Ele Alınacak Ana Konular. Hafta 5: Periyodik İşaretlerin Fourier Serisi Gösterilimi. LTI Sistemlerin Karmaşık Üstel İşaretlere Yanıtı

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Ele Alınacak Ana Konular. Hafta 5: Periyodik İşaretlerin Fourier Serisi Gösterilimi. LTI Sistemlerin Karmaşık Üstel İşaretlere Yanıtı"

Transkript

1 ..5 El Alınc An Konulr LI sismlrin rmşı üsl işrlr ynıı Sürli-zmn priyodi işrlrin Fourir srisi gösrilimi Hf 5: Priyodi İşrlrin Fourir Srisi Gösrilimi Fourir srisinin yınslığı Sürli-zmn Fourir srisinin özllilri LI Sismlrin Krmşı Üsl İşrlr Ynıı LI sismlrin nlizind fydlı bir ylşım, işrlri şğıdi ii özlliği sğlyn ml işrlrin doğrusl ombinsyonu şlind msil mir:. ml işrlr, gniş v fydlı bir işr ümsini oluşurbilmlidir.. Bir LI sismin ml bir işr ynıı bsi olmlıdır. Böylc, LI sismin bir giriş ynıı, bsi ynılrın doğrusl ombinsyonu olcır. Bu ii özlliği, hm sürli hm d yrı durumd rmşı üsl işrlr sğlmdır. LI bir sismin çıışı {y( vy y[n] }, girişin { vy x[n] }, rmşı bir sbil çrpımın şis giriş SİSEMİN ÖZFONKSİYONU, rmşı sbi SİSEMİN ÖZDEĞERİ dnilir. s v z rmşı syılr olm üzr, şğıd gösrildiği gibi sürli-zmnd s, yrı-zmnd z n LI sismlrin özfonsiyonudur. LI Sismlrin Krmşı Üsl İşrlr Ynıı İmpuls ynıı h( oln bir sürli-zmn LI sismin girişin s uygulndığınd sismin çıışı y( onvolüsyon ingrlindn hsplnbilir: s( τ y( h( τ τ dτ h τ dτ ( s sτ h( τ dτ Eşiliğin sğındi ingrlin yınsdığını vrsylım. İngrlin dğri s bğlıdır v rmşı bir syıdır. İngrlin sonucunu H(s il gösrlim: s H ( s h( τ τ dτ O hld, y( H(s s (çıış, girişin rmşı bir syı H(s il çrpımın şiir. Böylc, rmşı üsl s işrinin sürli-zmn LI sismlrin özfonsiyonu olduğu gösrilmiş olur.

2 ..5 LI Sismlrin Krmşı Üsl İşrlr Ynıı Bnzr işlmlr yrı-zmnd ypılbilir. İmpuls ynıı h[n] oln bir yrı-zmn LI sismin z n girişin oln ynıı onvolüsyon oplmındn hsplnır: n y[ n] h[ ] x[ n ] h[ ] z n z h[ ] z Eşiliğin sğındi oplmnın yınsdığını vrsylım. oplmnın dğri z y bğlıdır v rmşı bir syıdır. oplmnın sonucunu H(z il gösrlim: H ( z h[ ] z O hld, y[n] H(zz n (çıış, girişin rmşı bir syı il çrpımın şiir. Yni, rmşı üsl z n işrinin yrı-zmn LI sismlrin özfonsiyonu olduğunu gösrmiş oldu. LI Sismlrin Krmşı Üsl İşrlr Ynıı İmpuls ynıı h( oln bir sürli-zmn LI sism üç rmşı üsl işrin oplmın şi oln bir giriş uygulylım. + + Özfonsiyon özlliğindn, sismin rmşı üsl işrlr ynıı şöyldir: s Sism doğrusl olduğundn, rmşı üç üsl işrin oplmındn oluşn giriş oln ynıı üsl işrlr oln ynılrının oplmın şiir: H ( s H ( s H ( s ( H( s + H ( s + H ( s y 5 6 LI Sismlrin Krmşı Üsl İşrlr Ynıı Yurıdi sonucu gnllşirbiliriz. Bir sürli-zmn LI sismin girişi, rmşı üsl işrlrin ğırlılı oplmı (doğrusl ombinsyonu olsun: x ( s Doğrusllı v özfonsiyon özllilrindn, sismin çıışı şğıdi gibi olur: Bnzr şild, bir yrı-zmn LI sismin girişi x[n], yrı-zmn rmşı üsl işrlrin doğrusl ombinsyonu olsun: y ( H ( s x [ n] n z Sismin çıışı şğıdi gibi olur: y [ n] H ( z z n LI Sismlrin Krmşı Üsl İşrlr Ynıı GÖZLEM: Bir LI sismin girişi rmşı üsl işrlrin doğrusl ombinsyonu is, çıışı d ynı üsl işrlrin doğrusl bir ombinsyonudur. Çıış işrinin gösrilimindi syılr, giriş işrinin gösrilimindi syılr il rmşı üsl işrlr rşılı gln sism özdğrlrinin çrpımın şiir. x ( s ( y H ( s Bu gözlm, Fourir v ndisindn sonr glnlrin hrhngi bir işrin rmşı üsl işrlrin doğrusl ombinsyonu şlind nsıl yzılbilcği hınd rşırm ypmlrın ön y olmuşur. Bu v önümüzdi hflr, soruyu sırsıyl sürli v yrı-zmn priyodi işrlr için ynılyc, dh sonri hfd priyodi olmyn işrlr durumunu l lcğız. s v z hrhngi bir rmşı syı olbilir. Anc, Fourir nlizind s v z sırsıyl s jω v z jω vrsyılcır. Lplc v z-dönüşümü onulrınd s v z hrhngi bir rmşı syıy gnllşirilcir. 7 8

3 ..5 LI Sismlrin Krmşı Üsl İşrlr Ynıı ÖRNEK: Bir sürli-zmn LI sismin girişi il çıışı rsındi ilişi y(- v sism uygulnn giriş j olsun. Sismin çıışışöyldir: Uygulnn giriş bir özfonsiyon olduğundn bu sonucu slınd bliyordu. Giriş rşılı gln özdğri hsplylım. Sismin impuls ynıının h( δ(- olduğu çıır. O hld, Örnğimizd s j olduğundn, giriş rşılı gln özdğr H(j -j6 olr ld dilir. Görüldüğü gibi çıış, giriş il giriş rşılı gln özdğrin çrpımın şiir.. y( j( j6 j H ( s h( τ dτ δ ( τ dτ sτ sτ s Sürli-zmn Priyodi İşrlrin Fourir Srisi Gösrilimi Hrmoni ilişili rmşı üsl işrlrin doğrusl ombinsyonu şlind yzıln bir sürli-zmn işri l llım: jω j ( π / Hrmoni ilişili üsl işrlrin hrbirinin il priyodi olduğunu görmüşü. O hld, d il priyodiir. (Bnz..hf sly 7-8 için, oplmdi üsl işr sbiir. ± için üsl işrlrin ml frnsı ω dır v bu rimlr EMEL vy BİRİNCİ HARMONİK bilşnlr dnir. ± için üsl işrlrin ml frnsı ω dır v bu rimlr iinci hrmoni bilşnlr dnir. Gnl olr, ±N için oplmdi rmşı üsl işrlr N. HARMONİK bilşnlr dnir. Priyodi bir işrin yurıdi gibi oplm şlind ifd dilmsin FOURİER SERİSİ gösrilimi dnir. 9 Sürli-zmn Priyodi İşrlrin Fourir Srisi Gösrilimi Hrmoni bilşnlrin işri nsıl oluşurduğu şğıd gösrilmişir. ÖRNEK: ml frnsı π oln bir sürli-zmn priyodi işrin Fourir srisi gösrilimi şğıd vrilmişir:, j π,, Ksyılr oplmd yrin onulr işrin nlii ifdsi ld dilbilir: + jπ jπ jπ jπ j6π j6π ( + + ( + + ( + Eulr ilişisi ullnılr, işr rigonomri fonsiyonlr cinsindn d yzılbilir:. + cos(π + cos(π + cos(6π

