Istatistik ( IKT 253) 1. Çal şma Sorular - Cevaplar

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Istatistik ( IKT 253) 1. Çal şma Sorular - Cevaplar"

Transkript

1 TOBB-ETÜ, Iktisat Bölümü Istatistik ( IKT 253) 1. Çal şma Sorular - Cevaplar Soru 1: Bir hafta boyunca saat 2-3pm aras nda bir ma¼gazay ziyaret eden insan say s aşa¼g daki gibidir Pzt. Sa. Çar. Per. Cu. Cmt. Paz. Ma¼gaza 1:

2 a-) Bu data için frekans da¼g l m tablosunu (frequency distribution table), günlük ziyaretçi say s n n toplam ziyaretçi say s içindeki yüzdesiyle haz rlay n z Pzt. Sa. Çar. Per. Cu. Cmt. Paz = 4:5 %11:3 %9 %11:3 %16 %25 %22:5 2

3 b-) Ziyaretçi say lar n çubuk gra k (bar chart), dairesel gra kte (pie chart), ve çizgisel gra kle (line chart) ile gösteriniz (gra klerin çok düzgün gözükmelerine gerek duymadan) 3

4 c-) Datan n pareto diyagram n (kümülatif da¼g l mla beraber) çiziniz Pzt. Sa.. Çar. Per. Cu. Paz. Cmt %4:5 %11:3 %9 %11:3 %16 %25 %22:5 %4:5 %15:8 %24:8 %36 %52 %75 %100 4

5 d-) Ma¼gazay günde ortalama kaç kişinin ziyaret etti¼gini, yani ortalamas n (mean), ayr ca medyan (median), ve modunu da (mode) hesaplay n z Pzt. Sa. Çar. Per. Cu. Cmt. Paz. Ma¼gaza 1: Mean = x = ( n P i=1 x i )=n = ( )=7 = 31:4 Medyan = 25 Mod : 25 5

6 e-) Bu datay hangi merkezi e¼gilim ölçütü (measure of central tendency) en iyi tan mlayabilir, yorumlay n z Pzt. Sa. Çar. Per. Cu. Cmt. Paz. Ma¼gaza 1:

7 f-) Örneklem varyans n (variance), standart sapmas n (standard deviation), ve varyasyon katsay s n (coe cient of variation) bulunuz V ariance = s 2 P = ( N (x i x) 2 )=(n 1) = i=1 [(10 31:4) 2 + (25 31:4) 2 + (20 31:4) 2 + (25 31:4) 2 +(35 31:4) 2 + (55 31:4) 2 + (50 31:4) 2 ]=6 = 264:2 Standartsapma = s = p 264:2 = 16:25 V aryasyon kat: = s 16: = 100 = %50 x 31:4 7

8 g-) Datan n ortalamas na en fazla iki standart sapma uzakl ktaki say lar tan mlayan aral ¼g bulunuz [x 2s; x+2s] = [31:4 216:25; 31:4+216:25] = = [ 1; 63] 8

9 h-) Bu datan n uzun vadede tekrarland ¼g n düşündü¼günü ortaya ç kacak da¼g l m n simetrik olup olmad ¼g ; simetrik de¼gilse hangi tarafa do¼gru çarp k (skewed) oldu¼gunu yorumlay n z Left Skewed Mean < Median Symmetric Mean = Median Right Skewed Median < Mean Sa¼ga yat k 9

10 i-) Datan n çarp kl ¼g n (skewness) hesaplay n z ve bir önceki seçene¼gi yorumlay n z Skewness = NP (x i x) 3 i=1 (n 1)s 3 = 0:3 10

11 j Ma¼gazan n ziyaretçi baş na ortalama kazanc n haftaiçi 5TL, haftasonunde ise 3 TL kabul edelim 11

12 j-) Ma¼gazan n günlük kazanç datas n çubuk gra k (bar chart) ile gösteriniz Pzt. Sa. Çar. Per. Cu. Cmt. Paz

13 k-) Kazanç datas n n ortalamas n (ki bu ziyaretçi datan n yat a¼g rl kl ortalamas olacakt r) ve varyasyonunu hesaplay n z P Mean = x = ( n x i )=n = ( i= )=7 = 127:14 V ariance = s 2 P = ( N (x i x) 2 )=(n 1) = 1843 i=1 Standart sapma = s = 43 13

14 l-) Kazanç datas n n şekli (skewness) ziyaretçi say s n n şekline göre ne yöne de¼gişti, yorumlay n z P Skewness = ( N (x i x) 3 )=[(n 1)s 3 ] = 0 i=1 j 14

15 Ayn yerleşkede başka bir giyim ma¼gaz s n ziyaret eden insan say s say s aşa¼g daki gibi olsun Pzt. Sa. Çar. Per. Cu. Cmt. Paz. Ma¼gaza 2:

16 m-) Iki datay saç l m gra ¼gi (scatter plot), ve kenar kenara çubuklu gra k (side-by-side bar chart) ile çiziniz 16

17 n-) Ikinci ma¼gazan n günlük ortalama ziyaretçi say s n, ve bunun standart sapmas n bulup, bunu birinci ma¼gaza için buldu¼gunuz de¼gerlerle karş laşt r n z Mean = y = ( n P i=1 y i )=n = 31:14 V ariance = s 2 P = ( N (y i y) 2 )=(n 1) = 115:7 i=1 Standartsapma = s = 10:7 17

