen f(a+h) f(a) lim h 0 h Bu türev f (a), df dx limiti varsa f fonksiyonu

Detaylı

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ YS / GMTİ NM ÇÖZÜMİ eneme -.. 70 70 b desek olu. b Ç ` j cm olduğundn + b b - dı. de 6 @ ot tbnı çizilise benzelik ydımıyl biim bulunu. 6@ ' 6@ olduğundn m^\ h m ^\ h 70c di. ikiz ken üçgen çıktığındn

Detaylı

4. y=-2 doğrusundan 5 birim uzaklıkta. 5. O(0,0) başlangıç noktasından 3 birim. 6. A(1,2) ve B(5,8) noktalarından eşit. 7. x=-2 doğrusundan ve A(2,0)

4. y=-2 doğrusundan 5 birim uzaklıkta. 5. O(0,0) başlangıç noktasından 3 birim. 6. A(1,2) ve B(5,8) noktalarından eşit. 7. x=-2 doğrusundan ve A(2,0) GEOMETRİK YER HAZİNE-1 Analitik düzlemde, verilen bir ortak özelliği sağlayan P(x,y) noktalarının apsis ve ordinatı arasındaki bağıntıya Geometrik yer denklemi denir. 4. y=-2 doğrusundan 5 birim uzaklıkta

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

DRC. 1. x 2 + 2xy + y 2 = 25 x + y = ± , 4, 6,..., 48 numaralı bölmeler yakılıyor. ( 24 tane ) 5. f ( x + 3 ) = x.

DRC. 1. x 2 + 2xy + y 2 = 25 x + y = ± , 4, 6,..., 48 numaralı bölmeler yakılıyor. ( 24 tane ) 5. f ( x + 3 ) = x. eneme - 8 / YT / MT MTMTİK NMSİ. + + + ± + 8 9 9. s( + ) s() İ İ + 9 9 7... ( I ) + 9 + 9 7... ( II ) I ve II den [ 7, 7 ] fklı tm sı değei lbili. evp.,,,..., 8 numlı bölmele kılıo. ( tne ), 9,,..., numlı

Detaylı

DERSİN ADI: MATEMATİK II MAT II (12) KUTUPSAL KOORDİNATLAR VE UYGULAMALARI 1. KUTUPSAL KOORDİNATLAR 2. EĞRİ ÇİZİMLERİ

DERSİN ADI: MATEMATİK II MAT II (12) KUTUPSAL KOORDİNATLAR VE UYGULAMALARI 1. KUTUPSAL KOORDİNATLAR 2. EĞRİ ÇİZİMLERİ DERSİN ADI: MATEMATİK II MAT II (1) ÜNİTE: KUTUPSAL KOORDİNATLAR VE UYGULAMALARI 1. KUTUPSAL KOORDİNATLAR. EĞRİ ÇİZİMLERİ GEREKLİ ÖN BİLGİLER 1. Trigonometrik fonksiyonlar. İntegral formülleri KONU ANLATIMI

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı