POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,"

Transkript

1 POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x + a x a x + poliomu kısaca P x = a0 + a x + ax + a x ax dir. Yai, Buradaki P x ile gösterilir. a,a x,a x,a x,...,a x 0 ifadeleri poliomu terimleri, a 0,a,a,...,a gerçel sayılarıa poliomu katsayıları deir. doğal sayısıa a terimii derecesi deir. x Derecesi e büyük ola terimi derecesie, poliomu derecesi deir ve der P( x ) biçimide yazılır. Derecesi e büyük ola terimi katsayısıa, baş katsayı deir. Değişkee bağlı olmaya terime de sabit terim deir. Not: R Reel katsayılı poliomları kümesi [ x] Q Rasyoel katsayılı poliomları kümesi [ x] Z Tam katsayılı poliomları kümesi [ x] Soru: P(x) = x 5x + + 7x poliomuu, a) Derecesii, ( der P ( x ) = ) b) Baş katsayısıı, (-5) c) Sabit terimii yazıız. ( ) Soru: Aşağıdaki tabloyu verile öreklerde yararlaarak dolduruuz. Foksiyo Poliom mu? ( E / H ) Poliomu Derecesi Poliomu Baş Katsayısı Poliomu Sabit Terimi Poliomu Katsayılar Toplamı f ( x) = 8x + x 0, E 8 0, 7,8 + f ( x) = x x f ( x ) = 0 f ( x ) = f ( x) = x + 5x + H f ( x) = 7 + x = + + f x x x

2 Uyarı: Z Q R olduğuda Z[ ] Q x [ x] R [ x] dir. Bular gibi Z, Z, Q... kümeleri de yazılabilir. 5 Soru: Q kümesii buluuz. 5 5 { a0 a 5 a 5 a 5... a 5 : ve a0, a, a,..., a } Q = N Q TANIMLAR: P(x) = a + + poliomuda, 0 ax + a x + a x +... a x. 0 a 0 ve a a a... a a 0 = = = = = = ise Sabit poliomu derecesi sıfırdır. P x poliomua sabit poliom deir.. a a = a = a =... = a = a 0 = ise 0 = Sıfır poliomuu derecesi yoktur ( taımsızdır). P x poliomua sıfır poliomu deir. Soru: Aşağıdaki ifadelerde hagileri taımlı oldukları kümelerde bir poliomdur? Poliom olaları derecesi, baş katsayısı ve sabit terimi edir? P x = x + x R 7 5 P ( y) = y y ; Q y 7 y P ( a) = 5 a ; Z a 5 a) ; [ x] b) [ ] c) [ ] P = 5 ; Z d) 4 e) P ( 5 t ) = ; R [ t] P( x) = m x + 4 x poliomu sabit poliom ise m + =? Soru: Çözüm : Sabit poliom olabilmesi içi 0 m =, = 4 m + = buluur. m = ve ( ) + 4 = 0 olmalıdır. Burada

3 Soru: b + P( x) = a. x. x c + poliomu sıfır poliomu ise a + b c =? Soru: 4 m P x = 5x x + 4 ifadesii bir poliom olabilmesi içi m i alabileceği pozitif tamsayı değerlerii toplamıı buluuz? Soru: P ( x, y) = x y xy + 5y x ise, Çözüm: P, =? P ( x, y) iki değişkeli reel katsayılı bir poliomdur. x = ve y = içi (, ). ( ).. ( ). 5. ( ) P = + de P (, ) = 9 buluur. Soru: Aşağıdakilerde hagisi bir poliom değildir? 5 a. P( x) = x + x + 6 b. K x = d. H( x) x ( x) 4 c. Q x y = x y+ xy xy+, = e. R( x) = x + x x Soru: 4 P ( x) = x a + 5x a poliomuu derecesi e fazla kaç olabilir? Çözüm : 4 P ( x) = x a + 5x a ifadesii bir poliom belirtmesi içi 4 N ve a N olmalıdır. a + 4 N a = { 0,, 6,} değerlerii alabilir. a + a N a olmalıdır. Her iki kümei kesişimide a = 6 a = olur.

4 4 Burada da 0 a = P x = x 5x der P x = 0 a = 6 P x = x 5x der P x = 0 der P x =. N içi kaç olur? (4) Alıştırmalar P x = x + x + x + bir poliomdur. Bua göre bu poliomu derecesi e çok P x, y = x y + x y xy + 4 poliomuu derecesi kaçtır? (6). 4. Aşağıda verile bağıtıları poliom olup olmadıklarıı irdeleyiiz. = + + (H) a. P ( x) = x + 5x (E) b. Q( x) x x 4 c. R ( x ) = 5 (E) d. K ( x) x T x = x + x + (H) e. = (H) x 4. P ( x) = ( a ) x + ( b + ) x + a. b + poliomu sabit poliom olduğua göre, P 5 =? (-) İKİ POLİNOMUN EŞİTLİĞİ Dereceleri ayı ve ayı dereceli terimlerii katsayıları eşit ola iki polioma eşit poliomlar deir. Karşıt olarak ta, iki poliom birbirie eşit ise dereceleri ayı ve ayı dereceli terimlerii katsayıları eşittir. = ve P x a0 a x ax a x... ax Poliomları içi 0 0 Q x = b0 + b x + b x + b x b x P x = Q x a = b, a = b, a = b, a = b... a = b dir.

5 5 Soru: P( x) =. x + x + c. x + ve = Q( x) ise a + b + c + d =? P x Q( x) = a. x b. x +. x d poliomları veriliyor. Çözüm : Q( x) P x = ise, = =.. +. P x x x c x Q x a x b x x d = a ( b ). c = c = = b = 0 = d d = 6 Soru: P ( x) = ( a + ) x + bx + ( c ) x + ve a + b + c + d =? Q x = x + x + d poliomları eşit ise, 5x A B Soru: = + x x x + eşitliğideki A ve B değerlerii buluuz. BİR POLİNOMUN BİR GERÇEL SAYI İÇİN ALDIĞI DEĞERLER Bir P ( x ) poliomuda, a R olmak üzere x = a içi P ( x) i aldığı değer P ( a ) dır. Soru: 5 4 P( x) = x x. x + 40 poliomuu, x = içi aldığı değeri buluuz. Çözüm: 5 4 x = P = ise, P ( ) = 0 olarak buluur.

