1.1 Statik Aktif Durum için Coulomb Yönteminde Zemin Kamasına Etkiyen Kuvvetler

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "1.1 Statik Aktif Durum için Coulomb Yönteminde Zemin Kamasına Etkiyen Kuvvetler"

Transkript

1 TEORİ 1Yanal Toprak İtkisi 11 Aktif İtki Yöntemi 111 Coulomb Yöntemi 11 Rankine Yöntemi 1 Pasif İtki Yöntemi 11 Coulomb Yöntemi : 1 Rankine Yöntemi : 13 Sükunetteki İtki Danimarka Kodu 14 Dinamik Toprak İtkisi 141 Mononobe Okabe Yöntemi 1411 Aktif Zemin İtkisi 141 Pasif Zemin İtkisi 15 Stabilize Analizleri 151 Devrilme Güvenliği 15 Kayma Güvenliği 153 Taban Plağı Altındaki Zeminde Gerilme Güvenliği 154 Toptan Göçme Güvenliği 16 Sürsaj Yükleri Ek Yayılı Yükün Oluşturduğu Statik Ve Dinamik Aktif Ve Pasif İtkiler Arka Zemin Üstünde Duvara Paralel Ek Çizgisel Yükün Olması Durumunda Zemin İtkisinin Hesabı Taban Plağı Dişinin Etkisi Silindir Yükü Taşıma Gücü (Terzaghi Yöntemi) Betonarme Analiz Sürtünme Kesmesi Konsol İstinat Duvarlarının Betonarme Hesabı Taban Ankrajı Serbest Zemin Yüzeyi İçin Elastik Yay Katsayıları TS-500

2 TEORİ 1YANAL TOPRAK İTKİSİ 11 AKTİF İTKİ YÖNTEMİ 111 Coulomb Yöntemi : 11 Statik Aktif Durum için Coulomb Yönteminde Zemin Kamasına Etkiyen Kuvvetler Depremsiz durumda, duvarın birim uzunluğu için, Şekil'deki aktif zemin kamasına etkiyen kuvvetler; W : Zemin kamasının ağırlığı, P as : Statik aktif zemin itkisi, R as : Kritik kayma düzlemi boyunca oluşan sürtünme kuvvetleri ile normal kuvvetlerinin bileşkesi α : duvar arka yüzeyinin düşey ile yaptığı açı, δ : duvar arka yüzeyi ile zemin arasındaki sürtünme açısı ( duvar sürtünme açısı), θ : kayma düzleminin yatay ile yaptığı açı, ϕ : zemin içsel sürtünme açısı

3 Statik Aktif Yanal Zemin İtkisi; 1 P as = γ H K as denkleminden bulunur Bu denklem de; γ : zeminin birim hacim ağırlığı, H : istinat duvarının yüksekliği, i : zemin üst yüzeyinin yatay ile yaptığı açı K as : statik aktif yanal zemin basıncı katsayısı olup K as = cos Şeklinde ifade edilir cos( ) 1 cos ( ) sin( )sin( i ) cos( )cos( i ) 1 Coulomb Yönteminde Kuru ve Kohezyonsuz Zeminler İçin Kabul edilen Statik Aktif Yanal Basınç Dağılımı Ve Statik Aktif Yanal İtkinin Uygulama Yeri

4 11 Rankine Yöntemi : a) Üst yüzey yatay b) Üst yüzey eğimli Kohezyonsuz Zeminlerde Aktif Rankine Durumu İçin İstinat Duvarlarına Etkiyen Yanal Zemin Basınçları 1 P as = γ H K as cosi K ps = cosi cosi cos cos i cos i cos Kohezyonsuz zeminlerde Statik Aktif Yanal Zemin İtkisi; 1 P as = γh cosi cosi cosi cos cos i cos i cos şeklinde elde edilir

5 1 PASİF İTKİ YÖNTEMİ 11 Coulomb Yöntemi : 13 Statik Pasif Durum için Coulomb Yönteminde Zemin Kamasına Etkiyen Kuvvetler W : Zemin kamasının ağırlığı P ps : Statik pasif zemin R ps : Kritik kayma düzlemi boyunca oluşan sürtünme kuvvetleri ile normal kuvvetlerin birleşkesi α : duvar arka yüzeyinin düşey ile yaptığı açı, δ : duvar arka yüzeyi ile zemin arasındaki sürtünme açısı ( duvar sürtünme açısı), θ : kayma düzleminin yatay ile yaptığı açı, ϕ : zemin içsel sürtünme açısı 1 P ps = γ H K ps denkleminden bulunur

6 Bu denklem de; γ : zeminin birim hacim ağırlığı, H : istinat duvarının yüksekliği, i : zemin üst yüzeyinin yatay ile yaptığı açı K ps : statik pasif yanal zemin basıncı katsayısı olup K ps = cos cos( ) 1 cos ( ) sin( )sin( i ) cos( )cos( i ) Şeklinde ifade edilir 14 Colulomb Yönteminde Kuru ve Kohezyonsuz Zeminler İçin Kabul Edilen Statik Pasif Yanal Zemin Basınç Dağılımı ve Statik Pasif Yanal İtkinin Uygulama Yeri

7 1 Rankine Yöntemi : a) Üst yüzey yatay b) Üst yüzey eğimli 15 Kohezyonsuz Zeminlerde Pasif Rankine Durumu İçin İstinat Duvarlarına Etkiyen 1 P ps = γ H K ps Zemin Basınçları cosi K ps = cosi cosi cos cos i cos i cos Kohezyonsuz zeminlerde Statik Pasif Yanal Zemin İtkisi; 1 P ps = γh cosi cosi cosi cos cos i cos i cos şeklinde elde edilir

8 Kohezyonlu Zeminler ; Kohezyonlu zeminlerde, zeminin kendisinden doğan 1) statik aktif γzk as basıncına, -c K as ) statik pasif γzk ps basıncına, +c K ps 3) toplam aktif γzk at basıncına, -c K at 4) toplam pasif γzk pt basıncına, +c K pt terimlerinin ilave edilmesi gerekir Burada c toprağın kohezyonu (kn/m )dir

9 13 SÜKUNETTEKİ İTKİ Danimarka Kodu Ko=(1-sinϕ)(1+sinβ) ϕ : zemin içsel sürtünme açısı β : zemin üst yüzeyinin yatay ile yaptığı açı Ko : Sukunetteki itki değeri

10 14 DİNAMİK TOPRAK İTKİSİ 141 Mononobe Okabe Yöntemi 1411 Aktif Zemin İtkisi Aktif Durum İçin Mononobe Okabe Yönteminde Zemin Kamasına Etkiyen Yükler W : Zemin kamasının ağırlığı, P at : Toplam aktif zemin itkisi, R at : Göçme düzlemi, boyuncaki yüzey sürtünme ve normal kuvvetlerinin bileşkesi, C h W : Yatay yöndeki zemin atalet kuvveti, C v W : Düşey yöndeki zemin atalet kuvveti, dir Burada; a h C h : ; yatay zemin ivme katsayısı, g C v : g a v ; düşey zemin ivme katsayısı, a h : maksimum yatay zemin ivmesi, a v : maksimum düşey zemin ivmesi,

11 g : yerçekimi ivmesi, dir λ : arctan C h 1 C v bağıntısından bulunur α : duvar arka yüzeyinin düşey ile yaptığı açı, δ : duvar arka yüzeyi ile zemin arasındaki sürtünme açısı ( duvar sürtünme açısı), θ : kayma düzleminin yatay ile yaptığı açı, ϕ : zemin içsel sürtünme açısıdır Aktif zemin itkisi; 1 P at = γ H K at denkleminden bulunur Bu denklemde; K at : toplam aktif yanal zemin basıncı katsayısı olup K at = cos cos şeklinde ifade edilir (1 C v cos( ) 1 )cos ( ) sin( )sin( i) cos( )cos( i ) 15 Mononobe-Okabe Yönteminde Kuru ve Kohezyonsuz Zeminler İçin Kabul Edilen Toplam Aktif Yanal Zemin Basınç Dağılımı ve Toplam Aktif Yanal İtkinin Uygulama Yeri

12 141 Pasif Zemin İtkisi Pasif Durum İçin Mononobe Okabe Yönteminde Zemin Kamasına Etkiyen Yükler W : Zemin kamasının ağırlığı, P pt : Toplam pasif zemin itkisi, R pt : Göçme düzlemi, boyuncaki yüzey sürtünme ve normal kuvvetlerinin bileşkesi, C h W : Yatay yöndeki zemin atalet kuvveti, C v W : Düşey yöndeki zemin atalet kuvveti, dir Toplam Pasif zemin itkisi; 1 P at = γ H K pt denkleminden bulunur Bu denklemde; K pt : toplam pasif yanal zemin basıncı katsayısı olup K pt = cos cos şeklinde ifade edilir (1 C v cos( ) 1 )cos ( ) sin( )sin( i) cos( )cos( i )

13 16 Mononobe-Okabe Yönteminde Kuru ve Kohezyonsuz Zeminler İçin Kabul Edilen Toplam Pasif Yanal Zemin Basınç Dağılımı ve Toplam Pasif Yanal İtkinin Uygulama Yeri

