f 1 (H ) T f 1 (H ) = T

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "f 1 (H ) T f 1 (H ) = T"

Transkript

1 Bölüm 15 TIKIZLIK 15.1 TIKIZ UZAYLAR Problemler 1. Her sonlu topolojik uzay tkzdr. 2. Ayrk bir topolojik uzayn tkz olmas için gerekli ve yeterli ko³ul sonlu olmasdr. 3. Ayn bir küme üzerinde S T ko³ulunu sa layan iki topoloji verilsin. E er (X, T ) tkz ise (X, S) de tkzdr. Çözüm: (X, S) uzaynn her açk örtüsü ayn zamanda (X, T ) uzaynn da bir örtüsüdür. Tkz oldu u için, bu örtünün, (X, T ) uzaynda sonlu bir alt örtüsü vardr. Bu alt örtü, (X, S) nin de sonlu bir örtüsüdür. Bunun kar³t genel olarak geçersizdir. Örne in, [0, 1] aral üzerindeki salt topolojiye S, ayrk topolojiye ise A diyelim. S A dr. ([0,1], S nin tkz oldu unu biliyoruz. Ama ([0, 1], A) tkz de ildir. 4. (X, S) ve (X, T ) uzaylar tkz ise ya S = T dir ya da mukayese edilemezler; yani birisi ötekinden ince ya da kaba de ildir. [Tkz uzayn Hausdorrf oldu unu kabul ediyoruz.] Çözüm: S T oldu unu varsayalm. I : (X, T ) (X, S) özde³lik dönü³ümü bbö ve süreklidir. O halde bir topolojik e³yap dönü³ümüdür. Dolaysyla, T = S olacaktr. 5. X saylamaz sonsuz bir küme olsun Bu küme üzerinde C = {T : ya T sonludur ya da T = X} (15.1) ailesi bir topolojidir. Buna Saylabilir Tümleyenler Topolojisi denilir. Bir alt-kümenin bu topolojiye göre tkz olmas için sonlu olmas gerekli ve yeterlidir. 149

2 150 BÖLÜM 15. TIKIZLIK Çözüm: Sonlu alt-kümelerin tkz olaca açktr. Kar³t olarak, sonlu olmayan bir kümenin tkz olamayaca n gösterelim. Her hangi bir A = {a 1,a 2,...,a n,...} saylabilir sonsuz kümesini dü³ünelim. Her n = 1,2,...,n,...) içina n = A {a 1,a 2,...,a n } kümesi açktr; çünkü A C ve{a 1,a 2,...,a n } C dir. Kolayca görülece i gibi A n n=1 A n dir; yani {A n : n N} ailesi A nn açk bir örtüsüdür. Bu örtüden sonlu bir alt-örtü seçilemez. O halde A tkz de ildir. Demek ki saylabilr sonsuz kümeler, Saylabilir Tümleyenler Topolojisine göre tkz olamazlar. Her sonsuz kümeden saylabilir bir alt küme seçilebilece ine göre, sonsuz kümeler de Saylabilir Tümleyenler Topolojisine göre tkz olamazlar. 6. Bir X kümesi üzerinde bir Hausdor topolojisi tkz bir topolojiden daha kaba olamaz. (Ba³ka bir deyi³le bir X kümesi üzerinde tkz bir topoloji bir Hausdor topolojisinden ince olamaz.) Çözüm: (X, T ) tkz uzay, (Y, H ) Hausdorf uzay olmak üzere H T oldu unu varsayalm. Bu varsaym altnda H T olacaktr; yani H topolojisinde kapal olan her küme T topolojisinde de kapal olmaldr. Kar³t olarak T topolojisinde tkz olan her küme H topolojisinde de tkz olacaktr. Ayrca, Teorem uyarnca, tkz bir uzayda bir alt kümenin tkz olmas için kapal olmas gerekli ve yeterlidir. Bütün bunlar bir araya getirirsek ³öyle diyebiliriz: A T A kümesi T topolojisine göre tkzdr A kümesi H topolojisine göre tkzdr A kümesi H topolojisine göre kapaldr A H O halde T H dür; yani T topolojisinde kapal olan her küme H topolojisinde de kapaldr. Öyleyse H = T olmaldr. 7. Q (R Q) = dir, ama Q (R Q) = R dir. 8. Q uzay ve Q = (R Q) uzay ayrlabilir iki uzaydr. Dolaysyla kinci Saylabilme Aksiyomunu sa larlar. 9. [0, 1] Q tamamen snrldr, ama tkz de ildir PROBLEMLER 1. Gerçel eksenin açk ya da yar-açk hiçbir aral nn tkz olmad n gösteriniz. Çözüm:

