GENEL KİMYA Elektromagnetik Radyasyon (Işıma) Elektromagnetik Radyasyon (Işıma) Elektromagnetik Radyasyon (Işıma)

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "GENEL KİMYA 04.01.2012. Elektromagnetik Radyasyon (Işıma) Elektromagnetik Radyasyon (Işıma) Elektromagnetik Radyasyon (Işıma)"

Transkript

1 Elektromagnetik Radyasyon (Işıma) GENEL KİMYA Elektromagnetik radyasyon, elektriksel ve magnetik alanların birbirine dik yönde yayılması ile meydana gelir. 2 Elektromagnetik Radyasyon (Işıma) Elektromagnetik Radyasyon (Işıma) Elektromagnetik radyasyon, uzayda dalga hareketi ile ilerler. Bir dalga üç özelliği ile tanımlanır: Dalgaboyu-l (lamda): Art arda gelen iki dalga üzerindeki iki benzer nokta arasındaki uzaklıktır. dalga boyu Genlik (a): Bir dalgada, maksimumun yüksekliği veya minimumun derinliğidir. a 3 4 1

2 Elektromagnetik Radyasyon (Işıma) Elektromagnetik Radyasyon (Işıma) Radyasyon Frekansı-n(nü): Belli bir noktadan, birim zamanda (genellikle 1 saniyede) geçen dalga sayısıdır. Elektromagnetik radyasyon, boşlukta 2,9979 x 10 8 m/s lik sabit bir hızla yayılır. Bu değere ışık hızı denir ve c harfi ile simgelenir. Işık hızı, dalga boyu ve frekans arasında aşağıdaki bağıntı vardır. c ln 5 6 Elektromagnetik Radyasyon Türleri g-işınları X-Işınları Ultraviyole (mor ötesi) ışınları (UV) Görünür Işık (beyaz Işık) Infrared (kırmızı ötesi) Işınları (IR) Mikro dalga Işınları Radyo-TV dalgaları n l ELECTROMAGNETİK SPEKTRUM Artan frekans 7 1 nanometre (nm) = 1 x 10-9 m = 10 Å 8 2

3 Gökkuşağı Alıştırma Soruları Soru: Bir sodyum buharlı lambadan yayılan ışığın büyük bir bölümü, 589 nm dalga boyuna sahiptir. Bu ışığın frekansı kaç hertz(hz) yani (s -1 ) dir? Soru: Bir FM radyo istasyonu 91,5 megahertz (MHz) frekansta yayın yapmaktadır. Bu radyo dalgalarının dalga boyu kaç metredir? 9 10 Elektromagnetik Işıma Elektromagnetik Işıma Işığın dalga karakterinde olduğu çok önceden bilinmekteydi. Ayrıca, fotoelektrik olayından sonra, dalga özelliğine ilaveten ışığın, tanecik özelliğine de sahip olduğu tespit edildi. Işığı oluşturan taneciklere foton (kuant) adı verilir. Her bir foton un enerjisi, E = hn bağıntısı ile verilir. Bu bağıntıya (E = hn) Planck eşitliği denir. Burada h, Planck sabiti olup değeri h = 6,626 x Js dir

4 Elektromagnetik Işıma Max Planck E hn Atomik Spektrumlar Beyaz ışık bir prizmadan geçirilip ekran üzerine düşürüldüğünde, kırmızıdan mora kadar uzanan kesiksiz bir renk bandı oluştururlar. Ekran üzerindeki farklı renklerden oluşan bu görünüme spektrum denir. Beyaz ışığın spektrumu süreklidir Atomik Spektrumlar Işığın, prizmadan geçtikten sonra farklı renklere ayrılması, farklı dalga boylu ışınların değişik derecelerde kırılmaya uğramasından kaynaklanmaktadır. Atomik Spektrumlar Çeşitli atomların buharları ısıtıldığında veya bir deşarj tüpü içerisinde bulundurulduğunda, ışın yayarlar. Bu ışınların bir prizmadan geçirilerek ekran üzerine düşürülmesi ile oluşan spektrumlar, belirli sayıda renkli çizgiler ve bunların arasında bulunan karanlık boşluklar taşır

5 Atomik Spektrumlar Atomik Spektrumlar Böyle sürekli olmayan (kesikli) spektrumlara, atom spektrumu yada çizgi spektrumu denir. Her elementin kendine özgü çizgi spektrumu vardır. Atomik spektrumlar, atomların yapısı hakkında önemli bilgiler verir Bohr Atom Modeli Bohr Atom Modeli Rutherford atom modelinde, elektronların çekirdek çevresinde ne şekilde bulundukları hakkında herhangi bir bilgi bulunmamaktadır. Bir atomdaki elektronların, tıpkı bir gezegenin güneş etrafındaki yörüngesel hareketi gibi, hareket halinde oldukları düşünüldü yılında Hollandalı Fizikçi Niels Bohr klasik fizik ve kuantum kuramının ilginç bir sentezini yaparak hidrojen atomu için yeni bir model ileri sürdü. Niels Bohr ( )

6 Bohr Atom Modeli Bu modelde yer alan görüşler, şu şekilde özetlenebilir: 1. Elektron, çekirdek etrafında, dairesel yörüngelerde hareket etmektedir. 2. Elektronun hareket edebildiği yörüngelerin belli enerji değerleri vardır. Elektron, bu belli enerjiye sahip yörüngelerde bulunduğu sürece enerji yaymaz. Bohr Atom Modeli 3. Elektron bir üst enerji düzeyinden (yörüngeden), alt enerji düzeylerine düştüğünde ışıma şeklinde enerji yayar. Yayımlanan ışık fotonunun enerjisi E = hn dür Bohr Atom Modeli Hidrojen atomundaki enerji düzeyleri nin (yörüngeler) enerjisi, aşağıda verilen eşitlik ile hesaplanır. E n = A n 2 n = 1, 2, 3,. A = 2,179 x J n sayısı, kuantum sayısı olarak adlandırılır. Bohr Atom Modeli Bohr tarafından önerilen atom modeli, aşağıdaki şekilde şematize edilebilir. Enerji Düzeyi Kabuk n = 1 K n = 2 L n = 3 M n = 4 N n = 5 O n = 6 P n = 7 Q n = 4 n = 3 N n = 2 M L n = 1 K e

7 Bohr Atomu Bohr Atom Modeli Hidrojen atomunda, yayılan bütün ışınların frekansları aşağıdaki eşitlikten hesaplanabilir. n 3,289 x sn -1 1 n i 2 n i = iç yörünge (düsük enerji düzeyi) n d = dis yörünge (yüksek enerji düzeyi) E x J x 10 J 1 n d Dalga-Tanecik İkiliği 1924 yılında Louis de Broglie, hareket eden küçük taneciklerin de dalga özelliği gösterebileceğini ileri sürdü. L. de Broglie ( ) Dalga-Tanecik İkiliği De Broglie, elektronun tanecik özelliğinden başka dalga özelliğine de sahip olduğunu düşündü. De Broglie bu düşüncesini, bir elektron demetini kristal üzerine gönderdiğinde tıpkı X-ışınlarında olduğu gibi kırınıma uğraması ile deneysel olarak kanıtladı

8 Dalga-Tanecik İkiliği Dalga-Tanecik İkiliği Elektronların dalga özelliğinin keşfi ile, elektron mikroskobunun yapılabilirliği gerçekleşti. Elektron mikroskobu bilimde devrim yaptı. Günümüzde, modern elektron mikroskopları sayesinde biyolojik dev moleküller gerektiği gibi incelenebilmektedir. De Broglie ye göre bir elektronun dalga boyu aşağıdaki eşitlikle ifade edilir. l h mv h p m: elektronun kütlesi v: elektronun hizi p: elektronun momentumu Heisenberg in Belirsizlik İlkesi Heisenberg e göre, elektron gibi çok küçük taneciklerin yeri ve momentumu (hızı) aynı anda hassas bir şekilde belirlenemez. Yeri hassas olarak belirlenmeye çalışıldığında, momentumunda belirsizlik artar. Heisenberg in Belirsizlik İlkesi Momentumu hassas olarak belirlenmeye çalışıldığında ise yerindeki belirsizlik artar. Bu durum, matematiksel olarak şöyle ifade edilir. h x. p 4 x : taneciğin yerindeki belirsizlik p : taneciğin momentumundaki belirsizlik h : Planck sabiti

9 Bohr Atom Modelindeki Yanlışlıklar Bohr Atom Modelindeki Yanlışlıklar De Brogli ye göre, elektron dalga özelliğine de sahiptir. Heisenberg ise elektronun yerinin hassas bir şekilde belirlenemeyeceğini ileri sürmektedir. Bu görüşlerin ışığında, Bohr atom modeline yeniden bakıldığında, bu modelin kısmen yanlış olduğu görülmektedir. De Broglie ve Heisenberg in görüşleri doğru ise (doğruluğu kabul edilmektedir) atomda elektronların kesin yörüngeler üzerinde hareket ettiğini söylemek yanlıştır. Yani, elektronun çekirdek etrafında dairesel yörüngelerde hareket ettiği görüşü günümüzde geçerli değildir (Bohr atom modelindeki 1. madde) Dalga Mekaniği Atom Modeli (Modern Atom Kuramı) 1927 yılında Erwin Schrödinger, elektronların dalga özelliğine sahip olduğu gerçeğinden hareket ederek, elektron gibi çok küçük taneciklerin üç boyutlu uzaydaki hareketini tanımlayan bir denklem ileri sürdü. Modern Atom Kuramı Schrödinger Denklemi : m x y z h E V 0 Y (psi) : dalga fonksiyonu E : toplam enerji x, y, z : uzay koordinatları V : potansiyel enerji m : elektronun kütlesi

10 Modern Atom Kuramı Modern Atom Kuramı Schrödinger denkleminin çözümünden, n, l, m l şeklinde üç kuantum sayısı bulunur. Bu kuantum sayılarının üçünün belli değerleri, elektronların bulunma ihtimalinin yüksek olduğu yerlere karşılık gelir. Elektronun bulunma ihtimalinin yüksek olduğu yerlere orbital denir. Orbitallerin kesin sınırları olmamakla beraber, elektronun zamanının %90-95 ini geçirdiği bölgeye orbital denmektedir Modern Atom Kuramı Kuantum Sayıları Schrödinger denkleminin çözümüyle elde edilen hidrojen atomuna ait bilgilerde artık yörünge kavramı tamamen çürütülmüştür. Yeni atom modelinde, elektron, kesin yörüngeler üzerinde değil, orbital adı verilen uzay parçalarında hareket etmektedir. Baş kuantum sayısı (n): Enerji düzeylerini ve elektronun çekirdeğe olan ortalama uzaklığını gösterir. n = 1, 2, 3, 4, kadar pozitif tamsayılı değerler alır

11 Kuantum Sayıları Kuantum Sayıları Açısal kuantum sayısı (l): Bu sayı, orbital türünü belirler. Alabildiği değerler; l = 0, 1, 2, 3,.(n-1). n = 1 l = 0 haline karşılık gelen orbital s n = 2 l = 1 haline karşılık gelen orbital p n = 3 l = 2 haline karşılık gelen orbital d n = 4 l = 3 haline karşılık gelen orbital f Magnetik kuantum sayısı (m l ): Magnetik kuantum sayısı, orbitallerin sayısı ve uzaydaki yönelişlerini belirler. m l = -l,., 0,., +l kadar değer alır. Örneğin: l = 1 ise m l = -1, 0, Kuantum Sayıları Kuantum sayılarının takımı, orbitalleri nasıl etkiler? Her 3 kuantum sayısının bir setine, 1 orbital karşılık gelmektedir. Örneğin: n = 1 ise l = 0 ve m l = 0 1s orbitali Kuantum Sayıları Soru: n = 2 ve n = 3 enerji düzeylerini, kuantum sayıları ve orbitaller açısından tanımlayınız. Soru: n = 4, l = 2 ve m l = 0 kuantum sayılarına karşılık gelen orbital hangisidir?