14 15 STABİLİZE ANALİZLERİ 151 Devrilme Güvenliği G D = M KR G güvenlik M Depremsiz durumda 15 DR Depremli durumda 13 M KR : devrilmeye karşı koyan kuvvetlerin momenti M DR : devirici kuvvetlerin momenti 1511 Depremsiz durumda (09G + 16H) yük birleşim kontrolü 09*( devrilmeye karşı koyan kuvvetlerin momenti) > 16*( devirici kuvvetlerin momenti) olmalıdır 151 Depremli durumda (09G + H s + H d ) yük birleşim kontrolü 09*( devrilmeye karşı koyan kuvvetlerin momenti) > devirici kuvvetlerin momenti olmalıdır

15 15 Kayma Güvenliği G D = F t G güvenlik F Depremsiz durumda 0(killi), 15(kumlu) K Depremli durumda Depremsiz durumda (09G + 16H) yük birleşim kontrolü 09*(Kaymayı engelleyen kuvvetler) > 16*(kaymaya çalışan kuvvetler) olmalıdır 15 Depremli durumda (09G + H s + H d ) yük birleşim kontrolü 09*(Kaymayı engelleyen kuvvetler) > kaymaya çalışan kuvvetler olmalıdır

16 153 Taban Plağı Altındaki Zeminde Gerilme Güvenliği Betonarme Konsol İstinat Duvarının Taban Plağı Altındaki Zeminde Gerilme Güvenliği Kontrolünde Dikkate Alınacak Kuvvetler Temel tabanı orta noktası O ya göre dışmerkezlik; e = N M O dır Burada; ƩM O : Duvara tesir eden tüm yüklerin O noktasına göre toplam momenti ƩN : Duvara tesir eden düşey yüklerin toplamı olup ƩN = G z,1 + G z, + G z,3 + G p + G t + G q dır L temel genişliğine göre, L Küçük dışmerkezlik durumunda ( e ), zemin gerilmeleri; 6 N q z,max = L 6 M L q z, emniyet

17 N 6 M O q z,min = 0 L L L Büyük dışmerkezlik durumunda ( e > ) çekme gerilmelerine dayanıksız malzemeler için; 6 a = L e olmak üzere, duvar tabanında oluşacak maksimum zemin gerilmesi, N q z,max = 3 a şeklinde hesaplanır q z, emniyet

18 154 Toptan Göçme Güvenliği Betonarme Konsol İstinat Duvarının Toptan Göçme Güvenliğinde Dikkate Alınan Kuvvetler Depremsiz durumda; G TG = Güvenlik as as i i i G z P z Q T R N R I c R Depremli durumda; G TG = Güvenlik i i h ad ad as as i i i G d G C z P z Q z P z Q T R N R I c R

19 C h : Yatay deprem ivme katsayısı, d i : Dilim ağırlık merkezinin O merkezine düşey mesafesi, R : O merkezli kayma yüzeyinin yarıçapı, I i : Her dilimin tabandaki yay boyu, z 1,,3 : Yanal zemin itkilerinin O merkezine göre moment kolları, c : Kayma yüzeyinin geçtiği zemin tabakasının kohezyon direnci, μ : Kayma yüzeyinin geçtiği zemin tabakasının sürtünme direnci, olup, μ = tanϕ dir

20 16 SÜRSAJ YÜKLERİ Ek Yayılı Yükün Oluşturduğu Statik ve Dinamik Aktif ve Pasif İtkiler Duvar arkası zemin üst yüzeyinde q şiddetindeki düzgün yayılı ek yükün olması durumunda; Ek Yayılı Yükten Dolayı Oluşan İlave Statik Aktif Zemin İtkisi; cos Q as = q HK as cos( i) Ek Yayılı Yükten Dolayı Oluşan İlave Dinamik Aktif Zemin İtkisi; cos Q ad = q HK ad cos( i) Ek Yayılı Yükten Dolayı Oluşan İlave Statik Pasif Zemin İtkisi; cos Q ps = q HK ps cos( i) Ek Yayılı Yükten Dolayı Oluşan İlave Dinamik Pasif Zemin İtkisi; cos Q pd = q HK pd cos( i) denklemleri ile hesaplanır

21 Ek Yayılı Yükün Oluşturduğu Statik ve Dinamik Aktif ve Pasif Zemin Basınçlarının Dağılımı Deprem Yönetmeliğinde, ek yükten dolayı istinat duvarına etkiyen statik ve dinamik zemin basınçlarının duvar yüksekliği boyunca dağılımı ayrı ayrı tanımlanmıştır Buna göre; Ek Yayılı Yükten Dolayı Oluşan Statik Aktif Zemin Basıncının Dağılımı; cos q as (z) = q cos( i) K as Ek Yayılı Yükten Dolayı Oluşan Dinamik Aktif Zemin Basıncının Dağılımı; cos z q ad (z) = q 1 K ad cos( i) H Ek Yayılı Yükten Dolayı Oluşan Statik Pasif Zemin Basıncının Dağılımı; cos q ps (z) = q K ps cos( i) Ek Yayılı Yükten Dolayı Oluşan Dinamik Pasif Zemin Basıncının Dağılımı; cos z Q pd (z) = q 1 K pd cos( i) H şeklindedir a) Statik Aktif Zemin Basıncı b) Dinamik Aktif Zemin Ek Yayılı Yükten Dolayı Oluşan Statik ve Dinamik Aktif Zemin Basıncı Dağılımı ve İtkiler

22 a) Statik Pasif Zemin Basıncı b) Dinamik Pasif Zemin Ek Yayılı Yükten Dolayı Oluşan Statik ve Dinamik Pasif Zemin Basıncı Dağılımı ve İtkiler

23 Arka Zemin Üstünde Duvara Paralel Ek Çizgisel Yükün Olması Durumunda Zemin İtkisinin Hesabı h 1 = L tan ϕ h = L tan i 1 h 3 = h 1 + K K as1 as K as h h 4 = h 1 + K K as0 as K as h Arka Zemin Üstünde Duvara Paralel Ek Yük Olması Durumunda Duvara Etkiyecek İlave Statik Aktif Yanal Zemin Basıncı I I seviyesinde itibaren oluşan ilave statik zemin basıncı dağılımını veren ifade; D 1 D 3 arasında; Δp (z 1 ) = γz 1 (K as1 -K as0 ) 0 z 1 (h 3 -h 1 ) D 3 D 5 arasında; Δp (z ) = γ[(h 4 -h 3 )-z ](K as -K as0 ) 0 z 1 (h 4 -h 3 )

24 I I seviyesinde itibaren oluşan ilave dinamik zemin basıncı dağılımını veren ifade; D 1 D 3 arasında; Δp ad (z 1 ) = p as ( z 1 ) K as z 1 1 K ad 0 z 1 (h 3 -h 1 ) h4 h1 D 3 D 5 arasında; Δp ad (z ) = olur p ) as ( z K as ( h4 h3 ) z1 1 K ad 0 z (h 4 -h 3 ) h4 h1

25 Taban Plağı Dişinin Etkisi Taban plağı dişinden ötürü oluşacak pasif yatay itkinin hesabında dişin iki farklı değer hesaplanılmakta ve bu değerlerden küçük olanı pasif itki değeri olarak kullanılmaktadır Bu değerlerden birisi seçilen basınç itki yöntemine göre yukarıda verilen bilgilere göre hesaplanılmakta ve Pps değeri elde edilmektedir Diğer değerin hesabında ise düşey yükten oluşan yatay kuvvetin hesabı yapılarak Ts değeri elde edilmektedir Ts=G*sin()*cos()

26 Silindir Yükü Kompaksiyon Etkisinden Ötürü İstinat Duvarına Etkileyen Yatay Basınçlar (Ingold) Kompaksiyon etkisindeki yatay basınç; L z c z d için σ H = P / a L z>d için σ H = K A γz bağıntılarından hesaplanır Burada; a : Silindirin duvara mesafesi L : Silindirin uzunluğu SilindirAğırlığı SantrifujKuvveti P: Silindir Yükü = (Silindir ağırlığı) SilindirinGenişeniş İstinat duvarının arka dolgusunun sıkıştırılması sırasında silindir duvara en fazla (a) kadar yani (K A γz c ) mesafede çalıştırmalıdır Kritik derinlikte (z c ) yatay basınç miktarı; P h = z K c A veya P h = K 0 P formülleriyle bulunabilir K A

27 Taşıma Gücü (Terzaghi Yöntemi) 1 q u = cn c + γd f N q + γbnγ c : Temel altındaki zeminin kohezyonu (kn/m, t/m ) γ : Zeminin birim hacim ağırlığı (kn/m 3, t/m 3 ) D f : Temel çevresindeki zemin yüzeyinden temelin alt taban kotuna düşey uzaklık B : temel genişliği N c, N q, N γ : taşıma kapasitesi faktörleri(boyutsuz)

