OLS Klasik Varsayımlar. Çoklu Regresyon. Çoklu Regresyon Modellemesi. Çoklu Regresyon Modeli. Multiple Regression

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "OLS Klasik Varsayımlar. Çoklu Regresyon. Çoklu Regresyon Modellemesi. Çoklu Regresyon Modeli. Multiple Regression"

Transkript

1 OLS Klasik Varsayımlar Çoklu Regresyon Multiple Regression. Lineer regresyon modeli. E(e i )=, ortalama hata sıfırdır. E(X i e i )=, bağımsız değişkenlerle hatalar arasında korelasyon mevcut değildir 4. E(e i e j )=, hataların birbiri ile korelasyonu yoktur (otokorelasyon sıfır). E(e i -)=E(e i )=σ e, hatanın varyansı sabittir. 6. Hata normal dağılımı sahiptir 7. Bağımsız değişkenler arasında tam doğrusallık yoktur. Çoklu Regresyon Modellemesi Çoklu Regresyon Modeli Çoklu regresyon modeli katsayıları örnek veri kullanılarak tahmin edilir. Tahmin edilen çoklu regresyon modeli: Tahmin edilen Y değeri Tahmin edilen Regresyon kesim noktası Tahmin edilen eğim katsayıaları Ŷ = b K + + bx + bx + bkxk

2 Çoklu Regresyon Modeli Kek Satış Modeli İki değişkenli model Y Ŷ = b + + bx bx Hafta 4 Kek satışı 46 4 Fiyat ($) Reklam ($s) Çoklu regresyon modeli: Satış = b + b (Fiyat) + b (Reklam) X değişkeni için eğim X değişkeni için eğim X X Örnek: Bağımsız değişken Parametrelerin Hesabı Dondurulmuş kek satan bir firma kek talebini etkilediğini düşündüğü faktörleri değerlendirmek istemektedir. Bağımlı değişken: Kek satış miktarı (adet/hafta) Bağımsız değişken: Fiyat ($) haftalık veri toplanmış Reklam ($ s) Too complicated by hand! Ouch!

3 Çoklu Lineer Regresyon Eşitliğinin Tahmini Regresyon katsayılarının ve determinasyon katsayısının belirlenmesinde her hangi bir istatistik paketi veya Excelkullanılabilir Excel: Tools / Data Analysis... / Regression Çoklu Lineer Regresyon Eşitliği Satış = (Fiyat) + 74.(Reklam) Burada satışlar (adet/hafta) Fiyat ($) Reklam $ s. b = -4.97:fiyatın $ artması durumunda satışlar haftada ortalama 4.97 adet düşüş göstermekte b = 74.: reklam harcamalarının $ artması durumunda satışlar haftada ortalama 74. adet artış göstermekte Çoklu Lineer Regresyon Çıktısı Tahmin için modelin kullanımı Regression Statistics Multiple R.7 R Square.48 Adjusted R Square Observations ANOVA df Regression Residual Total 4 Satış = (Fiyat) + 74.(Reklam) SS MS F 6.86 Significance F. Satış fiyatı $. ve reklam harcaması $ haftalık satış miktarının tahmin edilmesi Satış = (Fiyat) + 74.(Reklam) = (.) (.) = 48.6 Intercept Price Advertising Coefficients t Stat P-value Lower 9% Upper 9% Tahmin edilen satış miktarı: 48.6 adet Reklam harcamalarının birimi $ olduğundan $ için X =.

4 Determinasyon Katsayısı Bağımlı değişken Y deki toplam varyasyonun tüm X değişkenleri tarafından açıklanan oranını ifade eder. SSR SST r Y... k = = regression sum of squares total sum of squares Adjusted r r modele yeni X eklendikçe artma eğilimindedir (kesinlikle aşağı düşmez) Bu özellik modellerin birbirleri ile kıyaslanmasında bir dezavantaj oluşturur Modele yeni değişken (X) eklemenin net etkisi nedir? Modelde serbestlik derecesi düşer Yeni değişkenin eklenmesi yok olan serbestlik derecesini denkleştirecek bir açıklama gücü var mıdır? Multiple R R Square Adjusted R Square Observations ANOVA Regression Residual Total Intercept Price Advertising Regression Statistics Determinasyon Katsayısı df 4 Coefficients SSR 946. r Y. = = =. SST 649. Kek satışlarındaki toplam değişimin.% i fiyatlardaki ve reklam harcamalarındaki değişimle açıklana bilmiştir. SS MS t Stat F 6.86 P-value Significance F. Lower 9% Upper 9% Adjusted r Bağımlı değişken Y deki toplam varyasyonun tüm X değişkenleri tarafından açıklanan oranını modelde kullanılan X değişken sayısı ile ayarlayarak ifade eder r adj = ( r Y...k n ) n k (Burada n = örnek sayısı, k = bağımsız değişken sayısı) Önemli olmayan bağımsız değişkenin Fazladan kullanımını cezalandırır. R daha küçüktür Modellerin birbiri ile kıyaslanmasında oldukça kullanışlı

5 Multiple R R Square ANOVA Regression Residual Total Intercept Price Advertising Regression Statistics Adjusted R Square Observations Determinasyon Katsayısı df 4 Coefficients r adj = SS Örnek sayısı ve modelde kullanılan bağımsız değişken sayısı dikkate alındığında Kek satışlarındaki toplam değişimin 44.% i fiyatlardaki ve reklam harcamalarındaki değişimle açıklana bilmiştir. MS t Stat F 6.86 P-value Significance F. Lower 9% Upper 9% Sonuç Y ˆ = X -. X Regression Statistics Multiple R.98 R Square.966 Adjusted R Square Observations yakıt sıcaklık yalıtım Durbin-Watson statistic =.874 ANOVA df SS MS FSignificance F Regression 84.6 E+ 68. E-9 Residual Total 4 6. Coefficients t Stat P-valueLower 9% Upper 9% Intercept E X Variable E X Variable E Multiple Regression Model: Example Pozitif otokorelasyon testi Develop a model for estimating heating oil used for a single family home in the month of January based on average temperature and amount of insulation in inches. Oil (Gal) Temp ( F) Insulation H : ρ= pozitif oto-korelasyon mevcut değil H : ρ pozitif oto-korelasyon mevcut d<d L H ret d>4-d L R ret 4-d U >d>d U H kabul Diğer durumlar yetersiz Burada, n = örnek ve k = bağımsız değişken var Karar: Otokorelasyon yok Ret H yetersiz Karar: H reddedilemez.6>d =.8>.4 H reddedilmez d L =.8 d U =.4