3 15.1. TIKIZ UZAYLAR 151 (a) {( n,+n) : n N} ailesi R gerçel saylar kümesinin açk bir örtüsüdür. Ama bu örtüden sonlu bir alt örtü seçilemez. Öyleyse, R gerçel saylar kümesi tkz de ildir. (b) {( 1 n,1) : n N} ailesi (0,1) aral nn açk bir örtüsüdür. Ama bu örtüden sonlu bir alt örtü seçilemez. Öyleyse, (0, 1) açk aral tkz de ildir. 2. (X, T ) tkz uzaynda, tkz iki alt-kümenin bile³iminin ve arakesitinin tkz oldu unu gösteriniz. Çözüm: (X, T ) uzayn tkz kabul etmekle onun Hausdor oldu unu kabul ediyoruz. Teorem uyarnca, tkz uzayn tkz alt kümeleri kapaldr. A,B X alt kümeleri tkz ise kapaldrlar. O halde A B bile³imi ve A B arakesiti kapal kümelerdir. A B bile³iminin bir açk örtüsü U olsun. X A B açk oldu undan U (X A B) ailesi X uzaynn açk bir örtüsüdür. O halde sonlu bir alt örtüsü seçilebilir. Bu sonlu örtüden X A B kümesini atarsak, geri kalan aile A B arakesitinin sonlu bir örtüsü olacaktr. A B arakesitinin tkzl n göstermek için de benzer dü³ünceyi uygulayabiliriz. A B arakesitinin bir açk örtüsü V olsun. X A B açk oldu undan V (X A B) ailesi X uzaynn açk bir örtüsüdür. O halde sonlu bir alt örtüsü seçilebilir. Bu sonlu örtüden X A B kümesini atarsak, geri kalan aile A B arakesitinin sonlu bir örtüsü olacaktr. Uyar: Bu kitapta tkzms (quasicompact) Hausdor uzaylarna tkz (compact) uzay diyoruz. Baz kaynaklar, Hausdor olma ko³ulunu koymaz. O durumda, yukardaki ispat geçersiz olur; çünkü tkz alt-kümelerin kapal olmas ancak Hausdor uzaylarnda geçerlidir. 3. Sonsuz bir küme, kendi üzerindeki Sonlu Tümleyenler Topolojisine göre tkzdr. Neden? Çözüm: (X, S) sonlu tümleyenler (conite) topolojisi olsun. O = {U ı : U ı S,ı I} bir açk örtü olsun. Bu örtüden rasgele bir U 0 O açk kümesini seçelim. Bunun tümleyeni sonludur; yani U 0 = {x 1,x 2,...,x n } olur. U 0 tümleyenine ait her x i noktasn içeren bir U i O seçilebilir. Böylece, X = n i=0 U i olacaktr. 4. Ayrk topolojiye göre bir kümenin tkz olmas için gerekli ve yeterli ko³ul sonlu olmasdr. Neden? Çözüm: (X, A) ayrk uzay olsun. Her x X için tek ö eli {x} kümesi açktr. O halde, X = {{x} : x X} oldu undan O = {{x} : x X} açk bir örtüdür. Bu örtüden sonlu bir alt örtü seçilebilmesi için X kümesinin sonlu olmas gerekli ve yeterlidir. 5. Saylabilir Tümleyenler Topolojisine göre bir alt-kümenin tkz olmas için gerekli ve yeterli ko³ul sonlu olmasdr. Neden?

4 152 BÖLÜM 15. TIKIZLIK Çözüm: (X, T ) uzay verilsin. T nin Saylabilir Tümleyenler Topolojisi oldu unu varsayalm. X içindeki sonlu alt-kümelerin tkz olaca açktr. Kar³t olarak, sonlu olmayan bir kümenin tkz olamayaca n gösterelim. Her hangi bir A = {a 1,a 2,...,a n,...} saylabilir sonsuz kümesini dü³ünelim. Her n = 1,2,...,n,...) için A n = A {a 1,a 2,...,a n } kümesi açktr; çünkü A C ve {a 1,a 2,...,a n } C dir. Kolayca görülece i gibi A n n=1 A n dir; yani {A n : n N} ailesi A nn açk bir örtüsüdür. Bu örtüden sonlu bir alt-örtü seçilemez. O halde A tkz de ildir. Demek ki saylabilr sonsuz kümeler, Saylabilir Tümleyenler Topolojisine göre tkz olamazlar. Her sonsuz kümeden saylabilir bir alt küme seçilebilece ine göre, sonsuz kümeler de Saylabilir Tümleyenler Topolojisine göre tkz olamazlar. 6. Tkz bir uzaydan bir Hausdor uzay üzerine tanml bire-bir sürekli bir fonksiyonun bir topolojik e³yap dönü³ümü olaca n gösteriniz. Çözüm: (X, T tkz uzay, (Y, H ) Hausdorf uzay ve f : X Y fonksiyonu sürekli ve bbö olsun. f 1 (H ) = {f 1 (H) : H H } ailesi X üzerinde bir topolojidir (bkz. Ters resim topolojisi, izdü³el topoloji, projective topoloji). zdü³el topoloji, f yi sürekli klan en kaba topoloji oldu undan f 1 (H ) T dir. Öte yandan, X kümesi üzerindeki bir Hausdor topolojisi bir tkz topolojiden kaba olamaz (bkz (1) Problem). O halde f 1 (H ) = T dir. Bu ise f 1 : Y X ters fonksiyonunun da sürekli olmas demektir. Öyleyse, Önerme uyarca f bir e³yap dönü³ümüdür YEREL TIKIZ UZAYLAR 15.3 KARMA PROBLEMLER 1. (X, T ) tkz ve (Y, H ) Hausdor ise sürekli f : Y fonksiyonu kapaldr. Gösteriniz. Çözüm: A T ise A kümesi T ye göre tkzdr. O halde sürekli fonksiyon altndaki resmi f(a) Y tkzdr. (Y, H ) Hausdor oldu undan f(a) Y kapaldr. 2. Y tkz ise π 1 : X Y X izdü³ümü kapal bir dönü³ümdür. Gösteriniz. Çözüm: (Y, Y ) tkz bir uzay olsun. Çarpm topolojisini (X Y, P) ile gösterelim. A X Y kapal ise X π 1 (A) nn X içinde açk oldu unu