28 BETONARME ANALİZ Sürtünme Kesmesi İki ayrı malzemenin birleştiği düzlemlerde veya ayrı zamanlarda dökülmüş iki beton yüzeyinin birleştiği düzlemlerde, kesme hesabı ve donatı detaylandırması bu bölümdeki kural ve ilkelere göre yapılır Sürtünme kesmesi için hesap yapılan düzlemde, önce bir çatlak oluştuğu varsayılır Sürtünme kesmesi için de Denklem 8 deki koşul sağlanmalıdır Bu denklemdeki V r aşağıdaki gibi hesaplanmalıdır V r = A wf f yd μ (88) Denklemde, kesme-sürtünme donatısı kesit alanı olarak (A wf ) yalnızca birleşme düzlemine dik doğrultuda düzenlenmiş donatı çubuklarının toplam alanı kullanılmalıdır Denklem 88 de, μ ile gösterilen kesme sürtünme katsayısının değerleri, çeşitli durumlar için Çizelge 81 de verilmiştir ÇİZELGE 81- Değişik Durumlar İçin Kesme-Sürtünme Katsayısı Bir döküm beton (monolitik) μ = 1,4 Sertleşmiş beton ile yeni betonun birleştiği yüzeylerde pürüzlendirilmiş yüzey μ = 1,0 (pürüz 5 mm) Pürüzlendirilmemiş yüzey μ = 0,6 Çelik profil ve betonun birleştiği yüzeylerde μ = 0,7 Kesme sürtünme donatısının kesme düzlemine eğik olduğu durumlarda, kesme kuvveti donatıda çekme oluşturuyorsa, V r aşağıdaki denklemden hesaplanacaktır V r = A wf f yd (μ sin α f + cos α f ) (89) Kesme kuvvetinin donatıda basınç oluşturduğu durumlarda, bu donatı etkili değildir Deprem durumunda, donatı çatlak düzlemine dik olarak düzenlenmelidir Denklem 89 daki αf açısı, kesme sürtünme donatısının kesme düzlemi ile yaptığı dar açıdır

29 Sürtünme kesmesinin aşağıdaki sınırı geçmesine izin verilmez ve bu sınır hesaplanırken beton tasarım basınç dayanımı f cd, 5 MPa dan büyük alınamaz V d 0, f cd A c Kesme düzlemindeki doğrudan etkili çekme kuvvetleri varsa, her iki yandan yeterince kenetlenmiş ek donatı ile karşılanmalıdır Bu düzlemde doğrudan etkili olan kalıcı basınç kuvvetinin en düşük değeri göz önüne alınarak kesme-sürtünme donatısı azaltılabilir Konsol İstinat Duvarlarının Betonarme Hesabı Betonarme konsol istinat duvarları gövde ve temel olmak üzere iki taşıyıcı elemandan oluşur

30 Gövde, temel plağına ankastre düşey konsol bir plak şeklinde hesaplanır Temel ise ön ve arka temeller olarak isimlendirilen ve gövde plağına ankastre yatay iki konsol plak şeklinde hesaplanır Betonarme Konsol İstinat Duvarlarına Etkiyen Yükler Gövde ve temel en kesitlerinde eğik çatlama dayanımı;

31 N V cr = 065f ctd b w d d bw h f ctd : beton tasarım eksenel çekme dayanımı (Mpa), h : kesit yüksekliği (mm) b w : kesit genişliği (mm), N d : tasarım eksenel kuvveti (N),dir Buna göre kesme güvenliği; V r V d V r = 080V cr V d bağıntısı ile kontrol edilir TABAN ANKRAJI Taban ankrajı çözümünde iki farklı limit durumu göz önüne alınmakta ve buradan elde

32 edilen minumum değer analize dahil edilmektedir 1) Çıkarılmaya karşı taşıma kapasitesi (Bearing capacity against pulling- out) Re (kn/m) Taşıma kapasitesi aşağıdaki formülle hesaplanabilir d a Tp FSp Tp= Çıkarma direnci d= Kazık çapı a= Nihai sınır Fsp= Çıkartmaya karşı güvenlik faktörü ) Ankraj dayanımı (Strength of anchor) Rt (kn)

33 d Rt s f y FS T Rt= Ankraj dayanımı ds= Kazık çapı fy= Kazık akma dayanımı Fst= Güvenlik faktörü

34

35 TS-500 İstinat duvarının stabilite kontrolleri ve en kesit iç kuvvet tesirleri bulunurken duvara etkiyen yüklerin hesap değerinde kullanılacak yük katsayıları ve yük birleşimleri TS 500 e göre; Depremsiz durumda; 14G + 16Q 09G + 16H s 14G + 16Q + 16H s Depremli durumda; G + Q + H s + H d 09G + H s + H d şeklindedir Burada; G : Sabit düşey yükler, Q : Hareketli düşey yükler, H s : Statik yatay yükler, H d : Dinamik yatay yükler, dir Betonarme malzemenin taşıma gücü sınır durumları için TS-500 e göre beton ve çelik hesap dayanımları; Beton için: f cd = f ck / γ mc f ctd = f ctk / γ mc Çelik için: f yd = f yk / γ ms şeklinde alınır

36 Burada; f cd : beton hesap basınç dayanımı, f ck : beton karakteristik basınç dayanımı, f ctd : beton hesap eksenel çekme dayanımı, f ctk : beton karakteristik eksenel çekme dayanımı, f yd : boyuna donatı hesap akma dayanımı, f yk : boyuna donatı karakteristik akma dayanımı, γ mc : beton için malzeme katsayısı, γ ms : çelik için malzeme katsayısı dır Yerinde dökülen betonlar için γ ms : 15, ön dökümlü betonlar için γ ms : 14, tüm donatı çelikleri için γ ms : 115 alınacaktır

Proje Adı: İstinat Duvarı Sayfa 1. Analiz Yapı Tel:

Proje Adı: İstinat Duvarı Sayfa 1.  Analiz Yapı Tel: Proje Adı: İstinat Duvarı Sayfa 1 BETONARME KONSOL İSTİNAT DUVARI HESAP RAPORU GEOMETRİ BİLGİLERİ Duvarın zeminden itibaren yüksekliği H1 6 [m] Ön ampatman uç yüksekliği Ht2 0,4 [m] Ön ampatman dip yüksekliği

Detaylı

Ders 7. İstinat Yapılarında Sismik Yüklerin Hesabı

Ders 7. İstinat Yapılarında Sismik Yüklerin Hesabı İNM 4411 Ders 7. İstinat Yapılarında Sismik Yüklerin Hesabı Yrd. Doç. Dr. Pelin ÖZENER İnşaat Mühendisliği Bölümü Geoteknik Anabilim Dalı İstinat Yapıları Eğimli arazilerde araziden yararlanmak üzere zemini

Detaylı

İSTİNAT YAPILARI TASARIMI

İSTİNAT YAPILARI TASARIMI İSTİNAT YAPILARI TASARIMI İstinat Duvarı Tasarım Kriterleri ve Tasarım İlkeleri Yrd. Doç. Dr. Saadet BERİLGEN İnşaat Mühendisliği Bölümü Geoteknik Anabilim Dalı Devrilmeye Karşı Güvenlik Devrilmeye Karşı

Detaylı

İSTİNAT YAPILARI TASARIMI

İSTİNAT YAPILARI TASARIMI İSTİNAT YAPILARI TASARIMI İstinat Duvarı Tasarım Kriterleri ve Tasarım İlkeleri Yrd.Doç.Dr. Pelin ÖZENER İnşaat Mühendisliği Bölümü Geoteknik Anabilim Dalı Duvar Tasarımı için Yükler Toprak basınçları

Detaylı

9. TOPRAKTA GERİLME DAĞILIMI VE YANAL TOPRAK BASINCI

9. TOPRAKTA GERİLME DAĞILIMI VE YANAL TOPRAK BASINCI 9. TOPRAKTA GERİLME DAĞILIMI VE YANAL TOPRAK BASINCI Birçok mühendislik probleminin çözümünde, uygulanan yükler altında toprak kütlesinde meydana gelebilecek gerilme/deformasyon özelliklerinin belirlenmesi

Detaylı

9. TOPRAKTA GERİLME DAĞILIMI VE YANAL TOPRAK BASINCI

9. TOPRAKTA GERİLME DAĞILIMI VE YANAL TOPRAK BASINCI 9. TOPRAKTA GERİLME DAĞILIMI VE YANAL TOPRAK BASINCI Birçok mühendislik probleminin çözümünde, uygulanan yükler altında toprak kütlesinde meydana gelebilecek gerilme/deformasyon özelliklerinin belirlenmesi

Detaylı

İSTİNAT DUVARLARI DOÇ.DR. MEHMET BERİLGEN

İSTİNAT DUVARLARI DOÇ.DR. MEHMET BERİLGEN İSTİNAT DUVARLARI DOÇ.DR. MEHMET BERİLGEN İstinat Duvarı Zemin kütlelerini desteklemek için kullanılır. Şevlerin stabilitesini artırmak için Köprü kenar ayağı olarak Deniz yapılarında Rıhtım duvarı Doklar

Detaylı

İSTİNAT DUVARLARI YRD.DOÇ.DR. SAADET BERİLGEN

İSTİNAT DUVARLARI YRD.DOÇ.DR. SAADET BERİLGEN İSTİNAT DUVARLARI YRD.DOÇ.DR. SAADET BERİLGEN İstinat Duvarı Zemin kütlelerini desteklemek için kullanılır. Şevlerin stabilitesini artırmak için Köprü kenar ayağı olarak Deniz yapılarında Rıhtım duvarı

Detaylı

(z) = Zemin kütlesinden oluşan dinamik aktif basıncın derinliğe göre değişim fonksiyonu p pd

(z) = Zemin kütlesinden oluşan dinamik aktif basıncın derinliğe göre değişim fonksiyonu p pd BÖLÜM 6 TEMEL ZEMİNİ VE TEMELLER İÇİN DEPREME DAYANIKLI TASARIM KURALLARI 6.0. SİMGELER A o C h C v H I i K as K ad K at K ps K pd K pt P ad P pd = Bölüm 2 de tanımlanan Etkin Yer İvmesi Katsayısı = Toprak

Detaylı

Dayanma (İstİnat) yapilari. Yrd. Doç. Dr. S. Banu İKİZLER K.T.Ü. Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Geoteknik ABD.

