İSTATİSTİK DERS NOTLARI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İSTATİSTİK DERS NOTLARI"

Transkript

1 Balıkesr Ünverstes İnşaat Mühendslğ Bölüü İSTATİSTİK DERS OTLARI Yrd. Doç. Dr. Uut OKKA Hdrolk Anabl Dalı

2 Balıkesr Ünverstes Balıkesr Ünverstes İnşaat Mühendslğ Bölüü İnşaat Mühendslğ Bölüü İstatstk Örnek Frekans Analz Paraetre Tahn Bölü Frekans Analz ve Paraetrelern Tahn

3 İstatstk Örnek TOPLUM o.d.f ve paraetreler ÖREK İstatstksel Yönteler Örnek en y şeklde analz edlel! Yukarıdak akış şeası aynı zaanda statstk tanıını özetleektedr. Örnek hoojen olalı, ssteatk hataları (ölçü hataları vb) çereel ve yeterl sayıda olalı (n>0)

4 Frekans Analz Br rastgele değşkenn topluunun tüünü gözleek ükündür. örneklen frekans dağılıı = topluun olasılık dağılıı kabulü yapılır. Olasılık dağılıının tahn frekans analz le gerçekleştrlr. Frekans Analz Keskl Değşkenlern Frekans Analz n f( ) (frekans) F( ) f ( j) (eklenk frekans) j Sürekl Değşkenlern Frekans Analz Büyük Örnek * sınıf aralıklarına göre yapılalı * 5 0 *.log Grafk örnekler çn bkz bölü Küçük Örnek * sınıflara ayırak uygun değl! *verler küçükten büyüğe dzlp(.... ) eklenk frekansdağılııelde edlr. F( ) ( Webull aprk forülü )

5 Frekans Analz ÖREK- (Keskl br değşkenn frekans dağılıı) Tek zarla yapılan 0 adet atış sonucunda zar yüzündek sayılar çn aşağıdak görüle sayıları elde edlştr. (durular) Görüle sayıları a) Keskl rastgele değşkenn frekans ve eklenk frekans dağılıını elde ednz. b) Değşkenn ortalaa, od, edyan, standart sapa ve çarpıklık katsayısı statstklern hesaplayınız. n n f( ) f ( ) ( ) f ( ) ( ) f ( ) F( ) f ( j) j

6 Frekans Analz (a) ( ) f (b) f ( ).7 a f( ) od ( ) F j ( ) f ( ).0 S ( ) f ( ) Cs, edyan sola çarpık

7 Frekans Analz ÖREK- (Sürekl değşken-küçük örnek) : Dcle taşkın akıları (Q) Yıl Q ( /sn) Q ( /sn) sıralanış F(X) F( ) aşılaa olasılığı ( Webull aprk forülü) <0 küçük örnek F (X) / sn Taşkın debsnn 450 /sn değern aşası olasılığı =-F(450)=-0.574=0.486 %4

8 Paraetre Frekans Analz Tahn Paraetre Tahnlernn Özellkler: Br rastgele değşkenn olasılık dağılıını örnekten ta br doğrulukla belrleek ükün olaz. Ayrıca bu dağılıın paraetreler de öncek bölüdek denkleler le hesaplanaaz. Br olasılık dağılı fonksyonunun paraetreler çn eldek örnekten tahn edlen değerlere statstkler denr (Bayazıt ve Oğuz, 0). İstatstkler hçbr zaan topluun paraetrelernn gerçek değerlerne eşt olasalar da tahnlern en y şeklde yapılası le aradak farkın (örneklee hatasının) küçüklenes sağlanablr. Bu nedenle, Örnekle kullanılarak tahn edlen statstk de rastgele değşken ntelğnde olduğundan uygun paraetre tahn yönte seçlel. Seçlen yönteden elde edlen tahn yansız (tarafsız) olalı. Topluun α paraetres çn brçok örnekten hesaplanan değerlern ortalaası olan a değer α ya eştse bu tahn tarafsız br tahn olup ˆ le gösterlr. E( ˆ )

9 Paraetre Frekans Analz Tahn Br Rastgele Değşkenn İstatstk Moent Tpndek Paraetreler: Ortalaa. derece erkezsel oent. derece erkezsel oent 4. derece erkezsel oent Varyans (tarafsız) sˆ ( ) ( ) 4 4 ( ) ( ) Standart sapa (tarafsız) sˆ ( ) s Değşkenlk Katsayısı (tarafsız) Cˆ ˆ, ˆ C S * Çarpıklık Katsayısı (tarafsız) ( )( ) 4 Kurtoss Katsayısı (tarafsız) ˆ k * ( )( )( )

10 Paraetre Frekans Analz Tahn ÖREK-: Br eteoroloj stasyonunda yıllarında gözlenen günlük aksu yağış (Pa) değerler / gün cnsnden aşağıda verlştr. Yıl: Pa Yıl: Pa a) Gözlelern ortalaa, standart sapa, değşkenlk katsayısı, çarpıklık katsayısı ve kurtoss katsayısı statstklern bulunuz (paraetrelern yansız tahnler hesaplanacaktır). b) Değşkenn 0<Pa< aralığında değerler aldığı blndğne göre sınıf üst ltlern ˆ,, S Sˆ, ˆ 4 S, 5 eklenk frekans hstogralarını çznz. kabul ederek gözlelern frekans ve