6 Model Hatası Kek Örneğinde-Residual Plots Use Tools Data Analysis Regression Percent Frequency Normal Probability Plot of the Residuals Residual Histogram of the Residuals -4-4 Residual Residual Plots for Yakit Residual Residual Residuals Versus the Fitted Values Fitted Value Residuals Versus the Order of the Data Observation Order Residuals R esidua ls Price Residual Plot Price Advertising Residual Plot Advertising Residual Plots Çoklu regresyonda hatayla ilgili aşağıda belirtilen grafikler çizilebilir: < Residuals vs. Y i Residuals vs. X i Residuals vs. X i etc. Kek Örneğinde-Residual Plots Use Tools Data Analysis Regression Pie Sales Normal Probability Plot Sample Percentile

7 Model Anlamlı mı? F-Testi modelin genel olarak anlamlılığını test etmede kullanılır. Y ve X değişkenleri arasında ilişki olup olmadığını gösterir F test istatistiği Hipotez: H : β = β = = β k = (lineer ilişki mevcut değil) H : en az bir β i (en azından bir değişken Y i etkilemektedir) H : β = β = H : β ve β her ikisi sıfır değil α =. df = df = H kabul F-Testi - genel anlamlılık testi α =. H Ret F Test istatistiği: MSR F = = 6.86 MSE Karar: Sonuç: p-value=. Reject H at a =. En azından bir bağımsız değişkenin Y i etkilediği konusunda deliller mevcut Multiple R R Square Adjusted R Square Observations ANOVA Regression Residual Total Intercept Price Advertising F-Testi - genel anlamlılık testi Regression Statistics df 4 Coefficients MSR 47. F = = = 6.86 MSE.8 ve serbestlik derecesi ile SS MS t Stat F 6.86 P-value Significance F. Lower 9% F-Testi için P-değeri Upper 9% Değişkenler tek başına anlamlı mı? t-testi her bir değişkenin eğimlerinin anlamlılıklarını test etmede kullanılır. Y ve X i değişkeni arasında ilişki olup olmadığını gösterir Hipotez: H : β i = (lineer ilişki mevcut değil) H : β i (Y ve X i değişkeni arasında lineer ilişki mevcut) Test istatistiği bi t = S b i p-value=tdist(t n-k- ) (df = n k )

8 Değişkenler tek başına anlamlı mı? Regression Statistics Multiple R.7 R Square.48 Adjusted R Square Observations Fiyat için t-değeri t = -.6, p:.98 Reklam için t-değeri t =.8, p:.4 Eğim katsayıları için güven aralığı tahmini Kitle eğimleri β i için güven aralığı (Confidence interval) b i ± t n k S b i t için serbestlik derecesi (n k ) d.f. ( ) = d.f. ANOVA Regression Residual Total df 4 SS MS F 6.86 Significance F. Intercept Price Advertising Coefficients Lower 9% Upper 9% Intercept Price Advertising Coefficients t Stat P-value Lower 9% Upper 9% Örnek: Excel çıktısı güven aralıklarını da verir Kek satış fiyatının $ artması durumunda haftalık satış miktarı kek arasında düşüş gösterir. H : β = H : β H : β = H : β d.f. = -- = α =. Eğimler hakkında çıkarılan sonuçlar : t Testi Kek Örneği Excel çıktısından: Fiyat Reklam Coefficients t Stat P-value Burada verilen t-test istatistikleri H hipotezinin ret edildiği bölgeye karşılık gelmektedirler (p-values <.) Karar: Her bir değişken için H ret Sonuç: Fiyat ve Reklamın kek satışını etkilemesi konusunda a =. anlamlılık düzeyinde yeterince delil vardır. r K değişkenli modelde kısmi determinasyon katsayısı Yj.(j hariç tüm değişkenler) SSR (X j j hariç tüm değişkenler) = SST- SSR(tüm değişkenler) + SSR(X j hariç tüm değişkenler) Diğer bağımsız değişkenler sabit tutulurken X j değişkeni tarafından açıklanan değişim oranı ifade eder. j

9 Kukla değişken kullanımı (Dummy Variables) Kukla değişken iki seviyeli bir nicel bağımsız değişken türüdür: Evet yada hayır, açık yada kapalı, erkek yada kadın yada şeklinde kotlanır Değişkenin anlamlı olması durumunda regresyon kesim noktası değişir. Diğer değişkenler için eşit eğim varsayımı vardır. Eğer seviye sayısı ikiden fazla ise gerekli olan kukla değişken sayısı =(seviye sayısı -) Ŷ b Y (Satış) b + b b Kukla değişken Modeli Örnek ( seviyeli) = + + = + + Tatil Ŷ = b b X + b X b () + b () = Tatil (X = ) (b Tatil yok (X = ) b b Farklı kesim noktası ) b X + b X Aynı eğim Tatil yok Eğer H : β = ret ise, tatilin kek satışları üzerinde anlamlı bir etkisi vardır. X (Fiyat) Y = kek satışı X = fiyat Kukla değişken Modeli Örnek ( seviyeli) Ŷ = b + b X + b X X = tatil (X = hafta içerisinde tatil varsa) (X = hafta içerisinde tatil yoksa) Örnek: Satış: adet/hafta Fiyat: $ Tatil: Kukla değişken Modeli Örnek ( seviyeli) Satış = - (Fiyat) + (Tatil) eğer hafta içerisinde tatil varsa eğer hafta içerisinde tatil yoksa b = : ortalama, aynı fiyat seviyesi için hafta içerisinde tatil olduğu dönemlerde ortalama kek satışları tatil olmadığı dönemlere göre ortalama fazlalık göstermektedir.