18 o-) Ikinci ma¼gazan n günlük ziyaretçi say s da¼g l m n n varyasyon katsay s n (coe cient of variation) bulup, bunlar daha önce buldu¼gunuz ilk ma¼gazan nkiyle karş laşt r z V aryasyon katsay{s{ = (s=x) 100 = %28 18

19 p-) n ve o ş klar nda yapt ¼g n z karş laşt rmalar n birbiriyle ilgisini yaz p yorumlay n z 19

20 r-) Iki data aras ndaki örneklem kovaryans n (covariance), ve korelasyon katsay s n (correlation coe cient) hesaplay p, yorumlay n z P Cov(x; y) = ( N (x i x)(y i y))=(n 1) = 168 r = i=1 Cov(x; y) s x s y = : = 0:96 20

21 s-) E¼ger 2. ma¼gazan n ziyaretçi baş na ortalama kazanc haftaiçi 3TL, haftasonunda 5TL ise, bu ma¼gazan n günlük ortalama kazanc n ve bu kazanc n varyasyonunu hesaplay n z Mean = y = ( n P i=1 y i )=n = 118:57 V ariance = s 2 P = ( N (y i y) 2 )=(n 1) = 5154 i=1 Standartsapma = s = 72 21

22 t-) Iki ma¼gazan n ortalama kazançlar n, ve bunlar n standart sapmalar n karş laşt r n z. Buradaki sonuçlar n ş kk ndaki sonuçlarla karş laşt r n z j 22

23 u-) Başka bir ma¼gazan n ayn zamanlarda ortalama ziyaretçi say s 40, bu say n n varyasyonu da 25 olsun. Chebychev teoremine kullanarak, bu da¼g l m n 30 ile 50 aras nda olabilecek minimum gözlem yüzdesini hesaplay n z j Chebyshev s Theorem: For any distribution (not necessarily normal) with mean and standard deviation, and k > 1, the part of the observations that fall within the interval k 23

24 (i.e. k standard deviations of the mean) includes at least this much of the data 100[1 (1=k 2 )]% j [30; 50] = [40 2 5; ] = [x 2s; x + 2s] ) k = 2 and (1 1=k 2 ) = (1 1=2 2 ) = 75% 24

Istatistik ( IKT 253) 5. Çal şma Sorular - Cevaplar 10. CHAPTER ( HYPOTHESIS TESTS OF A SINGLE POPULATION) 1 Ozan Eksi, TOBB-ETU

Istatistik ( IKT 253) 5. Çal şma Sorular - Cevaplar 10. CHAPTER ( HYPOTHESIS TESTS OF A SINGLE POPULATION) 1 Ozan Eksi, TOBB-ETU TOBB-ETÜ, Iktisat Bölümü Istatistik ( IKT 253) 5. Çal şma Sorular - Cevaplar 10. CHAPTER ( HYPOTHESIS TESTS OF A SINGLE POPULATION) 1 Soru 1 (Tests of the Mean of a Normal Distribution: Population Variance

Detaylı

Istatistik ( IKT 253) 4. Çal şma Sorular - Cevaplar 7. CHAPTER (DISTRIBUTION OF SAM- PLE STATISTICS) 1 Ozan Eksi, TOBB-ETU

Istatistik ( IKT 253) 4. Çal şma Sorular - Cevaplar 7. CHAPTER (DISTRIBUTION OF SAM- PLE STATISTICS) 1 Ozan Eksi, TOBB-ETU TOBB-ETÜ, Iktisat Bölümü Istatistik ( IKT 253) 4. Çal şma Sorular - Cevaplar 7. CHAPTER (DISTRIBUTION OF SAM- PLE STATISTICS) 1 Soru 1-(Sampling Distribution of Sample Means): Bir bölgedeki evlerin ortalama

Detaylı

Istatistik ( IKT 253) 3. Çal şma Sorular - Cevaplar 5. CHAPTER (DISCRETE PROBABIL- ITY DISTRIBUTIONS - SÜREKS IZ OLASI- LIK DA ¼GILIMLARI)

Istatistik ( IKT 253) 3. Çal şma Sorular - Cevaplar 5. CHAPTER (DISCRETE PROBABIL- ITY DISTRIBUTIONS - SÜREKS IZ OLASI- LIK DA ¼GILIMLARI) TOBB-ETÜ, Iktisat Bölümü Istatistik ( IKT 253) 3. Çal şma Sorular - Cevaplar 5. CHAPTER (DISCRETE PROBABIL- ITY DISTRIBUTIONS - SÜREKS IZ OLASI- LIK DA ¼GILIMLARI) 1 Soru 1 : Bir ma¼gazaya gelen herhangi

Detaylı

TOBB-ETÜ, Iktisat Bölümü - Istatistik ( IKT 253) 2. Çal şma Sorular - Cevaplar 4. CHAPTER (PROBABILITY METH- ODS - OLASILIK METODLARI)