6 6 Soru: 6 5 = + ise P x x x P x + =? Soru: Bir P ( x ) poliomu içi Çözüm: ( ) 4 + = + ise? P x x x P x = = x + dersek, Q ( x) = x ( Q ( x) Q x ifadesi Q( x)' i tersidir.) P ( x + ) poliomuda x yerie ( ) ( ) x yazarsak, P x + = x. x + 4 de P x = x 5x + 8 olarak buluur. Soru: Aşağıda verile poliomları katsayılar toplamıı ve sabit terimlerii buluuz P x 9 = x 7x + 9x + 5 P x + = x 8x + 4 P x = x + 6x 9 Soru: P ( x) = x + x + poliomu içi P ( 0) ve ( ) poliomu sabit terimi ve katsayılar toplamı ile karşılaştırıız. P değerlerii buluuz. Bu değerleri Souç: Bir P ( x ) poliomuda; Sabit terimi bulmak içi P ( 0) değeri, Katsayılar toplamıı bulmak içi P ( ) değeri buluur. Soru: P ( x ) + P( x) = x x veriliyor. terimii buluuz. Soru : P ( x ) = x + 4x 5 olmak üzere, ( ) Çözüm : P x poliomuu katsayılar toplamı 5 ise, sabit P x + poliomuu sabit terimii buluuz. P ( x + ) poliomuu sabit terimi istediğide P ( x + ) poliomuda x yerie sıfır yazılarak, ( ) P buluur.

7 7 Yai bizde istee P ( ) dir. Bua göre P ( x ) poliomuda P ( ) x = x = yazılmalı i bulmak içi P ( x ) poliomuda burada da istee cevap x = P = 5 olur. Uyarı: Bir poliomda değişkeleri yerie sıfır yazarsak o poliomu sabit terimii buluruz. Ayı şekilde verile bir poliomu katsayılar toplamıı bulmak içi o poliomda x yerie yazmamız yeterli olacaktır. Soru : P ( x) ( x 4x kx 5) = + + poliomuu katsayılar toplamı 64 ise, k =? (4) Soru : P ( x + ) = x ( a + ) x + a poliomu veriliyor. ise, sabit terimi kaçtır? (7) P x poliomuu katsayılar toplamı Soru: P ( x + ) = 9x 6x + ise, P ( x ) =? Soru: P ( x + ) = x 4x + ise, P =? Soru: P ( x) + P( x) = 4x 7x 5 ise, P =? Soru: P x x x x P x = + = + ise,? Çözüm : = dersek, P ( x x) ( x x) x x a + = + de, a a P a + = a + olur. Burada Q a = a + Q a = a de

8 8 ( ) P a + =. a + ise, P a = a + 7 P x = x + 7 olarak buluur. Uyarı : Bir P ( x) Q( x) = eşitliğii her iki tarafıda da uygulamak şartı ile istediğimiz gibi değişke değiştirebiliriz. Uyarı : P ( x ) poliomuda çift dereceli terimleri katsayıları toplamı; P P Ç T ( ) + P( ) P =, ( ) P ( ) P = olduğua dikkat ediiz. P x = a0 + a x + ax + a x ax olarak düşüüp verile değerleri yerie koyuuz.) ( Alıştırmalar. P ( x) = x x + ise, P x x x x. 6 4 P =? (7) = + + ise, P =? (5). P ( x, y) = x y xy + x y + ise, = ise, P x x x x 4. P, =? () P =? () 5. P ( x) = x + ax + b poliomuda P ( ) = ve P ( ) = ise, P =? ()

9 9 6. P ( x + ) + Q( x ) = x olmak üzere, P ( ) = 4 ise, Q =? () P x + = x x + olduğua göre, 7. a. P ( ) =? () b. P ( 5 ) =? (7) P x = x 7x + ) c. P ( x ) =? ( P x = x 5x + 7 ) d. P ( x ) =? ( 8. P ( 4x ) = 6x 8x + 4 ise,? P x = ( x + ) 9. P ( x ) = 6x x + ise, P 5 =? () 0. + = + ise, P ( x ) =? ( P ( x) 5 P x x x x 4 = x ). P ( x) ( 4x x 7x ) 5 = + + poliomuu sabit terimi kaçtır? (). P ( x, y) ( x 5y 4) 5 = + poliomuu katsayılar toplamı kaçtır? (). P ( x ) = x x + a poliomu veriliyor. P ( x) ve P x + poliomlarıı katsayılar toplamıı buluuz. P x poliomuu sabit terimi 9 olduğua göre, 4. P ( x) = 4x 5x + ( k ) x + ve Q( x) ( m ) x ( t ) x x ( ) veriliyor. P ( x) Q( x) 5. = olduğua göre, m. t?. k = = poliomları P x = x + 4x 5x poliomuu çift dereceli terimlerii katsayılar toplamı a, çift dereceli terimleri katsayıları toplamı b olduğua göre, a b =?

10 0 POLİNOMLARDA İŞLEMLER POLİNOMLARDA TOPLAMA VE ÇIKARMA R [ x] de toplama işlemi [ x] [ x] ( P ( x), Q( x )) poliom ikilisie P ( x) Q( x) R R de R [ x] e bir foksiyodur. Bu foksiyo poliomu karşılık getirilir. P x = a0 + a x + ax + a x a x m Q x = b0 + b x + b x + b x b x bm x olduğua göre m P( x) ± Q( x) = a ± b + a ± b. x + a ± b. x a ± b. x b. x dir. 0 0 Bua göre, P ( x) Q( x) poliomuu derecesi P ( x ) ve derecesi küçük olmaya poliomu derecesie eşittir. m Q x poliomlarıda Soru: 4 P( x) = x x x + 5 ve Q( x) = 4. x 5x x poliomları içi, a. P ( x) + Q ( x) b. P ( x) Q( x) c.. Q( x). P( x) poliomlarıı buluuz. Çözüm : a. P ( x) + Q( x) = x 4 + 4x + ( 5) x + ( ) x + ( 5 ) 4 P x + Q x = x + 4x 8x x + 4 buluur. b. P ( x) Q ( x) = x 4 4x + ( + 5) x + ( + ) x + ( 5 + ) 4 P x Q x = x 4x + x x + 6 buluur. c.. Q( x). P( x) = ( x 4 x x + 5 ) ( 4. x 5x x ) 4. Q( x). P( x) = ( x 6x 4x + 0 ) + ( x + 5x + x + ) 4. Q x. P x = x x + 9x x + buluur.

11 Uyarı: Toplam ve çıkarma işlemii soucuda elde edile poliomu derecesi, işleme gire poliomlarda büyük dereceli ola ile ayı derecelidir. POLİNOMLARDA ÇARPMA P ( x). Q( x ) poliomuu bulmak içi P ( x ) poliomuu her bir terimi her bir terimi ile ayrı ayrı çarpılır ve elde edile poliomlar toplaır. Q x poliomuu Soru: P ( x) = x x 5 ve Q x = x x poliomlarıı çarpımıı buluuz. Çözüm : 5 4 P x. Q x = x x 5. x x = x x 6x + x 0x + 5x 5 4 P x. Q x = x x 6x 7x + 5x elde edilir. Uyarı : Her ikisii derecesi sıfırda farklı ola iki poliomu çarpımıı derecesi buları dereceleri toplamıa eşittir. Soru: x a. x b ( x x ).( m. x ) + + = + ise a b =?. = 8 ise, Soru: P ( x ) ve Q ( x ) poliomları içi, der P( x). Q ( x ) = 5 ve der P ( x) Q( x) der Q( x ) =? Çözüm : der P( x) = a ve der Q( x) = b olsu. der P x. Q x = der P x + der Q x = a + b = 5