Dayanma (İstİnat) yapilari. Yrd. Doç. Dr. S. Banu İKİZLER K.T.Ü. Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Geoteknik ABD. Dayanma (İstİnat) yapilari Yrd. Doç. Dr. S. Banu İKİZLER K.T.Ü. Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Geoteknik ABD. İçerik Giriş Yanal Zemin Basıncı Teorileri Aktif ve Pasif Zemin Basıncı Dağılımları

Detaylı

İstinat Duvarlarının Spread Sheet (Excel) Programı ile Çözümü ve Maliyet Analizi ile Uygun Duvar Tipinin Belirlenmesi

İstinat Duvarlarının Spread Sheet (Excel) Programı ile Çözümü ve Maliyet Analizi ile Uygun Duvar Tipinin Belirlenmesi İstinat Duvarlarının Spread Sheet (Excel) Programı ile Çözümü ve Maliyet Analizi ile Uygun Duvar Tipinin Belirlenmesi Devrim Alkaya* Giriş İstinat duvarları fazla göz önünde olmazken eksikliği, devrilmesi

Detaylı

Temeller. Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

Temeller. Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli Temeller Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli 1 Temel Nedir? Yapısal sistemlerin üzerindeki tüm yükleri, zemine güvenli bir şekilde aktaran yapısal elemanlara

Detaylı

BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ

BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ BÖLÜM II D ÖRNEK 1 BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ ÖRNEK 1 İKİ KATLI YIĞMA OKUL BİNASININ DEĞERLENDİRMESİ VE GÜÇLENDİRİLMESİ 1.1. BİNANIN GENEL ÖZELLİKLERİ...II.1/

Detaylı

İstinat Duvarlarının Spread Sheet (Excel) Programı ile Çözümü ve Maliyet Analizi Uygun Duvar Tipinin Belirlenmesi

İstinat Duvarlarının Spread Sheet (Excel) Programı ile Çözümü ve Maliyet Analizi Uygun Duvar Tipinin Belirlenmesi Akademik Bilişim 2008 Çanakkale Onsekiz Mart Üniversitesi, Çanakkale, 30 Ocak - 01 Şubat 2008 İstinat Duvarlarının Spread Sheet (Excel) Programı ile Çözümü ve Maliyet Analizi Uygun Duvar Tipinin Belirlenmesi

Detaylı

ZEMİNLERİN KAYMA DİRENCİ

ZEMİNLERİN KAYMA DİRENCİ ZEMİNLERİN KYM İRENİ Problem 1: 38.m çapında, 76.m yüksekliğindeki suya doygun kil zemin üzerinde serbest basınç deneyi yapılmış ve kırılma anında, düşey yük 129.6 N ve düşey eksenel kısalma 3.85 mm olarak

Detaylı

INM 308 Zemin Mekaniği

INM 308 Zemin Mekaniği Hafta_12 INM 308 Zemin Mekaniği Zeminlerin Taşıma Gücü; Kazıklı Temeller Yrd.Doç.Dr. İnan KESKİN inankeskin@karabuk.edu.tr, inankeskin@gmail.com www.inankeskin.com ZEMİN MEKANİĞİ Haftalık Konular Hafta

Detaylı

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 6- Risk Tespit Uygulaması: Yığma Bina

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 6- Risk Tespit Uygulaması: Yığma Bina RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR 6- Risk Tespit Uygulaması: Yığma Bina RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR BİRİNCİ AŞAMA DEĞERLENDİRME YÖNTEMİ BİNANIN ÖZELLİKLERİ Binanın

Detaylı

R d N 1 N 2 N 3 N 4 /2 /2

R d N 1 N 2 N 3 N 4 /2 /2 . SÜREKLİ TEELLER. Giriş Kolon yüklerinin büyük ve iki kolonun birbirine yakın olmasından dolayı yapılacak tekil temellerin çakışması halinde veya arsa sınırındaki kolon için eksantrik yüklü tekil temel

Detaylı

DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI

DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI Yrd. Doç. Dr. Uğur DAĞDEVİREN 2 3 Genel anlamda temel mühendisliği, yapısal yükleri zemine izin verilebilir

Detaylı

= ε s = 0,003*( ,3979)/185,3979 = 6,2234*10-3

= ε s = 0,003*( ,3979)/185,3979 = 6,2234*10-3 1) Şekilde verilen kirişte sehim denetimi gerektirmeyen donatı sınırı kadar donatı altında moment taşıma kapasitesi M r = 274,18 knm ise b w kiriş genişliğini hesaplayınız. d=57 cm Malzeme: C25/S420 b

Detaylı

DEPREME DAYANIKLI YAPI İNŞAATI SORULAR

DEPREME DAYANIKLI YAPI İNŞAATI SORULAR DEPREME DAYANIKLI YAPI İNŞAATI SORULAR 1- Dünyadaki 3 büyük deprem kuşağı bulunmaktadır. Bunlar nelerdir. 2- Deprem odağı, deprem fay kırılması, enerji dalgaları, taban kayası, yerel zemin ve merkez üssünü

Detaylı

INM 308 Zemin Mekaniği

INM 308 Zemin Mekaniği Hafta_7 INM 308 Zemin Mekaniği Yanal Zemin Basınçları Yrd.Doç.Dr. İnan KESKİN inankeskin@karabuk.edu.tr, inankeskin@gmail.com www.inankeskin.com ZEMİN MEKANİĞİ Haftalık Konular Hafta 1: Hafta 2: Hafta

Detaylı

TEMELLER. Farklı oturma sonucu yan yatan yapılar. Pisa kulesi/italya. İnşa süresi: 1173 1370

TEMELLER. Farklı oturma sonucu yan yatan yapılar. Pisa kulesi/italya. İnşa süresi: 1173 1370 TEMELLER Temeller yapının en alt katındaki kolon veya perdelerin yükünü (normal kuvvet, moment, v.s.) yer yüzeyine (zemine) aktarırlar. Diğer bir deyişle, temeller yapının ayaklarıdır. Kolon veya perdeler

Detaylı

Prof. Dr. Cengiz DÜNDAR

Prof. Dr. Cengiz DÜNDAR Prof. Dr. Cengiz DÜNDAR TABLALI KESİTLER Betonarme inşaatın monolitik özelliğinden dolayı, döşeme ve kirişler birlikte çalışırlar. Bu nedenle kesit hesabı yapılırken, döşeme parçası kirişin basınç bölgesine

Detaylı

Şekil 1.1. Beton çekme dayanımının deneysel olarak belirlenmesi

Şekil 1.1. Beton çekme dayanımının deneysel olarak belirlenmesi Eksenel çekme deneyi A-A Kesiti Kiriş eğilme deneyi A: kesit alanı Betonun çekme dayanımı: L b h A A f ct A f ct L 4 3 L 2 2 bh 2 bh 6 Silindir yarma deneyi f ct 2 πld Küp yarma deneyi L: silindir numunenin

Detaylı

YTÜ İnşaat Fakültesi Geoteknik Anabilim Dalı. Ders 5: İÇTEN DESTEKLİ KAZILAR. Prof.Dr. Mehmet BERİLGEN

YTÜ İnşaat Fakültesi Geoteknik Anabilim Dalı. Ders 5: İÇTEN DESTEKLİ KAZILAR. Prof.Dr. Mehmet BERİLGEN YTÜ İnşaat Fakültesi Geoteknik Anabilim Dalı Ders 5: İÇTEN DESTEKLİ KAZILAR Prof.Dr. Mehmet BERİLGEN İçten Destekli Kazılar İçerik: Giriş Uygulamalar Tipler Basınç diagramları Tasarım Toprak Basıncı Diagramı

Detaylı

Projemizde bir adet sürekli temel örneği yapılacaktır. Temel genel görünüşü aşağıda görülmektedir.

Projemizde bir adet sürekli temel örneği yapılacaktır. Temel genel görünüşü aşağıda görülmektedir. 1 TEMEL HESABI Projemizde bir adet sürekli temel örneği yapılacaktır. Temel genel görünüşü aşağıda görülmektedir. Uygulanacak olan standart sürekli temel kesiti aşağıda görülmektedir. 2 Burada temel kirişi

Detaylı

Temel sistemi seçimi;

Temel sistemi seçimi; 1 2 Temel sistemi seçimi; Tekil temellerden ve tek yönlü sürekli temellerden olabildiğince uzak durulmalıdır. Zorunlu hallerde ise tekil temellerde her iki doğrultuda rijit ve aktif bağ kirişleri kullanılmalıdır.