12 Kuantum Sayıları Atomik Orbitaller Baş kuantum sayısı n ye kabuk, açısal kuantum sayısı l ye ise alt kabuk da denir. Her bir kabukta (yani enerji düzeyinde) n 2 tane orbital vardır. Her bir alt kabuk (2l + 1) tane orbital içerir. Atomik orbitaller; s, p, d ve f notasyonları kullanılarak gösterilir. Bütün s-orbitalleri küresel yapılıdır Atomik Orbitaller p-atomik Orbitalleri p-orbitalleri üç tane olup eş enerjilidir. Bu orbitaller; x, y ve z eksenleri üzerinde yer alıp, ikişer lob a sahiptir. x-ekseni üzerinde yer alan orbitale p x, y- ekseni üzerinde bulunan orbitale p y ve z- ekseni üzerinde bulunan orbitale ise p z orbitali denir. (a) p x, (b) p z, (c) p y

13 d-atomik Orbitalleri d-atomik Orbitalleri d-orbitalleri dörder lob lu olup, eksenler üzerinde ve eksenler arası bölgelerde bulunurlar. dx 2 -y 2 ve dz 2 exenler boyunca; d xy, d yz ve d zx orbitalleri ise eksenler arası bölgelerde yönlenirler. d-orbitalleri f-atomik Orbitalleri Spin Kuantum Sayısı (m s ) 7 tane f-orbitali olup, bunlar altışar lob lu dur. Dışardan herhangi bir magnetik etki olmadıkça, bütün f-orbitalleri eş enerjilidir. Elektronun çekirdek çevresinde yaptığı hareketten başka, bir de kendi ekseni etrafında yaptığı dönme hareketi vardır. Kendi ekseni etrafındaki bu dönme hareketine, spin hareketi denir. Bu spin hareketi de kuantlaşmış olup, spin kuantum sayısı (m s ) ile tanımlanmaktadır

14 Spin Kuantum sayısı (m s ) Orbitallerin enerji Sırası Spin hareketi, saatin dönme yönünde ve tersi yönünde olmak üzere iki türlüdür. Bu nedenle, spin kuantum sayısı m s = ± ½ şeklinde iki değer almaktadır. ms = 1 2 ms = Çok elektronlu atomlarda orbitallerin enerjisi, baş kuantum sayısı (n) ve açısal kuantum sayısı (l) ye göre tespit edilir. Orbitallerin enerjisi (n + l) toplamına göre düzenlenir. (n + l) toplamı büyük olan orbitalin enerjisi büyük, küçük olanının enerjisi küçüktür Orbitallerin enerji Sırası (n + l) toplamı eşit olan atomik orbitallerin enerjisi, baş kuantum sayısı n ye göre belirlenir. n si küçük olan atomik orbitalin enerjisi küçük, n si büyük olan orbitalin enerjisi büyüktür. Orbitallerin enerji Sırası Orbital n l n + l 1s s p s p d s p d f

15 Orbitallerin enerji Sırası Orbitallerin enerji Sırası Orbitallerin enerji sırasını bulmada kullanılan pratik bir yol çapraz tarama olarak bilinen yoldur. Bu yöntemde, sol üst orbitalden başlayıp hiçbir orbital atlamadan çapraz olarak tüm orbitaller taranır. 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p <6s < 4f < 5d < 6p < 7s < 5f < 6d < 7p Elementlerin Elektronik Yapıları Elementlerin Elektronik Yapıları Bir atomda elektronların düzenlenme şekline atomun elektronik yapısı denir. Elektronlar, orbitalleri üç kurala uyarak doldururlar. Bunlar: Elektronlar, orbitalleri en az enerjili orbitalden başlayarak doldururlar. Düşük enerji seviyeli bir orbital tamamen dolmadan, bir üst seviyedeki orbitale elektron giremez (Aufbau İlkesi). Bir orbitale en fazla ters spinli iki elektron girebilir (Pauli İlkesi). Atom içerisinde elektronların girebileceği aynı (eş) enerjili birden fazla boş orbital varsa, elektronlar bu orbitallere önce paralel spinlerle tek tek girerler

16 Elementlerin Elektronik Yapıları Böylece, eş enerjili orbitallerin tamamı yarı dolmuş (yani tek elektronlu) duruma geldikten sonra, gelen elektronlar, zıt spinlerle bu yarı dolmuş orbitalleri doldururlar (Hund Kuralı) Elementlerin Elektron Konfigurasyonları (Dağılımları) Atomik orbitaller, çoğu zaman bir kare, daire yada yatay bir çizgi ile gösterilirler. Elektronlar ise çift çengelli oklar ile temsil edilirler. Orbital gösterimleri Elektron gösterimi Atom Z Temel hal elektron konfigürasyonu H 1 1s 1 He 2 1s 2 Li 3 1s 2 2s 1 Be 4 1s 2 2s 2 B 5 1s 2 2s 2 2p 1 C 6 1s 2 2s 2 2p 2 N 7 1s 2 2s 2 2p 3 O 8 1s 2 2s 2 2p 4 F 9 1s 2 2s 2 2p 5 Ne 10 1s 2 2s 2 2p 6 Na 11 1s 2 2s 2 2p 6 3s 1 63 Bazı Elementlerin Orbital Diyagramları atom Orbital Diyagramı 5B 1s 2 2s 2 2p 1 6C 1s 2 2s 2 2p 2 7N 1s 2 2s 2 2p 3 8O 1s 2 2s 2 2p 4 9F 1s 2 2s 2 2p 5 17Cl 1s 2 2s 2 2p 6 3s 2 3p

17 Aufbau İlkesinden Sapmalar Aufbau İlkesinden Sapmalar Çoğu element için Aufbau Yöntemine göre öngörülen elektron dağılımları deneysel olarak da doğrulanmıştır. Birkaç elementin elektron dağılımı, bazı ufak sapmalar gösterir. Bu değişiklikler, dolu ve yarı dolu orbitallerin kararlılığı ile açıklanır (küresel simetri). Atom Öngörülen Elektron Dağılımı Deneysel Elektron Dağılımı 24Cr 1s 2 2s 2 2p 6 3s 2 3p 6 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 4 4s 1 3d 5 29Cu 1s 2 2s 2 2p 6 3s 2 3p 6 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 9 4s 1 3d Magnetik Özellikler Magnetik Özellikler Atomlar, iyonlar ve moleküller; magnetik alanda farklı davranış gösterirler. Eşleşmemiş elektronlar içeren maddeler, paramağnetik özellik gösterirler. Paramağnetik maddeler, mağnetik alan tarafından kuvvetle çekilirler. Na atomu, hidrojen atomu veya oksijen molekülü (O 2 ) paramanyetik özellik gösterir. Bir maddenin bütün elektronları eşleşmişse, o madde diamagnetik özellik gösterir. Diamagnetik maddeler, magnetik alan tarafından zayıf bir kuvvetle itilirler. Mg ve Ca atomları, diamagnetik özellik gösterip, magnetik alan tarafından zayıf bir kuvvetle itilirler

18 Magnetik Özellikler Grup ve Peryot Bulunması Bazı maddeler de magnetik alan tarafından kuvvetle itilirler. Bu tür maddelere, ferromagnetik maddeler denir. Fe, Co ve Ni, bu özelliğe sahip maddelere örnek teşkil eder. Atom numarası verilen elementin elektron dağılımı yapılır. Orbital katsayısı en yüksek olan sayı, elementin peryot numarasını verir. Son elektron s veya p orbitalinde bitmişse, element A grubundadır. s-orbitali üzerindeki sayı doğrudan A grubunun numarasını verir Grup ve Peryot Bulunması Grup ve Peryot Bulunması Elementin elektron dağılımı p orbiatli ile bitmişse, p nin üzerindeki sayıya 2 ilave edilerek grup numarası bulunur. Örnekler: En son elektron d orbitalinde bitmişse, element B grubundadır. d 1 d = 3 B 2+2 = 4 B d 9 d = 1 B 10+2 = 2 B 11 Na: 1s 2 2s 2 2p 6 3s 1 3. Peryot, 1A Grubu 17 Cl: 1s 2 2s 2 2p 6 3s 2 3p 5 3. Peryot, 7A Grubu d 6 d 7 d = 8 B 7+2 = 8 B 8+2 = 8 B

19 Grup ve Peryot Bulunması ns 1 ns 2 Elementlerin Elektron Konfigurasyonları ns 2 np 1 ns 2 np 2 ns 2 np 3 ns 2 np 4 ns 2 np 5 ns 2 np 6 Örnek: 25Mn: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5 4. Peryot, 7B Grubu d 1 d 5 d 10 Elektron dağılımı yapılan elementin en son elektronu 4f orbitalinde bitmişse Lantanitler, 5f de bitmişse Aktinitler serisinin bir üyesidir. 4f 5f Peryodik Tablo (Çizelge) Peryodik Tablo Peryodik tablonun temel özelliği, elementleri artan atom numaralarına göre yan yana ve benzer özelliklerine göre de alt alta toplamasıdır. Peryodik tabloda yatay sütunlara peryot, dikey sütunlara da grup denir. Perydik tablo, 8 tane A ve 8 tane de B grubundan oluşmaktadır. Peryodik tabloda grup sayısı artmaz ama sonsuz sayıda peryot olabilir. Her peryot s ile başlar, p ile biter. Birinci peryot 2 (H ve He), ikinci ve üçüncü peryotlar 8, dördüncü ve beşinci peryotlar 18 element bulundururlar

20 Baş grup elementleri s-bloku p-bloku Peryodik Tablo 1 Geçiş elementleri d-bloku f-bloku Peryodik tabloda, bazı elementlerin özel adları vardır. 1A grubu elementlerine alkali metaller, 2A grubu elementlerine toprak alkali metaller, 7A grubu elementlerine halojenler ve 8A grubu elementlerine de soygazlar denir. İçgeçiş elementleri Peryodik Tablo Peryodik Tablo Alkali Metaller Lityum Sodyum Potasyum Rubityum Sezyum Fransiyum Li Na K Rb Cs Fr Toprak Alkali Metaller Berilyum Be Magnezyum Mg Kalsiyum Ca Stronsiyum Sr Baryum Ba Radyum Ra Halojenler Flor F Klor Cl Brom Br İyot I Astatin At Soygazlar Helyum He Neon Ne Argon Ar Kripton Kr Ksenon Xe Radon Rn