12 . = + =. + = a + b = 8 der P x Q x der P x der Q x der P x der Q x a + b = 8 = = = = a + b = 5 Burada a der P( x) ve b der Q( x) olarak buluur. POLİNOMLARDA BÖLME Taım: P ( x ), Q( x) R [ x] ve Q( x) 0 olmak üzere P ( x) poliomuu demek, P ( x) = Q( x). B( x) + K ( x) olacak biçimde R [ x] de bir B ( x ) poliomu ile dereceside küçük ola bir K ( x ) poliomu bulmak demektir. Q x poliomua bölmek Q x i P(x) : : K(x) Q(x) B(x) derp( x) derq ( x) olmak üzere, P ( x ) ve Q ( x ) poliomları içi, P ( x) = Q( x). B( x) + K ( x), derk ( x) < derq( x) ve derp( x) = derq( x) + derb ( x) koşullarıı sağlaya; P ( x ) poliomua bölüe Q ( x ) poliomua böle B ( x ) poliomua bölüm K ( x ) poliomua kala deir. Eğer K ( x ) = 0 ise P ( x ) poliomu, Q ( x ) poliomua tam bölüüyor deir. Bölmei Yapılışı Bölme işlemi yapılırke aşağıdaki sıraı izlemesi uygudur;. Bölüe ile böle, x i azala kuvvetlerie göre sıralaır.. Bölüei solda ilk terimi (e büyük üslü terim), bölei solda ilk terimie bölüür.. Elde edile bölüm, bölei bütü terimleri ile çarpılarak ayı dereceli terimler alt alta gelecek biçimde bölüei altıa yazılır. 4. Bu çarpım bölüede çıkarılır. 5. Geri kala terimler farkı yaıa yazılır. 6.Bulua poliom içi yukarıdaki işlemler sıra ile uygulaır.

13 7. Kalaı derecesi, bölei dereceside küçük olaa kadar işleme devam edilir. Soru: = + poliomuu Q( x) P x x x x 0 7 = + x poliomua bölüüz. Çözüm : + x x x 0x 7 x x 4x 0x 7 4x 6x 4x 7 4x + 6 x +x B ( x) ( Bölüm Poliomu ) K ( x) ( Kala Poliomu ) Soru: P x x x 5 Q x = poliomuu = x poliomua bölüüz. Uyarı : P x der = der P ( x) der Q( x) Q x dir. Soru: Aşağıdaki tabloda verile boşlukları dolduruuz. Poliom der[p(x)] der[q(x)] P(x)+Q(x) P(x).Q(x) der[p(x)+q(x)] der[p(x). Q(x)] 7 5 = P x x x x 4 = + 5 Q x x x P( x) = ( x + x + ) 5 Q( x) = ( x x + 5)( x )

14 4 Soru: P ( x ) ve Q ( x ) poliomları içi? der P x = der P x. Q x = 6 ve ( x) P = der Q x 6 ise, Soru: P( x) ve Q( x ) iki poliomdur. P( x) i derecesi Q( x ) i derecesii katıda eksiktir.. Q( x) P x P x poliomuu derecesi ise, Q( x ) poliomuu derecesi kaçtır? HORNER YÖNTEMİ İLE BÖLME Bir P(x) poliomuu ( a. x b) Aşağıdaki örekleri iceleyiiz. + ile bölümüde kolaylık sağlaya bir yötemdir. Örek: P ( x) = x + x 5 poliomuu Q( x) x = poliomua Horer yötemi ile bölüüz. Çözüm :. x = 0 x = -5 P(x) i katsayıları = = = = 6 Ayı işlemler tekrar edilir. Bölüm : B(x) = x + 7 Kala : K(x) = 6

15 5 6 5 Soru: P ( x) = x 5x + x + 4x + 7 poliomuu Q( x) x = poliomua bölüüz. Çözüm: B x = x x 6x 0x 6x Bölüm : 5 4 Kala : 57 4 Soru: P ( x) = 4x + 5x + x poliomuu Q( x) x = poliomua bölüüz. Çözüm: / x =. x olduğuda kalaı soludaki sayıları (4,,6,6), bölei baş katsayısı ola ile tekrar bölüür ve bölümü katsayıları (,,,) buluur. Bölüm : B(x) = x +x +x + Kala : K(x) =

16 6 Alıştırmalar 4. P ( x) = x x 4x + 5 poliomuu Horer yötemi ile Q( x) ( x )( x ) bölüüz. = + poliomua 4. P ( x) = x x + x + ax + b poliomuu ( x ) ile tam bölüebilmesi içi a, b =? (-4,). 5 x + x x x bölümüü buluuz. ( x + ) 4. P ( x ) ve Q ( x ) poliomları içi + Q( x) =? der P x (4) der P x. Q x = 6 ve P x der = Q x ise, 5. P ( x ) bir poliom olmak üzere, der P ( x ) = 6. =? ise, der x P ( x ) (0) 6. P ( x ) ve Q ( x ) birer poliom ve a N olmak üzere, der P ( x) = a +, der Q( x) = a + ve der P ( x) + Q( x) = 5 ise, a =? (4) 7. P ( x ) ve Q ( x ) birer poliom olmak üzere,? der Q x = () der P x = der Q x. = 0 ise, ve der P ( x) Q ( x) P ( x) = x + x + px + qx + t poliomu ( ) 50 x ile tam bölüdüğüe göre, p =? ( ) 9. der P ( x ) = 6, der Q( x ) = 8 olmak üzere P ( x ) ve 4 6 ( + ). ( ) + ( ). ( + ) der x x P x x Q x değerii buluuz. (40) Q x poliomları verilmiştir. Bua göre,

17 7 BÖLMEDE KALANIN BULUNMASI. Bir P ( x ) poliomuu ( a. x b) ile bölümüde kala, K b = P a dir. P(x) ax -b : : B(x) K (. ). P x = a x b B x + K b a. x + b = 0 x = içi a b b b P = a. b. B + K ise, a a a b P = K olur. a Yai, P ( x ) poliomuu ( a. x b) b b yazılır. ( a. x b = 0 x = dır.) a a ile bölümüde kalaı bulmak içi poliomda x yerie P x poliomuu ( x a). yazılır. ( x a = 0 x ile bölümüde kalaı bulmak içi poliomda = a dır. ) x yerie ( a ) p P x poliomuu ( x a. x b), ( p) p yerie ( a. x b). > ile bölümüde kalaı bulmak içi poliomda p p + yazılır. x a. x b = 0 x = a. x + b dir.) x Soru: P ( x) = 4x x + 5 poliomuu ( ) x + ile bölümüde kalaı buluuz. Çözüm : x + = 0 x = ise, P = K ( x) = P = 7 4 dir. Soru: P ( x) = ( m ) x + ( m + ). x poliomuu ( ) e olmalıdır? Buluuz. x + ile tam olarak bölüebilmesi içi m

18 8 9 = poliomuu P x x 4. x 5. x Soru: x + ile bölümüde kalaı buluuz. Çözüm : x + = 0 x = yazılır. 9 9 ( 9 ) ( 9 ) 9 P x =. x + 4. x + 5. x + = K x = 8 dir. P x x x 5x 4 Soru: = + poliomuu ( x x ) + ile bölümüde kalaı buluuz. Çözüm : x x x x + = 0 = P x = x. x x 5x + 4 ifadeside Burada x yerie x yazarsak, K x = x. x. x 5x + 4 = x 8x + 6 ifadeside x yerie tekrar x yazarsak, K x = x 8x + 6 = 7x + 5 elde edilir. Uyarı: Bir P(x) poliomuu ( x a)( x b) ile bölümüde kala P ( x ) ( x a) B ( x ) : : K B ( x ) ( x b) : M ( x ) : K = ( ). + ve B ( x) ( x b). M ( x) K P x x a B x K = ( ). ( ). + + P x x a x b M x K K... = + olup, P x = x a x b M x + x a K + K buluur. Burada istee kala. K x = x a K + K olur.