11 Frekans Analz Paraetre Tahn (a) ver aded 4 X (X-Xort)^ (X-Xort)^ (X-Xort)^4 Ortalaa varyans std sapa Cv Çarpıklık Kurtoss bkz. statstk oent tpnde paraetre hesabı.ls

12 Paraetre Frekans Analz Tahn (b) X, alt X, üst n f F f f S ˆ S ˆ Sˆ F S ˆ S ˆ Sˆ

13 Paraetre Frekans Analz Tahn Maksu olablrlk yönte le paraetre tahn: Moentler yönte le örneklee varyansı küçük olan tahnler elde edleeyeblr. X f ( ;,,...),,..., çn X, X,..., X olaylarıbağısızolduğundan Bu olayların eydana geleolasılığı(l) L f ( ;,,...) L L... 0 L olablrlk fonksyonu L fonksyonunu aksu yapan paraetreler yandak denkle le elde edlr. ln L ln L... 0 L dek çarpıı toplaa dönüştürek çn ln(l) dönüşüü uygulanır. Ancak doğrusal olayan yaklaşılarla çözü yapıldığından oentler yönte kadar pratk değldr. Bu konu kapsaında br sonrak bölüde uygulaa yapılacaktır.

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi VERİLERİN SUNUMU GM-0 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Br çalışadan elde edlen verler ha ver ntelğndedr. Ha verlerden blg ednek zor ve zaan alıcıdır. Ha verler çok karaşık durudadır. Verlern düzenlenes

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler 6.4.7 NÜMERİK ANALİZ Yrd. Doç. Dr. Hatce ÇITAKOĞLU 6 Müendslk sstemlernn analznde ve ugulamalı dsplnlerde türev çeren dferansel denklemlern analtk çözümü büük öneme saptr. Sınır değer ve/vea başlangıç

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman Farklı Varyans Var(u X ) = Var(u ) = E(u ) = σ Eşt Varyans Y X Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = σ Farklı Varyans Zaman Farklı Varyans le Karşılaşılan Durumlar Kest Verlernde. Kar dağıtım

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans Farklı Varyans Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans Y X 1 Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = s Farklı Varyans Zaman EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern

Detaylı

Anlık ve Ortalama Güç

Anlık ve Ortalama Güç ALTERNATİF AK-Dere Analz Bölü-4 AC Güç Anlık Güç Oralaa güç Güç fakörü Akf, reakf güç Kpleks güç Reakf güç düzele (Kpanzasyn aksu akf güç ransfer Anlık Güç, p( (herhang br ank güç p Anlık e Oralaa Güç

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüneyt BAYILMIŞ Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz SAYISAL ANALİZ SAYISAL TÜREV Numercal Derentaton Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz İÇİNDEKİLER Sayısal Türev Ger Farklar

Detaylı

2.a: (Zorunlu Değil):

2.a: (Zorunlu Değil): Uygulaa 5-7:.7 6 7 Baar Yarıyılı Jeodezk Ağlar e Uygulaaları UYGULAMA FÖYÜ,..7.a: (Zorunlu Değl: Yanına arılaayan br kule yükeklğnn trgonoetrk yükeklk belrlee yönteyle eaplanaı UYGULAMA.b : (Zorunlu C3

Detaylı

KONTROL KARTLARI 1)DEĞİŞKENLER İÇİN KONTROL KARTLARI

KONTROL KARTLARI 1)DEĞİŞKENLER İÇİN KONTROL KARTLARI 1 KONTOL KATLAI 1)DEĞİŞKENLE İÇİN KONTOL KATLAI Ölçe,gözle veya deey yolu le elde edle verler değşke(ölçüleblr-sürekl) ve özellk (sayılablr-keskl) olak üzere başlıca k gruba ayrılır. Değşke verler belrl

Detaylı

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü umutokkan@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN Hidrolik Anabilim Dalı Balıkesir Üniversitesi Balıkesir Üniversitesi İnşaat

Detaylı

ÖRNEK SET 5 - MBM 211 Malzeme Termodinamiği I

ÖRNEK SET 5 - MBM 211 Malzeme Termodinamiği I ÖRNE SE 5 - MBM Malzeme ermdnamğ I 5 ºC de ve sabt basınç altında, metan gazının su buharı le reaksynunun standart Gbbs serbest enerjs değşmn hesaplayın. Çözüm C O( ( ( G S S S g 98 98 98 98 98 98 98 Madde

Detaylı

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI C.Ü. İktsad ve İdar Blmler Dergs, Clt 4, Sayı 1, 3 6 Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI H. BİRCAN, Y. KARAGÖZ ve Y. KASAPOĞLU

Detaylı

Sabit Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2

Sabit Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 X Sabt Varyans Y Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern eşt varyanslı olmasıdır Her hata term varyansı bağımsız değşkenlern verlen değerlerne