5 15.3. KARMA PROBLEMLER 153 göstermeliyiz. Bir x X π 1 (A) ö esini dü³ünelim. Her y için (x,y) / A dr. A kapal oldu undan X Y A açktr. Öyleyse her y için öyle bir U xy B(x) ve V y B(y) kom³uluklar vardr ki (x,y) U xy V y X Y A olacaktr. Bu durumda {V y : y Y} ailesi Y nin bir açk örtüsü olur. Y tkz oldu undan bunun sonlu bir alt örtüsü vardr. Bu sonlu örtüye {V yi : i = 1,2,...,n} diyelim. imdi U = U xy1 U xy2... U xyn kümesini tanmlayalm. U B(x) ve U Y X Y A olacaktr. U π 1 (A) = dir. Her x X π 1 (A) için bu yaplabilece ine göre X π 1 (A) nn X içinde açk oldu u ortaya çkar. Çarpm topolojisi izdü³üm fonksiyonlarn sürekli klan en kaba dokulu topolojidir (bkz. Örnek 8.1.1). Çarpm topolojisini X Y, P ile gösterelim. Yukardaki dü³ünü³le, pi 1 2 (Y ) P ba ntsnn varl n söyleyebiliriz. Tabii pi 1 2 (Y ) topolojisi tkzdr. K Y kümesi tkz ise pi 1 2 (K) kümesi pi 1 2 (Y ) topolojisine göre tkz olacaktr. O halde ayn topolojiye göre kapaldr. Öyleyse P topolojisine gör de kapal olur. Öte yandan π 2 opi 1 2 (K) = K dr. 3. Y tkz ve hausdor ise f : X Y dönü³ümünün sürekli olmas için gerekli ve yeterli ko³ul G f = {(x,f(x)) : x X} gra inin X Y içinde kapal olmasdr. Çözüm: Yeterli i: G nün açk oldu unu göstermeliyiz. (x,y) / G ise y f(x) dir. Y Hausdor oldu undan y ile f(x) noktalarnn kesi³meyen birer kom- ³ulu u vardr. Bunlar y B(y) vef(x) W B(f(x)) ile gösterelim. f sürekli oldu undan f(u) W (Y V)olacak biçimde bir x U B(x) kom³ulu u vardr. Buradan (x,y) U V G = oldu u görülür. Her (x,y) / G için bu özelik var oldu una göre G açktr. Gerekli i: G X Y gra i kapal olsun. V B(f(x)) ise G (X (Y V)) X Y kapaldr. Önceki problem gere ince, π 1 [G (X (Y V)) X kapaldr ve x noktasn içermez. f(u) (Y V = olan bir x U B(x) kom³ulu u seçelim. f(u) V dir. O halde f fonksiyonu x noktasnda süreklidir. Her x için bu özelik var oldu undan, f fonksiyonu tanm bölgesinde süreklidir. 4. f : X Y dönü³ümü kapal, sürekli ve örten olsun ve her y Y için f 1 ({y}) X tkz olsun. E er Y tkz ise, X uzaynn da tkz oldu unu gösteriniz.

6 154 BÖLÜM 15. TIKIZLIK Çözüm: U ailesi X kümesinin açk bir örtüsü olsun. Simgelerde basitli i sa lamak için, her y Y ö esinin f altndaki ters görüntüsünü A y ile gösterelim; yani f 1 (y) = A y olsun. U ailesi A y nin de açk bir örtüsüdür. A y tkz oldu undan U örtüsünden sonlu bir alt örtü seçilebilir. Bu altörtü {U y1,u y2,...,u yn } olsun. U y = U y1 U y2... U yn diyelim ve W y = Y f(x U y ) kümesini tanmlayalm. (X U y ) kapaldr. f kapal bir fonksiyon oldu undan f(x U y ) görüntüsü de kapaldr. imdi ³u özelikleri kolayca görebiliriz. (a) W y kümesi açktr. (b) y W y f 1 (y) = A y U y y / f(x U y ) (c) f 1 (W y ) = f 1 [Y f(x U y )] = X f 1 (f(x U y )) = X (X U y ) = U y Buradan görüldü ü gibi Y = {W y : y Y ailesi Y kümesinin bir açk örtüsüdür. Y tkz oldu undan Y örtüsünün sonlu bir alt-örtüsü vardr. Bu snlu örtüye {W y1,w y2,...,w ym } diyelim. imdi (c) ba ntsn kullanrsak, ( m ) m m X = f 1 (Y) = f 1 W yi = f 1 (W yi ) i=1 En sa daki U yi kümelerinin her birisi sonlu sayda U U nn bile³imi idi. O halde, X kümesi sonlu sayda U U kümesiyle örtülebilir. Demek ki X tkzdr. 5. Her açk aralk salt topolojiye göre R uzaynda açktr. Gösteriniz. Çözüm: 1.Yol: Açk aralklar ailesi salt topolojinin bir tabandr; dolaysyla açk aralklar salt topolojide açktr. 2.Yol: (a,b) R verilsin. Bir x 0 (a,b) noktas alalm. ǫ < min{ x 0 a, b x 0 } olmak üzere, (x ǫ,x+ǫ) (a,b) dir. Ayrca, (x ǫ,x+ǫ) B(x 0 ) dr; yani, x 0 noktasnn bir kom³ulu u (a,b) tarafndan kapsanyor. Her x 0 (a,b) noktas için bu özelik var oldu undan, Önerme uyarnca, (a, b) aral açk bir kümedir. 6. n Z olmak üzere (n, n + 1) aralklarnn bile³imi açktr. Gösteriniz. 7. Çözüm: (n, n + 1) aralklar salt topolojide açktr. Açk kümelerin her bile³imi açk oldu undan {(n,n + 1) : n N} salt topolojide açk bir kümedir. {0} = i=1 i=1 U yi ( 1 n, 1 n ) (15.2) n=1

7 15.3. KARMA PROBLEMLER 155 e³itli ini kullanarak sonsuz sayda açk kümelerin arakesitinin açk olmayabilece ini gösteriniz. Çözüm: Her n = 1,2,3,... için ( 1 n, 1 n ) aralklar açktr. Ama bunlarn (15.2) arakesiti yalnzca noktasndan ibaret {0} kümesidir. Bu küme salt topolojiye göre kapaldr. Demek ki açk kümelerin sonsuz tanesinin arakesiti açk olmayabiliyor. 8. Q rasyonel saylar kümesinin, salt topolojiye göre R uzaynda ne açk ne de kapal oldu unu gösteriniz. Çözüm: Gerçel saylarn her aral sonsuz sayda rasyonel ve irrasyonel saylar içerir. Ba³ka bir deyi³le, salt topolojiye göre Q rasyonel saylar kümesi R uzaynda yo undur (bkz Önerme 4.1.9). Benzer olarak, salt topolojiye göre Q = R Q irrasyonel saylar kümesi R uzaynda yo undur. Dolaysyla, salt topolojinin tabanna ait açk aralklar Q rasyonel saylar kümesi içinde kalmaz. O halde Q nun hiç bir iç noktas yoktur. Hiç bir d³ noktas da yoktur. Her rasyonel say Q nin bir kenar noktasdr. Benzer ³ey irrasyonel saylar için de geçerlidir. 9. Salt topolojiye göre R uzaynda bir (a, b) açk aral nn her x (a, b) ö esi için bir kom³uluk oldu unu gösteriniz. 10. Çözüm: Problem 5 çözülürken gösterildi. (0,1) = [ 1 n,1 1 n ] (15.3) n=2 oldu unu gösteriniz. Buradan ³u sonucu çkarnz: Sonsuz sayda kapal kümelerin bile³imi kapal olmayabilir. Çözüm: Simgelerde basitli i sa lamak için, (15.3) ba ntsnn sa yann A ile gösterelim. (0, 1) = A oldu unu göstermek için iki kümenin birbirini kapsad n göstermeliyiz. (0,1) A oldu u apaçktr. Çünkü, her x A için x [ 1 n,1 1 n ] olan bir aralk vardr. O halde 0 < x < 1 olacaktr. O halde x (0,1) olur. Kar³t olarak, x (0,1) olsun. Ar³imet kural uyarnca 1 n < x < 1 1 n olacak ³ekilde bir n do al says vardr. O halde, x [ 1 n,1 1 n ] olur. Dolaysyla x A olur. A kümesini olu³turan bile³ime ait [ 1 n,1 1 n ] aralklarnn hepsi kapaldr. Ama e³itli in solundaki (0, 1) aral açktr. Demek ki kapal aralklarn sonsuz saydasnn bile³imi kapal olmayabiliyor.