TOBB-ETÜ, Iktisat Bölümü - Istatistik ( IKT 253) 2. Çal şma Sorular - Cevaplar 4. CHAPTER (PROBABILITY METH- ODS - OLASILIK METODLARI) TOBB-ETÜ, Iktisat Bölümü - Istatistik ( IKT 253) 2. Çal şma Sorular - Cevaplar 4. CHAPTER (PROBABILITY METH- ODS - OLASILIK METODLARI) 1 Soru 1: Bir torba içinde 4 mavi, 4 tane de k rm z bilye olsun. 4

Detaylı

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme İstatistik ve Olasılığa Giriş Robert J. Beaver Barbara M. Beaver William Mendenhall Presentation designed and written by: Barbara M. Beaver İstatistik ve Olasılığa Giriş Ders 3 Verileri Sayısal Ölçütlerle

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

Sürekli Rastsal Değişkenler

Sürekli Rastsal Değişkenler Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım

Detaylı

CHAPTER 8: CONFIDENCE INTERVAL ESTIMATION: ONE POPULATION

CHAPTER 8: CONFIDENCE INTERVAL ESTIMATION: ONE POPULATION CHAPTER 8: CONFIDENCE INTERVAL ESTIMATION: ONE POPULATION A point estimator of a population parameter is a function of the sample information that yields a single number An interval estimator of a population

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

3/6/2014. Küresel Isınma. Öğrenme Amaçlarımız. Küresel Isınma. Aritmetik Ortalama. Veri Özetleme ve Gösterme

3/6/2014. Küresel Isınma. Öğrenme Amaçlarımız. Küresel Isınma. Aritmetik Ortalama. Veri Özetleme ve Gösterme Küresel Isınma Küresel Yer-Okyanus Sıcaklık Endeksi Yıllık Ortalama 5 Yıllık Kayan Ortalama Veri Özetleme ve Sunum (Grafiksel Teknikler) Sıcaklık Değişikliği ( o C) Yrd. Doç. Dr. Ümit Deniz Uluşar Bilgisayar

Detaylı

6.5 Basit Doğrusal Regresyonda Hipotez Testleri. 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır.

6.5 Basit Doğrusal Regresyonda Hipotez Testleri. 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır. 6.5 Basit Doğrusal Regresyonda Hipotez Testleri 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır. olduğu biliniyor buna göre; hipotezinin doğruluğu altında test istatistiği

Detaylı

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Probability Distributions Probability Distributions SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Dr. Mehmet AKSARAYLI Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Ekonometri Bölümü

Detaylı

Deneysel Verilerin Değerlendirilmesi

Deneysel Verilerin Değerlendirilmesi Deneysel Verilerin Değerlendirilmesi Ölçme-Birimler-Anlamlı Rakamlar Ölçme: Bir nesnenin bazı özelliklerini (kütle, uzunluk vs..) standart olarak belirlenmiş birimlere göre belirlenmesi işlemidir (ölçüm,

Detaylı

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 İstatistik

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

Eğer Veri Çözümleme paketi Araçlar menüsünde görünmüyor ise yüklenmesi gerekir.

Eğer Veri Çözümleme paketi Araçlar menüsünde görünmüyor ise yüklenmesi gerekir. Bölüm BİLGİSAYAR DESTEKLİ İSTATİSTİK EXCEL DESTEKLİ İSTATİSTİK Excel de istatistik hesaplar; Genel Yöntem ve Excel Ġçerikli Çözümler olmak üzere iki esasa dayanabilir. Genel Yöntem; Excel in matematiksel

Detaylı

NÜMER IK ANAL IZ. Nuri ÖZALP FONKS IYONLARA YAKLAŞIM. Bilimsel Hesaplama Matemati¼gi

NÜMER IK ANAL IZ. Nuri ÖZALP FONKS IYONLARA YAKLAŞIM. Bilimsel Hesaplama Matemati¼gi NÜMER IK ANAL IZ Bilimsel Hesaplama Matemati¼gi Nuri ÖZALP FONKS IYONLARA YAKLAŞIM Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 4 7! FONKS IYONLARA YAKLAŞIM 1 / 21 1 Polinom Interpolasyonu Newton Formu

Detaylı

İSTATİSTİK ÖRNEK SORULARI

İSTATİSTİK ÖRNEK SORULARI 1. Aşağıda gruplandırılmış seri verilmiştir. (n) 0-10 den az 5 10-20 den az 6 20-30 den az 9 30-40 den az 11 40-50 den az 4 50-60 den az 3 TOPLAM 38 İSTATİSTİK ÖRNEK SORULARI a) Mod değerini bulunuz? (15

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

PROBLEM SET I ARALIK 2009

PROBLEM SET I ARALIK 2009 PROBLEM SET I - 5 09 ARALIK 009 Soru 1 (Besanko ve Braeutigam (00), sayfa 405): Aşa¼g da tam rekabet piyasas nda faaliyet gösteren bir rman n k sa dönem toplam maliyet fonksiyonu verilmiştir: Piyasa denge

Detaylı

Z Diyagram Di er Grafik Türleri SORULAR...42

Z Diyagram Di er Grafik Türleri SORULAR...42 Ç N D E K L E R BÖLÜM I 1. STAT ST K KAVRAMI 1-20 1.1. STAT ST K KEL MES N N ANLAMI...3 1.2. STAT ST K KEL MES N N KÖKÜ...5 1.3. STAT ST N TANIMI...5 1.4. STAT ST N KONUSU...5 1.5. BÜYÜK SAYILAR KANUNU...6