Detaylı

34. Dörtgen plak örnek çözümleri

34. Dörtgen plak örnek çözümleri 34. Dörtgen plak örnek çözümleri Örnek 34.1: Teorik çözümü Timoshenko 1 tarafından verilen dört tarafından ankastre ve merkezinde P=100 kn tekil yükü olan kare plağın(şekil 34.1) çözümü 4 farklı model

Detaylı

YIĞMA YAPI TASARIMI DEPREM BÖLGELERİNDE YAPILACAK BİNALAR HAKKINDA YÖNETMELİK

YIĞMA YAPI TASARIMI DEPREM BÖLGELERİNDE YAPILACAK BİNALAR HAKKINDA YÖNETMELİK 11.04.2012 1 DEPREM BÖLGELERİNDE YAPILACAK BİNALAR HAKKINDA YÖNETMELİK 2 Genel Kurallar: Deprem yükleri : S(T1) = 2.5 ve R = 2.5 alınarak bulanacak duvar gerilmelerinin sınır değerleri aşmaması sağlanmalıdır.

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 kışkan Statiğine Giriş kışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

) = 2.5 ve R a (T 1 1 2 2, 3 3 4 4

) = 2.5 ve R a (T 1 1 2 2, 3 3 4 4 BÖLÜM 5 YIĞMA BİNALAR İÇİN DEPREME DAYANIKLI TASARIM KURALLARI 5.. KAPSAM Deprem bölgelerinde yapılacak olan, hem düşey hem yatay yükler için tüm taşıyıcı sistemi doğal veya yapay malzemeli taşıyıcı duvarlar

Detaylı

Betonarme Bina Tasarımı Dersi Yapı Özellikleri

Betonarme Bina Tasarımı Dersi Yapı Özellikleri 2016-2017 Betonarme Bina Tasarımı Dersi Yapı Özellikleri Adı Soyadı Öğrenci No: L K J I H G F E D C B A A Malzeme Deprem Yerel Zemin Dolgu Duvar Dişli Döşeme Dolgu Bölgesi Sınıfı Cinsi Cinsi 0,2,4,6 C30/

Detaylı

Örnek bir istinat duvarına etkiyen dinamik toprak itkilerinin belirlenmesi

Örnek bir istinat duvarına etkiyen dinamik toprak itkilerinin belirlenmesi Örnek bir istinat duvarına etkiyen dinamik toprak itkilerinin belirlenmesi Determination of dynamic active forces acting on a retaining wall Recep İyisan, Gökhan Çevikbilen, Barış Özcan İstanbul Teknik

Detaylı

Üst yapı yüklerinin bir bölümü ya da tümünü zemin yüzünden daha derinlerdeki tabakalara aktaran

Üst yapı yüklerinin bir bölümü ya da tümünü zemin yüzünden daha derinlerdeki tabakalara aktaran Üst yapı yüklerinin bir bölümü ya da tümünü zemin yüzünden daha derinlerdeki tabakalara aktaran temel derinliği/temel genişliği oranı genellikle 4'den büyük olan temel sistemleri derin temeller olarak

Detaylı

CS MÜHENDİSLİK PROJE YAZILIM HİZMETLERİ www.csproje.com. EUROCODE-2'ye GÖRE MOMENT YENİDEN DAĞILIM

CS MÜHENDİSLİK PROJE YAZILIM HİZMETLERİ www.csproje.com. EUROCODE-2'ye GÖRE MOMENT YENİDEN DAĞILIM Moment CS MÜHENİSLİK PROJE YAZILIM HİZMETLERİ EUROCOE-2'ye GÖRE MOMENT YENİEN AĞILIM Bir yapıdaki kuvvetleri hesaplamak için elastik kuvvetler kullanılır. Yapının taşıma gücüne yakın elastik davranmadığı

Detaylı

Nervürlü Düz Hasır Nervürlü

Nervürlü Düz Hasır Nervürlü ÇELĐK Nervürlü Düz Hasır Nervürlü Çelik sınıfı tanımı(ts708/1996) Üretim yöntemine göre sınıflandırma: Steel(çelik) Akma dayanımı 420 Sıcak haddeleme işlemi ile üretilen, simgesi: a N/mm 2 Sıcak haddeleme

Detaylı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Gerilme Bölüm Hedefleri Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Copyright 2011 Pearson Education South sia Pte Ltd GERİLME Kesim

Detaylı

BETONARME TEMELLER. Temel Tipleri

BETONARME TEMELLER. Temel Tipleri BETONARME TEMELLER Temeller, bir yapıya etkiyen yükleri güvenle zemine aktaran elemanlardır. Yapının yükleri zemine aktarılırken, taşıyıcı sistemde ek etkiler meydana getirecek çökmelerin ve dönmelerin

Detaylı

GEBZE TEKNİK ÜNİVERİSİTESİ MİMARLIK FAKÜLTESİ MİMARLIK BÖLÜMÜ

GEBZE TEKNİK ÜNİVERİSİTESİ MİMARLIK FAKÜLTESİ MİMARLIK BÖLÜMÜ GEBZE TEKNİK ÜNİVERİSİTESİ MİMARLIK FAKÜLTESİ MİMARLIK BÖLÜMÜ MİM 142 YAPI BİLGİSİ I Prof.Dr.Nilay COŞGUN Arş.Gör. Seher GÜZELÇOBAN MAYUK Arş.Gör. Fazilet TUĞRUL Arş.Gör.Ayşegül ENGİN Arş.Gör. Selin ÖZTÜRK

Detaylı

BETONARME YAPI ELEMANLARINDA DONATI DÜZENLEME İLKELERİ

BETONARME YAPI ELEMANLARINDA DONATI DÜZENLEME İLKELERİ BETONARME YAPI ELEMANLARINDA DONATI DÜZENLEME İLKELERİ Araş. Gör. İnş.Yük. Müh. Hayri Baytan ÖZMEN Bir Yanlışlık Var! 1 Donatı Düzenleme (Detaylandırma) Yapı tasarımının son ve çok önemli aşamasıdır. Yapının

Detaylı

GENEL KESİTLİ KOLON ELEMANLARIN TAŞIMA GÜCÜ (Ara donatılı dikdörtgen kesitler)

GENEL KESİTLİ KOLON ELEMANLARIN TAŞIMA GÜCÜ (Ara donatılı dikdörtgen kesitler) GENEL KESİTLİ KOLON ELEMANLARIN TAŞIMA GÜCÜ (Ara donatılı dikdörtgen kesitler) BOYUTLANDIRMA VE DONATI HESABI Örnek Kolon boyutları ne olmalıdır. Çözüm Kolon taşıma gücü abaklarının kullanımı Soruda verilenler

Detaylı

UBET72 DM BETON KÖŞK YAPISI BETONARME STATİK HESAP RAPORU

UBET72 DM BETON KÖŞK YAPISI BETONARME STATİK HESAP RAPORU UBET72 DM BETON KÖŞK YAPISI HAZIRLAYAN : İSMAİL ENGİN KONTROL EDDEN : GÜNER İNCİ TARİH : 21.3.215 Sayfa / Page 2 / 4 REVİZYON BİLGİLERİ Rev. No. Tarih Tanım / YayınNedeni Onay Sunan Kontrol Onay RevizyonDetayBilgileri

Detaylı

YIĞMA YAPI TASARIMI ÖRNEK BİR YIĞMA SİSTEMİN İNCELENMESİ

YIĞMA YAPI TASARIMI ÖRNEK BİR YIĞMA SİSTEMİN İNCELENMESİ 13.04.2012 1 ÖRNEK BİR YIĞMA SİSTEMİN İNCELENMESİ 2 ÇENGEL KÖY DE BİR YIĞMA YAPI KADIKÖY DEKİ YIĞMA YAPI 3 Genel Bilgiler Yapı Genel Tanımı Kat Sayısı: Bodrum+3 kat+teras kat Kat Oturumu: 9.80 X 15.40

Detaylı

d : Kirişin faydalı yüksekliği E : Deprem etkisi E : Mevcut beton elastisite modülü

d : Kirişin faydalı yüksekliği E : Deprem etkisi E : Mevcut beton elastisite modülü 0. Simgeler A c A kn RİSKLİ BİNALARIN TESPİT EDİLMESİ HAKKINDA ESASLAR : Brüt kolon enkesit alanı : Kritik katta değerlendirmenin yapıldığı doğrultudaki kapı ve pencere boşluk oranı %5'i geçmeyen ve köşegen

Detaylı

BETONARME BİNA TASARIMI

BETONARME BİNA TASARIMI BETONARME BİNA TASARIMI (ZEMİN KAT ve 1. KAT DÖŞEMELERİN HESABI) BETONARME BİNA TASARIMI Sayfa No: 1 ZEMİN KAT TAVANI (DİŞLİ DÖŞEME): X1, X2, ile verilen ölçüleri belirleyebilmek için önce 1. kat tavanı

Detaylı

SAP2000 de önceden saptanan momentler doğrultusunda betonarme plak donatısı hesapları şu makale doğrultusunda yapılmaktadır:

SAP2000 de önceden saptanan momentler doğrultusunda betonarme plak donatısı hesapları şu makale doğrultusunda yapılmaktadır: Teknik Not: Betonarme Kabuk Donatı Boyutlandırması Ön Bilgi SAP000 de önceden saptanan momentler doğrultusunda betonarme plak donatısı esapları şu makale doğrultusunda yapılmaktadır: DD ENV 99-- 99 Eurocode

Detaylı

Süneklik Düzeyi Yüksek Perdeler TANIMLAR Perdeler, planda uzun kenarın kalınlığa oranı en az 7 olan düşey, taşıyıcı sistem elemanlarıdır.