Çarpm ve Bölüm Uzaylar

Çarpm ve Bölüm Uzaylar 1 Ksm I Çarpm ve Bölüm Uzaylar ÇARPIM UZAYLARI 1 ÇARPIM TOPOLOJ S 2 KARMA P R O B E M L E R 1. A ile B, srasyla, (X, T )X ile (Y, S ) topolojik uzaylarnn birer alt-kümesi olsunlar. (a) (A B) = A B (b)

Detaylı

S = {T Y, X S T T, S S} (9.1)

S = {T Y, X S T T, S S} (9.1) Bölüm 9 ÇARPIM UZAYLARI 9.1 ÇARPIM TOPOLOJ S Bo³ olmayan kümelerden olu³an bo³ olmayan bir ailenin kartezyen çarpmnn da bo³ olmad n, Seçme Aksiyomu [13],[20], [8] ile kabul ediyoruz. imdi verilen aileye

Detaylı

TOPOLOJ TEST A. 1. A³a dakilerden hangisi topoloji tanmlama yöntemi de ildir?

TOPOLOJ TEST A. 1. A³a dakilerden hangisi topoloji tanmlama yöntemi de ildir? 1 TOPOLOJ TEST A 1. A³a dakilerden hangisi topoloji tanmlama yöntemi de ildir? (a) Açk kümeleri belirleme (b) Kapal kümeleri belirleme (c) Alt-kümeleri belirleme (d) Kaplamlar belirleme (e) çlemleri belirleme

Detaylı

TOPOLOJ TEST B. (d) Dizinin limiti yoktur; y lma noktas yoktur. 4. Dizisel süreklilik hangi uzaylarda süreklili e denktir?

TOPOLOJ TEST B. (d) Dizinin limiti yoktur; y lma noktas yoktur. 4. Dizisel süreklilik hangi uzaylarda süreklili e denktir? 1 TOPOLOJ TEST B 1. {( 1) n 1 n : n > 0} dizisi için a³a dakilerden hangisi do rudur? (a) Dizinin limiti 1 ve +1 dir; y lma noktas 1 ve +1 dir. (b) Dizinin limiti 1 ve +1 dir; y lma noktas yoktur. (c)

Detaylı

f( F) f(f) K = K F f 1 f( F) f 1 (K) = F F f 1 (S ) = [f 1 (S)] f(x) S V

f( F) f(f) K = K F f 1 f( F) f 1 (K) = F F f 1 (S ) = [f 1 (S)] f(x) S V Bölüm 6 SÜREKL FONKS YONLAR 6.1 YEREL SÜREKL L K Tanm 6.1.1. (X, T ) ve (Y, S) topolojik uzaylar ile f : X Y fonksiyonu verilsin. E er f(x 0 ) ö esinin her V kom³ulu una kar³lk f(u) V olacak ³ekilde x

Detaylı

(i) (0,2], (ii) (0,1], (iii) [1,2), (iv) (1,2]

(i) (0,2], (ii) (0,1], (iii) [1,2), (iv) (1,2] Bölüm 5 KOM ULUKLAR 5.1 KOM ULUKLAR Tanm 5.1.1. (X, T ) bir topolojik uzay ve A ile N kümeleri X uzaynn iki alt-kümesi olsun. E er A T N olacak ³ekilde her hangi bir T T varsa, N kümesine A nn bir kom³ulu

Detaylı

A = i I{B i : B i S} A = x A{B x A : B x S}

A = i I{B i : B i S} A = x A{B x A : B x S} Bölüm 4 TOPOLOJ TABANI 4.1 TOPOLOJ TABANI Tanm 4.1.1. Bir S P(X) ailesi verilsin. S ye ait kümelerin her hangi bir bile³imine e³it olan bütün kümelerin olu³turdu u aileye S nin üretti i (do urdu u) aile

Detaylı

TOPOLOGY TEST A³a dakilerden hangisi bir süzgeç de ildir? 3. A³a dakilerden hangisi a³kn bir süzgeç de ildir?

TOPOLOGY TEST A³a dakilerden hangisi bir süzgeç de ildir? 3. A³a dakilerden hangisi a³kn bir süzgeç de ildir? 1 TOPOLOGY TEST 02 1. S ailesi X kümesi üzerinde bir süzgeç ise, a³a dakilerden hangisi sa lanmaz? (a) / S (b) * S (c) X S (d) A, B S A B S (e) (V S ) (V W ) W S 2. A³a dakilerden hangisi bir süzgeç de

Detaylı

19.8. PROBLEMLER 0.1 PROBLEMLER 0.1. PROBLEMLER a herhangi bir nicelik says ise

19.8. PROBLEMLER 0.1 PROBLEMLER 0.1. PROBLEMLER a herhangi bir nicelik says ise 0.1. PROBLEMLER 1 19.8. PROBLEMLER // 0.1 PROBLEMLER // 1. a herhangi bir nicelik says ise (i) a + 0 = a, a0 = 0, a 0 = 1 oldu unu gösteriniz. A³a daki kümelerin e³güçlülü ünden nicelik saylar için istenen

Detaylı

TOPOLOJ SORULARI. Ksm I. 1 Topological Notions. 1. Her açk aralk salt topolojiye göre R uzaynda açktr. Gösteriniz.