19 9 4 Soru: P ( x) = x x 4x + 5 poliomuu Q( x) ( x ).( x ) kalaı buluuz.. Yol: Q x = x x = x x + ifadeside = poliomua bölümüde gibi kala buluabilir. x x da x x + = 0' = yazılarak bir öceki örekte olduğu ( ) P x = x x 4x + 5 K x = x x 4x + 5 de, K x = 9x 5x + 5 K x = 9 x 5x + 5 ise, x 7 K x = + olarak buluur..yol :. P x = Q x B x + K x şeklide yazarsak, = ( ).( ). + ( + ) P x x x B x ax b (Böle ikici derecede bir poliom olduğuda kala e fazla birici derecede olabilir.) x = içi P ( ) = ( ).( ). B( ) + ( a + b) a + b = 9 x = içi P = ( ).( ). B + ( a + b) a + b = olarak buluur. Taraf tarafa çözüm yapılırsa, a + b = a = ve b = 7 a + b = 9 = + olur. olur. K ( x) x 7.yol: Horer yötemi ile; K = 9 K = B x = x + 6x + 8 Bölüm: =. + 9 Kala: K ( x) ( x ) K ( x) = x + 7

20 0 Uyarı: Bir P ( x ) poliomuu ( x a) ile bölümü yapılırke, Horer yötemi kez peş peşe uygulaır. Soru: Bir P ( x ) poliomu içi P ( x + ) = x 4x + 5 olduğu biliiyor. Bua göre ( x ) ile bölümüde kalaı buluuz. P x i + Soru: P ( x, y) ( 4x y 5x y 4xy ) = + iki değişkeli poliomuu açılımı yapıldığıda, katsayıları toplamı 4 oluyor. Bua göre =? P x = x + 4x 5x poliomuu çift dereceli terimleri katsayıları toplamı a, tek Soru: dereceli terimleri katsayıları toplamı b ise a b =? Soru: P ( x ) poliomu ( ) ( x ) ile bölümüde kalaıı buluuz. (5) x ile bölümüde kala 5 olduğua göre, ( 7 ) P x poliomuu Soru: P ( x ) ve Q ( x ) birer poliomdur. P ( x) + Q ( x) poliomuu ( ) 5, P ( x + ) Q ( x + ) poliomuu x ile bölümüde kala olduğua göre, P ( x + ) ( x + ) ile bölümüde kala edir? m m+ Soru : P ( x) = ( x 4) + ( x + ) 7 poliomuu göre, m =? x ile bölümüde kala i x ile bölümüde kala 7 olduğua P x = x + x x x + poliomuu Soru : edir? ( x + 4 ) 5 x ile bölümüde elde edile kala

21 . Bir [ x] P x R poliomu içi P ( x ) Alıştırmalar + = x 4 ise, P ( x ) =? 4. P ( x ) + P( x + ) = 6x 4x + 6 olduğua göre katsayılar toplamıı buluuz. P x poliomuu çift dereceli terimlerii. Bir P ( x ) poliomu içi, P ( x) =. P( x) + x tür. Bua göre P ( x ) poliomuu ( x ) ile bölümüde elde edile kalaı buluuz. 4. Bir P ( x ) poliomuu ( x ) ile bölümüde kala ( x 5x ) ( x + x + ) ile bölümüde elde edile kalaı buluuz. 5. Z olmak üzere, ise P i e büyük değerii buluuz. + ise.p x poliomuu P x = 5. x + x + gerçel katsayılı ikici derecede bir poliom 6. P ( x ) poliomu ( ) hagisi ( x 5) ile kalasız bölüebilmektedir? A) P ( x ) + B) P ( x + ) + x C) P ( x ) + x D) P ( x ) E) P ( x ) + x + + x x ile kalasız bölüebilmektedir. Bua göre aşağıdaki poliomlarda 5 7. P ( x) = x x x + 4x + 7 poliomuu ( x ).( x ) kalaı buluuz. 8. P ( x ) poliomuu ( x 4) ile bölümüde kala 5, göre 4.P( x) poliomuu ( x 4 ).( x ) + çarpımı ile bölümüde elde edile + ile bölümüde kalaı buluuz. 9. Q ( x ) poliomuu katsayılar toplamı, Q( x ). P ( x 4) = ( x + ). Q( x ). ( x ) ve. bölümüde kala ( 9x m) dir. Bua göre P ( ) Q( 0 ) =? x + ile bölümüde kala dir. Bua P x poliomuu sabit terimie eşittir. P x Q x poliomuu ( x x) 0. P ( x) = x 4x 5 poliomu veriliyor. P ( x) poliomuu ( ) edile kalaı buluuz.. P ( x ) = 8x 7x 4x + k 5 poliomu veriliyor. P ( x ) poliomuu bölümüdeki kala ise, P ( x ) poliomuu ( ) ile x + ile bölümüde elde x + ile x + ile bölümüde elde edile kalaı buluuz.

22 . P( x) Q( x ) x x = + poliomu veriliyor. P ( x ) poliomuu ( ) ise Q(x) poliomuu ( x ) ile bölümüde elde edile kalaı buluuz.. Bir Bua göre 4. x ile bölümüde kala 4 P x poliomuu ( x + x) ile bölümüde bölüm ( x + x) ve kala ( x ) P x poliomuu ( x + x) ile bölümüde kalaı buluuz. P x x 7 x 8 4x x 6 edile kalaı buluuz. = ise P x poliomuu ( ) + tür. x + ile bölümüde elde P ( x) = ( 4 x) + ( 4 x) poliomu =? x ile bölüdüğüde kala 7. olduğua göre 6. P ( x) + P ( x + ) = x + 6x ise, ( ) 5 7. P ( x) = x 4x + ve Q( x) x x Q P =? (7) P x poliomuu katsayılar toplamıı buluuz. = poliomları veriliyor. Bua göre, 8. P ( x ) ve. = 0 Q x birer poliomdur. der P ( x) Q ( x ) 5 ( ) der P P x. x Q x + =? () ve ( ) P P x der = 5 Q ( Q x ) ise,. = 0 ve 9. P ( x ) ve Q ( x ) birer poliom, der P ( x) Q ( x) derp ( x) derq( x ) = ise, der Q( x ) =? () 0. P x x 4x x + = + ise,? P x = ( x + 9 ). P ( x) = x x + 4x + olmak üzere, P ( x ) poliomuu ( ) kaçtır? (58). (8) P x x x x x = dir. P x poliomuu ( x x). ( x + ). P( x ) = x + x + c koşuluu sağlaya x ile bölümüde kala ile bölümüde kala kaçtır? P x poliomuu buluuz. ( x + x + ) 4. Bir P ( x ) poliomuu, ( x + ) ile bölümüde elde edile bölüm Q ( x ), kala tür. Q ( x ) poliomuu ( x ) ile bölümüde elde edile kala 5 dir. Bua göre P ( x ) poliomuu ile bölümüde elde edile kala edir? (5x + 7 ) x 4