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011)

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011) İk Değşkenl Bağlanım Model SEK Yöntemnn Güvenlrlğ Ekonometr 1 Konu 11 Sürüm,0 (Ekm 011) UADMK Açık Lsans Blgs İşbu belge, Creatve Commons Attrbuton-Non-Commercal ShareAlke 3.0 Unported (CC BY-NC-SA 3.0)

Detaylı

Şekil 1. Bir oda ısıtma sisteminin basitleştirilmiş blok diyagram gösterimi. 1. Kontrol Sistemlerindeki Blok Diyagramlarının Temel Elemanları:

Şekil 1. Bir oda ısıtma sisteminin basitleştirilmiş blok diyagram gösterimi. 1. Kontrol Sistemlerindeki Blok Diyagramlarının Temel Elemanları: Blok yaraları: araşık teler, rok alt ten rrne uyun şeklde ağlanaından oluşur. Blok dyaraları, her r alt te araındak karşılıklı ağlantıyı öterek n kullanılır. Blok dyaralarında her r alt ten fonkyonu ve

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

K-Ortalamalar Yöntemi ile Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelerin Belirlenmesi *

K-Ortalamalar Yöntemi ile Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelerin Belirlenmesi * İMO Teknk Derg, 2012 6037-6050, Yazı 383 K-Ortalamalar Yöntem le Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelern Belrlenmes * Mahmut FIAT* Fath DİKBAŞ** Abdullah Cem KOÇ*** Mahmud GÜGÖ**** ÖZ

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

OLASILIK KURAMI. Temel Tanımlar ve Kavramlar-III. Temel Tanımlar ve Kavramlar-II. Temel Tanımlar ve Kavramlar-I OLASILIK

OLASILIK KURAMI. Temel Tanımlar ve Kavramlar-III. Temel Tanımlar ve Kavramlar-II. Temel Tanımlar ve Kavramlar-I OLASILIK Dr. Mehmet KSRYLI OLSILIK OLSILIK KURMI Dokuz Eylül Ünverstes Ekonometr Böl. www.mehmetaksarayl.com Populasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp

Detaylı

NİTEL TERCİH MODELLERİ

NİTEL TERCİH MODELLERİ NİTEL TERCİH MODELLERİ 2300 gözlem sayısı le verlen değşkenler aşağıdak gbdr: calsma: çocuk çalışıyorsa 1, çalışmıyorsa 0 (bağımlı değşken) Anne_egts: Anne eğtm sevyes Baba_egts: Baba eğtm sevyes Kent:

Detaylı

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011)

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011) SEK Tahmnclernn Arzulanan Özellkler İk Değşkenl Bağlanım Model SEK Tahmnclernn Arzulanan Özellkler Ekonometr 1 Konu 9 Sürüm 2,0 (Ekm 2011) http://www.ackders.org.tr SEK Tahmnclernn Arzulanan Özellkler

Detaylı

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Ünsal M.; Varol, A.: Soğutma Kulelernn Boyutlandırılması İçn Br Kuramsal 8 Mayıs 990, S: 8-85, Adana 4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Asaf Varol Fırat Ünverstes, Teknk Eğtm Fakültes,

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatstkler Tanımlayıcı İstatstkler Br ver setn tanımak veya brden fazla ver setn karşılaştırmak çn kullanılan ve ayrıca örnek verlernden hareket le frekans dağılışlarını sayısal olarak

Detaylı

HİDROLİK ÇALIŞMALARDA İSTATİSTİKSEL YÖNTEMLERİN KULLANIMI. İstatistiksel Maddelerin Önemi ve Sınıflandırılması

HİDROLİK ÇALIŞMALARDA İSTATİSTİKSEL YÖNTEMLERİN KULLANIMI. İstatistiksel Maddelerin Önemi ve Sınıflandırılması HİDROLİK ÇALIŞMALARDA İSTATİSTİKSEL YÖTEMLERİ KULLAIMI Grş İstatstksel Maddelern Önem ve Sınıflandırılması Hdrolojk büüklüklern brçoğu fzk asalarıla tam olarak açıklanamaan rastgele değşken ntelğ taşırlar.

Detaylı

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 5-7 Kasım 5 ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN

Detaylı

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır?

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır? . Br torbada 6 syah, 4 beyaz top vardır. Bu torbadan yerne koyarak top seçlyor. A İSTATİSTİK KPSS/-AB-PÖ/006. Normal dağılıma sahp br rasgele (random) değşkenn varyansı 00 dür. Seçlen topların ksnn de

Detaylı

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3 Yıldız Teknk Ünverstes Elektrk Mühendslğ Bölümü Deneyn Amacı İşlemsel kuvvetlendrcnn çalışma prensbnn anlaşılması le çeştl OP AMP devrelernn uygulanması ve ncelenmes. Özet ve Motvasyon.. Operasyonel Amplfkatör