TOPOLOJ SORULARI. Ksm I. 1 Topological Notions. 1. Her açk aralk salt topolojiye göre R uzaynda açktr. Gösteriniz. 1 Ksm I TOPOLOJ SORULARI 1 Topological Notions 1. Her açk aralk salt topolojiye göre R uzaynda açktr. Gösteriniz. 2. n Z olmak üzere (n, n + 1) aralklarnn bile³imi açktr. Gösteriniz. 3. {0} = ( 1 n, 1

Detaylı

Ksm I. Simgeler ve Terimler

Ksm I. Simgeler ve Terimler Ksm I Simgeler ve Terimler 1 Bölüm 1 S MGELER ve TER MLER 1.1 KÜMELER CEB R 1.2 FONKS YON 1.3 DENKL K BA INTISI 1.4 SIRALAMA BA INTILARI 1.5 SEÇME AKS YOMU SEÇME AKS YOMU ve E DE ERLER 3 4 BÖLÜM 1. S

Detaylı

P = {x A (y A y x) f(y) x} (22.6) M p = {m A m p f(p) m} (22.8)

P = {x A (y A y x) f(y) x} (22.6) M p = {m A m p f(p) m} (22.8) Bölüm 22 SEÇME AKS YOMU SEÇME AKS YOMU VE E DE ERLER 22.1 G R Bir X kümesi dü³ünelim. Bu küme ya bo³tur ya de ildir. De ilse, X kümesine ait bir ö e seçilebilir. imdi ba³ka bir Y kümesi daha dü³ünelim.

Detaylı

0 = ρ(x,x) ρ(x,y)+ρ(y,x) = 2ρ(x,y) 0, x = y δ(x,y) = κ(z 1,z 2 ) = z 1 z 2, (z 1,z 2 C) (17.27)

0 = ρ(x,x) ρ(x,y)+ρ(y,x) = 2ρ(x,y) 0, x = y δ(x,y) = κ(z 1,z 2 ) = z 1 z 2, (z 1,z 2 C) (17.27) 230 BÖLÜM 17. METR K UZAYLAR 17.2 METR K METR K UZAY KAVRAMI Normlanm³ bir uzay, her³eyden önce bir vektör uzaydr, yani (X, ) normlanm³ bir uzay ise, X kümesi üzerinde bir vektör uzay yaps vardr. Oysa,

Detaylı

Soru Toplam Puanlama Alnan Puan

Soru Toplam Puanlama Alnan Puan 26.11.2013 No: Ad-Soyad: mza: Soru 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Toplam Puanlama 15 15 15 15 15 15 15 15 15 15 105 Alnan Puan 405024142006.1 CEB RSEL TOPOLOJ ARASINAVI CEVAP ANAHTARI SORULARI (ÖRGÜN Ö

Detaylı

18.702 Cebir II 2008 Bahar

18.702 Cebir II 2008 Bahar MIT Açk Ders Malzemeleri http://ocw.mit.edu 18.702 Cebir II 2008 Bahar Bu materyallerden alnt yapmak veya Kullanm artlar hakknda bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

Soru Toplam Puanlama Alnan Puan

Soru Toplam Puanlama Alnan Puan ..04 No: Ad-Soyad: mza: Soru.. 3. 4. 5. 6. 7. 8. Toplam Puanlama 0 0 0 5 0 0 0 0 00 Alnan Puan 04043006. CEB RSEL TOPOLOJ ARASINAVI CEVAP ANAHTARI ( K NC Ö RET M) Not: Süre 90 Dakika. stedi iniz 7 soruyu

Detaylı

A = i IA i = i I A = A = i IA i = {x α((α I) (x A α ))} (7.7) A = (α,β I) (α β) A α A β = (7.8) A A

A = i IA i = i I A = A = i IA i = {x α((α I) (x A α ))} (7.7) A = (α,β I) (α β) A α A β = (7.8) A A Bölüm 7 KÜME A LELER 7.1 DAMGALANMI KÜMELER E er inceledi imiz kümelerin says, alfabenin harerinden daha çok de ilse, onlara,b,...,w gibi harerle temsil edebiliriz. E er elimizde albenin harerinden daha

Detaylı

x = [x] = [x] β = {y (x,y) β} (8.5) X = {x x X}. x,y X [(x = y) (x y = )]. b(b [x]) b [y] [x] [y] (8.8)

x = [x] = [x] β = {y (x,y) β} (8.5) X = {x x X}. x,y X [(x = y) (x y = )]. b(b [x]) b [y] [x] [y] (8.8) Bölüm 8 DENKL K BA INTILARI 8.1 DENKL K BA INTISI 8.1.1 E³itlik Kavramnn Genelle³mesi Matematikte ve ba³ka bilim dallarnda, birbirlerine e³it olmayan, ama e³itli e benzer niteliklere sahip nesnelerle sk

Detaylı

BÖLÜM 1. Matematiksel ndüksiyon Prensibi

BÖLÜM 1. Matematiksel ndüksiyon Prensibi BÖLÜM 1 Matematiksel ndüksiyon Prensibi Matematiksel indüksiyon prensibini kullanarak a³a daki e³it(siz)liklerin her n N için gerçeklendi ini ispatlaynz. 1. 1 2 + 2 2 + 3 2 + + n 2 = n(n+1)(2n+1) 6 2.

Detaylı

(sf) F C = [(s,f) sf] x [0,1] = (sf)(x) = sf(x)

(sf) F C = [(s,f) sf] x [0,1] = (sf)(x) = sf(x) Bölüm 13 MATEMAT KSEL YAPILAR 13.1 YAPI KAVRAMI Ça da³ Matematik kümeleri, kümeler üzerindeki yaplar, yaplar arasndaki dönü³ümleri inceler. Buraya dek ö e, küme, i³lem, fonksiyon kavramlarn kullandk. Bunlar

Detaylı

ARA SINAV II. (1) (x k ) k N, R n içinde yaknsak ve limiti x olan bir dizi olsun. {x} = oldu unu gösteriniz.