Süneklik Düzeyi Yüksek Perdeler TANIMLAR Perdeler, planda uzun kenarın kalınlığa oranı en az 7 olan düşey, taşıyıcı sistem elemanlarıdır. TC. SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ İNM 308 Depreme Dayanıklı Betonarme e Yapı Tasarımı arımı Earthquake Resistantt Reinforced Concretee Structural Design BÖLÜM 3 - BETONARME BİNALAR

Detaylı

Sta4-CAD. 1 Moda cd. İçgören ap. no:120b/8 Moda/İSTANBUL Tel:(0216)414 3750 / 414 7711 Fax:418 6834 sta@sta.com.tr

Sta4-CAD. 1 Moda cd. İçgören ap. no:120b/8 Moda/İSTANBUL Tel:(0216)414 3750 / 414 7711 Fax:418 6834 sta@sta.com.tr Sta4CAD konsol duvar hesabı Birimler Uzunluk: Kuvvet: Ağırlık: Açı: Saha karakterleri: Ao Yapı önem katsayısı: Kohezyon Zemin iç sürtünme açısı(φ) Zemin su yüks. üstünde Duvar-Zemin sürtünme açısıl(δd)

Detaylı

Yapılara Etkiyen Karakteristik Yükler

Yapılara Etkiyen Karakteristik Yükler Yapılara Etkiyen Karakteristik Yükler Kalıcı (sabit, zati, öz, ölü) yükler (G): Yapı elemanlarının öz yükleridir. Döşeme ağırlığı ( döşeme betonu+tesviye betonu+kaplama+sıva). Kiriş ağırlığı. Duvar ağırlığı

Detaylı

Yrd.Doç.Dr. Hüseyin YİĞİTER

Yrd.Doç.Dr. Hüseyin YİĞİTER Dokuz Eylül Üniversitesi İnşaat Mühendisliği Bölümü İNŞ2024 YAPI MALZEMESİ II SERTLEŞMİŞ BETONUN DİĞER ÖZELLİKLERİ Yrd.Doç.Dr. Hüseyin YİĞİTER http://kisi.deu.edu.tr/huseyin.yigiter EĞİLME DENEYİ ve EĞİLME

Detaylı

RİSKLİ BİNALARIN TESPİT EDİLMESİ HAKKINDA ESASLAR 5-Özel Konular

RİSKLİ BİNALARIN TESPİT EDİLMESİ HAKKINDA ESASLAR 5-Özel Konular RİSKLİ BİNALARIN TESPİT EDİLMESİ HAKKINDA ESASLAR 5-Özel Konular Çevre ve Şehircilik Bakanlığı Alt Yapı ve Kentsel Dönüşüm Hizmetleri Genel Müdürlüğü Konular Bina Risk Tespiti Raporu Hızlı Değerlendirme

Detaylı

ÇATI MAKASINA GELEN YÜKLER

ÇATI MAKASINA GELEN YÜKLER ÇATI MAKASINA GELEN YÜKLER Bir yapıyı dış etkilere karşı koruyan taşıyıcı sisteme çatı denir. Belirli aralıklarla yerleştirilen çatı makaslarının, yatay taşıyıcı eleman olan aşıklarla birleştirilmesi ile

Detaylı

RİSKLİ BİNALARIN TESPİT EDİLMESİ HAKKINDA ESASLAR 5-Kontrol Uygulaması

RİSKLİ BİNALARIN TESPİT EDİLMESİ HAKKINDA ESASLAR 5-Kontrol Uygulaması RİSKLİ BİNALARIN TESPİT EDİLMESİ HAKKINDA ESASLAR 5-Kontrol Uygulaması Çevre ve Şehircilik Bakanlığı Alt Yapı ve Kentsel Dönüşüm Hizmetleri Genel Müdürlüğü Kontrol edilecek noktalar Bina RBTE kapsamında

Detaylı

YAPAN: ESKISEHIR G TIPI LOJMAN TARİH: 15.02.2010 REVİZYON: Hakan Şahin - ideyapi Bilgisayar Destekli Tasarım

YAPAN: ESKISEHIR G TIPI LOJMAN TARİH: 15.02.2010 REVİZYON: Hakan Şahin - ideyapi Bilgisayar Destekli Tasarım YAPAN: PROJE: TARİH: 15.02.2010 REVİZYON: Hakan Şahin - ideyapi Bilgisayar Destekli Tasarım YAPI GENEL YERLEŞİM ŞEKİLLERİ 1 4. KAT 1 3. KAT 2 2. KAT 3 1. KAT 4 ZEMİN KAT 5 1. BODRUM 6 1. BODRUM - Temeller

Detaylı

KİRİŞ YÜKLERİ HESABI GİRİŞ

KİRİŞ YÜKLERİ HESABI GİRİŞ KİRİŞ YÜKLERİ HESABI 1 GİRİŞ Betonarme elemanlar üzerlerine gelen yükleri emniyetli bir şekilde diğer elemanlara veya zemine aktarmak için tasarlanırlar. Tasarımda boyutlandırma ve donatılandırma hesapları

Detaylı

TEMEL İNŞAATI ŞERİT TEMELLER

TEMEL İNŞAATI ŞERİT TEMELLER TEMEL İNŞAATI ŞERİT TEMELLER Kaynak; Temel Mühendisliğine Giriş, Prof. Dr. Bayram Ali Uzuner 1 2 Duvar Altı (veya Perde Altı) Şerit Temeller (Duvar Temelleri) 3 Taş Duvar Altı Şerit Temeller Basit tek

Detaylı

Ek-3-2: Örnek Tez 1. GİRİŞ

Ek-3-2: Örnek Tez 1. GİRİŞ 1 Ek-3-2: Örnek Tez 1. GİRİŞ.. 2 2. GENEL KISIMLAR 2.1. YATAY YATAK KATSAYISI YAKLAŞIMI Yatay yüklü kazıkların analizinde iki parametrenin bilinmesi önemlidir : Kazığın rijitliği (EI) Zeminin yatay yöndeki

Detaylı

B-B AKSI KİRİŞLERİ BETONARME HESAPLARI

B-B AKSI KİRİŞLERİ BETONARME HESAPLARI B-B AKSI KİRİŞLERİ BETONARE HESAPLARI B-B AKSI KİRİŞLERİ ELVERİŞSİZ OENT DİYAGRALARI 1.. ve 3.Grup yüklemeler için hesap momentleri olarak kolon yüzündeki (x=0) düzeltilmiş moment değerleri esas alınacaktır.

Detaylı

Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir.

Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir. BASINÇ ÇUBUKLARI Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir. Basınç çubukları, sadece eksenel basınç kuvvetine maruz kalırlar. Bu çubuklar üzerinde Eğilme ve

Detaylı

BÖLÜM 6 - TEMEL ZEMİNİ VE TEMELLER İÇİN DEPREME DAYANIKLI TASARIM KURALLARI 6.1. KAPSAM

BÖLÜM 6 - TEMEL ZEMİNİ VE TEMELLER İÇİN DEPREME DAYANIKLI TASARIM KURALLARI 6.1. KAPSAM TDY 2007 Öğr. Verildi BÖLÜM 6 - TEMEL ZEMİNİ VE TEMELLER İÇİN DEPREME DAYANIKLI TASARIM KURALLARI 6.1. KAPSAM Deprem bölgelerinde yapılacak yeni binalar ile deprem performansı değerlendirilecek veya güçlendirilecek

Detaylı

Prefabrik Yapılar. Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul

Prefabrik Yapılar. Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul Prefabrik Yapılar Uygulama-1 Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul 2010 Sunuma Genel Bir Bakış 1. Taşıyıcı Sistem Hakkında Kısa Bilgi 1.1 Sistem Şeması 1.2 Sistem Detayları ve Taşıyıcı Sistem

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 5 Eğilmede Kirişlerin Analizi ve Tasarımı Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

İZMİR İLİ BUCA İLÇESİ 8071 ADA 7 PARSEL RİSKLİ BİNA İNCELEME RAPORU

İZMİR İLİ BUCA İLÇESİ 8071 ADA 7 PARSEL RİSKLİ BİNA İNCELEME RAPORU İZMİR İLİ BUCA İLÇESİ 8071 ADA 7 PARSEL RİSKLİ BİNA İNCELEME RAPORU AĞUSTOS 2013 1.GENEL BİLGİLER 1.1 Amaç ve Kapsam Bu çalışma, İzmir ili, Buca ilçesi Adatepe Mahallesi 15/1 Sokak No:13 adresinde bulunan,