4 ..5 Sürli-zmn Priyodi İşrlrin Fourir Srisi Gösrilimi Sürli-zmn grçl priyodi işrlr için Fourir srisinin diğr bir gösrilimi vrdır. Grçl bir işr için x*( olduğundn * jω jω * jω * jω ( Son ifd, Fourir srisi gösrilimi il rşılşırılırs * - vy şdğr olr * - sonucu çır. Bu sonuçn yrrlnılr Fourir srisi şğıdi gibi yzılbilir: + + R jω jω jω + [ + ] jω * jω [ + ] jω { } Sürli-zmn Priyodi İşrlrin Fourir Srisi Gösrilimi Son ifdd uupsl oordinlrd A jθ şlind yzılırs şğıd vriln şdğr rigonomri gösrilim ld dilir: x + R jθ jω { A } ( + A cos( ω + θ rzyn oordinlrd B + jc şlind yzılırs şğıd vriln diğr bir rigonomri gösrilim ld dilir: x + R ( B + jc jω { } ( + ( B cos( ω C sin( ω Sürli-zmn Priyodi İşrlrin Fourir Srisi Gösrilimi Şimdi d, priyodi bir işr için Fourir srisi syılrının nsıl hsplnbilcğini rışcğız. jnω Fourir srisi gösrilimind, şiliğin hr ii rfı il çrpıldın sonr çrpımın [,] rlığınd ingrli lınırs şğıdi ifd ld dilir: jnω jω jnω j[ n] ω [ ] Köşli prnz içindi ifd Eulr formülü ullnılr ynidn düznlnbilir: j[ n] ω n cos[( ω + j n ] sin[( ω ] Sürli-zmn Priyodi İşrlrin Fourir Srisi Gösrilimi j[ n] ω n cos[( ω + j n ] sin[( ω ] n için cos[(-nω ] v sin[(-nω ] işrlri / -n ml priyodu il priyodiir. İngrlın lındığı rlı uzunluğund olup ml priyodun -n ıdır. Sinüs v osinüs işrlrinin bir priyodund, işrlrin sıfırın üsünd v lınd ln ısımlrı ynı ln ship olup bu işrlrin bir priyod v dolyısıyl d bir priyodun msyı ı uzunluğundi bir rlıi ingrli sıfır şiir. Özl, n için hr ii ingrl sıfır şiir. n için, ingrl olup ingrlin sonucu y şiir. Sonuç olr, j[ n] ω n,, n O hld, sri gösrilimindi syılr şöyl hsplnır: 5 n jn ω 6

5 ..5 Sürli-zmn Priyodi İşrlrin Fourir Srisi Gösrilimi Yurıd bulunn sonucun, uzunlulu hrhngi bir rlı için gçrli olduğun di diniz. uzunlulu hrhngi bir rlı boyunc ingrl nosyonu il gösrilm üzr, sürli-zmn priyodi işrin Fourir srisin çılımı v çılımdi syılrın hsbı şğıdi şililrd vrilmişir: jω j( π / jω j ( π / İşrin sri şlind gösrilimin SENEZ, syılrın nsıl hsplncğını vrn şiliğ is ANALİZ dnlmi dnilir. syısı, işri sbi vy DC bilşn olup işrin bir priyod boyunc orlm dğridir: 7 Sürli-zmn Priyodi İşrlrin Fourir Srisi Gösrilimi ÖRNEK: ml priyodu v ml frnsı ω π/ oln priyodi r dlgnın Fourir srisi gösrilimini ld diniz. ÇÖZÜM:İşrin bir priyodunun mmisl ifdsişöyldir:,, < < < / Fourir srisi syılrını bulm için uzunlulu hrhngi bir rlı sçilbilir. İşr, rfınd simri olduğundn rlı olr / / sçilmsi mnılıdır. 8 Sürli-zmn Priyodi İşrlrin Fourir Srisi Gösrilimi İl önc ı blirlylim. / / Diğr syılr (, bnzrşild hsplnır: / jω jω / π jω jω sin( sin( ω sin( ω ω j ω π π syılrı sbi bir v dğişi dğrlri için şğıd çizilmişir. Bu örn için syılr grçl çıığındn syılr için bir grfi (gnli grfiği yrli olmuşur. Ksyılrın rmşı syı olmsı hlind ii grfiğin (gnli v fz grli olcğın di diniz. 9 Sürli-zmn Priyodi İşrlrin Fourir Srisi Gösrilimi için syılrını hsplylım. π sin(.. π için.8 π sin(.. π için π sin(.. π için.6 π sin(.. π için 5

6 ..5 Sürli-zmn Priyodi İşrlrin Fourir Srisi Gösrilimi Sürli-zmn Priyodi İşrlrin Fourir Srisi Gösrilimi ÖRNEK: Sinüzoidl işrlr için Fourir srisi doğrudn hsplnbilir. Aşğıd vriln işrin Fourir srisi gösrilimini ld dlim. π + sin( ω + cos( ω + cos(ω + Çözüm: Eulr ilişisidn işr rmşı üsl işrlrin oplmı şlind yzılbilir: j ( jω jω ( jω jω ( j( ω + π / j( ω + π / j j jω jω jπ / j ω jπ / j ω O hld nin Fourir srisi syılrı ifdy bılr doğrudn yzılbilir, + j, + j j j jπ / jπ / ( + j, ( j,. Sürli-zmn Priyodi İşrlrin Fourir Srisi Gösrilimi Ksyılrın gnliği v fzı, y bğlı olr şğıd çizilmişir. j j.8.66 Sürli-zmn Priyodi İşrlrin Fourir Srisi Gösrilimi ÖRNEK: Örnlm bhsind ullnılc priyodi impuls dizisinin Fourir srisi syılrını bullım. x ( δ ( ( + j ( j ÇÖZÜM: İşr, nliz dnlmind yrin onulr syılr hsplnbilir. İşr simri olduğundn ingrl rlığı olr / / lm uygundur. π j / π j / / rlığınd δ( olduğundn, / / π π j j / δ ( No: Yurıdi sonucu bulurn şu özlliği ullndı: / δ ( f ( f ( / 6

7 ..5 Sürli-zmn Fourir Srisinin Yınslığı Kr dlgd sürsizlilr vrdır. Hlbui sri gösrilimindi hrmoni ilişili rmşı üsl işrlrin hpsi sürlidir. Sürsiz bir işrin sürli işrlrl msil dilbilcğin şüphyl bılmışır. Fourir in spilri dönmin us mmiçisi Lgrng rfındn vo dilmişir. H, dönmin diğr mmiçilri Lcroix, Mong v Lplc ın Fourir dsği bil rşırmlrın yyınlnmsı için yrli olmmışır. Fourir in rşırmlrı vfındn sonr yyınlnbilmişir. Fourir srisinin gçrliliğini gösrm için, bir sürli-zmn priyodi işrin sonlu syıd hrmoni ilişili rmşı üsl işrl msilini l llım: N ( ylşılı hsını gösrsin: xn ( N N jω N N ( xn ( N jω Sürli-zmn Fourir Srisinin Yınslığı Frlı ylşılılrı birbiriyl rşılşırbilm için, ylşılı hsının boyuunu vrn bir ölçü ullnmmız grlidir. Ölçü olr, bir priyo boyunc hnın nrjisini ullncğız. ( EN N Hnın nrjisini minimum ypn syılrın jω olduğu gösrilbilir (ödvlrin birind bu sonuç isplncır!. Yni, hyı minimum ypn syılr Fourir srisi syılrın şiir. O hld, nin Fourir srisi gösrilimi vrs, N büyüdüç h zlır v N limi durumund E N sıfır şi olur. Şimdi d priyodi bir işrin hngi oşullr lınd Fourir srisi gösrilimin ship olcğını blirlmy çlışlım. 5 6 Sürli-zmn Fourir Srisinin Yınslığı İi duruml rşılşm mümündür: (i syılrın hsplnmsın imn vrn ingrl yınsmybilir (bzı syılr sonsuz olbilir, (ii syılrın hpsi sonlu ols bil, bu syılr snz dnlmind yrin onulduğund ld diln sri orijinl işri vrmybilir. Priyodi bir işr, bir priyod boyunc sonlu nrjiy ship, yni < is, Fourir srisi syılrının sonlu olcğı gösrilbilir. Bu durumd, işr il Fourir srisi gösrilimi rsındi hnın nrjisi bir priyo boyunc sıfır olcır. jω ( ( Sürli-zmn Fourir Srisinin Yınslığı Dirichl, priyodi bir işr il Fourir srisi gösriliminin, işrin sürsiz olduğu nolr hriç şi olbilmsi için oşullrı blirlmişir. Sürsizli nolrınd sri, işrin sürsizli nosınd soldn v sğdn limilrinin orlmsın şi olur. Dirichl oşullrı şğıd vrilmişir. Koşul : İşr bir priyod boyunc mul ingrllnbilir olmlıdır: x ( < Koşul : Bir priyo boyunc, işrin sonlu syıd minimum v msimumu olmlıdır. Bu sonuç, Fourir srisi gösriliminin işr şi olduğu nlmın glmdiğini, nc iisi rsındi fr nrji olmdığını blirmdir. Fizisl sismlr, işrin nrjisin ynı vrdiğindn, bu nlmd işr il Fourir srisi gösrilimi şdğrdir.ilgilndiğimiz çoğu priyodi işrin nrjisi sonlu olup bu işrlr için Fourir srisi gösrilimi mvcuur. 7 Koşul : Sonlu bir rlı, işr sonlu syıd sürsizli olmlı v sürsizli nolrınd işrin dğri d sonlu olmlıdır. Dirichl oşullrını ihll dn işrlr örnlr şğıd vrilmişir. yrıc 8 7