10 Kukla değişken Modeli Örnek ( seviyeden fazla) Kukla değişken sayısı seviye sayısı - Örnek: Y = evin fiyatı ; X = evin alanı (ft ) Evin türünün de etkili olduğu düşünülürse: Türü = ranch, split level, condo Üç seviyeli nicel değişken: bu nedenle kukla değişken gerekli Etkileşimli Regresyon modeli Çalışma tablosu Item, i 4 Y i 4 X ve X yi birbiri ile çarparak X *X oluşturulur. Regresyon analizi çalıştırılır Y, X, X, X X X i 8 X i 6 X i *X i 4 6 Açıklayıcı değişkenlerin etkileşimi Hipotez X değişkenleri arası etkileşim var Bir X değişkeninin değeri diğer bir X değerinin aldığı değere göre değişebilir (tepki) Değişkenlerin birbirleri ile çarpımları da modele dahil edilir Ŷ = b = b + b X + b X + b + b + b (X X Hipotez: H : β = (X ve X arası etkileşim yok) H : β (X ve X arası etkileşim mevcut) X X + b X ) Çoklu Regresyon Model İnşası Multiple Regression Model Building

11 Nonlinear (lineer olmayan) İlişki Residual Analizi Bağımlı ve bağımsız değişken arasındaki ilişki lineer olmaya bilir. Scater grafiği inceleyerek doğrusal olmayan ilişkinin mevcudiyeti araştırılır. Doğrusal olmayan ilişki polinoma uyarlanarak modellenebilir. X ve X li Çoklu regresyon Ŷ = b + + bx bx X Residual plot random Doğrusal olmayan bir ilişki X Residual Plot Y i. Derece Polinom Regresyon Modellemesi Y = β + β X + β X + ε Scater grafiği aşağıda verilen şekillere benzediğinde. Derece polinom regresyon modeli seçilebilir. X Y i i i X Y β < β > β < β > X β > β > β < β < Yi = β + β X X Y + β X i i + ε i Polinom Modellemesi Çalışma Sayfası Item, i 4 Y i X i X i : X i nin karesi Y i, X i, X i verileri kullanılarak regresyon analizi yapılır X i X i 9 4 6

12 Modelin Genel Olarak Testi Polinom modeli için Excel kullanımı: Ŷ = b + İlişki için genel test H : β = β = (X ve Y arasında genel olarak ilişki yok) H : β (X ve Y arasında bir ilişki mevcut) F test istatistiği = + bx bx MSR MSE Kareli Terim için Test Kareli terim hakkında ikinci test: Basit regresyonun adjusted r ile polinom modellemesinin adjusted r kıyaslanması Eğer adjusted r (polinom) > adjusted r (Basit) polinom modeli basit modelden daha fazla değişkenliği açıklamıştır. Burada: Hipotez Kareli Terim için Test H : β = (karesinin eklenmesi modeli geliştirmez) H : β (karesinin eklenmesi modeli geliştirir) Test istatistiği b β t = S b b = kareli terimin katsayısı β = hipotez edilecek değer (sıfır) S b = eğim için standart hata d.f. = n Duruluk Filtreleme zamanı Örnek: Quatratik Model Filtreleme zamanı arttıkça duruluk artar : Purity Purity vs. Time Time

13 Example: Quadratik Model Klasik Doğrusal Regresyon Modelinden Sapmalar Intercept Time R Square Basit regresyon sonucu: ^ Y = Zaman Regression Statistics Adjusted R Square Coefficients Standard Error F t Stat P-value.69.78E- Significance F.778E- R e s i d u a l s T, Fve r istatistikleri yüksek fakat hata random değil : - Time Residual Plot - Time Spesifikasyon Hataları Çoklu Doğrusal Bağıntı (Collinearity) Sabit Olmayan (Hata) Varyans (Heteroskedasticity) Otokorelasyon (serialcorrelation) Intercept Time Time-squared R Square Coefficients Regression Statistics Adjusted R Square Example: Quadratik Model Quadratik regresyon sonucu: ^ Y = Zaman +.4 (Zaman) Standard Error F 8.7 t Stat P-value E- Significance F.68E- Kareli terim anlamlı ve modelin adj. r ni yükseltiyor; hata random Residuals Residuals Time Residual Plot - Time Time-squared Residual Plot - 4 Time-squared Spesifikasyon Hataları Gerekli bir değişkenin modele konmamış olması Gereksiz bir değişkenin modele konmuş olması Yanlış fonksiyon tipinin seçilmesi Değişkenlerde ölçme hatalarının bulunması

14 Spesifikasyon Hatalarının Etkileri Model parametreleri sapmalı ve tutarsız olacağından bu parametrelerle yapılacak güven aralığı ve hipotez testleri yanıltıcı sonuçlar verebilir. Otokorelasyonun oluşmasına sebebiyet verebilir Standart sapmalar daha yüksek çıkacağında güven aralıkları büyür Yüksek Collinearity Göstergeleri Katsayıların işaretlerinin yanlış olması Modele yeni bir değişken eklendiğinde daha önce tahmin edilmiş katsayılarda büyük değişiklik Modelde daha önce anlamlı olan değişkenin yeni bir değişken katılması durumunda anlamsız olması Modele yeni değişken eklendikçe model hatasının artış göstermesi Doğrusallık - Collinearity Collinearity: iki bağımsız değişken arasında mevcut olan yüksek korelasyon Bunun anlamı; çoklu regresyon modelinde iki değişken benzer bilgiyle katkı sağlar İstikrarsız katsayıların elde edilmesine neden olur (çok büyük hatalar ve düşük t skorları) Regresyon katsayıları beklenen işaretleri vermez Collinearity Belirlenmesi (Variance Inflationary Factor) VIF j collinearity ölçmede kullanılır : VIF j = R Burada R j : X j ve diğer bütün X lerle birlikte determinasyon katsayısı Eğer VIF j >, ise X j ile diğer bağımsız değişkenler arasında yüksek doğrusal korelasyon vardır. j