Detaylı

LOJİSTİK REGRESYON ANALİZİ İLE ESKİŞEHİR İN SİS

LOJİSTİK REGRESYON ANALİZİ İLE ESKİŞEHİR İN SİS İstanbul Tcaret Ünverstes Fen Blmler Dergs Yıl: 8 Sayı: 16 Güz 2009/2 s. 47-59 LOJİSTİK REGRESYON ANALİZİ İLE ESKİŞEHİR İN SİS KESTİRİMİNİN İNCELENMESİ Cengz AKTAŞ *, Orkun ERKUŞ ** Gelş: 12.10.2009 Kabul:

Detaylı

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet Dokuz Eylül Ünverstes Sosyal Blmler Ensttüsü Dergs Yayın Gelş Tarh: 18.02.2011 Clt: 13, Sayı: 1, Yıl: 2011, Sayfa: 21-37 Yayına Kabul Tarh: 17.03.2011 ISSN: 1302-3284 ALGILANAN HİZMET KALİTESİ VE LOJİSTİK

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE BAÜ Fen Bl. Enst. Dergs (6).8. YAYII YÜK İE YÜKENİŞ YAPI KİRİŞERİNDE GÖÇE YÜKÜ HESABI Perhan (Karakulak) EFE Balıkesr Ünverstes ühendslk marlık Fakültes İnşaat üh. Bölümü Balıkesr, TÜRKİYE ÖZET Yapılar

Detaylı

Deprem Tepkisinin Sayısal Metotlar ile Değerlendirilmesi (Newmark-Beta Metodu) Deprem Mühendisliğine Giriş Dersi Doç. Dr.

Deprem Tepkisinin Sayısal Metotlar ile Değerlendirilmesi (Newmark-Beta Metodu) Deprem Mühendisliğine Giriş Dersi Doç. Dr. Deprem Tepksnn Sayısal Metotlar le Değerlendrlmes (Newmark-Beta Metodu) Sunum Anahat Grş Sayısal Metotlar Motvasyon Tahrk Fonksyonunun Parçalı Lneer Interpolasyonu (Pecewse Lnear Interpolaton of Exctaton

Detaylı

İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ. Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET

İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ. Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET Bu çalışmada, Celal Bayar Üniversitesi İnşaat Mühendisliği Bölümü öğrencilerinin

Detaylı

BİRİKİMLİ HASAR TEORİLERİ VE YORULMA ÇATLAĞINA GÖRE ÖMÜR DEĞERLENDİRMELERİ

BİRİKİMLİ HASAR TEORİLERİ VE YORULMA ÇATLAĞINA GÖRE ÖMÜR DEĞERLENDİRMELERİ Brkl Hasar Teorler ve Yorula Çatlağına Göre Öür Değerlendreler HAVACILIK VE UZAY TEKOLOJİLERİ DERGİSİ TEMMUZ 00 CİLT SAYI (-9) BİRİKİMLİ HASAR TEORİLERİ VE YORULMA ÇATLAĞIA GÖRE ÖMÜR DEĞERLEDİRMELERİ Gökhan

Detaylı

MANYETİK OLARAK STABİLİZE EDİLMİŞ AKIŞKAN YATAKLARDA KÜTLE AKTARIM KATSAYILARININ İNCELENMESİ

MANYETİK OLARAK STABİLİZE EDİLMİŞ AKIŞKAN YATAKLARDA KÜTLE AKTARIM KATSAYILARININ İNCELENMESİ MANYETİK OLAAK STABİLİZE EDİLMİŞ AKIŞKAN YATAKLADA KÜTLE AKTAIM KATSAYILAININ İNCELENMESİ Metn ŞENGÜL, Ahet. ÖZDUAL* Şeker Enttüü Etegut/ANKAA; *H.Ü. Kya Mühendlğ Bölüü Beytepe/ANKAA ÖZET Bu çalışanın

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8 BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8 FARKLI YÜZEY ÖZELLİKLERİNE SAHİP PLAKALARIN ISIL IŞINIM YAYMA ORANLARININ HESAPLANMASI BAŞKENT ÜNİVERSİTESİ

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü umutokkan@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN Hidrolik Anabilim Dalı Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü Bölüm

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Gülesen ÜSTÜNDAĞ BAZI PARAMETRİK OLMAYAN İSTATİSTİKSEL YÖNTEMLERİN İNCELENMESİ İSTATİSTİK ANABİLİM DALI ADANA, 005 ÇUKUROVA ÜNİVERSİTESİ

Detaylı

BUZDOLABI KABĠN ĠÇĠ SICAKLIK SALINIMLARININ MODELLENMESĠ

BUZDOLABI KABĠN ĠÇĠ SICAKLIK SALINIMLARININ MODELLENMESĠ ESKON 205 / ERMODĠNAMĠK SEMPOZYUMU Bu br MMO yayınıdır MMO bu yayındak fadelerden, fkrlerden, toplantıda çıkan sonuçlardan, teknk blg ve bası hatalarından sorulu değldr. BUZDOLABI KABĠN ĠÇĠ SICAKLIK SALINIMLARININ

Detaylı

REGRESYON ANALİZİ BÖLÜM 1-2

REGRESYON ANALİZİ BÖLÜM 1-2 REGRESYON ANALİZİ BÖLÜM 1- Yayın Tarh: 17-08-008 REGRESYON ANALİZİ NEDİR? MODELLEME 1. GİRİŞ İstatstk blmnn temel lg alanlarından br: br şans değşkennn davranışının br model kullanılarak tahmnlenmesdr.