8 ..5 Sürli-zmn Fourir Srisinin Yınslığı Koşul i ihll dn bir işr Dirichl oşullrını sğlmyn işrlrin fizisl sismlrd rşımız çım olsılığının olduç z olduğu örnlrdn görülmdir. 898 yılınd, Amrin fiziçi Albr Michlson, sonlu Fourir srisini N 8 dr hsplyn bir ygı (modrn dıyl hrmoni nlizör glişirmişir. Koşul yi ihll dn bir işr Michlson, ygıını p ço priyodi işr için s mişir. Michlson, r dlg için ummdığı sonuçlr ld dinc glişirdiği ygıın hlı olbilcğini düşünmüş v onuyu mmisl fiziçi Josih Gibbs il pylşmışır. Gibbs, problmi drinlmsin inclmiş v düşünclrini 899 yılınd Michlson il pylşmışır. Koşul ü ihll dn bir işr Priyodi r dlg, Dirichl oşullrını sğldığındn, sonlu sridi rim syısı sonsuz gidrn sürsizli nolrınd srinin limii sürsizli dğrinin orlmsın şi olmlıdır. Diğr nolrd, sri işr yınsmlıdır. Çşili N dğrlri için ylşı işr v r dlg şğıd çizilmişir. 9 Sürli-zmn Fourir Srisinin Yınslığı Michlson un Gözlmi: Sonlu sri, sürsizli nolrınd dlglnmlr vrmdir. Dlglnmlrın p gnliği N dn bğımsızdır v N rıç zlmmdır. Gibbs in Açılmsı:İşrin sürsiz olmdığı bir nosı sürsizli nosın ylşıç hnın üçü olmsı için N büyü olmlıdır. Bu ndnl, N rıç dlglnmlr sürsizli nosı rfınd yoğunlşır nc dlglnmnın msimum gnliği sbi lır. Bu gözlm GIBBS OLAYI dnir. Yni, sürsiz bir işrin sonlu rimli Fourir srisi ylşılığı yüs frnslı dlglnmlr içrir v sürsizli nosınd işrn dh yüs dğr lır. Priyodi r dlg işr için FS syılrı π sin(, π ( Sly 8-9 Sonlu rimli Fourir srisi ullnılcs, dlglnmlrdi oplm nrji ihml dilbilc dr üçü olc şild yrinc büyü N dğri sçilmlidir. Limi durumund, hsının nrjisi sıfır olur v Fourir srisi yınsr. 8

9 ..5 Sürli-zmn Fourir Srisinin Özllilri ml priyodu v ml frnsıω π/ oln priyodi bir işrin Fourir srisi syılrının olduğunu blirm için nosyonunu ullncğız. Sürli-zmn Fourir srisinin şğıd vriln özllilri rcılığıyl, Fourir srisi syılrı bilinn işrlr yrdımıyl çoğu işrin Fourir srisi çılımını ld m olylşmdır. Fourir dönüşümü onusund d görcğimiz gibi, çoğu özlli Fourir dönüşümünün özllilrindn ld dilbilir. Bu ndnl, sdc n önmli özllilri sırlyc v yorumlycğız. FS x ( Sürli-zmn Fourir Srisinin Özllilri Özlli (Zmnd ölm: FS x ( is, jω j x (π / ( İsp: Priyodi bir işr, zmnd ölnirs priyodiliği orunur v priyodu dğişmz. Ölnmiş y( - işrinin Fourir srisi syılrı b olsun: jω jω b y( İngrld, τ - dğişn dönüşümü yplım., uzunluğu oln bir rlı dğişiyors τ d uzunluğu oln bir rlı dğişcir. O hld, b jω ( τ + jω τ dτ jω j (π / j (π / Yorum: olduğundn, b. FS τ jωτ dτ (Priyodi bir işr ölndiğind Fourir srisi syılrının gnliği dğişmz! Sürli-zmn Fourir Srisinin Özllilri FS FS Özlli (Zmnd rsin çvirm: x ( is, x ( İsp: Priyodi bir işr, zmnd rsin çvrilirs priyodiliği orunur v priyodu dğişmz. Fourir srisi çılımındn - işri x j π / ( şlind yzılbilir. oplmd, -m dğişn dönüşümü ypılırs x jm π / ( m m Son şili, - işrinin Fourir srisi çılımı olup çılımdi syılr - dır. Yorum: Bir sürli-zmn priyodi işr zmnd rsin çvrilirs, rşılı gln Fourir srisi syılrı d rsin çvrilir. O hld, çif işrlrin (- Fourir srisi syılrı çif ( -, işrlrini i ( - - olcır. Sürli-zmn Fourir Srisinin Özllilri FS FS Özlli (Zmnd ölçlm: x ( is, x ( α İsp: Priyodi bir işr, ölçlndiğind priyodu dğişir. nin ml priyodu v ml frnsıω π/ is, α nin ml priyodu /α v ml frnsı αω dır. nin Fourir srisi çılımınd yrinα yzılırs x j ( αω ( α Son şili, ml frnsıαω oln işrin Fourir srisi gösrilimi olup çılımdi syılr dır. Yorum: Bir sürli-zmn priyodi işri zmnd ölçlm Fourir srisi syılrını dğişirmz

10 ..5 Sürli-zmn Fourir Srisinin Özllilri Özlli (Zmnd ürv lm: FS x ( is, d FS π jω j İsp: Priyodi bir işrin ürvi lınırs yin priyodi olur v priyodu dğişmz. nin Fourir srisi çılımınd, şiliğin hr ii rfının y gör ürvi lınırs d d jω [ ] Son şili, ml frnsı ω π/ oln işrin Fourir srisi gösrilimi olup çılımdi syılr jω j(π/ olr görülmdir. Yorum: Bir sürli-zmn priyodi işrin ürvini lm, Fourir srisi syılrının hm gnliğini hm d fzını dğişirmdir. jω jω jω d 7 Özlli 5 (Prsvl ilişisi: Sürli-zmn Fourir Srisinin Özllilri * İsp:İngrld, x ( x ( yzıp, v x * ( için Fourir srisi gösrilimlrini ullnırs Köşli prnz içindi ingrli dh önc hsplmışı: * x ( * l l * jlω l l j( l ω O hld, son şili sonsuz n ingrl olmsın rğmn ingrllrin sonucu sdc l için, diğr l dğrlrind şiir. Sonuç olr, ii oplm bir oplmy indirgnir v l olur: * jω j( l ω,, l l 8 Sürli-zmn Fourir Srisinin Özllilri Prsvl İlişisinin Yorumu: Bir işri dğişi şillrd msil m slınd ilv bir bilgi vrmmdir. Bir bış çısınd gizli oln bir bilgi, diğr bir bış çısınd ory çıbilir. İşrin nrjisi ullnıln gösrilimdn bğımsızdır. Diğr bir dyişl, işrin nrjisini zmn vy frns uzyınd hsplm ynı sonucu vrmlidir. Diğr Özllilr: Sürli-zmn Fourir srisinin ispını vrmdiğimiz bş özllilri d vrdır. Diğr özllilrin ispı bnzr şild ypılbilir. Özllilrin ümü şğıdi blod lislnmişir. Özlli Priyodi İşr Fourir Srisi Ksyılrı Doğrusllı Zmnd ölm Frns ölm Eşlni lm Zmnd rsin çvirm Zmnd ölçlm Priyodi onvolüsyon Zmnd çrpm Sürli-zmn Fourir Srisinin Özllilri ω π / ml frnsı v y( ml priyodu il priyodi Ax ( + By( A + Bb jω j ( π / jm (π / M jmω α> ( /α il priyodi b x * ( * α x τ y( τ dτ ( b y( l l b l 9