15 Örnek: Kek satış modeli Sabit Olmayan Varyans Week Pie Sales Price ($) Advertising ($s) Satış = b + b (Fiyat) + b (Reklam) Değişen varyans durumunda parametrelerin tahmin değerleri sapmasız olacaktır ancak tahmin değerlerinin standart hataları büyür. Bunun neticesinde t ve f dağılımları yolu ile aralık tahmini ve hipotez testlerine güvenilmez Sabit olmayan varyansın testi konusunda aşağıdaki yöntemlerden biri kullanılabilir. Park testi Breusch ve Pagan Testi White testi Goldfeld ve Quandt testi 7..7 Collinearity Belirlenmesi Otokorelasyon Regression Analysis Price and all other X Multiple R R Square Adjusted R Square Observations VIF Regression Statistics Kek satış örneği çıktısı: Modelde sadece iki değişken olduğundan sadece bir tane VIF sonucu verilmiştir. VIF <? evet Fiyat ve Reklam arasında doğrusallığın olduğuna ilişkin delil yoktur. Otokorelasyon parametrelerin tahmin değerlerinin sapmasız oluşunu etkilemez; fakat standart hataları küçültür. Standart hatalar küçülünce t ve F testleri güvenilirliğini kaybeder Durbin-Whatson d testi ile test edilir. Otokorelasyonu giderme yolları: Model spesifikasyon hatası için kontrol edilir varsa düzeltilir. Otokorelasyonu elemine edebileceği bir şekilde regresyon modelini yeniden düzenlemek

16 Model İnşası En iyi alt grup Regresyonu Model inşasında amaç bağımsız değişkenlerin en iyi takımı oluşturmaktır. Önemsiz değişkenlerin modelden çıkarılması yorumlamayı kolaylaştırır Collinearity ihtimalini düşürür Stepwise regresyon yöntemi Yeni değişkenlerin eklemesi ile oluşturulan alternatif modellerin değerlendirilmesi yöntemi En iyi alt grup yaklaşımı Eldeki değişkenleri kullanarak bütün kombinasyonlarda model elde edilir ve adjusted r en yüksek olan kullanılır (standart hatası en az olan model) Fikir: bağımsız değişkenlerin bütün kombinasyonu kullanılarak her kombinasyonun regresyon eşitliğinin tahmin edilmesi En iyi uyan model yüksek adjusted r veen düşük standart hataya sahip olan alternatiftir Stepwise Regresyon Alternatif en iyi alt grup kriteri Fikir: adımlar halinde OLS regresyon eşitliğinin oluşturulması, her seferde bir değişken ekleyip eklenen değişkenin model de kalması veya gitmesi konusunda değerlendirme yapılması Kısmi determinasyon katsayısı: model de diğer değişkenlerin olması durumunda her bağımsız değişkenin marjinal katkısını ölçer Her bir alternatif regresyon modeli için C p tahmin edilir C p değeri k + yakın yada daha düşük olan modeli dikkate al k ilgilenilen modeldeki bağımsız değişken sayısı

17 Alternatif en iyi alt grup kriteri C p istatistiği ( R k )(n T ) R C p = (n (k + T Burada )) k = ilgili regresyondaki bağımsız değişken sayısı T = tam regresyon modelinde tahmin edilmesi gereken parametre sayısı R k R T = k bağımsız değişkenli modelin determinasyon katsayısı = Tam regresyon modelinin determinasyon katsayısı Steps in Model Building 6. C p <(k + ) olan tüm modelleri listele 7. En iyi modeli seç Tutumlu olmayı göz önünde bulundur İlave değişken anlamlı bir katkı sağlamakta mı? 8. Model sonuçlarını tam analize tabi tut 9. Doğrusallık yada diğer model varsayımlarının ihlal edilmesi durumunda model dönüşümü yap. Tahmin için modeli kullan Model İnşasında Adım Model Building Flowchart. Modele eklenecek açıklayıcı değişkenlerin seçimi. Tam modelin tahmin edilmesi ve VIF kontrolü. VIF> olan değişkenlerin tespiti 4. Eğer hiçbir değişkenin VIF > değilse, adıma git Eğer değişkenin VIF > ise, değişkeni modelden çıkar Eğer birden fazla değişkenin VIF > ise, en büyük değerli olan değişkeni modelden çıkar ve adım ye dön. Kalan değişkenlerle en iyi modeli belirlemeye çalış Değişken seç X,X,X k Regresyonu çalıştır VIF bul En yüksek VIF değerli değişkeni çıkart Evet herhangi VIF>? Evet Birden Fazla mı? Hayır X i çıkart Hayır Alt modeller içerisinden en iyisini belirlemek için regresyon analizi yap C p Sonuçların tam analizini yap Kareli terim ekle ve/veya değişken(leri) dönüştür Tahmin için kullan

18 Tuzaklar Tuzaklardan kaçınmak için : Tahmin edilen regresyon katsayılarının yorumlanmasında diğer değişkenlerin sabit tutulduğunu unutma Her bir bağımsız değişken için residual plots değerlendir Etkileşim terimini değerlendir (interaction terms) Tuzaklar Hangi değişkenin modele dahil edileceği sorusuna geçmeden her bir bağımsız değişken için VIF hesapla Stepwise ve en iyi alt grup regresyon yöntemlerini kullanarak bir çok alternatif modelin incelemesini yap OLS varsayımları ciddi bir şekilde ihlal edildiğinde diğer regresyon yöntemlerini kullan

19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I

19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I 19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I Bir dil dershanesinde öğrenciler talep ettikleri takdirde, öğretmenleriyle

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon Korelasyon- (lineer korelasyon) Açıklayıcı (Bağımsız) Değişken x çalışma zamanı ayakkabı numarası İki değişken arasındaki ilişkidir. Günlük sigara sayısı SAT puanı boy Yanıt (Bağımlı)

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI ANADOLU ÜNİVERSİTESİ Deney Tasarımı ve Regresyon Analizi Regresyonda Güven Aralıkları ve Hipotez Testleri Doç. Dr. Nihal ERGİNEL-2015 REGRESYON KATSAYILARININ GÜVEN ARALIĞI + in güven aralığı : i-) n 30

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

Pazarlama Araştırması Grup Projeleri

Pazarlama Araştırması Grup Projeleri Pazarlama Araştırması Grup Projeleri Projeler kapsamında öğrencilerden derlediğiniz 'Teknoloji Kullanım Anketi' verilerini kullanarak aşağıda istenilen testleri SPSS programını kullanarak gerçekleştiriniz.