Detaylı

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI Tarih/Saat/Yer: 24.06.16/11:00-12:30/AS010 Instructor: Prof. Dr. Hüseyin Oğuz

Detaylı

Ortalama Günlük Gazete Satışları (Tüm Gazeteler) Haftalık Ortalama

Ortalama Günlük Gazete Satışları (Tüm Gazeteler) Haftalık Ortalama 3,460,026 3,455,723 3,444,081 3,553,432 3,534,351 3,522,035 3,494,924 3,469,997 3,473,428 3,460,781 3,489,658 3,457,103 3,605,416 3,568,284 3,530,832 3,700,000 Ortalama Günlük Gazete Satışları (Tüm Gazeteler)

Detaylı

NÜMER IK ANAL IZ. Nuri ÖZALP L INEER OLMAYAN DENKLEMLER IN ÇÖZÜMÜ 1 / Bilimsel Hesaplama Matemati¼gi

NÜMER IK ANAL IZ. Nuri ÖZALP L INEER OLMAYAN DENKLEMLER IN ÇÖZÜMÜ 1 / Bilimsel Hesaplama Matemati¼gi NÜMER IK ANAL IZ Bilimsel Hesaplama Matemati¼gi Nuri ÖZALP L INEER OLMAYAN DENKLEMLER IN ÇÖZÜMÜ L INEER OLMAYAN DENKLEMLER IN ÇÖZÜMÜ 1 / 1 Denklemlerin Köklerini Bulma Giriş Denklemlerin Köklerini Bulma

Detaylı

http://acikogretimx.com

http://acikogretimx.com 09 S 0- İstatistik sorularının cevaplanmasında gerekli olabilecek tablolar ve ormüller bu kitapçığın sonunda verilmiştir.. şağıdakilerden hangisi istatistik birimi değildir? ) Doğum B) ile C) Traik kazası

Detaylı

Ortalama Günlük Gazete Satışları (Tüm Gazeteler) Haftalık Ortalama

Ortalama Günlük Gazete Satışları (Tüm Gazeteler) Haftalık Ortalama 3,755,937 3,724,949 3,747,083 3,885,754 3,913,738 3,850,411 3,932,120 3,899,001 3,937,691 3,920,581 3,883,788 3,859,947 3,953,640 3,989,982 3,964,024 4,200,000 Ortalama Günlük Gazete Satışları (Tüm Gazeteler)

Detaylı

RİSK ANALİZİ VE. İşletme Doktorası

RİSK ANALİZİ VE. İşletme Doktorası RİSK ANALİZİ VE MODELLEME İşletme Doktorası Programı Bölüm - 1 Portföy Teorisi Bağlamında Risk Yönetimi ile İlgili Temel Kavramlar 1 F23 F1 Risk Kavramı ve Riskin Ölçülmesi Risk istenmeyen bir olayın olma

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

ÖĞRENCİLERİNİN SINAV NOTLARI DAĞILIMININ DEĞERLENDİRİLMESİ: İNŞAAT MÜHENDİSLİĞİ ÖĞRENCİLERİ ÖRNEĞİ

ÖĞRENCİLERİNİN SINAV NOTLARI DAĞILIMININ DEĞERLENDİRİLMESİ: İNŞAAT MÜHENDİSLİĞİ ÖĞRENCİLERİ ÖRNEĞİ ÖĞRENCİLERİNİN SINAV NOTLARI DAĞILIMININ DEĞERLENDİRİLMESİ: İNŞAAT MÜHENDİSLİĞİ ÖĞRENCİLERİ ÖRNEĞİ Barış Yılmaz Celal Bayar Üniversitesi, Manisa baris.yilmaz@bayar.edu.tr Tamer Yılmaz, Celal Bayar Üniversitesi,

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ

BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ İŞTİRME Araştırma rma SüreciS 1.Gözlem Genel araştırma alanı 3.Sorunun Belirlenmesi Sorun taslağının hazırlanması 4.Kuramsal Çatı Değişkenlerin açıkça saptanması

Detaylı

Risk ve Getiri (1) Ders 9 Finansal Yönetim 15.414

Risk ve Getiri (1) Ders 9 Finansal Yönetim 15.414 Risk ve Getiri (1) Ders 9 Finansal Yönetim 15.414 Bugün Risk ve Getiri İstatistik Tekrarı Hisse senedi davranışlarına giriş Okuma Brealey ve Myers, Bölüm 7, sayfalar 153-165 Yol haritası 1. Bölüm: Değerleme

Detaylı

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) S-1) Bir otoyol üzerinde radarla hız kontrolü yapan, polis ekipler tarafından tespit edilen tane aracın hızları aşağıdaki tabloda

Detaylı

25/10/2008. Bölüm 1 Verileri Grafiklerle İfade Etme. Bir bireyi belirleyen niteliklerin her

25/10/2008. Bölüm 1 Verileri Grafiklerle İfade Etme. Bir bireyi belirleyen niteliklerin her İstatistik ve Olasılık Kaynak: Robert J. Beaver Barbara M. Beaver Willia Mendenhall Presentation designed and written by: Barbara M. Beaver A division of Thoson Learning, Inc. İstatistik ve Olasılık Bölü