11 ..5 Özlli Priyodi İşr Fourir Srisi Ksyılrı Zmnd ürv lm Zmnd ingrl lm Grçl işrlr için şlni simrili Grçl v çif işrlr Grçl v işrlr Grçl işrlrin çif- yrışırmsı Sürli-zmn Fourir Srisinin Özllilri dx ( x grçl grçl v çif grçl v çif jω Priyodi İşrlr için Prsvl İlişisi π j ( j ω j (π / x ( Ev{ } [ grçl] x ( Od{ } [ grçl] o * R{ } R{ } Im{ } Im{ } p p grçl v çif sf rmşı v çif R{ } jim{ } Sürli-zmn Fourir Srisinin Özllilri ÖRNEK: Sürli-zmn Fourir srisinin özllilrindn yrrlnr şğıd vriln g( işrinin ( il priyodi Fourir srisi syılrını bullım. ÇÖZÜM: g( işrini nliz dnlmind yrin oyr, Fourir srisi syılrını blirlybiliriz. Anc, g( işrini dh önc Fourir srisini hspldığımız priyodi simri r dlg cinsindn ifd dip sonucu bulcğız. Kr dlg v Fourir srisi syılrı, hırlm mcıyl şğıd vrilmişir: sin( ω, π Priyodi r dlg işrind v llım. Şillrdn, g( il rsındi ilişinin g( - / olduğu görülmdir. - işrinin Fourir srisi syılrı b olsun. Ölm özlliğindn, DC rimin (-/ Fourir srisi syılrı c olsun. DC işrin sıfırdn frlı bir Fourir srisi syısı vrdır:, c /, g( işrinin Fourir srisi syılrı d olsun. Doğrusllı özlliğindn Son ifdd yrin onulurs b d b + c jπ / jπ /, /, sin( π / jπ /, d π,

12 ..5 Sürli-zmn Fourir Srisinin Özllilri ÖRNEK: Sürli-zmn Fourir srisinin özllilrindn yrrlnr şğıd vriln işrinin ( il priyodi Fourir srisi syılrını bullım. ÇÖZÜM: Bu işrin ürvi, önci örn l lınn g( işrin şiir. g( v işrlrinin Fourir srisi syılrını sırsıyl d v il gösrlim. ürv özlliğindn, d d j( π / jπ İfd, için gçrlidir. d şiliyrin onulurs sin( π / jπ /, j( π, bir priyo boyunc nin lındi ln priyod bölünr ld dilbilir: x ( 5

Hafta 5: Periyodik İşaretlerin Fourier Serisi Gösterilimi

Hafta 5: Periyodik İşaretlerin Fourier Serisi Gösterilimi Hf 5: Priyodi İşrlrin Fourir Srii Görilimi El Alınc An Konulr LI imlrin rmşı ül işrlr ynıı Sürli-zmn priyodi işrlrin Fourir rii görilimi Fourir riinin yınlığı Sürli-zmn Fourir riinin özllilri LI Simlrin

Detaylı

Hafta 7: Sürekli-zaman Fourier Dönüşümü

Hafta 7: Sürekli-zaman Fourier Dönüşümü Hf 7: Sürli-zmn ourir Dönüşümü El Alınc An Konulr Sürli-zmn ourir dönüşümü Sürli-zmn priyodi işrlr için ourir dönüşümü Sürli-zmn ourir dönüşümünün özllilri Doğrusl, sbi syılı difrnsiyl dnlmlrl nımlnn sismlr

Detaylı

ELM207 Analog Elektronik

ELM207 Analog Elektronik ELM7 Alog Elkroik Giriş Bir Fourir srisi priyodik bir ) oksiyouu, kosiüs v siüslri sosuz oplmı biçimid bir çılımdır. ) cos b si ) Bşk dyişl, hrhgi bir priyodik oksiyo sbi bir dğr, kosiüs v siüs oksiyolrıı

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

Magnetic Materials. 4. Ders: Paramanyetizma-2. Numan Akdoğan.

Magnetic Materials. 4. Ders: Paramanyetizma-2. Numan Akdoğan. Mgntic Mtrils 4. Drs: Prmnytizm-2 Numn Akdoğn kdogn@gyt.du.tr Gbz Institut of Tchnology Dprtmnt of Physics Nnomgntism nd Spintronic Rsrch Cntr (NASAM) Kuntum mkniği klsik torinin özlliklrini dğiştirmdn,

Detaylı

BÖLÜM 4 LİNEER DİFERANSİYEL DENKLEM SİSTEMLERİ

BÖLÜM 4 LİNEER DİFERANSİYEL DENKLEM SİSTEMLERİ BÖLÜM LİNEER DİFERANSİYEL DENKLEM SİSTEMLERİ GİRİŞ Dnklm sismlrin linr cbir drsindn şin olmlısınız Anck bu ür dnklmlrd hrhngi bir difrnsiyl büyüklük vy ürv bulunmz Bşk bir dyişl cbirsl dnklm sismi, y (

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları... İÇİNDEKİLER Ön Söz... Mtris Cebiri... Elementer İşlemler... Determinntlr...7 Lineer Denklem Sistemleri...8 Vektör Uzylrı...6 Lineer Dönüşümler...48 Özdeğerler - Özvektörler ve Köşegenleştirme...55 Genel

Detaylı

Ç A L I Ş M A N O T L A R I. Sinyaller & Sistemler Fourier Serisi. Sinyallerin Zaman Frekans Analizleri : FOURIER TEORİSİ

Ç A L I Ş M A N O T L A R I. Sinyaller & Sistemler Fourier Serisi. Sinyallerin Zaman Frekans Analizleri : FOURIER TEORİSİ Siyllr & Sismlr Fourir Srisi Siyllri Zm Frks Alizlri : FOURIER EORİSİ Bu bölümd iibr işr işlm sigl procssig kvrm v yömlri ğilrk işrlri liz my çlışcğız. Özllikl bir işri rks bğlı dğişimii gösr lizi çok

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ LYS / MATEMATİK DENEME ÇÖZÜMLERİ Dnm. ^ h ^ h ^h ^^h h ^^h h. ^ h ^ h ^ h Cvp C m. ^ h ^ h Cvp C 9 9 9, ulunur.. Cvp A Cvp B. İfdlri trf trf topllım.. n n n _ n n,,,,, için ifd tmsı olur. 9 ulunur. ^ h

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

Hafta 8: Ayrık-zaman Fourier Dönüşümü

Hafta 8: Ayrık-zaman Fourier Dönüşümü Hafta 8: Ayrı-zama ourir Döüşümü El Alıaca Aa Koular Ayrı-zama ourir döüşümü Ayrı-zama priyodi işartlr içi ourir döüşümü Ayrı-zama ourir döüşümüü özllilri Doğrusal, sabit atsayılı far dlmlriyl taımlaa

Detaylı

ÇEKME ÇUBUKLARI VE ÇEKME ÇUBUKLARI EKLERİ

ÇEKME ÇUBUKLARI VE ÇEKME ÇUBUKLARI EKLERİ ÇEKME ÇUBUKARI VE ÇEKME ÇUBUKARI EKERİ Çeme çubulrı; Kfes Çubu Elemnlrı olr Çeli öprülerde, yol plformunun sıldığı hllrd, Büyü çılılı,özellile snyi ypılrınd, çerçevelerde ullnıln gergiler Şelinde yygın

Detaylı

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır?

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır? RAKAM Syılrı ifde etmek için kullndığımız 0,,2,3,4,5,6,7,8,9 sembollerine rkm denir. Örnek... :, b ve c birbirlerinden frklı birer rkmdır..b+9.b c en çok kçtır? DOĞAL SAYILAR N={0,,2,3...,n,...} kümesine

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

MATRİSLER. r r r A = v v v 3. BÖLÜM. a a L a. v r. a = M a. Matris L L L L. elemanları a ( i = 1,2,..., m ; j = 1,2,... n) cinsinden kısaca A = [ ]

MATRİSLER. r r r A = v v v 3. BÖLÜM. a a L a. v r. a = M a. Matris L L L L. elemanları a ( i = 1,2,..., m ; j = 1,2,... n) cinsinden kısaca A = [ ] 3. BÖLÜM 2 v r = M m v r 2 2 = 22 M m2 v r n n 2n = M mn MTRİSLER gibi n tne vektörün oluşturduğu, r r r = v v v [ L ] 2 n şeklindeki sırlnışın mtris denir. 2 nlitik Geometriden Biliyoruz ki : Mtris 2

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

POLİNOMLAR. Örnek: 4, 2, 7 polinomun katsayılarıdırlar. 5x, derecesi en büyük olan terim olduğundan. ifadelerine polinomun. der tür.