23 5. bir P ( x ) poliomuu ( x ) ile bölümüde kala, ( ) Ayı P ( x ) poliomuu x x ile bölümüde elde edile kala K ( x ) ise, P x poliomu ( 9) 6. x ile bölüdüğüde 7 poliomuu ( x + ) ile bölümüde kala kaçtır? () x + ile bölümüde kala dir. x + kalaıı vermektedir. P ( x) 7. P ( x ) bir poliom olmak üzere, P ( x) + P ( x + ) = x + 4 ise, 8. P ( x) P( x ) = x + koşuluu sağlaya P ( x + ) poliomuu ( 7) x ile bölümüde kala kaçtır? P =? ( 7 ) K 4 =?. x P x poliomuu sabit terimi 5 dir. Bua göre

24 Dosya adı: Dizi: Şablo: POLİNOMLAR KONU ANLATIMI C:\Users\TOLGA\Desktop\INTERNET C:\Users\TOLGA\AppData\Roamig\Microsoft\Templates\Nor mal.dotm Başlık: Kou: Yazar: TOLGA KURTYEMEZ Aahtar Sözcük: Açıklamalar: Oluşturma Tarihi: :4:00 Düzeltme Sayısı: So Kayıt: :4:00 So Kaydede: TOLGA Düzeleme Süresi: 0 Dakika So Yazdırma Tarihi: :4:00 E So Tüm Yazdırmada Sayfa Sayısı: Sözcük Sayısı: 4.0(yaklaşık) Karakter Sayısı:.977(yaklaşık)

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı matematik SORU BANKASI Süleyman ERTEKİN LYS KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ KONU ÖZETLERİ Öğrenci Kitaplığı SORU BANKASI matematik LYS EDAM Öğrenci Kitaplığı 18 EDAM ın yazılı izni olmaksızın,

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİK- LERİ ) ... BOŞ KÜME. w w w. m a t b a z.

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİK- LERİ ) ... BOŞ KÜME. w w w. m a t b a z. KÜME KAVRAMI Küme matematiği taımsız bir kavramıdır. Acak kümeyi, iyi taımlamış kavram veya eseler topluluğu diye tarif edebiliriz. Kümeler A, B, X, K,... gibi büyük harflerle gösterilir. Bir kümeyi oluştura

Detaylı

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir?

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir? ÖRNEK 1 : A= {1,,}, B={1,,5,7}kümeleri veriliyor. A da B ye taımlaa aşağıdaki bağıtılarda hagisi foksiyo değildir? A) {(1,), (,5), (,7)} B) {(1,), (1,5), (,1)} C) {(1,1), (,1), (,1)} D) {(1,5), (,1), (,7)}

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

Mehmet ŞAHİN. www.mehmetsahinkitaplari.org

Mehmet ŞAHİN. www.mehmetsahinkitaplari.org 0. Sınıf M AT E M AT İ K Mehmet ŞAHİN www.mehmetsahinkitaplari.org M.E.B Talim ve Terbiye Kurulu Başkanlığı nın 0..009 tarih ve 4 sayılı kararı ve 00-0 öğretim yılından itibaren uygulanacak programa göre

Detaylı

ISBN - 978-605-5631-60-4 Sertifika No: 11748

ISBN - 978-605-5631-60-4 Sertifika No: 11748 ISBN - 978-605-563-60-4 Sertifia No: 748 GENEL KOORDİNATÖR: REMZİ ŞAHİN AKSANKUR REDAKTE: REMZİ ŞAHİN AKSANKUR SERDAR DEMİRCİ SABRİ ŞENTÜRK Basm Yeri: EVOS BASIM - ANKARA Bu itab tüm basm ve yay halar

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar 0 0 0 Gerçek Say lar Kümesii Geiflletme Gere i Kümesi Aalitik Düzlemde Gösterilmesi Efllei i Modülü da fllemler ki Karmafl k Say Aras daki Uzakl k Karmafl k Say Geometrik Yeri Kutupsal Gösterimi Karmafl

Detaylı

a = b ifadesine kareköklü ifade denir.

a = b ifadesine kareköklü ifade denir. KAREKÖKLÜ SAYILAR Rasyonel sayılar kümesi sayı ekseninde sık olmasına rağmen sayı eksenini tam dolduramamaktadır;çünkü sayı doğrusu üzerinde görüntüsü olduğu halde rasyonel olmayan sayılar da vardır. Karesi

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No MATEMATÝK - II POLÝNOMLAR - IV MF TM LYS1 04 Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr

Detaylı

ORTAÖĞRETİM MATEMATİK 10. SINIF DERS KİTABI YAZARLAR KOMİSYON

ORTAÖĞRETİM MATEMATİK 10. SINIF DERS KİTABI YAZARLAR KOMİSYON ORTAÖĞRETİM MATEMATİK 0. SINIF DERS KİTAI YAZARLAR KOMİSYON DEVLET KİTAPLARI İKİNCİ ASKI..., 0 MİLLİ EĞİTİM AKANLIĞI YAYINLARI...: 5659 DERS KİTAPLARI DİZİSİ...: 54.?.Y.000.470 Her hakkı saklıdır ve Milli

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Kısım Bir Reel Değişkeli Foksiyolar Teorisi Prof.Dr.Hüseyi Çakallı 3 H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Reel

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

6. 3x2-8x - 3 = O denkleminin negatif kökü asagidakilerden. 7. mx2 - (2m2 + i) x + 2m = O denkleminin köklerinden

6. 3x2-8x - 3 = O denkleminin negatif kökü asagidakilerden. 7. mx2 - (2m2 + i) x + 2m = O denkleminin köklerinden ikinci Dereceden Denklemler, tçözüm Kümesi, Köklerin Varligi. (m - 9) x + x - 6 = o denkleminin ikinci dereceden bir bilinmeyenli denklem olmasi için, m degeri asagidakilerden hangisi olamaz? A) - B) -

Detaylı

biliniyordu: Eğer 2 a 1 bir asal sayıysa, o zaman S = 2 a 1 (2 a 1) yetkin bir sayıdır. Bunu toplayalım: O halde

biliniyordu: Eğer 2 a 1 bir asal sayıysa, o zaman S = 2 a 1 (2 a 1) yetkin bir sayıdır. Bunu toplayalım: O halde SAYILAR DÜNYASINDA GEZİNTİLER H. Turgay Kaptaoğlu Bu yazıda deri teorilere imede sayıları çoğulula da tamsayıları ilgiç özellileride bahsedeceğiz. Bu özellileri hiçbiri yei değil; yüzyıllar, hatta biyıllar

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

MATEMATİKSEL İSTATİSTİK DERS NOTLARI

MATEMATİKSEL İSTATİSTİK DERS NOTLARI MATEMATİKSEL İSTATİSTİK DERS NOTLARI Hazırlaya: Prof. Dr. İsmail ERDEM Yrd. Doç. Dr. İlkur Özme Başket Üiversitesi İstatistik ve Bilgisayar Bilimleri Bölümü İST 5 MATEMATİKSEL İSTATİSTİK VE OLASILIK I

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :.