ARA SINAV II. (1) (x k ) k N, R n içinde yaknsak ve limiti x olan bir dizi olsun. {x} = oldu unu gösteriniz. MC 411/ANAL Z IV ARA SINAV II ÇÖZÜMLER 1 x k k N, R n içinde yaknsak iti x olan bir dizi olsun. {x} = {x m m k} k=1 Çözüm. Her k N için A k := {x m m k} olsun. x k k N dizisinin iti x oldu undan, A k =

Detaylı

B A. A = B [(A B) (B A)] (2)

B A. A = B [(A B) (B A)] (2) Bölüm 5 KÜMELER CEB R Do a olaylarnn ya da sosyal olaylarn açklanmas için, bazan, matematiksel modelleme yaplr. Bunu yapmak demek, incelenecek olaya etki eden etmenleri içine alan matematiksel formülleri

Detaylı

1.3. Normal Uzaylar. Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak. baz temel özellikleri incelenecektir.

1.3. Normal Uzaylar. Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak. baz temel özellikleri incelenecektir. 1.3. Normal Uzaylar Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak baz temel özellikleri incelenecektir. Tan m 1.3.1. (X; ) bir Hausdor uzay olsun. E¼ger, 8F; K 2 F; F \ K = ;

Detaylı

XIV. Ulusal Antalya Matematk Olmpyat Brnc A³ama Snav Sorular -2009

XIV. Ulusal Antalya Matematk Olmpyat Brnc A³ama Snav Sorular -2009 XIV. Ulusal ntalya Matematk Olmpyat rnc ³ama Snav Sorular -009 c www.sbelian.wordpress.com sbelianwordpress@gmail.com Soru 1. dar açl üçgeninde m() = 45 'dir. 'dan 'ye indirilmi³ dikmenin aya E ve 'den

Detaylı

Soyut Matematik Test A

Soyut Matematik Test A 1 Soyut Matematik Test A 1. A³a dakilerden hangisi do rudur? (a) * A B C(C B) A C) (b) A B C(C B) A C) (c) A B C(B C) A C) (d) A B C(B C) A C) (e) A B C(B C) (A C) 2. Her hangi bir A kümeler ailesi üzerinde

Detaylı

Türevlenebilir Manifoldlara Giri³

Türevlenebilir Manifoldlara Giri³ Türevlenebilir Manifoldlara Giri³ Yldray Ozan Orta Do u Teknik Üniversitesi Matematik Bölümü 2 Temmuz 2015 Sevgili anne ve babamn hatrasna Duydu umu unuturum. Gördü ümü hatrlarm. Yapt m anlarm. -Konfüçyüs

Detaylı

MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER

MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER (1) A³a daki her bir önermenin do ru mu yanl³ m oldu unu belirleyiniz. Do ruysa, gerekçe gösteriniz; yanl³sa, bir kar³-örnek veriniz. (a) (a n ) n N dizisi yaknsak

Detaylı

2. Topolojik Uzaylarda Ba¼glant l l k Ba¼glant l Topolojik Uzaylar. Tan m (X; ) topolojik uzay n n her biri boş kümeden farkl olan ayr k

2. Topolojik Uzaylarda Ba¼glant l l k Ba¼glant l Topolojik Uzaylar. Tan m (X; ) topolojik uzay n n her biri boş kümeden farkl olan ayr k 2. Topolojik Uzaylarda Ba¼glant l l k 2.1. Ba¼glant l Topolojik Uzaylar Tan m 2.1.1. (X; ) topolojik uzay n n her biri boş kümeden farkl olan ayr k iki aç ktan oluşan bir örtüsü yok ise, (X; ) topolojik

Detaylı

Soyut Matematik Test B

Soyut Matematik Test B 1 Soyut Matematik Test B 1. Hangisi tümel (tam, linear) sralama ba ntsdr? (a) Yansmal, antisimetrik, geçi³ken ve örgün olan ba ntdr. (b) Yansmal, simetrik, geçi³ken ve örgün olan ba ntdr. (c) Yansmaz,

Detaylı

Türevlenebilir Manifoldlara Giri³

Türevlenebilir Manifoldlara Giri³ Türevlenebilir Manifoldlara Giri³ Yldray Ozan Orta Do u Teknik Üniversitesi Matematik Bölümü 7 Temmuz 2016 Sevgili anne ve babamn hatrasna Duydu umu unuturum. Gördü ümü hatrlarm. Yapt m anlarm. -Konfüçyüs

Detaylı

SOYUT MATEMAT K DERS NOTLARI. Yrd. Doç. Dr. Hüseyin B LG Ç

SOYUT MATEMAT K DERS NOTLARI. Yrd. Doç. Dr. Hüseyin B LG Ç SOYUT MATEMAT K DERS NOTLARI Yrd. Doç. Dr. Hüseyin B LG Ç Kahramanmara³ Sütçü mam Üniversitesi FenEdebiyat Fakültesi Matematik Bölümü Eylül 2010 çindekiler 1 Önermeler ve spat Yöntemleri 1 2 Kümeler 13

Detaylı

Soyut Matematik Test 01

Soyut Matematik Test 01 1 Soyut Matematik Test 01 1. A³a dakilerden hangisi do rudur? (a) * A B C(C B) A C) (b) A B C(C B) A C) (c) A B C(B C) A C) (d) A B C(B C) A C) (e) A B C(B C) (A C) 2. A³a dakilerden hangisi do rudur?

Detaylı

CEB RSEL TOPOLOJ. Ders Notlar

CEB RSEL TOPOLOJ. Ders Notlar CEB RSEL TOPOLOJ Prof. Dr. smet KARACA Ders Notlar çindekiler 1 HOMEOMORF ZM 2 2 DENT F KASYON UZAYLAR 11 3 BÖLÜM UZAYLARI 17 4 HOMOTOP 24 5 TEMEL GRUPLAR 32 6 ÖRTÜLÜ UZAYLAR 37 7 ÇEMBER N TEMEL GRUBU

Detaylı

DO U ÜN VERS TES 9.Liseleraras Matematik Yar³mas Sorular. (n + 1) n n n + 1 = n(n + 1)

DO U ÜN VERS TES 9.Liseleraras Matematik Yar³mas Sorular. (n + 1) n n n + 1 = n(n + 1) DO U ÜN VERS TES 9.Liseleraras Matematik Yar³mas Sorular 1 1) a n = (n + 1) n + n n + 1 olmak üzere, a 1 + a + a 3 +... + a 99 toplamn bulunuz. 9 evap: 10 a n = (n + 1) n n n + 1 n(n + 1) n (n + 1) oldu

Detaylı

iv ÇINDEKILER 4 Açk Önermeler ÖNERME FONKS YONLARI Evrensel Belirteç Varlk Belirtec

iv ÇINDEKILER 4 Açk Önermeler ÖNERME FONKS YONLARI Evrensel Belirteç Varlk Belirtec çindekiler Önsöz................................. ix 1 MANTIK ve MATEMAT K 1 1.1 ÇA LARI A AN MATEMAT K.................. 1 1.1.1 Mantk tarihine ksa bir bak³................ 1 1.1.2 Matematiksel Mantk....................