Detaylı

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul Ercan Kahya 1 Hdrolk. B.M. Sümer, İ.Ünsal, M. Bayazıt, Brsen Yayınev, 007, İstanbul se se da Brm kanal küçük gen kestl br kanalda, 1.14. KANAL EGIMI TANIMLARI Brm kanal genşlğnden geçen deb q se, bu q

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A) KOCELİ ÜNİVERSİTESİ Mühendslk akültes Makna Mühendslğ Bölümü Mukavemet I Vze Sınavı () dı Soyadı : 18 Kasım 013 Sınıfı : No : SORU 1: Şeklde verlen levhalar aralarında açısı 10 o la 0 o arasında olacak

Detaylı

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık ölüm 4 Olasılık OLSILIK opulasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp heps mutlaka br hata payı taşımaktadır. u hata payının ortaya çıkmasının sebeb

Detaylı

DENEY TASARIMI VE ANALİZİ

DENEY TASARIMI VE ANALİZİ DENEY TASARIMI VE ANALİZİ Bundan öncek bölümlerde bell br araşırma sonucu elde edlen verlere dayanılarak populasyonu anıma ve paramere ahmnlerne yönelk yönemlerden söz edld. Burada se sözü edlecek olan,

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

DENEY TASARIMI VE ANALİZİ

DENEY TASARIMI VE ANALİZİ 1 DENEY TASARIMI VE ANALİZİ 1.1. Varyans Analz 1.. Tek Yönlü Varyans Analz Model 1.3. İk Yönlü Varyans Analz Model Prof Dr. Leven ŞENYAY XII-1 İsask II Bundan öncek bölümlerde bell br araşırma sonucu elde

Detaylı

ÜNİTE. İSTATİSTİĞE GİRİŞ Doç.Dr.Suphi Özçomak İÇİNDEKİLER HEDEFLER TEMEL KAVRAMLAR

ÜNİTE. İSTATİSTİĞE GİRİŞ Doç.Dr.Suphi Özçomak İÇİNDEKİLER HEDEFLER TEMEL KAVRAMLAR HEDEFLER İÇİNDEKİLER TEMEL KAVRAMLAR İstatstğn Tanımı Anakütle ve Örnek Kavramları Tam Sayım ve Örnekleme Anakütle ve Örnek Hacm Parametre ve İstatstk Kavramları İSTATİSTİĞE GİRİŞ Doç.Dr.Suph Özçomak Bu

Detaylı

ÖZET Yüksek Lsans Tez TAM VE SANSÜRLÜ ÖRNEKLEM DURUMLARINDA WEIBULL DAĞILIMI İÇİN BAZI İSTATİSTİKİ SONUÇ ÇIKARIMLARI Dlşen TAMAM Ankara Ünverstes Fen

ÖZET Yüksek Lsans Tez TAM VE SANSÜRLÜ ÖRNEKLEM DURUMLARINDA WEIBULL DAĞILIMI İÇİN BAZI İSTATİSTİKİ SONUÇ ÇIKARIMLARI Dlşen TAMAM Ankara Ünverstes Fen ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ TAM VE SANSÜRLÜ ÖRNEKLEM DURUMLARINDA WEIBULL DAĞILIMI İÇİN BAZI İSTATİSTİKİ SONUÇ ÇIKARIMLARI Dlşen TAMAM İSTATİSTİK ANABİLİM DALI ANKARA

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Taımlayıcı İstatstkler br değerler dzs statstksel olarak geel özellkler taımlaya ölçülerdr Taımlayıcı İstatstkler Yer Göstere Ölçüler Yaygılık Ölçüler Yer Göstere Ölçüler Br dağılımı

Detaylı

Şek. 1 () t e bağlayan diferansiyel denklemi elde ediniz. (5p) H s

Şek. 1 () t e bağlayan diferansiyel denklemi elde ediniz. (5p) H s YTÜ EEKTONİK VE HABEEŞME MÜHENDİSİĞİ BÖÜMÜ DEVEE VE SİSTEME ANABİİM DAI DEVE VE SİSTEM ANAİZİ DESİ. VİZE_ÇÖZÜMEİ Soru : Şekl dek derey göz önüne alarak k t t Şek. a) () t ı k () t e bağlayan dferansyel

Detaylı

Fen ve Mühendislik için Fizik 1 Ders Notları: Doç.Dr. Ahmet CANSIZ

Fen ve Mühendislik için Fizik 1 Ders Notları: Doç.Dr. Ahmet CANSIZ 9. ÇİZGİSEL (OĞRUSAL) OENTU VE ÇARPIŞALAR 9. Kütle erkez Ssten kütle erkeznn yern ssten ortalaa konuu olarak düşüneblrz. y Δ Δ x x + x = + Teraz antığı le düşünürsek aşağıdak bağıntıyı yazablrz: Δ= x e