21 Peryodik Tablo Peryodik Tablo Elementler, fiziksel özelliklerine göre metaller ve ametaller olmak üzere iki şekilde sınıflandırılır. Elementlerin çoğu metaldir ve metaller; Elektrik ve ısıyı iyi iletirler, Cıva hariç oda sıcaklığında katıdırlar ve taze kesilmiş yüzeyleri parlaktır, Dövülerek levha haline gelebilirler, Çekilerek tel haline gelebilirler, Yüksek erime ve kaynama noktalarına sahiptirler, Bileşiklerinde daima pozitif (+) yükseltgenme basamaklarına sahiptirler, gibi özellikleri vardır Peryodik Tablo Peryodik Tablo Peryodik tablonun sağ üst tarafında bulunan çok az element, metallerden farklı özelliklere sahiptir ve bunlara ametaller denir. Azot, oksijen, klor ve neon gibi bazı ametaller oda sıcaklığında gazdır. Brom sıvıdır. Karbon, fosfor ve kükürt gibi bazı ametaller katı olup kırılgandırlar. Metallerle ametaller arasında bulunan bazı elementler, hem metalik hem de ametalik özellikler gösterir ve bunlara yarımetaller veya metaloidler denir

22 Peryodik Tablo Atomlar ve İyonların Büyüklüğü Yarımetaller (Metaloidler) Bor B Silisyum Si Germanyum Ge Arsenik As Antimon Sb Tellur Te Astatin At Atom yarıçapları Atomlar, küresel yapılı tanecikler olarak kabul edilir. Atom yarıçapı, çekirdeğin merkezi ile en dış kabukta bulunan elektronlar arasındaki uzaklık olarak tanımlanır. Atomlar tek tek izole edilemediğinden, yarıçaplarının doğrudan ölçülmesi zordur Atomlar ve İyonların Büyüklüğü Atom yarıçapları, daha çok dolaylı yollardan bulunur. Örneğin, birbirine kovalent bağla bağlı iki atomun çekirdekleri arasındaki uzaklık (bağ uzunluğu) deneysel olarak ölçülebilir. Bu değerin uygun şekilde ikiye bölünmesi ile, atom yarıçapı bulunur. Bu şekilde bulunan yarıçapa Kovalent yarıçap denir. Atomlar ve İyonların Büyüklüğü Metaller için Metalik yarıçap, kristal hallerdeki katı metalde yan yana bulunan iki atomun çekirdekleri arasındaki uzaklığın yarısı olarak belirlenir. Atom yarıçapları, daha çok pikometre (pm) cinsinden verilir. 1 pm = m

23 Atomlar ve İyonların Büyüklüğü Atomlar ve İyonların Büyüklüğü Kovalent Yarıçap (pm) Metalik Yarıçap (pm) İyonik Yarıçap (pm) Sodyum (Na) Klor (Cl) Peryodik çizelgede bir peryot boyunca soldan sağa doğru gidildiğinde, genel olarak atom yarıçapları küçülür. Bir grup boyunca yukardan aşağıya doğru inildiğinde ise, genel olarak atom yarıçaplarında artış olur Atom yarıçaplarının atom numaralarına göre değişimi

24 Atomlar ve İyonların Büyüklüğü İyon yarıçapları, iyonik bağla bağlanmış iyonların çekirdekleri arasındaki uzaklık deneysel olarak ölçülüp, katyon ve anyon arasında uygun bir şekilde bölüştürülmesi ile bulunur. Her hangi bir atomdan türetilen pozitif iyon, daima o atomdan daha küçüktür. Atomlar ve İyonların Büyüklüğü Bir atomun +2 yüklü iyonu +3 yüklü iyonundan daha büyüktür. Örneğin; Fe 117 pm Fe +2 Fe pm 60 pm Atomlar ve İyonların Büyüklüğü Buna karşılık, negatif bir iyonun yarıçapı daima türediği atomunkinden daha büyüktür. Örneğin; Cl 99 pm Cl pm Katyon türediği nötr atomdan daima daha küçüktür 95 Anyon türediği nötr atomdan daima daha büyüktür

25 Atomlar ve İyonların Büyüklüğü İyonlaşma Enerjisi Soru: Peryodik çizelgeden yararlanarak, parantez içerisinde verilen atom ve iyonları büyüklüklerine göre sıralayınız (Ar, K +, Cl -, S 2-, Ca 2+ ) Gaz halindeki izole bir atomdan, bir elektron uzaklaştırarak yine gaz halinde izole bir iyon oluşturmak için gerekli olan minimum enerjiye iyonlaşma enerjisi denir. A (g) A + (g) + e - IE İyonlaşma Enerjisi İyonlaşma enerjisi, tanımından da anlaşılacağı gibi, bir atomdaki elektronların çekirdek tarafından ne kadar bir kuvvetle çekildiğinin bir ölçüsüdür. Aynı zamanda iyonlaşma enerjisi, elektronları çekirdeğe bağlayan kuvveti yenmek için gerekli olup, bir atomun elektronik yapısının ne kadar kararlı olduğunun da bir ölçüsüdür. İyonlaşma Enerjisi Bir elektronu uzaklaştırılmış bir iyondan, ikinci bir elektronu uzaklaştırmak için gerekli olan enerjiye de ikinci iyonlaşma enerjisi denir. Aynı şekilde, üçüncü, dördüncü ve daha büyük iyonlaşma enerjileri de tanımlanır. Bir sonraki iyonlaşma enerjisi, daima bir önceki iyonlaşma enerjisinden daha büyüktür

26 Birinci İ.E. Artar İyonlaşma Enerjisi İyonlaşma Enerjisi A (g) A + (g) + e - IE 1 (birinci iyonlaşma enerjisi) A + (g) A 2+ (g) + e - IE 2 (ikinci iyonlaşma enerjisi) A 2+ (g) A 3+ (g) + e - IE 3 (üçüncü iyonlaşma enerjisi) IE 1 < IE 2 < IE 3 <.< IE n Peryodik çizelgede bir grup boyunca, yukardan aşağıya inildikçe elementlerin birinci iyonlaşma enerjileri genel olarak azalır. Element Atom yarıçapı(pm) IE 1 (kj/mol) Li ,2 Na ,8 K ,8 Rb ,0 Cs , İyonlaşma Enerjisi Birinci İyonlaşma Enerjisi İçin Genel Eğilim Birinci İ.E. Artar Peryodik çizelgede bir peryot boyunca, soldan sağa doğru gidildiğinde elementlerin birinci iyonlaşma enerjileri genel olarak artar. Metal atomları, ametal atomlarına kıyasla, daha düşük iyonlaşma enerjisine sahiptirler

27 3. Periyot Elementlerinin İyonlaşma Enerjileri (kj/mol) 1. Peryot 2. Peryot Na Mg Al Si P S Cl Ar 3. Peryot 4. Peryot 5. Peryot IE 1 495,8 737,7 577,6 786, ,6 1251,1 1520,5 IE IE IE IE IE IE Elektron İlgisi Elektron İlgisi İyonlaşma enerjisi elektron kaybı ile ilgilidir. Elektron ilgisi (EI) iyonlaşma enerjisinin tersi olup, gaz halindeki nötr bir atoma elektron katılarak yine gaz halindeki negatif bir iyon oluşturma işlemidir. A(g) + e - A - (g) Bu tür işlemlerde her zaman olmamakla beraber, enerji açığa çıkar. Bu nedenle, birinci elektron ilgilerinin (EI 1 ) büyük bir çoğunluğu, negatif işaretlidir. F(g) + e - F - (g) EI 1 = -322,2 kj/mol F (1s 2 2s 2 2p 5 ) + e - F - (1s 2 2s 2 2p 6 )

28 Elektron İlgisi Elektron İlgisi Kararlı elektronik yapıya sahip olan elementlerin, bir elektron kazanması enerji gerektirir. Yani olay endotermiktir ve elektron ilgisi pozitif işaretlidir. Ne(g) + e - Ne - (g) EI 1 = +29,0 kj/mol Ne (1s 2 2s 2 2p 6 ) + e - Ne - (1s 2 2s 2 2p 6 3s 1 ) Genel olarak, peryodik çizelgede bir peryot boyunca soldan sağa gidildiğinde elektron ilgisinin negatif değerinde artış olur. Bir grupta yukarıdan aşağıya doğru inildiğinde ise elektron ilgisinin negatif değeri azalır. Ametaller, metallere kıyasla daha büyük negatif elektron ilgisine sahiptirler Elektron İlgisi Elektron İlgisi Bazı elementlerin birinci elektron H He İlgileri (EI 1 ) (kj/mol) - 72, Li Be B C N O F -59, ,5 0,0-141,4-322,2 Na -52,9 K - 48,3 Rb - 46,9 Cs Cl -348,7 Br -324,5 I -295,3 At - 45,5-270 Bazı elementler için ikinci elektron ilgisi (EI 2 ) değerleri de tayin edilmiştir. Negatif bir iyon ile bir elektron birbirlerini iteceklerinden, negatif bir iyona bir elektron katılması enerji gerektirir. Bu nedenle, bütün ikinci elektron ilgisi (EI 2 ) değerleri, pozitif işaretlidir

29 Elektron İlgisi Kimyasal Bağlar O(g) + e - O - (g) + e - O - (g) EI 1 = - 141,4 kj/mol O 2- (g) EI 2 = + 880,0 kj/mol Atomları bir arada tutan kuvvete, kimya dilinde kimyasal bağ denir. Kimyasal bağlar, aile içindeki yada akrabalar arasındaki bağlara benzetilebilir Kimyasal Bağlar yılları arasında Amerikalı Kimyacı Gilbert Newton Lewis ve arkadaşları tarafından Kimyasal bağlarla ilgili önemli bir kuram geliştirilmiştir. Kimyasal Bağlar Lewis Bağ Kuramı olarak da bilinen bu kuram, şu temel esasa dayanır. Soy gazların asallıkları (reaksiyon verme eğilimlerinin olmayışı) elektron dağılımlarından dolayıdır ve diğer elementlerin atomları, soy gaz atomlarının elektron dağılımlarına benzemek amacıyla bir araya gelmektedir

30 Kimyasal Bağlar Lewis Simgeleri ve Lewis Yapıları Lewis, kendi kuramı için özel bir gösterim geliştirmiştir. Lewis simgesi, iç kabuk elektronları ve çekirdeği gösteren bir simge ile dış kabuk (değerlik) elektronlarını gösteren noktalardan oluşur. Kimyasal Bağlar Bazı Elementlerin Lewis Simgeleri H C N O F Al Ne Kimyasal Bağlar Kimyasal Bağlar Soru: Parantez içerisinde verilen elementlerin Lewis simgelerini yazınız ( 15 P, 16 S, 53 I, 18 Ar, 12 Mg, 3 Li). Kimyasal Bağ Çeşitleri İyonik bağ Kovalent bağ Metalik bağ