POLİNOMLAR. Örnek: 4, 2, 7 polinomun katsayılarıdırlar. 5x, derecesi en büyük olan terim olduğundan. ifadelerine polinomun. der tür. OLİNOMLAR o,,,... n, n birer reel syı, n bir doğl syı ve belirsiz bir elemn olmk üzere, o.. n n... n. n. biçimindeki ifdelere e göre düzenlenmiş reel ktsyılı ve bir belirsizli polinom denir. in bir polinomu,,r,t,k

Detaylı

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme SYISL ÇÖZÜMLEME Syısl Çözümleme SYISL ÇÖZÜMLEME Hft SYISL ÇÖZÜMLEMEDE HT KVRMI Syısl Çözümleme GİRİŞ Syısl nliz, mtemtik problemlerinin bilgisyr yrdımı ile çözümlenme tekniğidir Genellikle nlitik olrk

Detaylı

ÜSLÜ İFADELER VE ÜSTEL FONKSİYONLAR LOGARİTMA FONKSİYONU, ÜSTEL, LOGARİTMİK DENKLEM VE EŞİTSİZLİKLER

ÜSLÜ İFADELER VE ÜSTEL FONKSİYONLAR LOGARİTMA FONKSİYONU, ÜSTEL, LOGARİTMİK DENKLEM VE EŞİTSİZLİKLER BÖÜ ÜÜ İFD V Ü FOİO Üslü İfdlrd İşlmlr...7 Üslü Dnklmlr... Üstl Fonksiyon...7 ygulm stlri...5 BÖÜ OGİ FOİO, Ü, OGİİ D V ŞİİZİ ogritm Fonksiyonu...7 ogritm Fonksiyonunun Özlliklri...9 bn Dğiştirm...55 Üstl

Detaylı

BÖLÜM 3 : RASLANTI DEĞİŞKENLERİ

BÖLÜM 3 : RASLANTI DEĞİŞKENLERİ BÖLÜM : RASLANTI DEĞİŞKENLERİ (Rndom Vribles Giriş: Bölüm de olsılık fonksionu, denein örneklem uzını oluşurn sonuçlrın erimleri ile belirleniordu. Örneğin; iki zr ıldığınd, P gelen 6 olsı sırlı ikilinin

Detaylı

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir.

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir. ÜSTL DAĞILIM Tanım : X > olma üzr sürli bir rasgl dğişn olsun. ğr a > için X rassal dğişni aşağıdai gibi bir dağılıma sahip olursa X rasgl dğişnin üsl dağılmış rassal dğişn v onsiyonuna da üsl dağılım

Detaylı

İntegralin Uygulamaları

İntegralin Uygulamaları Bölüm İntegrlin Uygulmlrı. Aln f ve g, [, b] rlığındki her x için f(x) g(x) eşitsizliğini sğlyn sürekli fonksiyonlr olmk üzere y = f(x), y = g(x) eğrileri, x = ve x = b düşey doğrulrı rsındki S bölgesini

Detaylı

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER TEOG Tm Syılr ve Mutlk Değer TAMSAYILAR Eksi sonsuzdn gelip, rtı sonsuz giden syılr tm syılr denir ve tm syılr kümesi Z ile gösterilir. Z = {...,,, 1,0,1,,,... } Tmsyılr kümesi ikiye yrılır: ) Negtif Tmsyılr:

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

TYT / MATEMATİK Deneme - 2

TYT / MATEMATİK Deneme - 2 TYT / MTMTİK eneme -. 7 ^7h ^h $ bulunur. evp : 6. b b c 6 c 6, b ve c nin ritmetik ortlmsı O b c 6 bulunur.. y z y z ^ h $ bulunur. evp : 7. y çift ne olurs olsun çift syı olduğundn in yd çift olduğundn

Detaylı

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı,

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı, Rsyonel Syılr. Sınıf Mtemtik Soru Bnksı TEST. Aşğıdki bilgilerden hngisi ynlıştır? A) Rsyonel syılr Q sembolü ile gösterilir. B) Her tm syı bir rsyonel syıdır. şeklinde yzıln bütün syılr rsyoneldir. b

Detaylı

x ise x kaçtır?{ C : }

x ise x kaçtır?{ C : } İZMİR FEN LİSESİ LOGARİTMA ÇALIŞMA SORULARI LOGARİTMA FONKSİYONU. ( ) ( ) f m m m R C : fonksionunun m { ( 0,) } dim tnımlı olmsı için?.. f ( ) ( ) fonksionunun tnım kümsind kç tn tm sı vrdır?{ C : }.

Detaylı

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24.

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24. DENKLEM ÇÖZME + + = 0 + = 0 + = 0 + y = 0 İkinci dereceden ir ilinmeyenli denklemdir. İkinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden İki ilinmeyenli

Detaylı

V ort CEVAP: B CEVAP: E CEVAP: B CEVAP: A 3V CEVAP: D. 10. I- Doğru: 2t anında ikiside 4x konumundalar. Y A Y I N D E N İ Z İ CEVAP: C.

V ort CEVAP: B CEVAP: E CEVAP: B CEVAP: A 3V CEVAP: D. 10. I- Doğru: 2t anında ikiside 4x konumundalar. Y A Y I N D E N İ Z İ CEVAP: C. OU 7 OĞRUS HRT Çözümler TST 7-1 ÇÖÜMR 1. meleri ynıır ikisi e poziifir. er eğişirmeler nin +X nin X olup frklıır. X Orlm sür ir. 7. V or = yer eğişirme oplm zmn. 1 = = 1 & & 3 = 1. = = 3. - leri yöne.

Detaylı

Tanım : Merkezi orijin ve yarıçapı 1 birim olan çembere trigonometrik çember veya birim çember denir. y B(0,1) C(1,0)

Tanım : Merkezi orijin ve yarıçapı 1 birim olan çembere trigonometrik çember veya birim çember denir. y B(0,1) C(1,0) BÖLÜM TRİGONOMETRİ.. TRİGONOMETRİK BAĞINTILAR... BİRİM ÇEMBER Tnım : Merkezi orijin ve yrıçpı birim oln çembere trigonometrik çember vey birim çember denir. Trigonometrik çemberin denklemi + y dir.yni

Detaylı

b göz önünde tutularak, a,

b göz önünde tutularak, a, 3.ALT GRUPLAR Tnım 3.. bir grup ve G, nin boş olmyn bir lt kümesi olsun. Eğer ( ise ye G nin bir lt grubu denir ve G ile gösterilir. ) bir grup Not 3.. ) grubunun lt grubu olsun. nin birimi ve nin birimi

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır.

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır. gösterilir. MUTLAK DEĞER Syı doğrusu üzerinde syısının sıfır oln uzklığın in mutlk değeri denir ve ile B O A 0 OA = OB =, 0 =, < 0 olrk tnımlnır. < 0 < y için y = y işleminin eşitini bulunuz. < 0 için

Detaylı

LYS 2016 MATEMATİK ÇÖZÜMLERİ

LYS 2016 MATEMATİK ÇÖZÜMLERİ LYS 06 MATEMATİK ÇÖZÜMLERİ 6.. 5. 5. ( ) 8 6 65 buluruz. 5. 5 5 Doğru Cevp: C Şıkkı 8 7 ()... 9 buluruz. Doğru Cevp : D Şıkkı 9 8 8 9 8 9 8 9 9 9 9 9 8 buluruz. 8 8 8 8 8 Doğru Cevp : A Şıkkı (n )! (n

Detaylı

Pontiklerin altında hacim koruma

Pontiklerin altında hacim koruma Pontilrin ltınd hcim orum Gitlich Biomtril ürünlri il - Sırt Korum çözümlri Dh fzl bilgi için www.gitlich-biomtril.com Sırt Korum - Bitç Sırt orum diş çimi onrı lvolr ırtın ontürünü orum için uygulnn bir

Detaylı

Cebir Notları Mustafa YAĞCI, Eşitsizlikler

Cebir Notları Mustafa YAĞCI, Eşitsizlikler www.mustfygci.com.tr, 4 Cebir Notlrı Mustf YAĞCI, ygcimustf@yhoo.com Eşitsizlikler S yılr dersinin sonund bu dersin bşını görmüştük. O zmnlr dın sdece birinci dereceden denklemleri içeren mnsınd Bsit Eşitsizlikler

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

Üslü İfadelerde İşlemler (Temel Kurallar) - Çalışma Kağıdı Ortaokul Matematik Kafası $ = k) 81 $ 243 = Kerim Hoca. p) 125 $ 625 = w) 3