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. SAYILAR BASAMAK KAVRAMI İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. Üç basamaklı rakamları farklı en küçük sayı :. SORU 5 MATEMATİK KAF03 TEMEL KAVRAM 01 Üç basamaklı birbirinden

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

Başlayanlara AKTİF MATEMATİK

Başlayanlara AKTİF MATEMATİK KPSS - YGS - DGS - ALES Adayları için ve 9. sınıfa destek 0 dan Başlayanlara AKTİF MATEMATİK MEHMET KOÇ ÖNSÖZ Matematikten korkuyorum, şimdiye kadar hiç matematik çözemedim, matematik korkulu rüyam! bu

Detaylı

ASAL SAYILAR. www.unkapani.com.tr

ASAL SAYILAR. www.unkapani.com.tr ASAL SAYILAR ve kendisinden aşka pozitif öleni olmayan den üyük doğal sayılara asal sayı denir.,, 5, 7,,, 7, 9, sayıları irer asal sayıdır. En küçük asal sayı dir. den aşka çift asal sayı yoktur. den aşka

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R İ H S A N T İ M U Ç İ N D O L A P C İ, Y İ Ğ İ T A K S O Y M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R P U B L I S H E R O F T H I S B O O K Copyright 13 İHSAN TİMUÇİN DOLAPCİ, YİĞİT AKSOY

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

8. sınıf ders notları zfrcelikoz@yahoo.com

8. sınıf ders notları zfrcelikoz@yahoo.com III - SAYI ÖRÜNTÜLERİ Htırltm: Syılrı virgülle yrılrk, birbirii rdı dizilmesie syı dizisi, dizideki her bir syıy d terim deir. hrfi verile örütüde syılrı sırsıı belirte semboldür ve ici syıy örütüü geel

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR 2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR KONULAR 1. RASYONEL SAYILAR 2. Kesir Çeşitleri 3. Kesirlerin Sadeleştirilmesi 4. Rasyonel Sayılarda Sıralama 5. Rasyonel Sayılarda İşlemler 6. ÜSLÜ İFADE 7. Üssün

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir?

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir? KONU:ATOM FİĞİ ebuyukfizikci@otmail.com HAIRLAYAN ve SORU ÇÖÜMLERİ:Amet Selami AKSU Fizik Öğretmei www.fizikvefe.com S.1. Uyarılmış bir idroje atomuda Balmer serisii H β çizgisi gözlemiştir. Bua göre,buu

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler...

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler... ÜİTE KAVRAMSAL ADIM Sayfa o.... 8 9 İstatistik, Veri ve Grafikler.... 8 Merkezi, Eğilim ve Yayılım Ölçüleri... 8 Açıklık, Çeyrekler Açıklığı........................................................ 8 Varyas

Detaylı

Bölüm 5: Hareket Kanunları

Bölüm 5: Hareket Kanunları Bölüm 5: Hareket Kauları Kavrama Soruları 1- Bir cismi kütlesi ile ağırlığı ayımıdır? 2- Ne zama bir cismi kütlesi sayısal değerce ağırlığıa eşit olur? 3- Eşit kollu terazi kütleyi mi yoksa ağırlığı mı

Detaylı

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu .SORU 8 sayı tabanında verilen (5) 8 sayısının sayı tabanında yazılışı nedir?.soru 6 3 3 3 3 4 6 8? 3.SORU 3 ise 5? 5 4.SORU 4 5 olduğuna göre, ( )? 5.SORU (y z) z(y ) y z yz bulunuz. ifadesinin en sade

Detaylı

Ardışık sayılar YILLAR

Ardışık sayılar YILLAR YILLAR 00 00 004 005 006 007 008 009 010 011 ÖSS-YGS - - - 1 - - - 1 ÇÖZÜM 1: ARDIŞIK SAYILAR +(+1)+(+)++(+14)=085 Belli bir kurala göre ard arda sıralaa sayılara ardışık sayılar deir Z olmak üzere; 14

Detaylı

YENİDEN DÜZENLENMİŞTİR.

YENİDEN DÜZENLENMİŞTİR. 0. Sııf MATEMATİK Soru Kitabı Mehmet ŞAHİN T.C MİLLİ EĞİTİM BAKANLIĞI Talim Terbiye Kurulu Başkalığı MATEMATİK Öğretim programıda yaptığı so gücelleme doğrultusuda YENİDEN DÜZENLENMİŞTİR. Emre ORHAN Mehmet

Detaylı

PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK...111. Konu Özeti...111. Testler (1 11)...115. Yazılıya Hazırlık Soruları (1 2)...

PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK...111. Konu Özeti...111. Testler (1 11)...115. Yazılıya Hazırlık Soruları (1 2)... ÜNİTE PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK Bölüm PERMÜTASYON, KOMBİNASYON BİNOM VE OLASILIK! = (...... ) PERMÜTASYON, KOMBİNASYON BİNOM, OLASILIK VE İSTATİSTİK PERMÜTASYON, KOMBİNASYON,

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

BEKLENEN DEĞER. 6. Ders. Tanım: X, bir rasgele değişken ve g : R R, B B R için x : g x B B R özelliğine sahip bir fonksiyon olmak üzere:

BEKLENEN DEĞER. 6. Ders. Tanım: X, bir rasgele değişken ve g : R R, B B R için x : g x B B R özelliğine sahip bir fonksiyon olmak üzere: 6. Ders BEKLENEN DEĞER Taım: X, bir rasgele değişke ve g : R R, B BR içi x : gx B BR özelliğie sahip bir foksiyo olmak üzere: i) X kesikli ve ii) X sürekli ve gx fx olduğuda, x EgX gxfx gx fxdx olduğuda,

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

3. Bir kabı, biri 17 diğeri 55 litre su alan ölçeklendirilmemiş iki kap yardımıyla tam olarak 1 litre suyla nasıl doldurursunuz açıklayınız. (10 P.