31 İyonik Bağ İyonik Bağ Bir atomdan diğerine elektron aktarılması ile oluşan bağlara iyonik bağ denir. İyonik bağ, daha çok metalik özellik gösteren elementlerle ametaller arasında meydana gelir. Metaller, iyonlaşma enerjileri düşük olup elektron vermeye ve pozitif iyonlar oluşturmaya eğilimlidirler. Ametallerin ise elektron ilgileri yüksek olup, negatif iyonlar oluşturmaya meyillidirler. Böylece elektron alışverişi sonucu oluşan bu küresel yapılı pozitif ve negatif iyonlar, birbirlerini elektrostatik çekim kuvvetleri ile çekerek iyonik bağı oluştururlar İyonik Bağ İyonik Bağ İyonik Bağa ve İyonik Bileşiklerin Lewis Yapılarına Örnekler: Sodyum klorürün (NaCl) Lewis yapısı Na + Cl Na Cl Lewis yapisi Bu tepkimede yer alan atom ve iyonların tam elektronik yapıları Na (1s 2 2s 2 2p 6 3s 1 ) Na + (1s 2 2s 2 2p 6 ) + e - e - + Cl (1s 2 2s 2 2p 6 3s 2 3p 5 ) Cl - (1s 2 2s 2 2p 6 3s 2 3p 6 )

32 İyonik Bağ İyonik Bağ Örnek: Magnezyum klorür ün (MgCl 2 ) Lewis Yapısı Örnek: Aluminyum oksit in (Al 2 O 3 ) Lewis Yapısı Mg + Cl Cl Cl 2 Mg Cl Lewis yapisi Al Al + O O O 2 Al 3 3 O 2 Lewis yapisi İyonik Bağ İyonik Bağ Soru: Aşağıda adları verilen bileşiklerin, Lewis yapılarını yazınız. a) kalsiyum klorür b) lityum oksit c) baryum sülfür İyonik Bileşiklerin Özellikleri İyonik bileşiklerin moleküler (kovalent) bileşiklerden farklı birçok özellikleri olup, bu özellikler şu şekilde sıralanabilir: İyonik bileşikler katı halde iken son derece düşük elektriksel iletkenlik gösterirler. Oysa bu bileşikler eritildiklerinde yada suda çözüldüklerinde, oldukça iyi elektriksel iletkenlik gösterirler

33 İyonik Bağ Kovalent Bağ İyonik bileşikler, yüksek erime ve kaynama noktalarına sahiptirler. İyonik bileşikler çok sert fakat kırılgandırlar. İyonik bileşikler, genellikle su gibi polar çözücüler içerisinde çözünürler. Kovalent bağ, ametal atomları arasında meydana gelir. Ametal atomları, elektron ilgileri bakımından birbirlerine benzediklerinden kovalent bağların oluşumu esnasında elektron aktarımı olmaz. Bunun yerine, elektronlar ortaklaşa kullanılır Kovalent Bağ Bu şekilde, elektronların ortaklaşa kulanımına dayalı bağ türüne kovalent bağ denir. Kovalent bağa ve kovalent moleküllerin Lewis yapılarına örnekler: Örnek: H 2 kovalent bag H + H H : H veya H H bag yapan (paylasilmis) elektron çifti

34 Kovalent Bağ Kovalent Bağ Örnek: Cl 2 Örnek: HCl Cl Cl Cl : Cl veya Cl Cl bag yapan elektron cifti bag yapmamis (paylasilmamis) elektron cifti H Cl H : Cl veya H Cl Lewis yapisi Kovalent Bağ Katlı Kovalent Bağlar Örnek: H 2 O Örnek: O 2 H O H H : O : H veya H O H Lewis yapisi O O O O O : : O veya Lewis yapisi

35 Katlı Kovalent Bağlar Lewis Yapılarının Yazılması Örnek: N 2 N N N N veya N N Lewis yapisi Polar Kovalent Bağlar Bağ Derecesi ve Bağ Uzunluğu Elektronlerın iki atom arasında eşit olmayan ortaklanmasıyla oluşan kovalent bağa polar kovalent bağ denir. Bağ derecesi; bir bağın tekli, ikili yada üçlü olduğunu gösterir. Bağ Türü Bağ Derecesi Tekli 1 İkili 2 Üçlü

36 Bağ Derecesi ve Bağ Uzunluğu Bağ Uzunluğu, birbirlerine kovalent bağla bağlı iki atomun merkezleri arasındaki uzaklık olarak tanımlanır Bağ Enerjileri Lewis yapısının molekülünün deneysel olarak ölçülen özellikleri ile uyumlu olmasında; bağ uzunluğu ve bağ enerjileri ölçülerdir. Bağ enerjisi ve uzunluğu katlılığı ile yakından ilgilidir. Bağın katlılığı ne kadar artarsa bağ o kadar kısa ve bağ enerjisi de o kadar büyük olur. Bağ Enerjileri Atomlar kovalent bağ yaparak bir araya geldiklerinde enerji salınır ve bağın ayrışması sırasında da aynı miktarda enerji soğrulur. Bağ ayrışma enerjisi gaz haldeki bileşiklerden bir mol kovalent bağ koparmak için gerekli olan enerji miktarıdır

37 Bağ Enerjileri İkili bağların bağ enerjileri aynı atomlar arasında tekli bağlarınkinden yüksektir; fakat iki katı değildir Bağ oluşması ve ayrışması Bağ oluşması ve ayrışması Bağ enerjilerinin bir diğer kullanımı alanı da bir tepkimenin endotermik veya ekzotermik olduğunun görülmesidir. zayıf bağlar (tepkenler) kuvvetli bağlar H<0 (ürünler) kuvvetli bağlar (tepkenler) zayıf bağlar H>0 (ürünler)

38 Çözeltilerin Seyreltilmesi Bu sunu, birkaç ekleme dışında Prof. Dr. Yavuz TAŞKESENLİGİL tarafından hazırlanan ders sunularından alınmıştır. Hocamıza çok teşekkür ederim

enerji seviyeli bir orbital tamamen elektron giremez (Aufbau İlkesi).

enerji seviyeli bir orbital tamamen elektron giremez (Aufbau İlkesi). GENEL KİMYA Elementlerin Elektronik Yapıları Bir atomda elektronların düzenlenme şekline atomun elektronik yapısı denir. Elektronlar, orbitalleri üç kurala uyarak doldururlar. Bunlar: Elektronlar, orbitalleri

Detaylı

İyonlar. İyon? Pozitif veya negatif yükü olan bir atoma yada atomlar grubuna iyon denir.

İyonlar. İyon? Pozitif veya negatif yükü olan bir atoma yada atomlar grubuna iyon denir. İyonlar İyon? Pozitif veya negatif yükü olan bir atoma yada atomlar grubuna iyon denir. 1 Atomlardan İyon Oluşumu ve İyon Bir atomdan iyon denilen yüklü bir parçacık oluşturulabilir. Bunun için, nötral

Detaylı

Genel Kimya. Bölüm 2. ATOMUN YAPISI VE PERIYODIK CETVEL. Yrd. Doç. Dr. Mustafa SERTÇELİK Kafkas Üniversitesi Kimya Mühendisliği Bölümü

Genel Kimya. Bölüm 2. ATOMUN YAPISI VE PERIYODIK CETVEL. Yrd. Doç. Dr. Mustafa SERTÇELİK Kafkas Üniversitesi Kimya Mühendisliği Bölümü Genel Kimya Bölüm 2. ATOMUN YAPISI VE PERIYODIK CETVEL Yrd. Doç. Dr. Mustafa SERTÇELİK Kafkas Üniversitesi Kimya Mühendisliği Bölümü Atomlar Eşya malzeme madde element atom Temel parçacıklar (lepton ve

Detaylı

İyonlar. İyon? Pozitif veya negatif yükü olan bir atoma yada atomlar grubuna iyon denir.

İyonlar. İyon? Pozitif veya negatif yükü olan bir atoma yada atomlar grubuna iyon denir. İyonlar İyon? Pozitif veya negatif yükü olan bir atoma yada atomlar grubuna iyon denir. 1 Atomlardan İyon Oluşumu ve İyon Bir atomdan iyon denilen yüklü bir parçacık oluşturulabilir. Bunun için, nötral

Detaylı

GENEL KİMYA. 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar

GENEL KİMYA. 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar GENEL KİMYA 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar Kimyasal Türler Doğada bulunan bütün maddeler tanecikli yapıdadır. Maddenin özelliğini gösteren küçük yapı

Detaylı

GENEL KİMYA. 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar

GENEL KİMYA. 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar GENEL KİMYA 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar Kimyasal Türler Doğada bulunan bütün maddeler tanecikli yapıdadır. Maddenin özelliğini gösteren küçük yapı

Detaylı

Bölüm 8: Atomun Elektron Yapısı

Bölüm 8: Atomun Elektron Yapısı Bölüm 8: Atomun Elektron Yapısı 1. Elektromanyetik Işıma: Elektrik ve manyetik alanın dalgalar şeklinde taşınmasıdır. Her dalganın frekansı ve dalga boyu vardır. Dalga boyu (ʎ) : İki dalga tepeciği arasındaki

Detaylı

Kütlenin Korunumu Kanunu: Bir kimyasal reaksiyonda, reaksiyona giren maddelerin kütleleri toplamı, ürünlerin kütleleri toplamına eşittir.

Kütlenin Korunumu Kanunu: Bir kimyasal reaksiyonda, reaksiyona giren maddelerin kütleleri toplamı, ürünlerin kütleleri toplamına eşittir. Atom Teorileri 1 Atom Kuramı Milattan önce beşinci yüzyılda, yunan filozofu Democritus, bütün maddeleri, bölünemez veya kesilemez anlamında atomos olarak adlandırılan, çok küçük, bölünmez taneciklerden

Detaylı

İNSTAGRAM:kimyaci_glcn_hoca

İNSTAGRAM:kimyaci_glcn_hoca MODERN ATOM TEORİSİ ATOMUN KUANTUM MODELİ Bohr atom modeli 1 H, 2 He +, 3Li 2+ vb. gibi tek elektronlu atom ve iyonların çizgi spektrumlarını başarıyla açıklamıştır.ancak çok elektronlu atomların çizgi

Detaylı

Kütlenin Korunumu Kanunu: Bir kimyasal reaksiyonda, reaksiyona giren maddelerin kütleleri toplamı, ürünlerin kütleleri toplamına eşittir.

Kütlenin Korunumu Kanunu: Bir kimyasal reaksiyonda, reaksiyona giren maddelerin kütleleri toplamı, ürünlerin kütleleri toplamına eşittir. Atom Teorileri 1 Atom Kuramı Milattan önce beşinci yüzyılda, yunan filozofu Democritus, bütün maddeleri, bölünemez veya kesilemez anlamında atomos olarak adlandırılan, çok küçük, bölünmez taneciklerden

Detaylı

SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir.

SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir. . ATOMUN KUANTUM MODELİ SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir. Orbital: Elektronların çekirdek etrafında

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 Elektron Kütlesi 9,11x10-31 kg Proton Kütlesi Nötron Kütlesi 1,67x10-27 kg Bir kimyasal elementin atom numarası (Z) çekirdeğindeki

Detaylı

KİM-117 TEMEL KİMYA Prof. Dr. Zeliha HAYVALI Ankara Üniversitesi Kimya Bölümü

KİM-117 TEMEL KİMYA Prof. Dr. Zeliha HAYVALI Ankara Üniversitesi Kimya Bölümü KİM-117 TEMEL KİMYA Prof. Dr. Zeliha HAYVALI Ankara Üniversitesi Kimya Bölümü Bu slaytlarda anlatılanlar sadece özet olup ayrıntılı bilgiler ve örnek çözümleri derste verilecektir. BÖLÜM 4 PERİYODİK SİSTEM

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Atom, birkaç türü birleştiğinde çeşitli molekülleri, bir tek türü ise bir kimyasal öğeyi oluşturan parçacıktır. Atom, elementlerin özelliklerini taşıyan en küçük yapı birimi olup çekirdekteki

Detaylı

Nötr (yüksüz) bir için, çekirdekte kaç proton varsa çekirdeğin etrafındaki yörüngelerde de o kadar elektron dolaşır.

Nötr (yüksüz) bir için, çekirdekte kaç proton varsa çekirdeğin etrafındaki yörüngelerde de o kadar elektron dolaşır. ATOM ve YAPISI Elementin özelliğini taşıyan en küçük parçasına denir. Atom Numarası Bir elementin unda bulunan proton sayısıdır. Protonlar (+) yüklü olduklarından pozitif yük sayısı ya da çekirdek yükü

Detaylı

PERİYODİK SİSTEM VE ELEKTRON DİZİLİMLERİ#6

PERİYODİK SİSTEM VE ELEKTRON DİZİLİMLERİ#6 PERİYODİK SİSTEM VE ELEKTRON DİZİLİMLERİ#6 Periyodik sistemde yatay sıralara Düşey sütunlara.. adı verilir. 1.periyotta element, 2 ve 3. periyotlarda..element, 4 ve 5.periyotlarda.element 6 ve 7. periyotlarda

Detaylı

1. ÜNİTE: MODERN ATOM TEORİSİ

1. ÜNİTE: MODERN ATOM TEORİSİ . ÜNİTE: MODERN ATOM TEORİSİ.4. Elektron Dizilimi ve Periyodik Sisteme Yerleşim Atomun Kuantum Modeli oluşturulduktan sonra Bohr, yaptığı çalışmalarda periyodik cetvel ile kuantum teorisi arasında bir

Detaylı

Serüveni PERİYODİK ÖZELLİKLER DEĞİŞİMİ

Serüveni PERİYODİK ÖZELLİKLER DEĞİŞİMİ Serüveni PERİYODİK ÖZELLİKLER DEĞİŞİMİ PERİYODİK ÖZELLİKLERİN DEĞİŞİMİ ATOM YARIÇAPI Çekirdeğin merkezi ile en dış kabukta bulunan elektronlar arasındaki uzaklık olarak tanımlanır. Periyodik tabloda aynı

Detaylı

1H: 1s 1 1.periyot 1A grubu. 5B: 1s 2 2s 2 2p 1 2.periyot 3A grubu. 8O: 1s 2 2s 2 2p 4 2.periyot 6A grubu. 10Ne: 1s 2 2s 2 2p 6

1H: 1s 1 1.periyot 1A grubu. 5B: 1s 2 2s 2 2p 1 2.periyot 3A grubu. 8O: 1s 2 2s 2 2p 4 2.periyot 6A grubu. 10Ne: 1s 2 2s 2 2p 6 PERİYODİK CETVEL Periyodik cetvel, benzer kimyasal özellik gösteren elementlerin alt alta gelecek şekilde artan atom numaralarına göre sıralandıkları çizelgelerdir. Periyodik cetveli oluşturan yatay satırlara

Detaylı

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM GENEL KİMYA ATOMUN ELEKTRON YAPISI Bohr atom modelinde elektronun bulunduğu yer için yörünge tanımlaması kullanılırken, kuantum mekaniğinde bunun yerine orbital tanımlaması kullanılır. Orbital, elektronun

Detaylı

PERĐYODĐK ÇĐZELGE. Yrd.Doç.Dr. İbrahim İsmet ÖZTÜRK

PERĐYODĐK ÇĐZELGE. Yrd.Doç.Dr. İbrahim İsmet ÖZTÜRK PERĐYODĐK ÇĐZELGE Yrd.Doç.Dr. İbrahim İsmet ÖZTÜRK 8.1. PERĐYODĐK ÇĐZELGENĐN GELĐŞMESĐ 8.2. ELEMENTLERĐN PERĐYODĐK SINIFLANDIRILMASI Katyon ve Anyonların Elektron Dağılımları 8.3.FĐZĐKSEL ÖZELLĐKLERDEKĐ

Detaylı

kitabı olarak önerilen, Erdik ve Sarıkaya nın

kitabı olarak önerilen, Erdik ve Sarıkaya nın PERİYODİK CETVEL Aşağıda verilen özet bilginin ayrıntısını, ders kitabı olarak önerilen, Erdik ve Sarıkaya nın Temel Üniversitesi Kimyası" Kitabı ndan okuyunuz. Modern periyotlu dizge, elementleri artan

Detaylı

PERİYODİK CETVEL

PERİYODİK CETVEL BÖLÜM4 W Periyodik cetvel, elementlerin atom numaraları esas alınarak düzenlenmiştir. Bu düzenlemede, kimyasal özellikleri benzer olan (değerlik elektron sayıları aynı) elementler aynı düşey sütunda yer

Detaylı

ATOM BİLGİSİ Atom Modelleri

ATOM BİLGİSİ Atom Modelleri 1. Atom Modelleri BÖLÜM2 Maddenin atom adı verilen bir takım taneciklerden oluştuğu fikri çok eskiye dayanmaktadır. Ancak, bilimsel bir (deneye dayalı) atom modeli ilk defa Dalton tarafından ileri sürülmüştür.

Detaylı

Yrd. Doç. Dr. H. Hasan YOLCU. hasanyolcu.wordpress.com

Yrd. Doç. Dr. H. Hasan YOLCU. hasanyolcu.wordpress.com Yrd. Doç. Dr. H. Hasan YOLCU hasanyolcu.wordpress.com En az iki atomun belli bir düzenlemeyle kimyasal bağ oluşturmak suretiyle bir araya gelmesidir. Aynı atomda olabilir farklı atomlarda olabilir. H 2,

Detaylı

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM GENEL KİMYA KİMYASAL BAĞLAR Lewis Kuramı Kimyasal bağlanmada esas rolü dış kabuk elektronları (değerlik) oynar. Bazı durumlarda elektronlar bir atomdan diğerine aktarılır. Böylece oluşan (+) ve (-) yüklü

Detaylı

2. HAMLE web:

2. HAMLE web: 2. HAMLE Nötron sayısı İZOTOP ATOM 1-Proton sayıları... nötron ve kütle numaraları.. atomlardır. 2-İzotop atomların fiziksel özellikleri. 3-Nötr izotop atomlar kimyasal özellikleri. 4-İzotop atomlar aynı

Detaylı

İnstagram:kimyaci_gln_hoca MODERN ATOM TEORİSİ-2.

İnstagram:kimyaci_gln_hoca MODERN ATOM TEORİSİ-2. MODERN ATOM TEORİSİ-2 ATOM YARIÇAPI PERİYODİK ÖZELLİK DEĞİŞİMİ Kovalent Yarıçap: Tek bir kovalent bağla bağlanmış eşdeğer iki atomun çekirdekleri arasındaki uzaklığın yarısına kovalent yarıçap denir.(şekil1)

Detaylı

Atomlar ve Moleküller

Atomlar ve Moleküller Atomlar ve Moleküller Madde, uzayda yer işgal eden ve kütlesi olan herşeydir. Element, kimyasal tepkimelerle başka bileşiklere parçalanamayan maddedir. -Doğada 92 tane element bulunmaktadır. Bileşik, belli

Detaylı

Nadir ve Kıymetli Metaller Metalurjisi. Y.Doç.Dr. Işıl KERTİ

Nadir ve Kıymetli Metaller Metalurjisi. Y.Doç.Dr. Işıl KERTİ Nadir ve Kıymetli Metaller Metalurjisi Y.Doç.Dr. Işıl KERTİ Ders içeriği 1. Giriş ve Periyodik cetvel 2. Kıymetli Metaller (Ag, Au, Pt, ) 3. Kıymetli Metaller (Ag, Au, Pt, ) 4. Kıymetli Metaller (Ag, Au,

Detaylı

I. FOTOELEKTRON SPEKTROSKOPĠSĠ (PES) PES orbital enerjilerini doğrudan tayin edebilir. (Fotoelektrik etkisine benzer!)

I. FOTOELEKTRON SPEKTROSKOPĠSĠ (PES) PES orbital enerjilerini doğrudan tayin edebilir. (Fotoelektrik etkisine benzer!) 5.111 Ders Özeti #9 Bugün için okuma: Bölüm 1.14 (3.Baskıda, 1.13) Elektronik Yapı ve Periyodik Çizelge, Bölüm 1.15, 1.16, 1.17, 1.18, ve 1.20 (3.Baskıda, 1.14, 1.15, 1.16, 1.17, ve 1.19) Atom Özelliklerinde

Detaylı

1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ

1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ 1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ Bohr Modelinin Yetersizlikleri Dalga-Tanecik İkiliği Dalga Mekaniği Kuantum Mekaniği -Orbital Kavramı Kuantum Sayıları Yörünge - Orbital Kavramları

Detaylı

ATOMUN YAPISI. Özhan ÇALIŞ. Bilgi İletişim ve Teknolojileri

ATOMUN YAPISI. Özhan ÇALIŞ. Bilgi İletişim ve Teknolojileri ATOMUN YAPISI ATOMLAR Atom, elementlerin en küçük kimyasal yapıtaşıdır. Atom çekirdeği: genel olarak nükleon olarak adlandırılan proton ve nötronlardan meydana gelmiştir. Elektronlar: çekirdeğin etrafında

Detaylı

MADDENİN SINIFLANDIRILMASI

MADDENİN SINIFLANDIRILMASI MADDENİN SINIFLANDIRILMASI MADDE Saf madde Karışımlar Element Bileşik Homojen Karışımlar Heterojen Karışımlar ELEMENT Tek cins atomlardan oluşmuş saf maddeye element denir. ELEMENTLERİN ÖZELLİKLERİ Elementler

Detaylı

1. ÜNİTE: MODERN ATOM TEORİSİ İyon Yükleri ve Yükseltgenme Basamakları

1. ÜNİTE: MODERN ATOM TEORİSİ İyon Yükleri ve Yükseltgenme Basamakları 1. ÜNİTE: MODERN ATOM TEORİSİ 1.7. İyon Yükleri ve Yükseltgenme Basamakları Yüksüz bir atomun yapısındaki pozitif (+) yüklü protonlarla negatif () yüklü elektronların sayıları birbirine eşittir. Yüksüz

Detaylı

Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Üç çeşit temel bağ vardır:

Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Üç çeşit temel bağ vardır: Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Üç çeşit temel bağ vardır: İyonik bağlar, elektronlar bir atomdan diğerine aktarıldığı zaman

Detaylı

Soygazların bileşik oluşturamamasının sebebi bütün orbitallerinin dolu olmasındandır.