Detaylı

İÇİNDEKİLER 1. GİRİŞ...

İÇİNDEKİLER 1. GİRİŞ... İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel

Detaylı

KUKLA DEĞİŞKENLİ MODELLER

KUKLA DEĞİŞKENLİ MODELLER KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

İSTATİSTİK II MINITAB

İSTATİSTİK II MINITAB İSTATİSTİK II MINITAB 8.5. Veriler k DENEY TASARIMI Treatment Design Factor Combinations A B C Surface Rougness () - - - 9 7 a - - b - - 9 ab - 5 c - - ac - bc - 8 abc 6 Veri Giriş Sayfasının Oluşturulması

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

KUKLA DEĞİŞKENLİ MODELLER. Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller)

KUKLA DEĞİŞKENLİ MODELLER. Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

Kukla Değişken Nedir?

Kukla Değişken Nedir? Kukla Değişken Nedir? Cinsiyet, eğitim seviyesi, meslek, din, ırk, bölge, tabiiyet, savaşlar, grevler, siyasi karışıklıklar (=darbeler), iktisat politikasındaki değişiklikler, depremler, yangın ve benzeri

Detaylı

Bağımsız Örneklemler İçin Tek Faktörlü ANOVA

Bağımsız Örneklemler İçin Tek Faktörlü ANOVA Bağımsız Örneklemler İçin Tek Faktörlü ANOVA ANOVA (Varyans Analizi) birden çok t-testinin uygulanması gerektiği durumlarda hata varyansını azaltmak amacıyla öncelikle bir F istatistiği hesaplanır bu F

Detaylı

BASİT REGRESYON MODELİ

BASİT REGRESYON MODELİ BASİT REGRESYON MODELİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri I: Basit Regresyon

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

KUKLA DEĞİŞKENLİ MODELLER

KUKLA DEĞİŞKENLİ MODELLER KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

Korelasyon, Korelasyon Türleri ve Regresyon

Korelasyon, Korelasyon Türleri ve Regresyon Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.

Detaylı

7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla.

7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. 7.Ders Bazı Ekonometrik Modeller Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. Kaynak: TÜĐK dönemler gayri safi yurt içi hasıla düzeyi 1987-1 8680793 1987-2 9929354 1987-3 13560135 1987-4

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın.

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın. KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOKLU REGRESYON ANALİZİNDE EK KONULAR Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon Kazanımlar 1 2 3 4 5 6 Değişkenlerin ilişkisini açıklamak ve hesaplamak için Pearson korelasyon katsayısı Örneklem r ile evren korelasyonu hakkında hipotez testi yapmak Spearman

Detaylı

A. Regresyon Katsayılarında Yapısal Kırılma Testleri

A. Regresyon Katsayılarında Yapısal Kırılma Testleri A. Regresyon Katsayılarında Yapısal Kırılma Testleri Durum I: Kırılma Tarihinin Bilinmesi Durumu Kırılmanın bilinen bir tarihte örneğin tarihinde olduğunu önceden bilinmesi durumunda uygulanır. Örneğin,

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur.

Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur. Değişen Varyans Örnek Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur. 1 Aşağıda yer alan denklemi tahmin edelim; y i = β 0 + β 1 x 1i + β 2 x 2i + u i EViews

Detaylı

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1 İÇİNDEKİLER ÖNSÖZ... v 1. BÖLÜM Örneklem Genişliğinin Elde edilmesi... 1 1.1. Kitle ve Parametre... 1 1.2. Örneklem ve Tahmin Edici... 2 1.3. Basit Rastgele Örnekleme... 3 1.4. Tabakalı Rastgele Örnekleme...

Detaylı

17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: TAHMİN Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 17 Ekim 2012 Ekonometri

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma...

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma... İçindekiler İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii BÖLÜM 1 Ölçme, İstatistik ve Araştırma...1 Ölçme Nedir?... 3 Ölçme Süreci... 3 Değişkenler

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri

Detaylı

UYGULAMALAR. Normal Dağılımlılık

UYGULAMALAR. Normal Dağılımlılık UYGULAMALAR EKONOMETRİYE GİRİŞ 0.01.008 1 Normal Dağılımlılık Amerika da 195-1941 yılları arasında sığır eti fiyatı ile kişi başı sığır eti tüketimi arasındaki ilişki incelenmiş ve aşağıdaki sonuç bulunmuştur.

Detaylı

KUKLA DEĞİŞKENLİ MODELLER

KUKLA DEĞİŞKENLİ MODELLER KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

Dependent Variable: Y Method: Least Squares Date: 03/23/11 Time: 16:51 Sample: Included observations: 20

Dependent Variable: Y Method: Least Squares Date: 03/23/11 Time: 16:51 Sample: Included observations: 20 ABD nin 1966 ile 1985 yılları arasında Y gayri safi milli hasıla, M Para Arazı (M) ve r faiz oranı verileri aşağıda verilmiştir. a) Y= b 1 +b M fonksiyonun spesifikasyon hatası taşıyıp taşımadığını Ramsey

Detaylı

KUKLA DEĞİŞKENLİ MODELLERDE KANTİTATİF DEĞİŞKEN SAYISININ İKİ SINIF İÇİN FARKLI OLMASI DURUMU

KUKLA DEĞİŞKENLİ MODELLERDE KANTİTATİF DEĞİŞKEN SAYISININ İKİ SINIF İÇİN FARKLI OLMASI DURUMU KUKLA DEĞİŞKENLİ MODELLERDE KANTİTATİF DEĞİŞKEN SAYISININ İKİ SINIF İÇİN FARKLI OLMASI DURUMU.HAL: Sabit Terimlerin Farklı Eğimlerin Eşit olması Yi = b+ b2di + b3xi + ui E(Y Di =,X i) = b + b3xi E(Y Di

Detaylı

1. YAPISAL KIRILMA TESTLERİ

1. YAPISAL KIRILMA TESTLERİ 1. YAPISAL KIRILMA TESTLERİ Yapısal kırılmanın araştırılması için CUSUM, CUSUMSquare ve CHOW testleri bize gerekli bilgileri sağlayabilmektedir. 1.1. CUSUM Testi (Cumulative Sum of the recursive residuals