Detaylı

1. Metrik Uzaylar ve Topolojisi

1. Metrik Uzaylar ve Topolojisi 1. Metrik Uzaylar ve Topolojisi Euclidean R uzayının tabanının B = {(a, b) : a, b R} olduğunu biliyoruz. Demek ki bu uzayda belirleyiçi unsur açık aralıklar. Her açık aralık (a, b) için, olmak üzere, d

Detaylı

L SANS YERLE T RME SINAVI 1

L SANS YERLE T RME SINAVI 1 LSANS YERLETRME SINAVI MATEMATK TEST SORU KTAPÇII 9 HAZRAN 00. ( )( + ) + ( )( ) = 0 eitliini salayan gerçel saylarnn toplam kaçtr?. ( )( ) < 0 eitsizliinin gerçel saylardaki çözüm kümesi aadaki açk aralklarn

Detaylı

ÜZER NDE TANIMLI HER NORM-SINIRLI OPERATÖRÜN REGÜLER OLDU U BANACH ÖRGÜLER YÜKSEK L SANS TEZ. Nazl DO AN

ÜZER NDE TANIMLI HER NORM-SINIRLI OPERATÖRÜN REGÜLER OLDU U BANACH ÖRGÜLER YÜKSEK L SANS TEZ. Nazl DO AN STANBUL KÜLTÜR ÜN VERS TES FEN B L MLER ENST TÜSÜ ÜZER NDE TANIMLI HER NORM-SINIRLI OPERATÖRÜN REGÜLER OLDU U BANACH ÖRGÜLER YÜKSEK L SANS TEZ Nazl DO AN 1109041005 Anabilim Dal: Matematik-Bilgisayar Program:

Detaylı

IV. DERS D FERENS YELLENEB L R MAN FOLDLAR

IV. DERS D FERENS YELLENEB L R MAN FOLDLAR Bölüm 1 IV. DERS D FERENS YELLENEB L R MAN FOLDLAR Bir öceki bölümde bir yüzeyi oktalar yeterice küçük kom³uluklaryla ilgileebildik. Bu prosesi soyut realizasyou içi, souçta bizi diferesiyelleebilir maifold

Detaylı

BÖLÜM 1. stanbul Kültür Üniversitesi. Fonksiyonlar - Özellikleri ve Limit Kavram. ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir.

BÖLÜM 1. stanbul Kültür Üniversitesi. Fonksiyonlar - Özellikleri ve Limit Kavram. ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir. BÖLÜM 1 0, Q 1. f() = 1, R/Q, Fonksiyonlar - Özellikleri ve Limit Kavram ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir. Buna göre a³a da verilen tanm bölgeleri altnda görüntü cümlelerini

Detaylı

A = {x Φ(x) p(x)} = {x (x E φ ) p(x)}

A = {x Φ(x) p(x)} = {x (x E φ ) p(x)} Bölüm 3 KÜME KAVRAMI Okuma Parças Bu derste, Kümeler Kuramn belitsel (aksiyomatik) incelemeyi amaçlamyoruz. Burada, küme kavramn, sezgiye dayal olarak belirli nesnelerin bir toplulu u diye tanmlayacak

Detaylı

CHAPTER 1. Vektörler

CHAPTER 1. Vektörler iv CHAPTER 1 Vektörler Vektör kavram, ziksel kavram olarak ortaya çkm³ olsa da matematiksel sistemlerin temel kavram olmu³tur. Gerçekten vektör kavramn geli³imi matematikçilerden çok zikçiler ve kimyaclar

Detaylı

GEOMETR K TOPOLOJ. Ders Notlar

GEOMETR K TOPOLOJ. Ders Notlar GEOMETR K TOPOLOJ Prof. Dr. smet KARACA Ders Notlar çindekiler 1 MAN FOLDLAR 4 1.1 Manifold.............................. 4 1.2 Diferensiyellenebilir Yaplar................... 5 1.3 Diferensiyellenebilir

Detaylı

1.4 Tam Metrik Uzay ve Tamlaması

1.4 Tam Metrik Uzay ve Tamlaması 1.4. Tam Metrik Uzay ve Tamlaması 15 1.4 Tam Metrik Uzay ve Tamlaması Öncelikle şunu not edelim: (X, d) bir metrik uzay, (x n ), X de bir dizi ve x X ise lim n d(x n, x) = 0 = lim n,m d(x n, x m ) = 0

Detaylı

A; e A; A kümelerini tan mlay n z. (x) = fb 2 B : x 2 Bg

A; e A; A kümelerini tan mlay n z. (x) = fb 2 B : x 2 Bg Genel Topolojiye Giriş I Ara S nav Sorular 30 Kas m 2010 1 (X; T ) bir topolojik uzay ve A X olsun. 2 (a) Ikinci say labilir topolojik uzay ne demektir? Tan mlay n z. A; e A; A ve @A kümelerini tan mlay

Detaylı

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE ÖZEL EGE LİSESİ GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE HAZIRLAYAN ÖĞRENCİ: Berk KORKUT DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI 3.33 2. GİRİŞ... 3 3. YÖNTEM 3 4.