3. Bir kabı, biri 17 diğeri 55 litre su alan ölçeklendirilmemiş iki kap yardımıyla tam olarak 1 litre suyla nasıl doldurursunuz açıklayınız. (10 P. 0..006 MAT3 AYRIK MATEMATİK ARASINAV SORULARI Numarası :..................................... Adı Soyadı :...................................... F,. Fiboacci sayısıı gösterme üzere, ( 0 P.) (a) F + = F

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı Damızlık Değeri, geotipik değer, allel frekasları Aki Pala, aki@comu.edu.tr ttp://members.comu.edu.tr/aki/ Damızlık değeri esabı µ Ökkeş =800 gr gülük calı ağırlık Sürü A Sürü µ Döller µ 500gr 700 DD esabı

Detaylı

ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI

ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI TMMOB Harita ve Kadastro Mühedisleri Odası 13. Türkiye Harita Bilimsel ve Tekik Kurultayı 18 22 Nisa 2011, Akara ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

Süzgeç. Şekil 4.1 Süzgeçlemedeki temel fikir

Süzgeç. Şekil 4.1 Süzgeçlemedeki temel fikir Deey 4: ayısal üzgeçler Amaç Bu deeyi amacı solu dürtü yaıtlı (FIR) ve sosuz dürtü yaıtlı (IIR) sayısal süzgeçleri taıtılması ve frekas yaıtlarıı icelemesidir. Giriş iyal işlemede süzgeçleme bir siyali

Detaylı

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer.

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer. SORU : AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI X raslat deikeii olas l k youluk foksiyou 8x, x f(x) = 0, ö.d olarak verilmitir. Bua göre 0< y içi Y = raslat deikeii X olaslk youluk

Detaylı

Programlama Dilleri. C Dili. Programlama Dilleri-ders02/ 1

Programlama Dilleri. C Dili. Programlama Dilleri-ders02/ 1 Programlama Dilleri C Dili Programlama Dilleri-ders02/ 1 Değişkenler, Sabitler ve Operatörler Değişkenler (variables) bellekte bilginin saklandığı gözlere verilen simgesel isimlerdir. Sabitler (constants)

Detaylı

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır.

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır. KÜMELER Kümelerin birleşimi (A B ): Kümelerin bütün elemanlarından oluşur. Kümelerin kesişimi (A B): Kümelerin ortak elemanlarından oluşur. Kümelerin Farkı (A \ B ) veya (A - B ): Birinci kümede olup ikinci

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ .4.26 5. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ Mekul Kıymet Yatırımlarıı Değerlemesi Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Temel Değerleme Modeli Mekul Kıymet Değerlemesi

Detaylı

MATEMAT K SORU BANKASI

MATEMAT K SORU BANKASI LYS MATEMAT K SORU BANKASI 14 KONU ÖZET 118 KONU TEST TOPLAM 2320 SORU TEŞEKKÜR Kitaba emeği geçen değerli Zafer Dershaneleri öğretmenlerine ve de dizgisinden baskısına kadar kitaba emek veren tüm çalışanlara

Detaylı

İKTİSATÇILAR İÇİN MATEMATİK

İKTİSATÇILAR İÇİN MATEMATİK Kostadi Treçevski Aeta Gatsovska Naditsa İvaovska İKTİSATÇILAR İÇİN MATEMATİK DÖRT YILLIK MESLEKİ OKULLARA AİT SINIF III İKTİSAT - HUKUK VE TİCARET MESLEĞİ TİCARET VE PAZARLAMA TEKNİSYENİ Deetleyeler:

Detaylı

5. a ve b birer pozitif tam sayıdır. A) 1 B) 2 C) 3 D) 14 E) a ve b birer doğal sayıdır. 7. a ve b birer pozitif tam sayıdır.

5. a ve b birer pozitif tam sayıdır. A) 1 B) 2 C) 3 D) 14 E) a ve b birer doğal sayıdır. 7. a ve b birer pozitif tam sayıdır. Üniversite Haz rl k Sözcükte Do al ve Say lar Söz Öbeklerinde ve Tam Say lar Anlam - I - I YGS Temel Matematik. 8 + 4. + 8 : 4 işleminin sonucu A) 8 B) 9 C) D) 5 E) 8 5. a ve b birer pozitif tam sayıdır.

Detaylı

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı 1.8.Reel Sayılar Kümesinin Tamlık Özelliği Rasyonel sayılar kümesi ile rasyonel olmayan sayıların kümesi olan irrasyonel sayılar kümesinin birleşimine reel sayılar kümesi denir ve IR ile gösterilir. Buna

Detaylı

ÜSTEL VE Kİ-KARE DAĞILIMLARI ARASINDAKİ İLİŞKİNİN SİMULASYON İLE ÜRETİLEN RANDOM SAYILARLA GÖSTERİLMESİ

ÜSTEL VE Kİ-KARE DAĞILIMLARI ARASINDAKİ İLİŞKİNİN SİMULASYON İLE ÜRETİLEN RANDOM SAYILARLA GÖSTERİLMESİ C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 4, Sayı, 3 97 ÜSTEL VE Kİ-KARE DAĞILIMLARI ARASINDAKİ İLİŞKİNİN SİMULASYON İLE ÜRETİLEN RANDOM SAYILARLA GÖSTERİLMESİ Yalçı KARAGÖZ Cumhuriyet Üiversitesi

Detaylı

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları PROJE RAPORU PROJENİN ADI: Karmaşık Sayıları. Derecede Kökler Toplamı ve Trigoometrik Yasımaları PROJENİN AMACI: Karmaşık sayıı karekökleri toplamı sıfırdır. Peki. derecede kök toplamı içi de geçerli miydi?

Detaylı

barisayhanyayinlari.com

barisayhanyayinlari.com YGS MATEMATİK KONU ANLATIM FASİKÜLLERİ SERİSİ 1 ISBN 978-605-84147-0-9 Baskı Tarihi Ağustos 015 Baskı Yeri: İstanbul YAYINLARI İletişim tel: (538) 90 50 19 barisayhanyayinlari.com Benim için her şey bir

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR ÖZEL BÜYÜKÇEKMECE ÇINAR KOLEJİ 19 Mayıs Mah. Bülent Ecevit Cad. Tüyap Yokuşu

Detaylı

TEMEL SORU KİTAPÇIĞI ÖSYM

TEMEL SORU KİTAPÇIĞI ÖSYM 1-16062012-1-1161-1-00000000 TEMEL SORU KİTAPÇIĞI AÇIKLAMA 1. Bu kitapçıkta Lisans Yerleştirme Sınavı-1 Matematik Testi bulunmaktadır. 2. Bu test için verilen cevaplama süresi 75 dakikadır. 3. Bu testte

Detaylı

{ 1 3 5} UYGULAMA-2 OLASILIK HESABI { } i, i = 1, 2,, n elemanına aşağıdaki özelliklere sahip bir p. her bir ω. sayısı karşılık getirilsin.