Detaylı

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI 1 UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI Örnek 1: Ders Kitabı 3. konuda verilen 100 tane yaş değeri için; a. Aritmetik ortalama, b. Ortanca değer, c. Tepe değeri, d. En küçük ve en

Detaylı

VERİ KÜMELERİNİ BETİMLEME

VERİ KÜMELERİNİ BETİMLEME BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik

Detaylı

KÜTÜPHANE SALON-1 HUKUK FAKÜLTESİ 2009-2010 DERS PROGRAMI 1.SINIF 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30

KÜTÜPHANE SALON-1 HUKUK FAKÜLTESİ 2009-2010 DERS PROGRAMI 1.SINIF 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 EKİM KÜTÜPHANE SALON-1 HUKUK FAKÜLTESİ 2009-2010 DERS PROGRAMI 1.SINIF 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 1 Per 2 Cum Anayasa Huk. Anayasa Huk. Anayasa Huk. Anayasa Huk. Anayasa Huk.

Detaylı

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI 1 Rassal Değişken Bir deney ya da gözlemin şansa bağlı sonucu bir değişkenin aldığı değer olarak düşünülürse, olasılık ve istatistikte böyle bir

Detaylı

We test validity of a claim or a conjecture (hypothesis) about a population parameter by using a sample data

We test validity of a claim or a conjecture (hypothesis) about a population parameter by using a sample data CHAPTER 10: HYPOTHESIS TESTS OF A SINGLE POP- ULATION Concepts of Hypothesis Testing We test validity of a claim or a conjecture (hypothesis) about a population parameter by using a sample data 1 Null

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

AST416 Astronomide Sayısal Çözümleme - II. 2. Temel İstatistik Kavramlar ve Dağılımlar

AST416 Astronomide Sayısal Çözümleme - II. 2. Temel İstatistik Kavramlar ve Dağılımlar AST416 Astronomide Sayısal Çözümleme - II 2. Temel İstatistik Kavramlar ve Dağılımlar Bu derste neler öğreneceksiniz? Sıklık Dağılımı ve Olasılık Dağılımı Olasılık ve Kümüatif Dağılım Fonksiyonları Dağılım

Detaylı

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar TEMEL İSTATİSTİK BİLGİSİ İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar İstatistiksel Verileri Tasnif Etme Verileri daha anlamlı hale getirmek amacıyla

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

BÖLÜM 3 FREKANS DAĞILIMLARI VE FREKANS TABLOLARININ HAZIRLANMASI

BÖLÜM 3 FREKANS DAĞILIMLARI VE FREKANS TABLOLARININ HAZIRLANMASI 1 BÖLÜM 3 FREKANS DAĞILIMLARI VE FREKANS TABLOLARININ HAZIRLANMASI Ölçme sonuçları üzerinde yani amaçlanan özelliğe yönelik gözlemlerden elde edilen veriler üzerinde yapılacak istatistiksel işlemler genel

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

3. Ders Çok Boyutlu (Değişkenli) Veri Analizi

3. Ders Çok Boyutlu (Değişkenli) Veri Analizi 3. Ders Çok Boyutlu (Değişkenli) Veri Analizi Veri: Boy ölçüleri (boy-kol-omuz-kalça-bacak uzunluğu) Ölçü birimi: cm boy kol omuz kalca bacak 18 77 98 12 11 163 66 72 9 97 183 73 99 113 91 16 86 7 95 12

Detaylı

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

TOBB-ETU, Iktisat Bölümü Macroeconomics II (IKT 234) HW II (Ozan Eksi)

TOBB-ETU, Iktisat Bölümü Macroeconomics II (IKT 234) HW II (Ozan Eksi) TOBB-ETU, Iktisat Bölümü Macroeconomics II (IKT 234) HW II (Ozan Eksi) Mankiw 12-3: Iş yöneticileri/iş adamlar ve politika yap c lar ço¼gu zaman Amerikan Endüstrisinin rekabet edilebilirli¼gi (Amerikan

Detaylı

Ç Ş Ğ Ç ÇÜ İ ÇÜ ç İ ÇÜ Ç ç ç İ Ç Ç Ğ ÇÜ ç İ ç ç Ş Ç ç ç Ş ç İ ç İ ç ç Ç Ş İ ç İ ç Ç ç ç Ç Ç ç İ ç Ç ç Ç ç ç İ Ç Ç ç Ş İ ç ç Ç Ç ç ç ç ç Ç Ş Ç Ç Ş Ç ç ç Ş ç Ğ Ş ç Ü ç ç ç ç ç ç ç Ş ç ç ç ç Ş ç ç ç ç ç İ

Detaylı

Fizik Ders sorumlusu: Yrd.Doç.Dr.Hilmi Ku çu

Fizik Ders sorumlusu: Yrd.Doç.Dr.Hilmi Ku çu Fizik - 1 - Ders sorumlusu: Yrd.Doç.Dr.Hilmi Ku çu 1 Fizik - 1 - Ders sorumlusu: Yrd.Doç.Dr.Hilmi Ku çu 2 Fizik - 1 - Ders sorumlusu: Yrd.Doç.Dr.Hilmi Ku çu 3 Fizik - 1 - Ders sorumlusu: Yrd.Doç.Dr.Hilmi