Detaylı

BİYOİSTATİSTİK PARAMETRİK TESTLER

BİYOİSTATİSTİK PARAMETRİK TESTLER BİYOİSTATİSTİK PARAMETRİK TESTLER Doç. Dr. Mahmut AKBOLAT *Bir testin kullanılabilmesi için belirli şartların sağlanması gerekir. *Bir testin, uygulanabilmesi için gerekli şartlar; ne kadar çok veya güçlü

Detaylı

İSTATİSTİK-II. Korelasyon ve Regresyon

İSTATİSTİK-II. Korelasyon ve Regresyon İSTATİSTİK-II Korelasyon ve Regresyon 1 Korelasyon ve Regresyon Genel Bakış Korelasyon Regresyon Belirleme katsayısı Varyans analizi Kestirimler için aralık tahminlemesi 2 Genel Bakış İkili veriler aralarında

Detaylı

Regresyon Analizi. Yaşar Tonta H.Ü. BBY tonta@hacettepe.edu.tr yunus.hacettepe.edu.tr/~tonta/courses/fall2008/sb5002/ SLIDE 1

Regresyon Analizi. Yaşar Tonta H.Ü. BBY tonta@hacettepe.edu.tr yunus.hacettepe.edu.tr/~tonta/courses/fall2008/sb5002/ SLIDE 1 Regresyon Analizi Yaşar Tonta H.Ü. BBY tonta@hacettepe.edu.tr yunus.hacettepe.edu.tr/~tonta/courses/fall2008/sb5002/ SLIDE 1 Not: Sunuş slaytları G.A. Morgan, O.V. Griego ve G.W. Gloeckner in SPSS for

Detaylı

İki Varyansın Karşılaştırılması

İki Varyansın Karşılaştırılması 6.DERS İki Varyansın Karşılaştırılması Comparing Two Variances t-testinde iki varyansın eşit kabul edilip edilmemesi için kullanılır 1 Varyans için ikili-örnek Testi ve gibi iki varyansı karşılaştırmak

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

Tekrarlı Ölçümler ANOVA

Tekrarlı Ölçümler ANOVA Tekrarlı Ölçümler ANOVA Repeated Measures ANOVA Aynı veya ilişkili örneklemlerin tekrarlı ölçümlerinin ortalamalarının aynı olup olmadığını test eder. Farklı zamanlardaki ölçümlerde aynı (ilişkili) kişiler

Detaylı

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ 1. ÇOKLU REGRESYON ANALİZİ VE VARSAYIMALARDAN SAPMALAR 1.1. Çoklu Regresyon modeli Varsayımları 1.2. Tahmincilerin anlamlılığının sınanması

Detaylı

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ Taşınmaz Değerlemede İstatistiksel Analiz Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ 1 Taşınmaz Değerlemede İstatistiksel Analiz İçindekiler

Detaylı

Ch. 3: Çok Değişkenli Regresyon Analizi: Tahmin

Ch. 3: Çok Değişkenli Regresyon Analizi: Tahmin Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 3: Çok Değişkenli Regresyon

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Marmara Üniversitesi U.B.F. Dergisi YIL 2005, CİLT XX, SAyı 1 YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Yrd. Doç. Dr. Ebru ÇACLAYAN' Arş. Gör. Burak GÜRİş" Büyüme modelleri,

Detaylı

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz.

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. PARAMETRİK TESTLER Tek Örneklem t-testi 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. H0 (boş hipotez): 200 öğrencinin matematik dersinden aldıkları

Detaylı

ALIŞTIRMA 2 GSYİH. Toplamsal Ayrıştırma Yöntemi

ALIŞTIRMA 2 GSYİH. Toplamsal Ayrıştırma Yöntemi ALIŞTIRMA 2 GSYİH Bu çalışmamızda GSYİH serisinin toplamsal ve çarpımsal ayrıştırma yöntemine göre modellenip modellenemeyeceği incelenecektir. Seri ilk olarak toplamsal ayrıştırma yöntemine göre analiz

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

01.02.2013. Statistical Package for the Social Sciences

01.02.2013. Statistical Package for the Social Sciences Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ DÖNEM I-I. DERS KURULU Konu: Bilimsel yöntem ve istatistik Amaç: Biyoistatistiğin tıptaki önemini kavrar ve sonraki dersler için gerekli terminolojiye hakim olur.

Detaylı

EKONOMETRİ. GRETL Uygulamaları. Prof. Dr. Bülent Miran

EKONOMETRİ. GRETL Uygulamaları. Prof. Dr. Bülent Miran EKONOMETRİ GRETL Uygulamaları Prof. Dr. Bülent Miran Bornova-2015 İÇİNDEKİLER 1. Gretl da veri dosyasını çağırma:... 3 2. Gretl da Excel veri dosyasını açma:... 4 3. Excel den alınmış verilerin Gretl dosyası

Detaylı

Çalıştığı kurumun prestij kaynağı olup olmaması KIZ 2,85 ERKEK 4,18

Çalıştığı kurumun prestij kaynağı olup olmaması KIZ 2,85 ERKEK 4,18 1 * BAĞIMSIZ T TESTİ (Independent Samples t test) ÖRNEK: Yapılan bir anket çalışmasında katılımcılardan, çalıştıkları kurumun kendileri için bir prestij kaynağı olup olmadığını belirtmeleri istenmiş. 30

Detaylı

İLERİ ARAŞTIRMA SORU HAVUZU

İLERİ ARAŞTIRMA SORU HAVUZU 1 ) Bir ölçümde bağımlı değişkenlerdeki farklılıkların bağımsız değişkenlerdeki farklılıkları nasıl etkilediğini aşağıdakilerden hangisi ölçer? A) Bağımlı Değişken B) Bağımsız Değişken C) Boş Değişken

Detaylı

Basit Regresyon Modeli BASİT REGRESYON MODELİ. Basit Regresyon Modeli. Basit Regresyon Modeli: y = β 0 + β 1 x + u