Soygazların bileşik oluşturamamasının sebebi bütün orbitallerinin dolu olmasındandır. KİMYASAL BAĞLAR Kimyasal bağ, moleküllerde atomları birarada tutan kuvvettir. Bir bağın oluşabilmesi için atomlar tek başına bulundukları zamankinden daha kararlı (az enerjiye sahip) olmalıdırlar. Genelleme

Detaylı

ARES PERİYODİK SİSTEM MADDENĠN YAPISI VE ÖZELLĠKLERĠ 1.PERĠYODĠK SĠSTEM 8.SINIF FEN BĠLĠMLERĠ. Geçmişten Günümüze Periyodik Sistem

ARES PERİYODİK SİSTEM MADDENĠN YAPISI VE ÖZELLĠKLERĠ 1.PERĠYODĠK SĠSTEM 8.SINIF FEN BĠLĠMLERĠ. Geçmişten Günümüze Periyodik Sistem ARES EĞĠTĠM MERKEZĠ *Metni yazın+ MADDENĠN YAPISI VE ÖZELLĠKLERĠ 1.PERĠYODĠK SĠSTEM 8.SINIF FEN BĠLĠMLERĠ PERİYODİK SİSTEM DİMİTRİ İVANOVİÇ MENDELEYEV (Dimitri İvanoviç Mendelyef) (1834-1907) Elementleri

Detaylı

KİMYASAL BAĞLAR İYONİK BAĞ KOVALANT BAĞ POLAR KOVALENT BAĞ APOLAR KOVALENT BAĞ

KİMYASAL BAĞLAR İYONİK BAĞ KOVALANT BAĞ POLAR KOVALENT BAĞ APOLAR KOVALENT BAĞ KİMYASAL BAĞLAR İYONİK BAĞ KOVALANT BAĞ POLAR KOVALENT BAĞ APOLAR KOVALENT BAĞ Atomlar bağ yaparken, elektron dizilişlerini soy gazlara benzetmeye çalışırlar. Bir atomun yapabileceği bağ sayısı, sahip

Detaylı

Periodic Table of the. Elements I A II A III B IV B V B VI B VII B VIII B I B II B III A IV A V A VI A VII A VIII A 1 1 2 1 H H He 1.008 1.008 4.

Periodic Table of the. Elements I A II A III B IV B V B VI B VII B VIII B I B II B III A IV A V A VI A VII A VIII A 1 1 2 1 H H He 1.008 1.008 4. PERİYODİK SİSTEM Periodic Table of the s d p Elements I A II A III B IV B V B VI B VII B VIII B I B II B III A IV A V A VI A VII A VIII A 1 1 2 1 H H He 1.008 1.008 4.0026 3 4 5 6 7 8 9 10 2 Li Be B C

Detaylı

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1 BÖLÜM 2 ATOMİK YAPI İÇERİK Atom yapısı Bağ tipleri 1 Atomların Yapıları Atomlar başlıca üç temel atom altı parçacıktan oluşur; Protonlar (+ yüklü) Nötronlar (yüksüz) Elektronlar (-yüklü) Basit bir atom

Detaylı

ATOMUN KUANTUM MODELİ

ATOMUN KUANTUM MODELİ ATOMUN KUANTUM MODELİ 926 yıllarında Erwin Schrödinger Heisenberg den bağımsız olarak de Broglie nin hipotezinden ilham alarak tüm parçacıkların hareketinin hesaplanabileceği bir dalga mekaniği oluşturmuştur.

Detaylı

PERİYODİK ÖZELLİKLER 1.ATOMLARIN BÜYÜKLÜĞÜ VE ATOM YARIÇAPI: Kovalent yarıçap: Van der Waals yarıçapı: İyon yarıçapı:

PERİYODİK ÖZELLİKLER 1.ATOMLARIN BÜYÜKLÜĞÜ VE ATOM YARIÇAPI: Kovalent yarıçap: Van der Waals yarıçapı: İyon yarıçapı: PERİYODİK ÖZELLİKLER 1.ATOMLARIN BÜYÜKLÜĞÜ VE ATOM YARIÇAPI: Elementlerin fiziksel ( erime ve kaynama noktaları, yoğunluk, iletkenlik vb.) ve kimyasal özellikleri ( elektron alma ve verme ) atom yarıçaplarıyla

Detaylı

Serüveni 2.ÜNİTE:ATOM VE PERİYODİK SİSTEM. Elementlerin periyodik sistemdeki yerlerine göre sınıflandırılması

Serüveni 2.ÜNİTE:ATOM VE PERİYODİK SİSTEM. Elementlerin periyodik sistemdeki yerlerine göre sınıflandırılması Serüveni 2.ÜNİTE:ATOM VE PERİYODİK SİSTEM Elementlerin periyodik sistemdeki yerlerine göre sınıflandırılması METALLER Metaller doğada..atomlu halde ya da bileşikleri halinde bulunur. Oda sıcaklığında..hariç

Detaylı

PERİYODİK CETVEL-ÖSS DE ÇIKMIŞ SORULAR

PERİYODİK CETVEL-ÖSS DE ÇIKMIŞ SORULAR PERİODİK CETVEL-ÖSS DE ÇIKMIŞ SORULAR 1. Bir elementin periyodik cetveldeki yeri aşağıdakilerden hangisi ile belirlenir? A) Atom ağırlığı B) Değerliği C) Atom numarası D) Kimyasal özellikleri E) Fiziksel

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi. chem.libretexts.org

TOBB Ekonomi ve Teknoloji Üniversitesi. chem.libretexts.org 9. Atomun Elektron Yapısı Elektromanyetik ışıma (EMI) Atom Spektrumları Bohr Atom Modeli Kuantum Kuramı - Dalga Mekaniği Kuantum Sayıları Elektron Orbitalleri Hidrojen Atomu Orbitalleri Elektron Spini

Detaylı

Elementlerin büyük bir kısmı tabiatta saf hâlde bulunmaz. Çoğunlukla başka elementlerle bileşikler oluşturmuş şekilde bulunurlar.

Elementlerin büyük bir kısmı tabiatta saf hâlde bulunmaz. Çoğunlukla başka elementlerle bileşikler oluşturmuş şekilde bulunurlar. Elementlerin büyük bir kısmı tabiatta saf hâlde bulunmaz. Çoğunlukla başka elementlerle bileşikler oluşturmuş şekilde bulunurlar. Elementlerin bileşik oluşturma istekleri onların kararlı yapıya ulaşma

Detaylı

Müh. Fak. G. Kimya Vize Soru ve Cevapları A Mühendislik Fakültesi Genel Kimya (Kimya Metal. ve Malz.)) Ara Sınav Soruları

Müh. Fak. G. Kimya Vize Soru ve Cevapları A Mühendislik Fakültesi Genel Kimya (Kimya Metal. ve Malz.)) Ara Sınav Soruları Müh. Fak. G. Kimya Vize Soru ve Cevapları A 08.11.2017 Adı ve Soyadı:.. Fak. No:... Mühendislik Fakültesi Genel Kimya (Kimya Metal. ve Malz.)) Ara Sınav Soruları 1) Bilinen tüm yöntemlerle kendisinden

Detaylı

Öncelikle periyodik cetvelin bazı gruplarını inceleyelim:

Öncelikle periyodik cetvelin bazı gruplarını inceleyelim: Yatay sütun Periyot : 7 tane periyot vardır Düşey Sütun Grup : 8 tane a grubu ve 8 tanede b grubu vardır. b grubu elementlerine geçiş elementleri denir. Öncelikle periyodik cetvelin bazı gruplarını inceleyelim:

Detaylı

PERİYODİK CETVEL. Yanıt : D. www.kimyahocam.com. 3 Li : 1s2 2s 1 2. periyot 1A grubu. 16 S : 1s2 2s 2 2p 6 3s 2 3p 4 3.

PERİYODİK CETVEL. Yanıt : D. www.kimyahocam.com. 3 Li : 1s2 2s 1 2. periyot 1A grubu. 16 S : 1s2 2s 2 2p 6 3s 2 3p 4 3. PERİODİK CETVEL Periyodik cetvel, elementlerin atom numaraları temel alınarak düzenlenmiş bir sistemdir. Periyodik cetvelde, nötr atomlarının elektron içeren temel enerji düzeyi sayısı aynı olan elementler

Detaylı

PERİYODİK SİSTEM. Kimya Ders Notu

PERİYODİK SİSTEM. Kimya Ders Notu PERİYODİK SİSTEM Kimya Ders Notu PERİYODİK SİSTEM Elementler atom numaralarının artışına göre arka arkaya sıralanırken benzer özellikte olanların alt alta getirilmesiyle oluşturulan tabloya (periyodik

Detaylı

Elektronların Dağılımı ve Kimyasal Özellikleri

Elektronların Dağılımı ve Kimyasal Özellikleri Elektronların Dağılımı ve Kimyasal Özellikleri Helyum (2), neon (10), argon (18)in elektron dağılımları incelendiğinde Eğer bu üç elementin birer elektronu daha olsaydı, her birinde yeni bir katman oluşacaktı.

Detaylı

Bir atomdan diğer bir atoma elektron aktarılmasıyla

Bir atomdan diğer bir atoma elektron aktarılmasıyla kimyasal bağlar Kimyasal bağ, moleküllerde atomları bir arada tutan kuvvettir. Atomlar daha düşük enerjili duruma erişmek için bir araya gelirler. Bir bağın oluşabilmesi için atomlar tek başına bulundukları

Detaylı

Serüveni 3. ÜNİTE KİMYASAL TÜRLER ARASI ETKİLEŞİM GÜÇLÜ ETKİLEŞİM. o İYONİK BAĞ o KOVALENT BAĞ o METALİK BAĞ

Serüveni 3. ÜNİTE KİMYASAL TÜRLER ARASI ETKİLEŞİM GÜÇLÜ ETKİLEŞİM. o İYONİK BAĞ o KOVALENT BAĞ o METALİK BAĞ Serüveni 3. ÜNİTE KİMYASAL TÜRLER ARASI ETKİLEŞİM GÜÇLÜ ETKİLEŞİM o İYONİK BAĞ o KOVALENT BAĞ o METALİK BAĞ KİMYASAL TÜR 1. İYONİK BAĞ - - Ametal.- Kök Kök Kök (+) ve (-) yüklü iyonların çekim kuvvetidir..halde

Detaylı

KİMYASAL BAĞLAR Kimyasal bağlar, Moleküllerde atomları birarada tutan

KİMYASAL BAĞLAR Kimyasal bağlar, Moleküllerde atomları birarada tutan KİMYASAL BAĞLAR Kimyasal bağlar, Moleküllerde atomları birarada tutan kuvvettir. Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Atomun sembolünün