Detaylı

VERİ SETİNE GENEL BAKIŞ

VERİ SETİNE GENEL BAKIŞ VERİ SETİNE GENEL BAKIŞ Outlier : Veri setinde normal olmayan değerler olarak tanımlanır. Ders: Kantitatif Yöntemler 1 VERİ SETİNE GENEL BAKIŞ Veri setinden değerlendirme başlamadan çıkarılabilir. Yazım

Detaylı

Çalışma Soruları 2: Bölüm 2

Çalışma Soruları 2: Bölüm 2 Çalışma Soruları 2: Bölüm 2 2.1) Kripton(Kr) atomunun yarıçapı 1,9 Å dur. a) Bu uzaklık nanometre (nm) ve pikometre (pm) cinsinden nedir? b) Kaç tane kripton atomunu yanyana dizersek uzunlukları 1,0 mm

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

Yol (km) a) 50 cm 2 m b) 140 km 1040 m c) 8000 m 8 km

Yol (km) a) 50 cm 2 m b) 140 km 1040 m c) 8000 m 8 km .2 Uzunluklar Ölçme Kilometre 1. Grafik: Servis Arac n n Ald Yollar 1. Yandaki grafik, okul servis arac n n bir hafta boyunca ald yolu (km) göstermektedir. Grafi e göre afla daki sorular cevaplay n z.

Detaylı

BÖLÜM 9 NORMAL DAĞILIM

BÖLÜM 9 NORMAL DAĞILIM 1 BÖLÜM 9 NORMAL DAĞILIM Normal dağılım; 'normal dağılım eğrisi (normaly distribution curve)' ile kavramlaştırılan hipotetik bir evren dağılımıdır. 'Gauss dağılımı' ya da 'Gauss eğrisi' olarak da bilinen

Detaylı

Sayı: 2012-13 / 13 Haziran 2012 EKONOMİ NOTLARI. Belirsizlik Altında Yatırım Planları

Sayı: 2012-13 / 13 Haziran 2012 EKONOMİ NOTLARI. Belirsizlik Altında Yatırım Planları EKONOMİ NOTLARI Belirsizlik Altında Yatırım Planları Yavuz Arslan Aslıhan Atabek Demirhan Timur Hülagü Saygın Şahinöz Özet: Bu notta belirsizlik ile firmaların yatırım beklentileri arasındaki ilişki İktisadi

Detaylı

Merkezi Limit Teoremi

Merkezi Limit Teoremi Örnekleme Dağılımı Merkezi Limit Teoremi Şimdiye kadar normal dağılıma uygun olan veriler ile ilgili örnekler incelendi. Çarpıklık gösteren veriler söz konusu olduğunda ne yapılması gerekir? Hala normal

Detaylı

Probability Density Function (PDF, Sürekli fonksiyon)

Probability Density Function (PDF, Sürekli fonksiyon) Varyans Bir serideki her elemanın ortalamadan farklarının karelerinin toplamının, serideki eleman sayısına bölümü ile elde edilir. Standart Sapma Varyansın kareköküdür. Eğer birçok veri ortalamaya yakın

Detaylı

BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Hangi Grafik?Neden? 1. Veri çeşidine

Detaylı

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI Prof. Dr. Nezir KÖSE 30.12.2013 S-1) Ankara ilinde satın alınan televizyonların %40 ı A-firması tarafından üretilmektedir.

Detaylı

İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM

İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM I. İSTATİSTİK KAVRAMI ve TANIMI... 1 A. İSTATİSTİK KAVRAMI... 1 B. İSTATİSTİĞİN TANIMI... 2 C. İSTATİSTİĞİN TARİHÇESİ... 2 D. GÜNÜMÜZDE İSTATİSTİK VE ÖNEMİ...

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

SORU 6: Su yapılarının tasarımında katı madde hareketinin (aşınma, oyulma, yığılma vb. olayları) incelenmesi neden önemlidir, açıklayınız (4 puan).

SORU 6: Su yapılarının tasarımında katı madde hareketinin (aşınma, oyulma, yığılma vb. olayları) incelenmesi neden önemlidir, açıklayınız (4 puan). KIRIKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 014-015 GÜZ YARIYILI SU KAYNAKLARI MÜHENDİSLİĞİ I ARASINAV SORULARI Tarih: 16 Kasım 014 SORULAR VE CEVAPLAR Adı Soyadı: No: İmza:

Detaylı

Pazarlama Araştırması Grup Projeleri

Pazarlama Araştırması Grup Projeleri Pazarlama Araştırması Grup Projeleri Projeler kapsamında öğrencilerden derlediğiniz 'Teknoloji Kullanım Anketi' verilerini kullanarak aşağıda istenilen testleri SPSS programını kullanarak gerçekleştiriniz.