Üslü İfadelerde İşlemler (Temel Kurallar) - Çalışma Kağıdı Ortaokul Matematik Kafası $ = k) 81 $ 243 = Kerim Hoca. p) 125 $ 625 = w) 3 .Sınıf Mtemtik ÜSLÜ İFADELER Yyın No : / Kznım :... + Üssün Üssü ve Sırlm Bir üslü ifdenin üssü lındığınd üsler çrpılır.. Alıştırmlr Aşğıdki işlemlerin sonuçlrını üslü biçimde yzınız. y ^ h y ) ^ h b)

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

II. DERECEDEN DENKLEMLER

II. DERECEDEN DENKLEMLER ünite DEEEDE DEKEME Dereceden Denklemler TEST 0 x x + = 0 denkleminin kökleri x ve x dir 6 x + x + x işleminin sonucu kçtır? ) B) ) D) E) x + bx + = 0 x - denkleminin reel syılrdki çözüm kümesi bir elemnlı

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı Ankr Üniversitesi Mühendislik Fkültesi, Fizik Mühendisliği Bölümü FZM207 Temel ElektronikI Doç. Dr. Hüseyin Srı 2. Bölüm: Dirençli Devreler İçerik Temel Yslrın Doğrudn Uygulnışı Kynk Gösterimi ve Dönüşümü

Detaylı

3.4 İşlem. 3.4.1 İşlem Kavramı. Etkinlik 3.53. Etkinlik 3.52

3.4 İşlem. 3.4.1 İşlem Kavramı. Etkinlik 3.53. Etkinlik 3.52 . İşlm.. İşlm Kvrmı Etkinlik.5 A,,, B,, v C,,5, kümlri vriliyor.. AxB kümsini yzınız.. AxB n C y f ğıntısı f x, y x il y n, küçük olmynı içimin tnımlnıyor. AxB f C f ğıntısını ynki gii ir Vnn şmsı il göstriniz.

Detaylı

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1 YGS-YS GOMTRİ ÖZT ÇÖZÜMRİ TST 1 1. 1. y 1 1 + 1 1ʺ 1 1ʹ 17 0ʹ 1 1ʹ ʹ + ʹ 1ʺ ʹ + ʹ 1ʺ 7 0ʹ 1ʺ 0 0ʹ 1ʺ bulunur. 1 y < + 1 y dir. y < 7 + 1 < 7 0 < < 1 in en büyü tm syı değeri 17 in en üçü tm syı değeri

Detaylı

TG 2 ÖABT İLKÖĞRETİM MATEMATİK

TG 2 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlerin her hı slıdır. Hngi mçl olurs olsun, testlerin tmmının vey ir ısmının

Detaylı

TG 1 ÖABT İLKÖĞRETİM MATEMATİK

TG 1 ÖABT İLKÖĞRETİM MATEMATİK KAMU PESONEL SEÇME SINAI ÖĞETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞETİM MATEMATİK ÖĞETMENLİĞİ TG ÖABT İLKÖĞETİM MATEMATİK Bu testlerin her hı slıdır. Hngi mçl olurs olsun, testlerin tmmının vey bir ısmının İhtiyç

Detaylı

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma DERS NOTU 01 Son Hli Değildir, tslktır: Ekleme ve Düzenlemeler Ypılck BİR SOSYAL BİLİM OLARAK İKTİSAT VE TEMEL KAVRAMLAR 1 Bugünki dersin işleniş plnı: 1. Değişkenler ve Eğriler: Mtemtiksel Htırltm...

Detaylı

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır?

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır? 987 ÖSS. Yukrıdki çıkrm işlemine göre, K+L+M toplmı şğıdkilerden hngisine dim eşittir? A) M B) L C) K M K 5. 4 işleminin sonucu kçtır? A) 0 B) C) 5 4 5. Aşğıdki toplm işleminde her hrf sıfırın dışınd fklı

Detaylı

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7. MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, gdemir@yhoo.com.tr 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :, b, R ve 0 olmk üzere denklem denir. b = 0 denklemine, ikini dereeden bir bilinmeyenli Bu denklemde, b, gerçel syılrın

Detaylı

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS LİMİT VE SÜREKLİLİK KONU ÖETLİ ÇÖÜMLÜ SORU BANKASI ANKARA İÇİNDEKİLER Limit Kvrmı ve Grfik Sorulrı... Limitle İlgili Bzı Özellikler...7 Genişletilmiş Reel Sılrd Limit... Bileşke Fonksionun Limiti...

Detaylı

a üstel fonksiyonunun temel özellikleri şunlardır:

a üstel fonksiyonunun temel özellikleri şunlardır: 1 Üstel Fonksiyon: >o, 1 ve herhngi bir reel syı olmk üzere f: fonksiyon denir. R fonksiyonun üstel R, f()= 1 2, f()= ve f()= f()= gibi tbnı sbit syı (pozitif ve 1 den frklı) ve üssü 4 değişken oln bu

Detaylı

Yalıtkan İnce Filmlerin Morlet Dalgacığı ile Optik Analizinin Yapılması. Prof.Dr. Serhat ÖZDER OCAK 2012

Yalıtkan İnce Filmlerin Morlet Dalgacığı ile Optik Analizinin Yapılması. Prof.Dr. Serhat ÖZDER OCAK 2012 Ylıtn İnce Filmlerin Morlet Dlgcığı ile Opti Anlizinin Ypılmsı Prof.Dr. Serht ÖZDER sozder@comu.edu.tr OCAK İçeri. Ylıtn film için geçirgenli sinylinin (T( elde edilmesi.. n=sbit T(=?, Fourier Dönüşümü.

Detaylı

RASYONEL SAYILAR. ÖRNEK: a<0<b<c koşulunu sağlayan a, b, c reel sayıları. tan ımsız. belirsiz. basit kesir

RASYONEL SAYILAR. ÖRNEK: a<0<b<c koşulunu sağlayan a, b, c reel sayıları. tan ımsız. belirsiz. basit kesir RASYONEL SAYILAR 0 ve, Z olmk üzere şeklindeki syılr rsyonel syı denir. 0 0 tn ımsız 0 0 elirsiz 0 sit kesir ileşik kesir Genişletilerek vey sdeleştirilerek elde edilen kesirlere denk kesirler denir. Sıfır

Detaylı

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR Vektörler zr rd.doç.dr.nevin MAHİR ÜNİTE 3 Amçlr Bu üniteyi çlıştıktn sonr; Düzlemde vektör kvrmını öğrenecek, İki vektörün eşitliği, toplmı, doğrusl bğımlılığı ile bir vektörün bir gerçel syı ile çrpımı,

Detaylı

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000. Bir stıcı, elindeki mlın önce

Detaylı

İKİ DEĞİŞKENLİ ARİTMETİK FONKSİYONLAR. Funda ÇETİN YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HAZİRAN 2007 ANKARA

İKİ DEĞİŞKENLİ ARİTMETİK FONKSİYONLAR. Funda ÇETİN YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HAZİRAN 2007 ANKARA İKİ DEĞİŞKENLİ ARİTMETİK FONKSİYONLAR Fund ÇETİN YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HAZİRAN 2007 ANKARA iv İKİ DEĞİŞKENLİ ARİTMETİK FONKSİYONLAR (Yüksek Lisns Tezi)

Detaylı

c

c Mtemt ık Ol ımp ıytı Çlışm Sorulrı c www.sbelin.wordpress.com sbelinwordpress@gmil.com Bu çlışm kğıdınd mtemtik olimpiytlrı sınvlrın hzırlnn öğrenciler ve öğretmenler için hzırlnmış sorulr bulunmktdır.

Detaylı

Çözüm Kitapçığı Deneme-5

Çözüm Kitapçığı Deneme-5 KMU PERSONEL SEÇME SINVI ÖĞRETMENLİK LN İLGİSİ TESTİ İLKÖĞRETİM MTEMTİK ÖĞRETMENLİĞİ 7-9 ŞUT 7 Çözüm Kitpçığı Deneme- u testlerin her hı slıdır. Hngi mçl olurs olsun, testlerin tmmının vey ir ısmının Merezimizin

Detaylı

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 PROBLEMLER İÇİNDEKİLER Syf No Test No ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 SAYI PROBLEMLERİ... 299-314... 01-08 YAŞ PROBLEMLERİ...