Detaylı

Lojistik Regresyonlarda Değişken Seçimi

Lojistik Regresyonlarda Değişken Seçimi Çukurova Ünverstes Zraat Fakültes Dergs, 7 (2):05-4 Lostk Regresyonlarda Değşken Seçm Hasan ÖNDER () Zeynel CEBECİ (2) Özet Bu çalışmada, lostk regresyonlarda değşken seçm yöntemlernden ler doğru seçm,

Detaylı

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Türkye İnşaat Mühendslğ, XVII. Teknk Kongre, İstanbul, 2004 İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Nur MERZİ 1, Metn NOHUTCU, Evren YILDIZ 1 Orta Doğu Teknk Ünverstes, İnşaat Mühendslğ Bölümü, 06531 Ankara

Detaylı

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE TEK ÇARPIMSAL SİNİR HÜCRELİ YAPAY SİNİR AĞI MODELİNİN EĞİTİMİ İÇİN ABC VE BP YÖNTEMLERİNİN KARŞILAŞTIRILMASI ÖZ

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE TEK ÇARPIMSAL SİNİR HÜCRELİ YAPAY SİNİR AĞI MODELİNİN EĞİTİMİ İÇİN ABC VE BP YÖNTEMLERİNİN KARŞILAŞTIRILMASI ÖZ ANADOLU ÜNİVERSİTESİ Blm ve Teknoloj Dergs A-Uygulamalı Blmler ve Mühendslk Clt: 14 Sayı: 3 013 Sayfa: 315-38 ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE Faruk ALPASLAN 1, Erol EĞRİOĞLU 1, Çağdaş Hakan ALADAĞ,

Detaylı

AHMET KOLTUK. Sahibi. Kullanma Amacı. Konutlar. Kat Adedi. İli ANKARA. İlçesi MERKEZ. Mahallesi AKINCILAR. Sokağı YENGEÇ. Pafta. Ada.

AHMET KOLTUK. Sahibi. Kullanma Amacı. Konutlar. Kat Adedi. İli ANKARA. İlçesi MERKEZ. Mahallesi AKINCILAR. Sokağı YENGEÇ. Pafta. Ada. BİNNIN Sahb Kullana acı Kat ded HMET KOLTUK Konutlar RSNIN İl NKR İlçes MERKEZ Mahalles KINCILR Sokağı YENGEÇ Pafta 1 da 13 Parsel 5 Isı Yalıtı Projesn Yapanın ONY dı Soyadı HMET KOLTUK Ünvanı MKİNE MÜHENDİSİ

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller UYGULAMA 2 Bağımlı Kukla Değşkenl Modeller Br araştırmacı Amerka da yüksek lsans ve doktora programlarını kabul ednlmey etkleyen faktörler ncelemek stemektedr. Bu doğrultuda aşağıdak değşkenler ele almaktadır.

Detaylı

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS NURAY TUNCER PROF. DR. DURDU KARASOY Tez Danışmanı Hacettepe Ünverstes Lsansüstü Eğtm-Öğretm Yönetmelğnn İstatstk Anablm Dalı İçn Öngördüğü

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sınav toplam 100 puan değerinde 4 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm soruların

Detaylı

Ğ Ğ ş ç ş ç ç ç ş ç ç Ş ç «ş ş Ö Ş Ş ş ş ç Ö Ş ş Ü ç ç ş ş ş ç Ş ş ç ç ç ş ç ş ş ş ç ç ç ş Ç ş ş ç ş ç ş ş Ş ş ç ş ç ç ş ç ş ç ç ş ç ç ş Ü ş çş ş ş Çş Ç Ü çş ş Ç çş ç ş Ş Ö Ö ş ç ç ç ş ç ç ç ş ş ç ç ş

Detaylı

ç ç Ö Ç Ş Ç ç Ç ç ç ç Ö ç Ç Ş ç ç Ş Ç Ş Ö Ö Ş ç Ö ç ç ç ç Ş Ö Ç Ç Ş ç ç Ş Ş Ş Ö ç ç ç ç Ö Ş Ç Ö Ö ç «Ö ç Ş ç Ç «ÇŞ Ş Ö Ç ç Ö ç Ç Ş Ö Ö ç ç ç Ö Ş Ö ç Ö ç Ç Ş Ç «ç Ö Ç Ş ç ç ç «ç Ç Ş Ö Ö Ç ç ç Ş ç ç Ö ç

Detaylı

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I DENEY 3 GENLİK (AM) MODÜLASYONU

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I DENEY 3 GENLİK (AM) MODÜLASYONU Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölüü EEM 316 Haberleşe I DENEY 3 GENLİK (AM) MODÜLASYONU 3.1 Aaçlar 1. Genlik (AM) odülasyon prensiplerinin anlaşılası 2. Genlik (AM) sinyalinin