Basit Regresyon Modeli BASİT REGRESYON MODELİ. Basit Regresyon Modeli. Basit Regresyon Modeli: y = β 0 + β 1 x + u 1 2 Basit Regresyon Modeli BASİT REGRESYON MODELİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

SANAYİ İŞÇİLERİNİN DİNİ YÖNELİMLERİ VE ÇALIŞMA TUTUMLARI ARASINDAKİ İLİŞKİ - ÇORUM ÖRNEĞİ

SANAYİ İŞÇİLERİNİN DİNİ YÖNELİMLERİ VE ÇALIŞMA TUTUMLARI ARASINDAKİ İLİŞKİ - ÇORUM ÖRNEĞİ , ss. 51-75. SANAYİ İŞÇİLERİNİN DİNİ YÖNELİMLERİ VE ÇALIŞMA TUTUMLARI ARASINDAKİ İLİŞKİ - ÇORUM ÖRNEĞİ Sefer YAVUZ * Özet Sanayi İşçilerinin Dini Yönelimleri ve Çalışma Tutumları Arasındaki İlişki - Çorum

Detaylı

Kalitatif Veri. 1. Kalitatif random değişkenler sınıflanabilen yanıtlar vermektedir. Örnek: cinsiyet (Erkek, Kız)

Kalitatif Veri. 1. Kalitatif random değişkenler sınıflanabilen yanıtlar vermektedir. Örnek: cinsiyet (Erkek, Kız) Kalitatif Veri 1. Kalitatif random değişkenler sınıflanabilen yanıtlar vermektedir. Örnek: cinsiyet (Erkek, Kız). Ölçüm kategorideki veri sayısını yansıtır 3. Nominal yada Ordinal ölçek Multinomial Deneyler

Detaylı

Konu 3 Niceliksel Talep Analizi

Konu 3 Niceliksel Talep Analizi .. Konu 3 Niceliksel Talep Analizi Hadi Yektaş Uluslararası Antalya Üniversitesi İşletme Tezsiz Yüksek Lisans Programı 1 / 43 Hadi Yektaş Niceliksel Talep Analizi . İçerik.1 Giriş.2.3 Lineer Log-Lineer.4.5

Detaylı

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A 2Q 10 BS 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek tablolar ve f ormüller bu kita p ç ığın sonunda ver-ilmiştir. 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre cevaplandırılacaktır

Detaylı

REGRESYON ANALĐZĐ. www.fikretgultekin.com 1

REGRESYON ANALĐZĐ. www.fikretgultekin.com 1 REGRESYON ANALĐZĐ Regresyon analizi, aralarında sebep-sonuç ilişkisi bulunan iki veya daha fazla değişken arasındaki ilişkiyi belirlemek ve bu ilişkiyi kullanarak o konu ile ilgili tahminler (estimation)

Detaylı

4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ Katsayıların Yorumu

4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ Katsayıların Yorumu 4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ 4.1. Katsayıların Yorumu Y i = β 0 + β 1 X 1i + β X i + + β k X ki + u i gibi çok açıklayıcı değişkene sahip bir modelde, anakütle regresyon fonksiyonu, E(Y i X

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI 1 UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI Örnek 1: Ders Kitabı 3. konuda verilen 100 tane yaş değeri için; a. Aritmetik ortalama, b. Ortanca değer, c. Tepe değeri, d. En küçük ve en

Detaylı

2. BASİT DOĞRUSAL REGRESYON 12

2. BASİT DOĞRUSAL REGRESYON 12 1. GİRİŞ 1 1.1 Regresyon ve Model Kurma / 1 1.2 Veri Toplama / 5 1.3 Regresyonun Kullanım Alanları / 9 1.4 Bilgisayarın Rolü / 10 2. BASİT DOĞRUSAL REGRESYON 12 2.1 Basit Doğrusal Regresyon Modeli / 12

Detaylı

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat...

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

REGRESYON. 8.Sunum. Yrd. Doç. Dr. Sedat ŞEN

REGRESYON. 8.Sunum. Yrd. Doç. Dr. Sedat ŞEN REGRESYON 8.Sunum 1 Regresyon Bir önceki sunumda korelasyon kullanarak iki değişken arasındaki ilişkiyi tespit etmeye çalıştık. Bu sunumda iki değişken arasında ilişkiyi göstermenin yanında bir değişkeni

Detaylı

Çoklu Regresyon Korelasyon Analizinde Varsayımdan Sapmalar ve Çimento Sektörü Üzerine Uygulama *

Çoklu Regresyon Korelasyon Analizinde Varsayımdan Sapmalar ve Çimento Sektörü Üzerine Uygulama * Çoklu Regresyon Korelasyon Analizinde Varsayımdan Sapmalar ve Çimento Sektörü Üzerine Uygulama * Erkan SEVİNÇ ** Giriş Bu çalışmada İMKB de taş ve toprağa dayalı sanayi altında işlem gören şirketlerin

Detaylı

Hipotez Testi Rehberi. Orhan Çevik İstanbul, 30 Ağustos 2014

Hipotez Testi Rehberi. Orhan Çevik İstanbul, 30 Ağustos 2014 Hipotez Testi Rehberi Orhan Çevik İstanbul, 30 Ağustos 2014 Hipotezler Sıfır Hipotezi: H 0 Aksi kanıtlanmadığı sürece doğru olduğu düşünülen varsayımdır. H 0 ın kanıta ihtiyacı yoktur. H 0 ı ret etmek

Detaylı

TURİZM SEKTÖRÜNDE TALEP TAHMİN MODELLEMESİ

TURİZM SEKTÖRÜNDE TALEP TAHMİN MODELLEMESİ TURİZM SEKTÖRÜNDE TALEP TAHMİN MODELLEMESİ *Prof. Dr. Münevver TURANLI, Arş. Gör. Elif GÜNEREN 1.Giriş Turizm sektörü; bir yandan ülkeler için önemli bir gelir kaynağı olması, diğer yandan uluslararası

Detaylı

8. BÖLÜM: DEĞİŞEN VARYANS

8. BÖLÜM: DEĞİŞEN VARYANS 8. BÖLÜM: DEĞİŞEN VARYANS Bu bölümde; Değişen Varyans Tespiti için Grafik Çizme Değişen Varyans Testi: Park Testi Değişen Varyans Testi: White Testi Değişen Varyans Probleminin Çözümü: Ağırlıklandırılmış

Detaylı

ÖN SÖZ... XV 1. BÖLÜM İSTATİSTİKTE KULLANILAN TEMEL KAVRAMLAR

ÖN SÖZ... XV 1. BÖLÜM İSTATİSTİKTE KULLANILAN TEMEL KAVRAMLAR İÇİNDEKİLER ÖN SÖZ... XV 1. BÖLÜM İSTATİSTİKTE KULLANILAN TEMEL KAVRAMLAR 1. DEĞİŞKEN... 2 1.1. Değişken Çeşitleri... 3 1.2. Değişkenlerde Bağımsızlık ve Bağımlılık... 5 1.3. Değişkenlerde Kontrol Edilebilirlik...