Detaylı

ANTAKYA MÜZE OTEL TAŞIYICI SİSTEM PROJESİ. İnş.Yük.Müh. Bülent DEVECİ

ANTAKYA MÜZE OTEL TAŞIYICI SİSTEM PROJESİ. İnş.Yük.Müh. Bülent DEVECİ ANTAKYA MÜZE OTEL TAŞIYICI SİSTEM PROJESİ İnş.Yük.Müh. Bülent DEVECİ Proje Künyesi : Yatırımcı Mimari Proje Müellifi Statik Proje Müellifi Çelik İmalat Yüklenicisi : Asfuroğlu Otelcilik : Emre Arolat Mimarlık

Detaylı

Şev Stabilitesi I. Prof.Dr.Mustafa KARAŞAHİN

Şev Stabilitesi I. Prof.Dr.Mustafa KARAŞAHİN Şev Stabilitesi I Prof.Dr.Mustafa KARAŞAHİN Farklı Malzemelerin Dayanımı Çelik Beton Zemin Çekme dayanımı Basınç dayanımı Kesme dayanımı Karmaşık davranış Boşluk suyu! Zeminlerin Kesme Çökmesi

Detaylı

KESME BAKIMINDAN DOĞRU TASARLANMAMIŞ BETONARME PERDE DUVARLI YÜKSEK BİNALARIN DEPREM PERFORMANSI

KESME BAKIMINDAN DOĞRU TASARLANMAMIŞ BETONARME PERDE DUVARLI YÜKSEK BİNALARIN DEPREM PERFORMANSI KESME BAKIMINDAN DOĞRU TASARLANMAMIŞ BETONARME PERDE DUVARLI YÜKSEK BİNALARIN DEPREM PERFORMANSI Ali İhsan ÖZCAN Yüksek Lisans Tez Sunumu 02.06.2015 02.06.2015 1 Giriş Nüfus yoğunluğu yüksek bölgelerde;

Detaylı

Kirişlerde sınır değerler

Kirişlerde sınır değerler Kirişlerde sınır değerler ERSOY/ÖZCEBE S. 275277 5 cm çekme tarafı (depremde çekme basınç) 5 cm 5 cm ρ 1 basınç tarafı s ρ φ s φ gövde s φw ρ φ φ w ρ w ρ gövde φ w ρ 1 çekme tarafı φ w basınç tarafı (depremde

Detaylı

Yapı Elemanlarının Davranışı

Yapı Elemanlarının Davranışı Kolon Türleri ve Eksenel Yük Etkisi Altında Kolon Davranışı Yapı Elemanlarının Davranışı Yrd. Doç. Dr. Barış ÖZKUL Kolonlar; bütün yapılarda temel ile diğer yapı elemanları arasındaki bağı sağlayan ana

Detaylı

DÜSEY YÜKLERE GÖRE HESAP

DÜSEY YÜKLERE GÖRE HESAP DÜSEY YÜKLERE GÖRE HESAP 2-2 ile A-A aks çerçevelerinin zemin ve birinci kat tavanına ait sürekli kirişlerin düşey yüklere göre statik hesabı yapılacaktır. A A Aksı 2 2 Aksı Zemin kat dişli döşeme kalıp

Detaylı

Örnek Güçlendirme Projesi. Joseph Kubin Mustafa Tümer TAN

Örnek Güçlendirme Projesi. Joseph Kubin Mustafa Tümer TAN Örnek Güçlendirme Projesi Joseph Kubin Mustafa Tümer TAN Deprem Performansı Nedir? Deprem Performansı, tanımlanan belirli bir deprem etkisi altında, bir binada oluşabilecek hasarların düzeyine ve dağılımına

Detaylı

Sedat SERT-Aşkın ÖZOCAK-Ertan BOL 1

Sedat SERT-Aşkın ÖZOCAK-Ertan BOL 1 TOPRAK BASINCI TEORİLERİ ve DAYANMA YAPILARI 50 den fazla teori vardır ancak temelleri: İskoçyalı W.J.M. Rankine (1857) Fransız Charles Augustin Coulomb (1776) TOPRAK BASINCI TEORİLERİ RANKINE TOPRAK BASINCI

Detaylı

8. TOPRAK ZEMİNLERİN TAŞIMA GÜCÜ (BEARING CAPACITY OF SOILS)

8. TOPRAK ZEMİNLERİN TAŞIMA GÜCÜ (BEARING CAPACITY OF SOILS) 8. TOPRAK ZEMİNLERİN TAŞIMA GÜCÜ (BEARING CAPACITY OF SOILS) TEMELLER (FOUNDATIONS) Temel, yapı ile zeminin arasındaki yapısal elemandır. Yapı yükünü zemine aktaran elemandır. Temeller, yapıdan kaynaklanan

Detaylı

Ankraj Tasarımında ACI 318-11 Yaklaşımı

Ankraj Tasarımında ACI 318-11 Yaklaşımı Ankraj Tasarımında ACI 318-11 Yaklaşımı Cem Haydaroğlu İnş.Yük. Müh. cem.haydaroglu@hotmail.com TMMOB İnşaat Mühendisleri Odası İstanbul Şubesi Bahar 2013 Dönemi Meslek İçi Seminerleri 21-22-23 Mayıs 2013

Detaylı

Çelik Yapılar - INS /2016

Çelik Yapılar - INS /2016 Çelik Yapılar - INS4033 2015/2016 DERS III Yapısal Analiz Kusurlar Lineer Olmayan Malzeme Davranışı Malzeme Koşulları ve Emniyet Gerilmeleri Arttırılmış Deprem Etkileri Fatih SÖYLEMEZ Yük. İnş. Müh. İçerik

Detaylı

Beton Yol Kalınlık Tasarımı. Prof.Dr.Mustafa KARAŞAHİN

Beton Yol Kalınlık Tasarımı. Prof.Dr.Mustafa KARAŞAHİN Beton Yol Kalınlık Tasarımı Prof.Dr.Mustafa KARAŞAHİN Esnek, Kompozit ve Beton Yol Tipik Kesitleri Beton Yol Tasarımında Dikkate Alınan Parametreler Taban zemini parametresi Taban zemini reaksiyon modülü

Detaylı

DEPREM BÖLGELERİNDE PREFABRİKE BETONARME İSTİNAT DUVARLARININ TASARIMI

DEPREM BÖLGELERİNDE PREFABRİKE BETONARME İSTİNAT DUVARLARININ TASARIMI DEPREM BÖLGELERİNDE PREFBRİKE BETONRME İSTİNT DUVRLRININ TSRIMI Turgut ÖZTÜRK, Zübeyde ÖZTÜRK 2 Tozturk@ins.itu.edu.tr, Zozturk@ins.itu.edu.tr Öz : Deprem bölgelerinde de betonarme istinat duvarlarının

Detaylı

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 4- Özel Konular

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 4- Özel Konular RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR 4- Özel Konular Konular Kalibrasyonda Kullanılan Binalar Bina Risk Tespiti Raporu Hızlı Değerlendirme Metodu Sıra Dışı Binalarda Tespit 2 Amaç RYTE yönteminin

Detaylı

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering Uygulama Sorusu-1 Şekildeki 40 mm çaplı şaft 0 kn eksenel çekme kuvveti ve 450 Nm burulma momentine maruzdur. Ayrıca milin her iki ucunda 360 Nm lik eğilme momenti etki etmektedir. Mil malzemesi için σ

Detaylı

Şev Stabilitesi. Uygulama. Araş. Gör. S. Cankat Tanrıverdi, Prof. Dr. Mustafa Karaşahin

Şev Stabilitesi. Uygulama. Araş. Gör. S. Cankat Tanrıverdi, Prof. Dr. Mustafa Karaşahin Şev Stabilitesi Uygulama Araş. Gör. S. Cankat Tanrıverdi, Prof. Dr. Mustafa Karaşahin 1) Şekilde zemin yapısı verilen arazide 6 m yükseklikte ve 40⁰ eğimle açılacak bir şev için güvenlik sayısını belirleyiniz.