{ 1 3 5} UYGULAMA-2 OLASILIK HESABI { } i, i = 1, 2,, n elemanına aşağıdaki özelliklere sahip bir p. her bir ω. sayısı karşılık getirilsin. UYGULAMA- OLASILIK HESABI Ω. Ω solu sayıda elemaa sahip olsu. Ω { ω, ω,, ω }, U olmak üzere, Ω ı her bir ω i, i,,, elemaıa aşağıdaki özelliklere sahip bir p i sayısı karşılık getirilsi. ) p 0, i,,...,

Detaylı

1. ÜNİTE: MANTIK. Bölüm 1.1. Önermeler ve Bileşik Önermeler

1. ÜNİTE: MANTIK. Bölüm 1.1. Önermeler ve Bileşik Önermeler . ÜNİTE: MANTIK . ÜNİTE: MANTIK... Önerme Tanım (Önerme) BÖLÜM.. - Doğru ya da yanlış kesin bir hüküm bildiren ifadelere önerme adı veriler. Örneğin Bir hafta 7 gündür. (Doğru) Eskişehir Türkiye'nin başkentidir.

Detaylı

ORMAN ENVANTERİ VE MEŞCERE ÖLÇÜMÜ

ORMAN ENVANTERİ VE MEŞCERE ÖLÇÜMÜ ORMAN ENVANTERİ VE MEŞCERE ÖLÇÜMÜ Ormaı e öemli bölümüü, kapitali büyük kısmıı oluştura, ağaç serveti oluşturmaktadır. Ormada ağaç serveti deilice, var ola hacim ve buu faizi durumuda ola hacim artımı

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı

Temel Matematik Testi - 5

Temel Matematik Testi - 5 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: 005. u testte 40 soru vardır.. Tavsiye edilen süre 40 dakikadır. Temel Matematik Testi

Detaylı

ON THE TRANSFORMATION OF THE GPS RESULTS

ON THE TRANSFORMATION OF THE GPS RESULTS Niğde Üiversitesi Mühedislik Bilimleri Dergisi, Cilt 6 Sayı -, (00), 7- GPS SONUÇLARININ DÖNÜŞÜMÜ ÜZERİNE BİR İNCELEME Meti SOYCAN* Yıldız Tekik Üiversitesi, İşaat Fakültesi, Jeodezi Ve Fotogrametri Mühedisliği

Detaylı

n 1 1. Pratik Bilgi-1 in y a(x r) k türünden 2. Pratik Bilgi-1 x a(y k) r türünden

n 1 1. Pratik Bilgi-1 in y a(x r) k türünden 2. Pratik Bilgi-1 x a(y k) r türünden Pratik Bilgi-1 (İtegralsiz Ala Bulma) a eğrisi ile ve 0 doğrularıı sıırladığı ala ise, a eğrisi ile 0 ve a doğrularıı sıırladığı ala dir. Ugulama-1.1 Muharrem Şahi eğrisi ile ve 0 doğrularıı sıırladığı

Detaylı

16. ULUSAL MATEMATİK OLİMPİYATI

16. ULUSAL MATEMATİK OLİMPİYATI TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 16. ULUSAL MATEMATİK OLİMPİYATI - 2008 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 27 Nisan 2008 Pazar, 13.00-15.30

Detaylı

ILMO 2009. c www.sbelian.wordpress.com sbelianwordpress@gmail.com. İstanbul Liseler Arası Matematik Olimpiyatı (ILMO) sorularından bir

ILMO 2009. c www.sbelian.wordpress.com sbelianwordpress@gmail.com. İstanbul Liseler Arası Matematik Olimpiyatı (ILMO) sorularından bir İstabul L ıseler Arası Matemat ık Ol ımp ıyatı ILMO 9 Çözümler ı c www.sbelia.wordpress.com sbeliawordpress@gmail.com Her yıl KOÇ Üiversitesi Bi Topluluğu Öğreci Klübü tarafıda düzelee, İstabul Liseler

Detaylı

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77 UZAYDA DOĞRU VE DÜZLEM Sayfa No. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi.............. 7. BÖLÜM uzayda düzlem denklemleri.......................................... 77. BÖLÜM uzayda Bir

Detaylı

1991 ÖYS. 9. Parasının 7. ünü kardeşine veren Ali nin geriye lirası kalmıştır. Buna göre, Ali nin başlangıçtaki parası kaç liradır?

1991 ÖYS. 9. Parasının 7. ünü kardeşine veren Ali nin geriye lirası kalmıştır. Buna göre, Ali nin başlangıçtaki parası kaç liradır? 99 ÖYS.,8 + (, + ), işleminin sonucu kaçtır? B) 7 D) 86 987 B) D). a, b, c birer pozitif gerçel sayı ve a=b b=c olduğuna göre, aşağıdakilerden hangisi doğrudur? a

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. SAYISAL DEVRE TASARIMI EEM122 Ref. Morris MANO & Michael D. CILETTI SAYISAL TASARIM 4. Baskı Fatih University- Faculty of Engineering- Electric and Electronic Dept. SAYISAL DEVRE NEDİR? Mühendisler, elektronik

Detaylı

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler DÖRDÜNCÜ BÖLÜM 4.1. Aritmetik işlemler Bu bölümde öğrencilerin lisede bildikleri aritmetik işlemleri hatırlatacağız. Bütün öğrencilerin en azından tamsayıların toplama, çıkarma, çarpma ve bölme işlemlerini

Detaylı

MEKANİK TESİSATTA EKONOMİK ANALİZ

MEKANİK TESİSATTA EKONOMİK ANALİZ MEKANİK TESİSATTA EKONOMİK ANALİZ Mustafa ÖZDEMİR İ. Cem PARMAKSIZOĞLU ÖZET Düya çapıda rekabeti ö plaa çıktığı bu gükü şartlarda, e gelişmiş ürüü, e kısa sürede, e ucuza üretmek veya ilk yatırım ve işletme

Detaylı

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme kpss 04 akıcı ayrıntılı güncel konu anlatımları örnekler yorumlar uyarılar pratik bilgiler ösym tarzında özgün sorular ve açıklamaları matematik sayısal akıl yürütme mantıksal akıl yürütme 0 kpss de 85

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir.

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir. DENEY NO: 7 MOSFET ÖLÇÜMÜ ve UYGULAMALARI DENEYĐN AMACI: Bu deeyi amacı MOS elemaları temel özelliklerii, ve p kaallı elemaları temel uygulamalarıı öğretmektir. DENEY MALZEMELERĐ Bu deeyde 4007 MOS paketi

Detaylı

Bu ders materyali 06.09.2015 23:17:19 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir.

Bu ders materyali 06.09.2015 23:17:19 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir. -- Bu ders materyali 06.09.05 :7:9 tarihinde matematik öğretmeni Ömer SENCAR tarafından UYGULAMA-00 Cevap: x- -x- x- =0 denklemini sağlayan x değeri kaçtır? UYGULAMA-00 Cevap: x x x 5 + = + denklemini

Detaylı

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkaı : Yrd.Doç.Dr. İsmail YILDIZ ARAŞTIRMADA PLANLAMA VE ÇÖZÜMLEME (03-09 Ocak 014 Y.ÇELİK) Araştırma Süreci (The research

Detaylı