Detaylı

BAĞIMLI KUKLA DEĞİŞKENLİ MODELLER A- KADININ İŞGÜCÜNE KATILIM MODELİ NİN DOM İLE E-VIEWS DA ÇÖZÜMÜ

BAĞIMLI KUKLA DEĞİŞKENLİ MODELLER A- KADININ İŞGÜCÜNE KATILIM MODELİ NİN DOM İLE E-VIEWS DA ÇÖZÜMÜ BAĞIMLI KUKLA DEĞİŞKENLİ MODELLER A- KADININ İŞGÜCÜNE KATILIM MODELİ NİN DOM İLE E-VIEWS DA ÇÖZÜMÜ Modeldeki değişken tanımları aşağıdaki gibidir: IS= 1 i.kadının bir işi varsa (ya da iş arıyorsa) 0 Diğer

Detaylı

Excel dosyasından verileri aktarmak için Proc/Import/Read Text-Lotus-Excel menüsüne tıklanır.

Excel dosyasından verileri aktarmak için Proc/Import/Read Text-Lotus-Excel menüsüne tıklanır. ZAMAN SERİSİ MODEL Aşağıdaki anlatım sadece lisans düzeyindeki temel ekonometri bilgisine göre hazırlanmıştır. Bir akademik çalışmanın gerektirdiği birçok ön ve son testi içermemektedir. Bu dosyalar ilk

Detaylı

AMOS (Analysis of Moment Structures) ve Yapısal Eşitlik Modeli

AMOS (Analysis of Moment Structures) ve Yapısal Eşitlik Modeli AMOS (Analysis of Moment Structures) ve Yapısal Eşitlik Modeli Veri seti bulunur Değişkenler sürüklenerek kutucuklara yerleştirilir Hata terimi eklenir Mouse sağ tıklanır ve hata terimi tanımlanır.

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

15.433 YATIRIM. Ders 7: CAPM ve APT. Bölüm 2: Uygulamalar ve Sınamalar

15.433 YATIRIM. Ders 7: CAPM ve APT. Bölüm 2: Uygulamalar ve Sınamalar 15.433 YATIRIM Ders 7: CAPM ve APT Bölüm 2: Uygulamalar ve Sınamalar Bahar 2003 Öngörüler ve Uygulamalar Öngörüler: - CAPM: Piyasa dengesinde yatırımcılar sadece piyasa riski taşıdıklarında ödüllendirilir.

Detaylı

Regresyon Analizinde Nitel Bilgi. Nitel Değişkenler: Ders Planı. Nitel Bilgi

Regresyon Analizinde Nitel Bilgi. Nitel Değişkenler: Ders Planı. Nitel Bilgi 1 ÇOKLU REGRESYON ANALİZİNDE NİTEL DEĞİŞKENLER Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 2 Regresyon

Detaylı

Değişen Varyans (Heteroscedasticity) Sabit Varyans (Homoscedasticity) Varsayımı Altında Basit Regresyon Modeli

Değişen Varyans (Heteroscedasticity) Sabit Varyans (Homoscedasticity) Varsayımı Altında Basit Regresyon Modeli 1 2 Değişen Varyans (Heteroscedasticity) DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Bir değişkenin değerinin,

Detaylı

VERİ KÜMELERİNİ BETİMLEME

VERİ KÜMELERİNİ BETİMLEME BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı REGRESYON ANALİZİ VE UYGULAMA Yrd. Doç. Dr. Hidayet Takcı htakci@cumhuriyet.edu.tr Sunum içeriği Bu sunumda; Lojistik regresyon konu anlatımı Basit doğrusal regresyon problem çözümleme Excel yardımıyla

Detaylı

3. BÖLÜM: EN KÜÇÜK KARELER

3. BÖLÜM: EN KÜÇÜK KARELER 3. BÖLÜM: EN KÜÇÜK KARELER Bu bölümde; Kilo/Boy Örneği için Basit bir Regresyon EViews Denklem Penceresinin İçeriği Biftek Talebi Örneği için Çalışma Dosyası Oluşturma Beef 2.xls İsimli Çalışma Sayfasından

Detaylı

Kazanımlar. Z puanları yerine T istatistiğini ne. zaman kullanacağını bilmek. t istatistiği ile hipotez test etmek

Kazanımlar. Z puanları yerine T istatistiğini ne. zaman kullanacağını bilmek. t istatistiği ile hipotez test etmek T testi Kazanımlar Z puanları yerine T istatistiğini ne 1 zaman kullanacağını bilmek 2 t istatistiği ile hipotez test etmek 3 Cohen ind sini ve etki büyüklüğünü hesaplamak 1 9.1 T İstatistiği: zalternatifi

Detaylı

FAKTÖR ANALİZİ VAHİDE NİLAY KIRTAK

FAKTÖR ANALİZİ VAHİDE NİLAY KIRTAK FAKTÖR ANALİZİ VAHİDE NİLAY KIRTAK Çok Değişkenli İstatistikler Faktör Analizi Faktör Analizinin Amacı: Birbirleriyle ilişkili p tane değişkeni bir araya getirerek az sayıda ilişkisiz ve kavramsal olarak

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler 1 SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 9 VARYANS ANALİZİ Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Varyans analizi niçin yapılır? İkiden fazla veri grubunun ortalamalarının karşılaştırılması t veya Z testi

Detaylı