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) Data Editör iki arayüzden oluşur. 1. Data View 2. Variable

Detaylı

(ÖSS ) ÇÖZÜM 2:

(ÖSS ) ÇÖZÜM 2: MTEMT K PROLEMLER - II ÖRNEK : ve kentlerinden saatteki h zlar s ras yla V ve V olan (V > V ) iki araç, birbirlerine do ru 2 2 ayn anda hareket ederlerse saat sonra karfl lafl yorlar. u araçlar ayn kentlerden

Detaylı

ÜN TE II L M T. Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler

ÜN TE II L M T. Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler ÜN TE II L M T Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler MATEMAT K 5 BU BÖLÜM NELER AMAÇLIYOR? Bu bölümü çal flt n zda (bitirdi inizde), *Bir

Detaylı

TOBB-ETU, Iktisat Bölümü Para Teorisi ve Politikas (IKT 335) Ozan Eksi

TOBB-ETU, Iktisat Bölümü Para Teorisi ve Politikas (IKT 335) Ozan Eksi TOBB-ETU, Iktisat Bölümü Para Teorisi ve Politikas (IKT 335) Ozan Eksi Çal şma Sorular 1-) (Faizler) Y ll k %10 faizden bankaya koyulan 100 tl nin bir y l sonraki getirisini hesaplay n z? 2-) (Faizler)

Detaylı

Tablo 3.3. TAKV YES Z KANAL SAC KALINLIKLARI (mm)

Tablo 3.3. TAKV YES Z KANAL SAC KALINLIKLARI (mm) 3. KANAL KONSTRÜKS YONU Türk Standart ve fiartnamelerinde kanal konstrüksiyonu üzerinde fazla durulmam flt r. Bay nd rl k Bakanl fiartnamesine göre, bas nç s - n fland rmas na ve takviye durumuna bak lmaks

Detaylı

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 1 BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 Bu bölümde bir veri seti üzerinde betimsel istatistiklerin kestiriminde SPSS paket programının kullanımı açıklanmaktadır. Açıklamalar bir örnek üzerinde hareketle

Detaylı

3.SUNUM. Yrd. Doç. Dr. Sedat Şen

3.SUNUM. Yrd. Doç. Dr. Sedat Şen 3.SUNUM 1 Daha önce gösterdiğimiz gibi SPSS e manual olarak (elle) veri girişi yapabildiğimiz gibi daha önce başka bir dosyaya girilmiş olan bir veriyi de SPSS e file>open >data seçeneklerini kullanarak

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

VOB-DOLAR/ONS ALTIN. VOB-DOLAR/ONS ALTIN VADEL filem SÖZLEfiMES

VOB-DOLAR/ONS ALTIN. VOB-DOLAR/ONS ALTIN VADEL filem SÖZLEfiMES VOB-DOLAR/ONS ALTIN VOB-DOLAR/ONS ALTIN VADEL filem SÖZLEfiMES Copyright Vadeli fllem ve Opsiyon Borsas A.fi. Aral k 2010 VOB-DOLAR/ONS ALTIN VADEL filem SÖZLEfiMES V A D E L fi L E M V E O P S Y O

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler Rastgele Değişkenlerin Dağılımları Mühendislikte İstatistik Yöntemler Ayrık Rastgele Değişkenler ve Olasılık Dağılımları Yapılan çalışmalarda elde edilen verilerin dağılışı ve dağılış fonksiyonu her seferinde

Detaylı

FİNANSAL MODELLER. Yrd. Doç. Dr. Fazıl GÖKGÖZ. Tel: 595 13 37 fgokgoz@politics.ankara.edu.tr. Y. Doç. Dr. Fazıl GÖKGÖZ. Risk ve Getiri: Temel Konular

FİNANSAL MODELLER. Yrd. Doç. Dr. Fazıl GÖKGÖZ. Tel: 595 13 37 fgokgoz@politics.ankara.edu.tr. Y. Doç. Dr. Fazıl GÖKGÖZ. Risk ve Getiri: Temel Konular FİNANSAL MODELLER Yrd. Doç. Dr. Fazıl GÖKGÖZ Tel: 595 13 37 fgokgoz@politics.ankara.edu.tr Risk ve Getiri: Temel Konular Temel getiri konsepti Temel risk konsepti Bireysel risk Portföy (piyasa) riski Risk

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI

ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI 1. TEMEL KAVRAMLAR 2. ÖLÇMEDE HATA (GÜVENİRLİK GEÇERLİK) 3. İSTATİSTİK 1. TEMEL KAVRAMLAR Ölçme, Ölçüm, Ölçme Kuralı, Ölçüt, Değerlendirme. Ölçme Türleri: Doğrudan,

Detaylı

ANAL IZ III Aras nav Sorular

ANAL IZ III Aras nav Sorular Ad ve Soyad : Numaras : ANAL IZ III Aras nav Sorular 26.11.27 1. x 1 = p 3 ve x n+1 = p 3 + x n ; n = 1; 2; ::: biçiminde tan mlanan (x n ) dizisinin yak nsak oldu¼gunu gösteriniz ve limitini bulunuz.(2)

Detaylı

Ders 2: Aktüerya. Ankara Üniversitesi. İST424 Aktüeryal Risk Analizi Ders Notları. Doç.Dr. Fatih Tank. Sigortacılığın.

Ders 2: Aktüerya. Ankara Üniversitesi. İST424 Aktüeryal Risk Analizi Ders Notları. Doç.Dr. Fatih Tank. Sigortacılığın. yal ya yal Ders 2: ya Ankara Üniversitesi Giriş yal ya yal ya Tanım (5.1.1 Risk) Hasar oluşumundaki belirsizliğe risk denir. Objektif Risk Risk Subjektif Risk Tanım (5.1.2 Objektif Risk) Gerçekleşen hasarın

Detaylı

GAZİ ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ KİMYA MÜHENDİSLİGİ BÖLÜMÜ KM 482 KİMYA MÜHENDİSLİĞİ LABORATUVARI III. DENEY 1b.