Detaylı

Ü Ğ Ğ Ğ Ğ Ğ ş Ğ Ğ Ö Ğ ö ö ş ş ö ş Ğ Ğ Ğ Ğ ş ö ş ş ö ş ş ç ş ş ç ş ş ş ş ç ö ö ö ş ö ö ş ç ç ö ö ç Ç Ç ş ş Ğ ç ş ş ş ş ç ş ö ş ç ş ö ş ş ö ç ş ş ö Ö ç ş ö ş ö Ö ç ş ş ş ç ş ö ş ş ç ç ö ö ç ş Ö ö ş ö ö ş

Detaylı

ş Ğ İ İ ş ş ş ş ç ş ş ç ç ş ş ş ş ş ş İ ş ş ç ç ş ş ç ş ş ş ş ş ş ş ş ş ş ş ş ş ç ş ş ş ş ş İ ş ş ş ç ş ş ş ş ş ş ş ç Ü ç ş ş ş ş ş ş ş ç ş ş ş ç ç ş ş ş ş İ ş ş ş ş ş ç ç ş ç ç ş ş ş ş ş ş ş ş ş ç ş ş

Detaylı

BEKLENEN DEĞER VE VARYANS

BEKLENEN DEĞER VE VARYANS BEKLEE DEĞER VE VARYAS.1. İadel ve adesz öreklemede tüm mümkü örekler.. Beklee değer.3. Varyas.4. İk değşke ortak dağılımı.5. İstatstksel bağımsızlık.6. Tesadüf değşkeler doğrusal kombasyolarıı beklee

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Blgsayarla Görüye Grş Ders 8 Görüntü Eşleme Alp Ertürk alp.erturk@kocael.edu.tr Panorama Oluşturma Görüntüler eşlememz / çakıştırmamız gerekmektedr Panorama Oluşturma İk görüntüden özntelkler çıkar Panorama

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

ASİMETRİK VE SİMETRİK MARJİNAL DAGILIMLARDA ÇOK

ASİMETRİK VE SİMETRİK MARJİNAL DAGILIMLARDA ÇOK ASİMETRİK VE SİMETRİK MARJİNAL DAGILIMLARDA ÇOK DEGİşKENLİ NORMALLİK A. Mete Çlngrtürk aclng@marmara.edu.tr Marmara Ünverstes Dlek Altaş d] eka] tas@marmara.edu.tr Marmara Ünverstes ÖZET Pek çok sosyal

Detaylı

FREKANS ATLAMALI DİZİLER KÜBRA BAYRAKTAR YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

FREKANS ATLAMALI DİZİLER KÜBRA BAYRAKTAR YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FREKANS ATLAMALI DİZİLER KÜBRA BAYRAKTAR YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ARALIK 010 ANKARA Fen Bller Ensttü onayı Prof. Dr. Ünver

Detaylı

Sorunun varlığı durumunda hata terimi varyans-kovaryans matrisi Var, Cov(u) = E(uu') = σ 2 I n şeklinde yazılamıyor fakat

Sorunun varlığı durumunda hata terimi varyans-kovaryans matrisi Var, Cov(u) = E(uu') = σ 2 I n şeklinde yazılamıyor fakat 8. DEĞİŞEN VARYANS SORUNU (HETEROSCEDASTICITY) 8.. Değşen Varyans Sorunu Nedr? Matrslerle yan Y = β u Y = β β β 3 3 β k k u, = n genel doğrusal modeln ele alalım. Hata term çn yapılan varsayımlardan brs

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

THOMAS-FİERİNG MODELİ İLE SENTETİK AKIŞ SERİLERİNİN HESAPLANMASINDA YENİ BİR YAKLAŞIM

THOMAS-FİERİNG MODELİ İLE SENTETİK AKIŞ SERİLERİNİN HESAPLANMASINDA YENİ BİR YAKLAŞIM Osmangaz Ünverstes Müh.Mm.Fak.Dergs C.XVII, S., 004 Eng.&Arch.Fac.Osmangaz Unversty, Vol.XVII, No :, 004 THOMAS-FİERİNG MODELİ İLE SENTETİK AKIŞ SERİLERİNİN HESAPLANMASINDA YENİ BİR YAKLAŞIM Recep BAKIŞ,

Detaylı

TEMEL DEVRE KAVRAMLARI VE KANUNLARI

TEMEL DEVRE KAVRAMLARI VE KANUNLARI TDK Temel Devre Kavramları ve Kanunları /0 TEMEL DEVRE KAVRAMLARI VE KANUNLARI GĐRĐŞ: Devre analz gerçek hayatta var olan fzksel elemanların matematksel olarak modellenerek gerçekte olması gereken sonuçların

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Pamukkale Ünverstes Mühendslk Blmler Dergs, Clt 0, Sayı 3, 04, Sayfalar 85-9 Pamukkale Ünverstes Mühendslk Blmler Dergs Pamukkale Unversty Journal of Engneerng Scences PREFABRİK ENDÜSTRİ YAPIARININ ARMONİ