Detaylı

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır. LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden

Detaylı

formundadır. Burada verilen bir f fonksiyonu F fonksiyonuna dönüşür ve F fonksiyonuna f in fonksiyon dönüşümü denir. K(s,t) ye çekirdek denir.

formundadır. Burada verilen bir f fonksiyonu F fonksiyonuna dönüşür ve F fonksiyonuna f in fonksiyon dönüşümü denir. K(s,t) ye çekirdek denir. LPLCE DÖNÜŞÜMÜ Lpl dönüşümü yrdımı il ğ rflı difrniyl dnklmin ğ rfınd bulunn fonkiyonun ürkliliği bozul bil(bmk,impul fonkiyonu) difrniyl dnklmlr çözülbilkir. Bu ip dnklmlrl lkrik imlrini çözrkn krşılşılır.

Detaylı

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında ORAN ORANTI syısının 0 dn frklı oln b syısın ornı :b vey olrk gösterilir. b İki vey dh fzl ornın eşitlenmesiyle oluşn ifdeye orntı denir. b =c d ifdesine ikili orntı denir. Bir orntı orntı sbitine eşitlenerek

Detaylı

TEST 9-1 KONU YERYÜZÜNDE HAREKET. Çözümlerİ ÇÖZÜMLERİ

TEST 9-1 KONU YERYÜZÜNDE HAREKET. Çözümlerİ ÇÖZÜMLERİ KOU 9 RÜÜ HRKT Çözümler TST 9- ÇÖÜMLR. B ml de işken, değişirdiğimiz değişken sonucu değişendir. Cismin yere ulşm süresi bğımlı değişkendir. 6. Cisimler ynı ivme ile reke eiğinden ız-zmn rfiklerindeki

Detaylı

2009 Soruları. c

2009 Soruları. c Hırvt ıstn Ulusl Mtemt ık Ol ımp ıytı Tkım Seçme Sınvı Geometr ı 2009 Sorulrı c www.sbelin.wordpress.com sbelinwordpress@gmil.com Hırvtistn d ypıln 2009 yılı TST yni Tkım Seçme Sınvın it geometri sorulrı

Detaylı

DENEY 2 Wheatstone Köprüsü

DENEY 2 Wheatstone Köprüsü 0-05 Güz ULUDĞ ÜNİESİTESİ MÜHENDİSLİK FKÜLTESİ ELEKTİK-ELEKTONİK MÜHENDİSLİĞİ ÖLÜMÜ EEM0 Elektrik Devreleri Lorturı I 0-05 DENEY Whetstone Köprüsü Deneyi Ypnın Değerlendirme dı Soydı : Deney Sonuçlrı (0/00)

Detaylı

TEST 1 ÇÖZÜMLER NEWTON IN HAREKET YASALARI

TEST 1 ÇÖZÜMLER NEWTON IN HAREKET YASALARI TEST 1 ÇÖZÜMER NEWTON IN HAREET ASAARI 1 P P 3 3 1 (/s) Şekil-I Şekil-II Şekil-III Or sürünesiz olduğundn kuvve ile ive doğru ornılıdır Bu durud, 3 3 P olur Bun göre, > P olur CEAP B ESEN AINARI 6 - grfiğinin

Detaylı

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik)

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik) ÜÇGN LN Üçgende ln Şekilde verilen üçgeninde,, üçgenin köşeleri, [], [], [] üçgenin kenrlrıdır. c b üçgeninin kenrlrı dlndırılırken, her kenr krşısınd bulunn köşenin hrfi ile isimlendirilir. üçgeninin

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 19 Haziran Matematik Soruları ve Çözümleri

Lisans Yerleştirme Sınavı 1 (Lys 1) / 19 Haziran Matematik Soruları ve Çözümleri Lisns Yerleştirme Sınvı (Lys ) / 9 Hzirn Mtemtik Sorulrı ve Çözümleri. (x )(x + ) + (x )(x ) eşitliğini sğlyn x gerçel syılrının toplmı kçtır? A) B) C) 5 D) 6 5 E) 6 7 Çözüm (x )(x + ) + (x )(x ) (x ).[(x

Detaylı

Sistem Dinamiği ve Modellemesi

Sistem Dinamiği ve Modellemesi 8..0 Sit Diiği v Modlli Doğrul Sitlri Z Dvrışı II. Mrtbd Gili Sitlr Giriş: Sit diiği çözülid, frlı fizil özllilr tşıy doğrul itlri rtritilrii blirly tl bğıtılr rıd bzrli (oloji) urulbili ouud itlri blirli

Detaylı

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir.

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir. FONKSİYONLAR Boş kümeden frklı oln A ve B kümeleri verildiğinde, A kümesindeki her elemnı B kümesindeki ir elemn krşı getiren ğıntıy A dn B ye fonksiyon denir. y=f(x) ile gösterilir. Bir diğer ifdeyle

Detaylı

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır.

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır. LİNEER CEBİR MTRİSLER: i,,,...,m ve j,,,..., n için ij sılrının. m m...... n n mn şeklindeki tblosun mn tipinde bir mtris denir. [ ij ] mn şeklinde gösterilir. m stır, n sütun sısıdır. 5 mtrisi için ;

Detaylı

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra;

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra; MATEMATİK Üslü Syılr Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK 5.Hft Hedefler Bu üniteyi çlıştıktn sonr; Gerçel syılrd üslü işlemler ypbilecek, Üslü denklem ve üslü eşitsizlikleri çözebileceksiniz.

Detaylı

2.I. MATRİSLER ve TEMEL İŞLEMLER

2.I. MATRİSLER ve TEMEL İŞLEMLER Nzım K. Ekinci Mtemtiksel İktist Notlrı.I. MTRİSLER ve TEMEL İŞLEMLER Tnım.. Mtris. şğıdki gibi stırlr ve sütunlr biçiminde sırlnmış reel syı tblolrın mtris denir............. n n n... mtrisinin n stırı

Detaylı

BÖLÜM 5: RADYOAKTİF BOZUNMA

BÖLÜM 5: RADYOAKTİF BOZUNMA BÖLÜM 5: RADYOAKTİF BOZUMA Urnyum ve ıryum içeren doğl minerllerin rdyokif ozunumlrı, nükleer fizik çlışmlrının şlmsınd üyük rol oynmışlrdır. Dh kıs yrı-ömürlü çekirdekler ozunrk yok olduklrındn ugün sdece

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =?

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =? Lisns Yerleştirme Sınvı (Ls ) 6 Hirn Mtemtik Sorulrının Çöümleri 8 sı tnınd verilen ( ) 8 sısının sı tnınd ılışı? Bu durumd ( ) 8 sısı önce tnın çevrilir Sonr tnınd ılır ( ) 8 8 8 8 Bun göre ( ) 8 ( )

Detaylı

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1 YGS-YS GOMTRİ ÖZT ÇÖZÜMRİ TST 1 1. ʹ. y 1 1 1ʹ y < + 1 y dir. m ^ h olsun. + 1. 1 + 1 1 17 0 17 0 1 1 olur. + + y < 7 + 1 < 7 0 < < 1 in en büyü tm syı değeri 17 in en üçü tm syı değeri + 17 7 bulunur.

Detaylı

(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin

(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin 4 () ve (bb) iki bsmklı syılr, () ve 1 x=15! +1 y=15!+16 olmk üzere, (bbb) üç bsmklı syılrdır x ile y rsınd kç tne sl syı vrdır? A)0 B)1 C) D) 3 E) 4 b + bb + bbb = 6 olduğun göre, b çrpımı en çok kçtır?