Detaylı

PROJE KONTROL FORMU ÖRNEĞİ

PROJE KONTROL FORMU ÖRNEĞİ 1 PROJE KONTROL FORMU ÖRNEĞİ Denetimi Üstlenilecek İş İl / İlçe : İlgili İdare : Pafta/Ada/Parsel No : Yapı Adresi : Yapı Sahibi : Yapı Sahibinin Adresi : Yapı Denetim Kuruluşu İzin Belge No : Unvanı :

Detaylı

Yapılara Etkiyen Karakteristik. yükler

Yapılara Etkiyen Karakteristik. yükler Yapılara Etkiyen Karakteristik Yükler G etkileri Q etkileri E etkisi etkisi H etkisi T etkileri Kalıcı (sabit, zati, öz, ölü) yükler: Yapı elemanlarının öz yükleridir. Döşeme ağırlığı ( döşeme betonu+tesviye

Detaylı

İSTİNAT DUVARINA ETKİYEN DİNAMİK TOPRAK BASINÇLARI YÜKSEK LİSANS TEZİ. Murat Can YILDIZ. İnşaat Mühendisliği Anabilim Dalı

İSTİNAT DUVARINA ETKİYEN DİNAMİK TOPRAK BASINÇLARI YÜKSEK LİSANS TEZİ. Murat Can YILDIZ. İnşaat Mühendisliği Anabilim Dalı İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İSTİNAT DUVARINA ETKİYEN DİNAMİK TOPRAK BASINÇLARI YÜKSEK LİSANS TEZİ Murat Can YILDIZ İnşaat Mühendisliği Anabilim Dalı Zemin Mekaniği ve Geoteknik

Detaylı

AASHTO-LRFD kriterleri (Madde 4.6.3.7)

AASHTO-LRFD kriterleri (Madde 4.6.3.7) Alp Caner 1 AASHTO-LRFD kriterleri (Madde 4.6.3.7) Analizlerde yük dağılımları hesaplanırken kule geometrisi, üst yapının burulmaya dayanıklılığı ve kablo plan adedi önemlidir. Kablolardaki sarkmalar,

Detaylı

ÖRNEK 18 4 KATLI BETONARME PANSİYON BİNASININ GÜÇLENDİRİLMESİ ve DOĞRUSAL ELASTİK OLMAYAN YÖNTEM İLE DEĞERLENDİRİLMESİ

ÖRNEK 18 4 KATLI BETONARME PANSİYON BİNASININ GÜÇLENDİRİLMESİ ve DOĞRUSAL ELASTİK OLMAYAN YÖNTEM İLE DEĞERLENDİRİLMESİ 4 KATLI BETONARME PANSİYON BİNASININ GÜÇLENDİRİLMESİ ve DOĞRUSAL ELASTİK OLMAYAN YÖNTEM İLE DEĞERLENDİRİLMESİ 18.1. PERFORMANS DÜZEYİNİN BELİRLENMESİ... 18/1 18.2. GÜÇLENDİRİLEN BİNANIN ÖZELLİKLERİ VE

Detaylı

ÇATI KONSTRÜKSİYONLARINDA GAZBETON UYGULAMALARI Doç.Dr.Oğuz Cem Çelik İTÜ Mimarlık Fakültesi Yapı Statiği ve Betonarme Birimi

ÇATI KONSTRÜKSİYONLARINDA GAZBETON UYGULAMALARI Doç.Dr.Oğuz Cem Çelik İTÜ Mimarlık Fakültesi Yapı Statiği ve Betonarme Birimi ÇATI KONSTRÜKSİYONLARINDA GAZBETON UYGULAMALARI Doç.Dr.Oğuz Cem Çelik İTÜ Mimarlık Fakültesi Yapı Statiği ve Betonarme Birimi ÖZET Donatılı gazbeton çatı panellerinin çeşitli çatı taşıyıcı sistemlerinde

Detaylı

Ders 6: ŞEVLERİN DURAYLILIĞI

Ders 6: ŞEVLERİN DURAYLILIĞI Ders 6: ŞEVLERİN DURAYLILIĞI Şev nedir? Bir zemin kütlesinin yatay bir düzlemle açı yapan yüzeyine şev adı verilir. Doğal olaylarla oluşan şevlere doğal şev, insan eliyle kazı ya da dolgu sonucu oluşmuşan

Detaylı

İNM 305 ZEMİN MEKANİĞİ

İNM 305 ZEMİN MEKANİĞİ İNM 305 ZEMİN MEKANİĞİ 2015-2016 GÜZ YARIYILI Prof. Dr. Zeki GÜNDÜZ 1 2 Zeminde gerilmeler 3 ana başlık altında toplanabilir : 1. Doğal Gerilmeler : Özağırlık, suyun etkisi, oluşum sırası ve sonrasında

Detaylı

2009 Kasım. www.guven-kutay.ch MUKAVEMET DEĞERLERİ ÖRNEKLER. 05-5a. M. Güven KUTAY. 05-5a-ornekler.doc

2009 Kasım. www.guven-kutay.ch MUKAVEMET DEĞERLERİ ÖRNEKLER. 05-5a. M. Güven KUTAY. 05-5a-ornekler.doc 2009 Kasım MUKAVEMET DEĞERLERİ ÖRNEKLER 05-5a M. Güven KUTAY 05-5a-ornekler.doc İ Ç İ N D E K İ L E R 5. MUKAVEMET HESAPLARI İÇİN ÖRNEKLER...5.3 5.1. 1. Grup örnekler...5.3 5.1.1. Örnek 1, aturalı mil

Detaylı

Sıvılaşma hangi ortamlarda gerçekleşir? Sıvılaşmaya etki eden faktörler nelerdir? Arazide tahkik; SPT, CPT, Vs çalışmaları

Sıvılaşma hangi ortamlarda gerçekleşir? Sıvılaşmaya etki eden faktörler nelerdir? Arazide tahkik; SPT, CPT, Vs çalışmaları SIVILAŞMA Sıvılaşma Nedir? Sıvılaşma hangi ortamlarda gerçekleşir? Sıvılaşmaya etki eden faktörler nelerdir? Sıvılaşmanın Etkileri Geçmiş Depremlerden Örnekler Arazide tahkik; SPT, CPT, Vs çalışmaları

Detaylı

T.C PENDĠK BELEDĠYE BAġKANLIĞI ĠSTANBUL. Raporu Hazırlanan Bina Bilgileri

T.C PENDĠK BELEDĠYE BAġKANLIĞI ĠSTANBUL. Raporu Hazırlanan Bina Bilgileri T.C PENDĠK BELEDĠYE BAġKANLIĞI ĠMAR VE ġehġrcġlġk MÜDÜRLÜĞÜ NE ĠSTANBUL Raporu Hazırlanan Bina Bilgileri Yapı Sahibi : Ġl : Ġlçe : Mahalle : Cadde : Sokak : No : Pafta : Ada : Parsel : Yukarıda bilgileri

Detaylı

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 5- Risk Tespit Uygulaması: Betonarme Bina

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 5- Risk Tespit Uygulaması: Betonarme Bina RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR 5- Risk Tespit Uygulaması: Betonarme Bina İncelenen Bina Binanın Yeri Bina Taşıyıcı Sistemi Bina 5 katlı Betonarme çerçeve ve perde sistemden oluşmaktadır.

Detaylı

INM 308 Zemin Mekaniği

INM 308 Zemin Mekaniği Hafta_8 INM 308 Zemin Mekaniği Yanal Zemin Basınçları; Uygulamalar Yrd.Doç.Dr. İnan KESKİN inankeskin@karabuk.edu.tr, inankeskin@gmail.com www.inankeskin.com ZEMİN MEKANİĞİ Haftalık Konular Hafta 1: Hafta

Detaylı

Structure of Excel with VBA Design of Anchored Retaining And without Anchored Retaining

Structure of Excel with VBA Design of Anchored Retaining And without Anchored Retaining Yapı Teknolojileri Elektronik Dergisi Cilt: 6, No: 1, 2010 (71-82) Electronic Journal of ConstructionTechnologies Vol: 6, No: 1, 2010 (71-82) TEKNOLOJİK ARAŞTIRMALAR www.teknolojikarastirmalar.com e-issn:1305-631x

Detaylı

ICS 91.080.40 TÜRK STANDARDI TS 500/Şubat 2000 ÖNSÖZ

ICS 91.080.40 TÜRK STANDARDI TS 500/Şubat 2000 ÖNSÖZ ÖNSÖZ Bu standard, Türk Standardları Enstitüsü nün İnşaat Hazırlık Grubu nca TS 500 (1984) ün revizyonu olarak hazırlanmış ve TSE Teknik Kurulunun 22 Şubat 2000 tarihli toplantısında kabul edilerek yayımına

Detaylı

ZEMİNLERİN GERİLME-ŞEKİL DEĞİŞTİRME DAVRANIŞI VE KAYMA MUKAVEMETİ

ZEMİNLERİN GERİLME-ŞEKİL DEĞİŞTİRME DAVRANIŞI VE KAYMA MUKAVEMETİ ZEMİNLERİN GERİLME-ŞEKİL DEĞİŞTİRME DAVRANIŞI VE KAYMA MUKAVEMETİ GİRİŞ Zeminlerin gerilme-şekil değiştirme davranışı diğer inşaat malzemelerine göre daha karmaşıktır. Zeminin yük altında davranışı Başlangıç

Detaylı

7-Sürtünme. Daha önceki bölümlerde temas yüzeylerinde sürtünme olmadığını kabul etmiştik. Yüzeyler diğerlerine göre serbestçe hareket edebilmekteydi

7-Sürtünme. Daha önceki bölümlerde temas yüzeylerinde sürtünme olmadığını kabul etmiştik. Yüzeyler diğerlerine göre serbestçe hareket edebilmekteydi 7-Sürtünme Daha önceki bölümlerde temas yüzeylerinde sürtünme olmadığını kabul etmiştik. Yüzeyler diğerlerine göre serbestçe hareket edebilmekteydi Gerçekte tam sürtünmesiz yüzey yoktur. Birbiriyle temas

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi 8. Sürtünme Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr

Detaylı

Mobilmod Çerçeve Tip Mobil İskele (135)

Mobilmod Çerçeve Tip Mobil İskele (135) Mobilmod Çerçeve Tip Mobil İskele (135) Mobilmod iskele sistemleri, genellikle iç mekanlarda ve düzgün zeminli geniş alanlarda kullanılan tekerlekli, yer değiştirebilir iskele sistemleridir. Mobilmod İş

Detaylı