GAZİ ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ KİMYA MÜHENDİSLİGİ BÖLÜMÜ KM 482 KİMYA MÜHENDİSLİĞİ LABORATUVARI III. DENEY 1b. GAZİ ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ KİMYA MÜHENDİSLİGİ BÖLÜMÜ KM 482 KİMYA MÜHENDİSLİĞİ LABORATUVARI III DENEY 1b. SICAKLIK KONTROLÜ Denevin Amacı Kontrol teorisini sıcaklık kontrol sistemine

Detaylı

GAZLAR ÖRNEK 16: ÖRNEK 17: X (g) Y (g) Z (g)

GAZLAR ÖRNEK 16: ÖRNEK 17: X (g) Y (g) Z (g) ÖRNEK 16: ÖRNEK 17: X (g) Y (g) Z (g) Sürtünmesiz piston H (g) He Yukar daki üç özdefl elastik balon ayn koflullarda bulunmaktad r. Balonlar n hacimleri eflit oldu una göre;. Gazlar n özkütleleri. Gazlar

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 Aşağıdaki analizlerde http://yunus.hacettepe.edu.tr/~tonta/courses/spring2010/bby208/bby208

Detaylı

Expert modülleri üretiminizi optimize eder. Expert Systemtechnik GmbH. Türkçe. Dö emeli mobilyalar

Expert modülleri üretiminizi optimize eder. Expert Systemtechnik GmbH. Türkçe. Dö emeli mobilyalar Expert modülleri üretiminizi optimize eder Expert Systemtechnik GmbH Türkçe Dö emeli mobilyalar scanexpert static table: Deri giri inin verimli bir ekilde kontrol edilmesi ve deri stokunun idare edilmesi.

Detaylı

19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I

19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I 19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I Bir dil dershanesinde öğrenciler talep ettikleri takdirde, öğretmenleriyle

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri

Detaylı

ÖN SÖZ... XV 1. BÖLÜM İSTATİSTİKTE KULLANILAN TEMEL KAVRAMLAR

ÖN SÖZ... XV 1. BÖLÜM İSTATİSTİKTE KULLANILAN TEMEL KAVRAMLAR İÇİNDEKİLER ÖN SÖZ... XV 1. BÖLÜM İSTATİSTİKTE KULLANILAN TEMEL KAVRAMLAR 1. DEĞİŞKEN... 2 1.1. Değişken Çeşitleri... 3 1.2. Değişkenlerde Bağımsızlık ve Bağımlılık... 5 1.3. Değişkenlerde Kontrol Edilebilirlik...

Detaylı

Herhangi bir rastgele değişken için kümülatif dağılım fonksiyonu/cumulative distribution function (KDF/CDF) şu şekilde tanımlanır.

Herhangi bir rastgele değişken için kümülatif dağılım fonksiyonu/cumulative distribution function (KDF/CDF) şu şekilde tanımlanır. Kümülatif Dağılım Fonksiyonları Herhangi bir rastgele değişken için kümülatif dağılım fonksiyonu/cumulative distribution function (KDF/CDF) şu şekilde tanımlanır. F X (x) = P (X x) = x f X(x ) dx Sürekli

Detaylı

BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1

BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1 1 BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1 Belli bir özelliğe yönelik yapılandırılmış gözlemlerle elde edilen ölçme sonuçları üzerinde bir çok istatistiksel işlem yapılabilmektedir. Bu işlemlerin bir kısmı

Detaylı

İstatistiksel Kavramların Gözden Geçirilmesi

İstatistiksel Kavramların Gözden Geçirilmesi İstatistiksel Kavramların Gözden Geçirilmesi Anlamlı Basamaklar Konusu ve Olasılık Ekonometri 1 Konu 1 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU FREKANS DAĞILIMLARINI TANIMLAYICI ÖLÇÜLER Düzenlenmiş verilerin yorumlanması ve daha ileri düzeydeki işlemler için verilerin bütününe ait tanımlayıcı ve özetleyici ölçülere ihtiyaç

Detaylı

TEKSTİL SEKTÖRÜNDE ÖRGÜT KÜLTÜRÜNÜN ÖĞRENEN ÖRGÜTE OLAN ETKİSİ

TEKSTİL SEKTÖRÜNDE ÖRGÜT KÜLTÜRÜNÜN ÖĞRENEN ÖRGÜTE OLAN ETKİSİ T.C. İSTANBUL TİCARET ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ, İŞLETME ANABİLİM DALI İŞLETME DOKTORA PROGRAMI TEKSTİL SEKTÖRÜNDE ÖRGÜT KÜLTÜRÜNÜN ÖĞRENEN ÖRGÜTE OLAN ETKİSİ Doktora Tezi Araştırma Önerisi

Detaylı

İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ (DUYARSIZ ORTALAMALAR)

İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ (DUYARSIZ ORTALAMALAR) SAÜ 5. BÖLÜM İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ (DUYARSIZ ORTALAMALAR) PROF. DR. MUSTAFA AKAL İÇİNDEKİLER 1. HASSAS OLMAYAN ORTALAMALAR 1.1. Mod (Tepe Noktası) 1.1.1.1. Basit Serilerde Mod 1.1.1.2.

Detaylı