Detaylı

SAYILAR DERS NOTLARI Bölüm 2 / 3

SAYILAR DERS NOTLARI Bölüm 2 / 3 Örnek : 4 10 tbnindki (3 + 3 + 3 + 3) syisinin üç tbnindki yzilisi sgidkilerden hngisidir? A)10110 B)10001 C)1001 D)100011 E) 1100 4 (3 + 3 + 3 4 + 3) = 1 3 + 3 3 1 0 + 0 3 + 1 3 + 1 3 + 0 3 Burdn ( 10110)

Detaylı

Ele Alınacak Ana Konular. Hafta 2 İşaretler ve Sistemler. Ayrık-zaman impuls ve birim basamak dizileri

Ele Alınacak Ana Konular. Hafta 2 İşaretler ve Sistemler. Ayrık-zaman impuls ve birim basamak dizileri 08.0.05 Ele Alıc A Koulr Süreli-zm ve rı-zm işreler Bğımsız değişei döüşürülmesi Hf İşreler ve Sisemler Üsel ve siüzoidl işreler İmpuls ve birim bsm fosiolrı Süreli-zm ve rı-zm sisemler Sisemleri emel

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI EGE BÖLGESİ OKULLAR ARASI 7. MATEMATİK YARIŞMASI. SINIF TEST SORULARI. + işleminin sonucu kçtır? 5 5 A) 0 B) 0 C) 0 7 D) 0 9 E). y = x x + prbolünün y = x doğrusun en ykın noktsının koordintlrı toplmı

Detaylı

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM YILLAR 00 003 004 00 006 007 008 009 00 0 ÖSS-YGS - - - - - - - ASAL SAYILAR ve kendisinden bşk pozitif böleni olmyn den büyük tmsyılr sl syı denir Negtif ve ondlıklı syılr sl olmz Asl syılrı veren bir

Detaylı

www.ortokulmtemtik.org BİR BİLİNMEYENLİ DENKLEMLER İçerisinde en z bir bilinmeyen bulunn eşitliklere denklem denir. Denklemde semboller y d hrfler ile gösterilen değişkenlere bilinmeyen denir. Denklemde

Detaylı

BÖLÜM 2- HATA VE HATA KAYNAKLARI SORULAR ÇÖZÜMLER & MATLAB PROGRAMLAMA

BÖLÜM 2- HATA VE HATA KAYNAKLARI SORULAR ÇÖZÜMLER & MATLAB PROGRAMLAMA Dpartmnt o Mchanical Enginring MAK 0 MÜHENDİSLİKTE SAYISAL YÖNTEMLER BÖLÜM - HATA VE HATA KAYNAKLARI SORULAR ÇÖZÜMLER & MATLAB PROGRAMLAMA Doç. Dr. Ali Rıza YILDIZ Arş. Gör. Emr DEMİRCİ 7.0.0 7.0.0 MAK

Detaylı

Sistem Dinamiği ve Modellemesi. Doğrusal Sistemlerin Sınıflandırılması Doğrusal Sistemlerin Zaman Davranışı

Sistem Dinamiği ve Modellemesi. Doğrusal Sistemlerin Sınıflandırılması Doğrusal Sistemlerin Zaman Davranışı Sim Dinmiği v Modllmi Doğrul Simlrin Sınıflndırılmı Doğrul Simlrin Zmn Dvrnışı Giriş: Sim dinmiği çözümlmind, frklı fizikl özlliklr şıyn doğrul imlrin krkriiklrini blirlyn ml bğınılr rınd bnzrlik noloji

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 27 Kasım Matematik Sorularının Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 27 Kasım Matematik Sorularının Çözümleri Akdemik Personel ve Lisnsüstü Eğitimi Giriş Sınvı ALES / Sonbhr / Syısl I / 7 Ksım 011 Mtemtik Sorulrının Çözümleri 1 1 1 1. 1. + + 1 1. + 3 6 1 3 1 + 3 6 3 1. + + 1 1 1 6+ + 3 1. 1 13 1. 1 13. 5.10 +

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

MUTLAK DEĞER. a ε R olmak üzere; Mutlak Değer MATEMATĐK ĐM YILLAR 2002 203 2004 2005 2006 2007 2008 2009 2010 2011 14) GENEL ÖRNEKLER.

MUTLAK DEĞER. a ε R olmak üzere; Mutlak Değer MATEMATĐK ĐM YILLAR 2002 203 2004 2005 2006 2007 2008 2009 2010 2011 14) GENEL ÖRNEKLER. Mutlk Değer YILLAR 4 6 8 9 1 11 ÖSS-YGS - - - 1 - - 1 - - 1/1 MUTLAK DEĞER ε R olmk üzere;, -, ise < ise ve b reel syı olmk üzere; 1) dır Eğer ise dır ) 14) + n n Z olmk üzere dır 1) f ( ) > g( ) f ( )

Detaylı

Prizmatik Katsayıyı Değiştirmek için 1 Eksi Prizmatik Yöntemi

Prizmatik Katsayıyı Değiştirmek için 1 Eksi Prizmatik Yöntemi 4... rizmtik Ktsyıyı Değiştirmek için 1 Eksi rizmtik Yöntemi Verilen bir gemi ile ynı n boyutlr ve orm özelliklerine sip oln bir gemiye it tekne ormundn reket ederek LB konumu sbit klck vey istenen bir

Detaylı

2011 RASYONEL SAYILAR

2011 RASYONEL SAYILAR 011 RASYONEL SAYILAR AKDENİZ ÜNİVERSİTESİ 06.01.011 A.Tnım 3 B.Kesir 3 C.Kesir çeşitleri 3 1.Bsit kesirler 3.Birleşik kesirler 3 3. Tm syılr 3 D.Rsyonel syılrı sırlm 4 E.Rsyonel syılrd işlemler 5 1.Rsyonel

Detaylı

basit cebirsel denkleminin geçerli olduğunu varsayalım. denklemine ait İAD. çıkış düğümüne olan ve kazancı a

basit cebirsel denkleminin geçerli olduğunu varsayalım. denklemine ait İAD. çıkış düğümüne olan ve kazancı a İşret Aış Drmlrı: İşret Aış Drmlrı (İAD), blo drmlrın bstleştrlmş hl olr örüleblr. Ft, İAD fzsel örünüş ve mtemtsel urllr bğlılı ısındn zım urllrı dh serbest oln blo drmlrındn frlıdır. Blo drmlrı, rmşı

Detaylı

ÜNITE. Dörtgenler ve Çokgenler. Dörtgenler Test Dikdörtgen Kare Test Dörtgenler Test Dikdörtgen Kare Test

ÜNITE. Dörtgenler ve Çokgenler. Dörtgenler Test Dikdörtgen Kare Test Dörtgenler Test Dikdörtgen Kare Test ÜNIT örtgenler ve Çogenler örtgenler Test -... örtgenler Test -... örtgenler Test -... Ymu Test -... Ymu Test -... Ymu Test -... Ymu Test -... Ymu Test -... Ymu Test -...0 Prlelenr şenr örtgen Test -...

Detaylı

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında ORAN ORANTI syısının 0 dn frklı oln b syısın ornı :b vey olrk gösterilir. b İki vey dh fzl ornın eşitlenmesiyle oluşn ifdeye orntı denir. b =c d ifdesine ikili orntı denir. Bir orntı orntı sbitine eşitlenerek

Detaylı

BAĞIMSIZ UYARILMIŞ DC MOTOR DENEY 325-06

BAĞIMSIZ UYARILMIŞ DC MOTOR DENEY 325-06 İNÖNÜ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİKELEKTRONİK MÜH. BÖL. 35 ELEKTRİK MAKİNALARI LABORATUVARI I BAĞIMSIZ UYARILMIŞ DC MOTOR DENEY 3506. AMAÇ: Bğımsız uyrılmış DC motorun moment/hız ve verim

Detaylı

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır?

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır? 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000 6. Bir lstik çekilip uztıldığınd

Detaylı

a 4 b a Cevap : A Cevap : E Cevap : C

a 4 b a Cevap : A Cevap : E Cevap : C TYT / TETİK Deneme - 8., 8 - - - - 8-8 - & - - $ c- m + 5 5 0 0 -. 5 5 $ 75. 5 75 89 5 75 5-9 ^5-9h$ ^5 + 9h 5 ^5-9h$ ^5+ 9h $ 7 evp : 5.. 00 + 0 + 00 + 0 + + 00 + 0 + ( + + ) 55 - - 0 & - 0 & olmlıdır.

Detaylı

6 DC Motorlar. Harici Uyartımlı DC Motor. E a - I V / R K K. i a =i L R a. i f. R f. f f f. a a ind. a a a a a. Tind. ind

6 DC Motorlar. Harici Uyartımlı DC Motor. E a - I V / R K K. i a =i L R a. i f. R f. f f f. a a ind. a a a a a. Tind. ind 6 DC Motorlr Hrici Uyrtımlı DC Motor i + i =i L R V R E V - V / R K (1) E K E V R (2) K E V R K K K V R (4) K K 2 ( 3) E 1 6 DC Motorlr Hrici Uyrtımlı DC Motor Eğer endüvide üklenen gerilim (E ) ormülünde

Detaylı

Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Dişli Takımları Elektromekaniksel Sistemler. Ders #5

Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Dişli Takımları Elektromekaniksel Sistemler. Ders #5 Dr #5 Ooik onrol Fizikl Silrin Modllni Dişli Tkılrı Elkroknikl Silr Prof.Dr.Glip Cnvr 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr Mknikl Silrin Trnfr Fonkiyonlrı Dişli Tkılrı Vili biikllri düşünli. Yokuş

Detaylı