Detaylı

KUŞADASI YÖRESİ RÜZGAR VERİLERİNİN DENİZ YAPILARININ TASARIMINA YÖNELİK DEĞERLENDİRİLMESİ

KUŞADASI YÖRESİ RÜZGAR VERİLERİNİN DENİZ YAPILARININ TASARIMINA YÖNELİK DEĞERLENDİRİLMESİ KUŞADASI YÖRESİ RÜZGAR VERİLERİNİN DENİZ YAPILARININ TASARIMINA YÖNELİK DEĞERLENDİRİLMESİ Gündüz GÜRHAN Dokuz Eylül Üniversitesi, Deniz Bilileri ve Teknolojisi Enstitüsü İnciraltı/İzir E-Posta:gunduz.gurhan@deu.edu.tr

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması . Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve

Detaylı

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler Rastgele Değişkenlerin Dağılımları Mühendislikte İstatistik Yöntemler Ayrık Rastgele Değişkenler ve Olasılık Dağılımları Yapılan çalışmalarda elde edilen verilerin dağılışı ve dağılış fonksiyonu her seferinde

Detaylı

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE ANADOLU ÜNİVESİTESİ BİLİ VE TEKNOLOJİ DEGİSİ ANADOLU UNIVESITY JOUNAL OF SCIENCE AND TECHNOLOGY Clt/Vol.:7 Saı/No: : 9-6 (006) AAŞTIA AKALESİ/ESEACH ATICLE İL VE İLÇELEDE YAILACAK KAUOYU AAŞTIALAI İÇİN

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ AKARA ÜİVERSİTESİ FE BİLİMLERİ ESTİTÜSÜ DOKTORA TEZİ MEKASAL İSTATİSTİKTE BULAIK UYARLAMALI AĞ YAKLAŞIMI İLE DEPREMİ OLUŞTURA YERKABUĞU HAREKET HIZLARII KESTİRİMİ uray GÜERİ TOSUOĞLU İSTATİSTİK AABİLİM

Detaylı

SUÇ VERİ TABANININ LOJİSTİK REGRESYON ANALİZİ İLE TAHMİNİ: BURSA ÖRNEĞİ Estimating of Crime Database with Logistic Regression Analysis: Bursa Case

SUÇ VERİ TABANININ LOJİSTİK REGRESYON ANALİZİ İLE TAHMİNİ: BURSA ÖRNEĞİ Estimating of Crime Database with Logistic Regression Analysis: Bursa Case SUÇ VERİ TABANININ LOJİSTİK REGRESYON ANALİZİ İLE TAHMİNİ: BURSA ÖRNEĞİ Estmatng of Crme Database wth Logstc Regresson Analyss: Bursa Case Mehmet NARGELEÇEKENLER * B Özet u çalışmada, Bursa Emnyet Müdürlüğünden

Detaylı

BANKACILIKTA ETKİNLİK VE SERMAYE YAPISININ BANKALARIN ETKİNLİĞİNE ETKİSİ

BANKACILIKTA ETKİNLİK VE SERMAYE YAPISININ BANKALARIN ETKİNLİĞİNE ETKİSİ BANKACILIKTA ETKİNLİK VE SERMAYE YAPISININ BANKALARIN ETKİNLİĞİNE ETKİSİ Yrd. Doç. Dr. Murat ATAN - Araş. Gör. Gaye KARPAT ÇATALBAŞ 2 ÖZET Bu çalışma, Türk bankacılık sstem çnde faalyet gösteren tcar bankaların

Detaylı

Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır.

Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır. Hipotez testleri-oran testi Oran Testi Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır Örnek: Yüz defa atılan bir para 34 defa yazı gelmiştir Paranın yazı gelme olasılığının

Detaylı

İSTATİSTİK. Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özkan GÖRGÜLÜ

İSTATİSTİK. Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özkan GÖRGÜLÜ İSTATİSTİK Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özka GÖRGÜLÜ Tavsye Edle Kayak Ktaplar Her öğrec keds tuttuğu düzel otlar.. Akar, M. ve S. Şahler, (997). İstatstk. Ç.Ü. Zraat Fakültes Geel Yayı No: 74, Ders

Detaylı

DÜŞEY ELEKTRİK SONDAJI VERİLERİNİN YORUMU

DÜŞEY ELEKTRİK SONDAJI VERİLERİNİN YORUMU DÜŞEY ELEKTRİK SONDAJI VERİLERİNİN YORUMU Prof.Dr. Ahmet Tuğrul BAŞOKUR Jeofzk Mühendslğ Bölümü Mayıs 4 İletşm: Prof. Dr. Ahmet T. BAŞOKUR Ankara Ünverstes, Mühendslk Fakültes Jeofzk Mühendslğ Bölümü 6

Detaylı

Anakütleden rassal olarak seçilen örneklemlerden hesaplanan değerlerdir.

Anakütleden rassal olarak seçilen örneklemlerden hesaplanan değerlerdir. İSTATİSTİKTE VERİ GM-0 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Hafta sonu hava yağışlı olacak ı? Bu yıl hangi takı şapiyon olacak? Gelecek yıl döviz kuru ne olur? Bu yıl ülkeizin kişi başına illi geliri ne

Detaylı

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ Dersin Öğreti Eleanı: Yrd. Doç. Dr. Yasin KABALCI Ders Görüşe

Detaylı