Detaylı

Yrd. Doç. Dr. H. Hasan YOLCU. hasanyolcu.wordpress.com

Yrd. Doç. Dr. H. Hasan YOLCU. hasanyolcu.wordpress.com Yrd. Doç. Dr. H. Hasan YOLCU hasanyolcu.wordpress.com En az iki atomun belli bir düzenlemeyle kimyasal bağ oluşturmak suretiyle bir araya gelmesidir. Aynı atomda olabilir farklı atomlarda olabilir. H 2,

Detaylı

KĐMYA DERSĐ ÇALIŞMA YAPRAĞI KONU ANLATIMI PERĐYODĐK CETVEL PERİYODİK CETVEL

KĐMYA DERSĐ ÇALIŞMA YAPRAĞI KONU ANLATIMI PERĐYODĐK CETVEL PERİYODİK CETVEL KĐMYA DERSĐ ÇALIŞMA YAPRAĞI KONU ANLATIMI PERĐYODĐK CETVEL PERİYODİK CETVEL Periyodik Cetvel, elementleri gösteren ve özellikleriyle ilgili bilgi veren bir tablodur. Bu tabloda elementler belirli bir düz-

Detaylı

s, p, d Elementleri f Elementleri Asal Gazlar

s, p, d Elementleri f Elementleri Asal Gazlar s, p, d Elementleri Hidrojen 1A Grubu: Alkali metaller 2A Grubu: Toprak Alkali Metaller 3A Grubu: Toprak Metalleri 4A Grubu 5A Grubu 6A Grubu: Kalkojenler 7A Grubu: Halojenler B Grubu: Geçiş Metalleri

Detaylı

Aşağıda verilen özet bilginin ayrıntısını, ders kitabı. olarak önerilen, Erdik ve Sarıkaya nın Temel. Üniversitesi Kimyası" Kitabı ndan okuyunuz.

Aşağıda verilen özet bilginin ayrıntısını, ders kitabı. olarak önerilen, Erdik ve Sarıkaya nın Temel. Üniversitesi Kimyası Kitabı ndan okuyunuz. KİMYASAL BAĞLAR Aşağıda verilen özet bilginin ayrıntısını, ders kitabı olarak önerilen, Erdik ve Sarıkaya nın Temel Üniversitesi Kimyası" Kitabı ndan okuyunuz. KİMYASAL BAĞLAR İki atom veya atom grubu

Detaylı

maddelere saf maddeler denir

maddelere saf maddeler denir Madde :Kütlesi olan her şeye madde denir. Saf madde: Aynı cins atom veya moleküllerden oluşan maddeye denir. Fiziksel yollarla kendisinden başka maddelere ayrışmayan maddelere saf maddeler denir Element:

Detaylı

Element atomlarının atom ve kütle numaraları element sembolleri üzerinde gösterilebilir. Element atom numarası sembolün sol alt köşesine yazılır.

Element atomlarının atom ve kütle numaraları element sembolleri üzerinde gösterilebilir. Element atom numarası sembolün sol alt köşesine yazılır. Atom üç temel tanecikten oluşur. Bunlar proton, nötron ve elektrondur. Proton atomun çekirdeğinde bulunan pozitif yüklü taneciktir. Nötron atomun çekirdeğin bulunan yüksüz taneciktir. ise çekirdek etrafında

Detaylı

MADDE NEDİR? Çevremize baktığımızda gördüğümüz her şey örneğin, dağlar, denizler, ağaçlar, bitkiler, hayvanlar ve hava birer maddedir.

MADDE NEDİR? Çevremize baktığımızda gördüğümüz her şey örneğin, dağlar, denizler, ağaçlar, bitkiler, hayvanlar ve hava birer maddedir. MADDE NEDİR? Çevremize baktığımızda gördüğümüz her şey örneğin, dağlar, denizler, ağaçlar, bitkiler, hayvanlar ve hava birer maddedir. Her maddenin bir kütlesi vardır ve bu tartılarak bulunur. Ayrıca her

Detaylı

ELEKTRONLARIN DİZİLİMİ, KİMYASAL ÖZELLİKLERİ VE

ELEKTRONLARIN DİZİLİMİ, KİMYASAL ÖZELLİKLERİ VE ELEKTRONLARIN DİZİLİMİ, KİMYASAL ÖZELLİKLERİ VE ELEMENTLER ELEMENTLER METALLER AMETALLER SOYGAZLAR Hiçbir kimyasal ayırma yöntemi ile kendinden daha basit maddelere ayrıştırılamayan saf maddelere element

Detaylı

Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez.

Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez. MODERN ATOM TEORİSİ ÖNCESİ KEŞİFLER Dalton Atom Modeli - Elementler atom adı verilen çok küçük ve bölünemeyen taneciklerden oluşurlar. - Atomlar içi dolu küreler şeklindedir. - Bir elementin bütün atomları

Detaylı

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1 BÖLÜM 2 ATOMİK YAPI İÇERİK Atom yapısı Bağ tipleri 1 Atomların Yapıları Atomlar başlıca üç temel atom altı parçacıktan oluşur; Protonlar (+ yüklü) Nötronlar (yüksüz) Elektronlar (-yüklü) Basit bir atom

Detaylı

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Kimyasal Bağlar.

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Kimyasal Bağlar. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Kimyasal Bağlar Kimyasal Bağlar 3 temel tip bağ vardır: İyonik İyonlar arası elektrostatik etkileşim

Detaylı

ÇALIŞMA YAPRAĞI (KONU ANLATIMI)

ÇALIŞMA YAPRAĞI (KONU ANLATIMI) ÇALIŞMA YAPRAĞI (KONU ANLATIMI) ATOMUN YAPISI HAZIRLAYAN: ÇĐĞDEM ERDAL DERS: ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME DERS SORUMLUSU: PROF.DR. ĐNCĐ MORGĐL ANKARA,2008 GĐRĐŞ Kimyayı ve bununla ilgili

Detaylı

BİLEŞİKLER VE FORMÜLLERİ

BİLEŞİKLER VE FORMÜLLERİ BİLEŞİKLER VE FORMÜLLERİ Bileşikler : Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur). Bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı kimyasal özelliklere

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi. Genel Kimya 101. Yrd.Doç.Dr.Zeynep OBALI e-mail: zobali@etu.edu.tr Ofis: z-83/2

TOBB Ekonomi ve Teknoloji Üniversitesi. Genel Kimya 101. Yrd.Doç.Dr.Zeynep OBALI e-mail: zobali@etu.edu.tr Ofis: z-83/2 Genel Kimya 101 Yrd.Doç.Dr.Zeynep OBALI e-mail: zobali@etu.edu.tr Ofis: z-83/2 İyonik Bağ; İyonik bir bileşikteki pozitif ve negatif iyonlar arasındaki etkileşime iyonik bağ denir Na Na + + e - Cl + e

Detaylı

Periyodik Tablo(sistem)

Periyodik Tablo(sistem) Periyodik Tablo(sistem) Geçmişten Günümüze Periyodik Tablo Bilim adamları elementlerin sayısı arttıkça bunları benzer özelliklerine göre sıralamaya çalışmışlardır.(bunu süpermarketlerdeki ürünlerin dizilişlerine

Detaylı

Kimya Elbistan. youtube kanalı. Video Defter

Kimya Elbistan. youtube kanalı. Video Defter youtube kanalı Video Defter 1. Ünite Modern Atom Teorisi A. Atomun Kuantum Modeli 1873 yılında J. C. Maxwell ışığın elektromanyetik dalgalardan oluştuğunu ve elektromanyetik ışımayı açıklamıştır. 1900

Detaylı

ELEKTRONLARIN DĠZĠLĠMĠ

ELEKTRONLARIN DĠZĠLĠMĠ ELEKTRONLARIN DĠZĠLĠMĠ Eğer bu üç elementin birer elektronu daha olsaydı, her birinde yeni bir katman oluşacaktı. Çünkü her üçünün de en dıştaki katmanları tamamen dolu durumdadır. 1.Katmanda en çok 2

Detaylı

Bölüm 2: Atomik Yapı & Atomarası Bağlar

Bölüm 2: Atomik Yapı & Atomarası Bağlar Bölüm 2: Atomik Yapı & Atomarası Bağlar Bağlanmayı ne sağlar? Ne tip bağlar vardır? Bağların sebep olduğu özellikler nelerdir? Chapter 2-1 Atomun yapısı (Birinci sınıf kimyası) atom electronlar 9.11 x

Detaylı

ELEMENTLERİN SEMBOLLERİ VE ATOM

ELEMENTLERİN SEMBOLLERİ VE ATOM ELEMENT VE SEMBOLLERİ SAF MADDE: Kendisinden başka madde bulundurmayan maddelere denir. ELEMENT: İçerisinde tek cins atom bulunduran maddelere denir. Yani elementlerin yapı yaşı atomlardır. BİLEŞİK: En

Detaylı

YKS KİMYA Atom ve Periyodik Sistem 6

YKS KİMYA Atom ve Periyodik Sistem 6 YKS KİMYA Atom ve Periyodik Sistem 6 Atom ve Periyodik Sistem 6 1 Soru 01 Aşağıdaki özelliklerden hangisi periyodik sistemin aynı periyodunda sağa doğru azalırken, aynı grupta aşağıya doğru artar? A) İyonlaşma

Detaylı

Örnek : 3- Bileşiklerin Özellikleri :

Örnek : 3- Bileşiklerin Özellikleri : Bileşikler : Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur) bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı kimyasal özelliklere sahip milyonlarca yani

Detaylı

ANORGANİK KİMYA TEMEL KAVRAMLAR

ANORGANİK KİMYA TEMEL KAVRAMLAR ANORGANİK KİMYA TEMEL KAVRAMLAR Prof. Dr. Halis ÖLMEZ Prof. Dr. Veysel T. YILMAZ Beşinci Baskı 2010 BEŞİNCİ BASKIYA ÖNSÖZ Z 1997 yılında birinci baskısı, 1998 yılında da ikinci, 2004 yılında üçüncü, 2008

Detaylı

ATOM NEDİR? -Atom elementin özelliğini taşıyan en küçük parçasına denir. Her canlı-cansız madde atomdan oluşmuştur.

ATOM NEDİR? -Atom elementin özelliğini taşıyan en küçük parçasına denir. Her canlı-cansız madde atomdan oluşmuştur. DERS: KİMYA KONU : ATOM YAPISI ATOM NEDİR? -Atom elementin özelliğini taşıyan en küçük parçasına denir. Her canlı-cansız madde atomdan oluşmuştur. Atom Modelleri Dalton Bütün maddeler atomlardan yapılmıştır.

Detaylı

KĠMYASAL ÖZELLĠKLER VE KĠMYASAL BAĞ

KĠMYASAL ÖZELLĠKLER VE KĠMYASAL BAĞ Elektronların Dizilimi ve Kimyasal Özellikler Atomların katmanlarında belirli sayılarda elektron bulunmaktadır. Ancak bir atom, tek katmanlıysa ve bu katmanda iki elektronu varsa kararlıdır. Atomun iki

Detaylı

PERİYODİK CETVEL Mendeleev Henry Moseley Glenn Seaborg

PERİYODİK CETVEL Mendeleev Henry Moseley Glenn Seaborg PERİYODİK CETVEL Periyodik cetvel elementleri sınıflandırmak için hazırlanmıştır. İlkperiyodik cetvel Mendeleev tarafından yapılmıştır. Mendeleev elementleri artan kütle numaralarına göre sıralamış ve

Detaylı

ATOMLAR ARASI BAĞLAR Doç. Dr. Ramazan YILMAZ

ATOMLAR ARASI BAĞLAR Doç. Dr. Ramazan YILMAZ ATOMLAR ARASI BAĞLAR Doç. Dr. Ramazan YILMAZ Sakarya Üniversitesi, Teknoloji Fakültesi, Metalurji ve Malzeme Mühendisliği Bölümü Esentepe Kampüsü, 54187, SAKARYA Atomlar Arası Bağlar 1 İyonik Bağ 2 Kovalent

Detaylı

İKİ YADA DAHA FAZLA MADDENİN ÖZELLİKLERİNİ KAYBETMEDEN ÇEŞİTLİ ORANLARDA KARIŞMASI İLE OLUŞAN TOPLULUĞA KARIŞIM DENİR KARIŞIMLAR İKİ SINIFTA

İKİ YADA DAHA FAZLA MADDENİN ÖZELLİKLERİNİ KAYBETMEDEN ÇEŞİTLİ ORANLARDA KARIŞMASI İLE OLUŞAN TOPLULUĞA KARIŞIM DENİR KARIŞIMLAR İKİ SINIFTA İKİ YADA DAHA FAZLA MADDENİN ÖZELLİKLERİNİ KAYBETMEDEN ÇEŞİTLİ ORANLARDA KARIŞMASI İLE OLUŞAN TOPLULUĞA KARIŞIM DENİR KARIŞIMLAR İKİ SINIFTA İNCELENİR Her tarafında aynı özelliği gösteren, tek bir madde

Detaylı

İKİ YADA DAHA FAZLA MADDENİN ÖZELLİKLERİNİ KAYBETMEDEN ÇEŞİTLİ ORANLARDA KARIŞMASI İLE OLUŞAN TOPLULUĞA KARIŞIM DENİR KARIŞIMLAR İKİ SINIFTA İNCELENİR

İKİ YADA DAHA FAZLA MADDENİN ÖZELLİKLERİNİ KAYBETMEDEN ÇEŞİTLİ ORANLARDA KARIŞMASI İLE OLUŞAN TOPLULUĞA KARIŞIM DENİR KARIŞIMLAR İKİ SINIFTA İNCELENİR KARIŞIMLAR İKİ YADA DAHA FAZLA MADDENİN ÖZELLİKLERİNİ KAYBETMEDEN ÇEŞİTLİ ORANLARDA KARIŞMASI İLE OLUŞAN TOPLULUĞA KARIŞIM DENİR KARIŞIMLAR İKİ SINIFTA İNCELENİR Her tarafında aynı özelliği gösteren, tek

Detaylı

FZM 220. Malzeme Bilimine Giriş

FZM 220. Malzeme Bilimine Giriş FZM 220 Yapı Karakterizasyon Özellikler İşleme Performans Prof. Dr. İlker DİNÇER Fakültesi, Fizik Mühendisliği Bölümü 1 Atomsal Yapı ve Atomlararası Bağ1 Ders Hakkında FZM 220 Dersinin Amacı Bu dersin

Detaylı

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar 5.111 Ders Özeti #12 Bugün için okuma: Bölüm 2.9 (3. Baskıda 2.10), Bölüm 2.10 (3. Baskıda 2.11), Bölüm 2.11 (3. Baskıda 2.12), Bölüm 2.3 (3. Baskıda 2.1), Bölüm 2.12 (3. Baskıda 2.13). Ders #13 için okuma:

Detaylı

Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur) bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı

Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur) bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur) bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı kimyasal özelliklere sahip milyonlarca yani madde yani bileşik

Detaylı

ATOM ve YAPISI Maddelerin gözle görülmeyen (bölünmeyen) en parçasına atom denir. Atom kendinden başka hiçbir fiziksel ya da kimyasal metotlarla

ATOM ve YAPISI Maddelerin gözle görülmeyen (bölünmeyen) en parçasına atom denir. Atom kendinden başka hiçbir fiziksel ya da kimyasal metotlarla ATOM ve YAPISI Maddelerin gözle görülmeyen (bölünmeyen) en parçasına atom denir. Atom kendinden başka hiçbir fiziksel ya da kimyasal metotlarla kendinden farklı atomlara dönüşemezler. Atomda (+) yüklü

Detaylı

ÖĞRENME ALANI : MADDE VE DEĞİŞİM ÜNİTE 4 : MADDENİN YAPISI VE ÖZELLİKLERİ

ÖĞRENME ALANI : MADDE VE DEĞİŞİM ÜNİTE 4 : MADDENİN YAPISI VE ÖZELLİKLERİ ÖĞRENME ALANI : MADDE VE DEĞİŞİM ÜNİTE 4 : MADDENİN YAPISI VE ÖZELLİKLERİ E BİLEŞİKLER VE FRMÜLLERİ (4 SAAT) 1 Bileşikler 2 Bileşiklerin luşması 3 Bileşiklerin Özellikleri 4 Bileşik Çeşitleri 5 Bileşik

Detaylı

MADDENİN YAPISI VE ÖZELLİKLERİ ATOM

MADDENİN YAPISI VE ÖZELLİKLERİ ATOM MADDENİN YAPISI VE ÖZELLİKLERİ ATOM ATOMUN YAPISI Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sa-hiptir. Atomda bulunan yükler; negatif

Detaylı

1.5. Periyodik Özellikler

1.5. Periyodik Özellikler 1.5. Periyodik Özellikler 9. sınıfta öğrendiğiniz gibi Mendeleyev in (Mendeliiv) periyodik tablo ile ilgili çalışmalarını değerlendiren Henry Moseley (Henri Mozli), günümüzde kullanılan modern periyodik

Detaylı

ATOMUN YAPISI VE PERİYODİK ÖZELLİKLER

ATOMUN YAPISI VE PERİYODİK ÖZELLİKLER ATOMUN YAPISI VE PERİYODİK ÖZELLİKLER IŞIĞIN YAPISI Işığın; Dalga ve Parçacık olmak üzere iki özelliği vardır. Dalga Özelliği: Girişim, kırınım, polarizasyon, yayılma hızı, vb. Parçacık Özelliği: Işığın

Detaylı

KİMYASAL BAĞLAR İYONİK BAĞLAR KOVALENT BAĞLAR

KİMYASAL BAĞLAR İYONİK BAĞLAR KOVALENT BAĞLAR KİMYASAL BAĞLAR Kimyasal bağ, moleküllerde atomları bir arada tutan kuvvettir. Atomlar daha düşük enerjili duruma erişmek için bir araya gelirler. Bir bağın oluşabilmesi için atomlar tek başına bulundukları

Detaylı

Yrd.Doç.Dr. Emre YALAMAÇ. Yrd.Doç.Dr. Emre YALAMAÇ İÇERİK

Yrd.Doç.Dr. Emre YALAMAÇ. Yrd.Doç.Dr. Emre YALAMAÇ İÇERİK İÇERİK Elementlere, Bileşiklere ve Karışımlara atomik boyutta bakış Dalton Atom Modeli Atom Fiziğinde Buluşlar - Elektronların Keşfi - Atom Çekirdeği Keşfi Günümüz Atom Modeli Kimyasal Elementler Periyodik

Detaylı

PERİYODİK SİSTEM. Bu gruplarda ortadaki elementin atom kütlesi diğer iki elementin atom kütlelerinin ortalamasına hemen hemen eşit olmaktadır.

PERİYODİK SİSTEM. Bu gruplarda ortadaki elementin atom kütlesi diğer iki elementin atom kütlelerinin ortalamasına hemen hemen eşit olmaktadır. PERİYODİK SİSTEMİN TARİHÇESİ DÖBEREİNER İN TRİADLAR KURALI PERİYODİK SİSTEM Elementlerin benzer kimyasal özelliklerine göre üçerli gruplar [(Ca, Sr, Ba), (Cl, Br, I), (S, Se, Te) gibi] halinde sınıflandırılmasıdır.

Detaylı

ATOM BİLGİSİ I ÖRNEK 1

ATOM BİLGİSİ I  ÖRNEK 1 ATOM BİLGİSİ I Elementlerin özelliklerini ta ıyan en küçük yapıta ı atomdur. Son çözümlemede, bütün maddelerin atomlar toplulu u oldu unu söyleyebiliriz. Elementler, aynı tür atomlardan, bile ik ve karı

Detaylı

Paylaşılan elektron ya da elektronlar, her iki çekirdek etrafında dolanacaklar, iki çekirdek arasındaki bölgede daha uzun süre bulundukları için bu

Paylaşılan elektron ya da elektronlar, her iki çekirdek etrafında dolanacaklar, iki çekirdek arasındaki bölgede daha uzun süre bulundukları için bu 4.Kimyasal Bağlar Kimyasal Bağlar Aynı ya da farklı cins atomları bir arada tutan kuvvetlere kimyasal bağlar denir. Pek çok madde farklı element atomlarının birleşmesiyle meydana gelmiştir. İyonik bağ

Detaylı

Lewis Nokta Yapıları ve VSEPR

Lewis Nokta Yapıları ve VSEPR 6 DENEY Lewis Nokta Yapıları ve VSEPR 1. Giriş Bu deneyde moleküllerin Lewis Nokta yapıları belirlenecek ve VSEPR kuralları ile molekülün geometrisi ve polaritesi tayin edilecektir. 2. Lewis Nokta Yapıları

Detaylı

Yrd.Doç.Dr. Emre YALAMAÇ. Yrd.Doç.Dr. Emre YALAMAÇ İÇERİK

Yrd.Doç.Dr. Emre YALAMAÇ. Yrd.Doç.Dr. Emre YALAMAÇ İÇERİK İÇERİK Metal ve Ametallerin Genel Karşılaştırması Atom Özellikleri ve Kimyasal Bağlar Lewis Elektron-Nokta Simgeleri: Atomların Kimyasal Bağ Gösterimleri İyonik Bağ Modeli İyonik Bağ Enerji Durumu: Örgü

Detaylı

Element ve Bileşikler

Element ve Bileşikler Element ve Bileşikler Aynı cins atomlardan oluşan, fiziksel ya da kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddelere element denir. Bir elementi oluşturan bütün atomların

Detaylı

Bohr Atom Modeli. ( I eylemsizlik momen ) Her iki tarafı mv ye bölelim.

Bohr Atom Modeli. ( I eylemsizlik momen ) Her iki tarafı mv ye bölelim. Bohr Atom Modeli Niels Hendrik Bohr, Rutherford un atom modelini temel alarak 1913 yılında bir atom modeli ileri sürdü. Bohr teorisini ortaya koyarak atomların çizgi spektrumlarının açıklanabilmesi için

Detaylı