Detaylı

SOYUT CEB R DERS NOTLARI

SOYUT CEB R DERS NOTLARI SOYUT CEB R DERS NOTLARI Yrd. Doç. Dr. Hüseyin B LG Ç Kahramanmara³ Sütçü mam Üniversitesi Fen-Edebiyat Fakültesi Matematik Bölümü Mart 2013 e-posta: h_bilgic@yahoo.com çindekiler 1 Grup Tanm ve Temel

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 İyi Sıralama 5 Bibliography 13 1 İyi Sıralama Well Ordering İyi sıralama kavramı, doğal sayıların

Detaylı

SOYUT CEB R DERS NOTLARI

SOYUT CEB R DERS NOTLARI SOYUT CEB R DERS NOTLARI Yrd. Doç. Dr. Hüseyin B LG Ç Kahramanmara³ Sütçü mam Üniversitesi Fen-Edebiyat Fakültesi Matematik Bölümü A ustos 2012 e-posta: h_bilgic@yahoo.com çindekiler 1 Grup Tanm ve Temel

Detaylı

ÖRNEK KİTAP. x ax 12. x.sinx dx. 1 cos x. x x mx 1. 4 (a b ) ise a çifttir. 4. x+y=14 ise x 2.y 5 çarpımının değeri en fazla kaça eşittir?

ÖRNEK KİTAP. x ax 12. x.sinx dx. 1 cos x. x x mx 1. 4 (a b ) ise a çifttir. 4. x+y=14 ise x 2.y 5 çarpımının değeri en fazla kaça eşittir? 1. lim a 1 üzere a+b toplam kaçtr? A)-8 B)-5 C)- C)1 E)4 b, a,b R olmak 4. +y=14 ise.y 5 çarpmnn değeri en fazla kaça eşittir? A)4 6.10 B)10.4 5 C)10 5. D) 5.10 7 E)16.10 5. bir cisim için hareket denklemi

Detaylı

Cebir II 2008 Bahar

Cebir II 2008 Bahar MIT Açk Ders Malzemeleri http://ocw.mit.edu 18.702 Cebir II 2008 Bahar Bu materyallerden alnt yapmak veya Kullanm artlar hakknda bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

Polinomlar. Polinom Kavram

Polinomlar. Polinom Kavram 1 2 Bölüm 1 Polinomlar Polinom Kavram Polinomlar, yalnz Matematikte de il, ba³ka bilim dallarnda da kar- ³la³lan bir çok problemin çözümünde etkili bir araçtr. Polinom kavram, farkl soyut biçimleriyle

Detaylı

T. C. NÖNÜ ÜN VERS TES FEN B L MLER ENST TÜSÜ

T. C. NÖNÜ ÜN VERS TES FEN B L MLER ENST TÜSÜ T. C. NÖNÜ ÜN VERS TES FEN B L MLER ENST TÜSÜ Ç FT D Z LER N I-YAKINSAKLI I ÜZER NE Erdinç DÜNDAR DOKTORA TEZ MATEMAT K ANAB L M DALI MALATYA 2010 Tezin Ba³l : Çift Dizilerin I-Yaknsakl Üzerine Tezi Hazrlayan

Detaylı

KOMB NATOR K TOPOLOJ L SANS DERS NOTLARI Prof. Dr. smet KARACA

KOMB NATOR K TOPOLOJ L SANS DERS NOTLARI Prof. Dr. smet KARACA KOMB NATOR K TOPOLOJ L SANS DERS NOTLARI 2010 Prof. Dr. smet KARACA çindekiler 1 S MPLEKSLER 3 1.1 Ane Uzaylar........................... 3 1.2 Simpleksler Kompleksi...................... 12 2 HOMOTOP

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

Ç NDEK LER. Bölüm 4: Üslü Say lar...44 Üslü fadeler...44 Al t rmalar...47 Test Sorular...49

Ç NDEK LER. Bölüm 4: Üslü Say lar...44 Üslü fadeler...44 Al t rmalar...47 Test Sorular...49 Ç NDEK LER Bölüm1: Say Sistemleri...1 Say Sistemi...2 Desimal (Onluk) Say Sistemi...2 Say Basamaklar ve Taban...4 Binary ( kilik) Say Sistemi...4 Oktal (Sekizlik) Say Sistemi...7 Heksadesimal (Onalt l

Detaylı

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR 8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: ve iki grup ve f : G H bir fonksiyon

Detaylı

Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve

Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve düzlem Geçen ders doğrusal cebir aracılığıyla izdüşümsel geometri için bir model kurduk. Şimdi bu modeli daha somut bir şekle sokalım, F = R durumunda kurduğumuz

Detaylı

Topolojik Uzay. Kapak Konusu: Topoloji

Topolojik Uzay. Kapak Konusu: Topoloji Kapak Konusu: Topoloji Topolojik Uzay Geçen yaz da nin, ad na aç k dedi imiz baz altkümelerini tan mlad k ve bir fonksiyonun süreklili ini tamamen aç k kümeler yard m yla (hiç ve kullanmadan) ifade ettik.

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Nuray GÜL İKİ TOPOLOJİLİ UZAYLARDA BAZI AYIRMA AKSİYOMLARI MATEMATİK ANABİLİM DALI ADANA, 2011 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Detaylı

Yan t Bilinmeyen Bir Soru

Yan t Bilinmeyen Bir Soru Yan t Bilinmeyen Bir Soru Ö nce yan t n dünyada kimsenin bilmedi i bir soru soraca- m, sonra yan t n dünyada kimsenin bilmedi i bu soru üzerine birkaç kolay soru yan tlayaca m. Herhangi bir pozitif do

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SOFT TOPOLOJİK UZAYLAR ÜZERİNE Uğur ÇOŞKUN YÜKSEK LİSANS Matematik Anabilim Dalı HAZİRAN-2014 KONYA Her Hakkı Saklıdır TEZ BİLDİRİMİ Bu tezdeki bütün bilgilerin

Detaylı

II. DERS R 3 te E R LER ve VEKTÖR ALANLARI

II. DERS R 3 te E R LER ve VEKTÖR ALANLARI Bölüm II. DERS R 3 te E R LER ve VEKTÖR ALANLARI Bu kesimde R 3 e ri kavram tanmlanacak ve geometrik özellikleri tart³lacaktr.. D FERENS YELLENEB L R E R VE PARAMETR K TEMS L I notasyonu ile R nin a

Detaylı

CEBİR DERS NOTLARI Yrd. Doç. Dr. Yıldıray ÇELİK

CEBİR DERS NOTLARI Yrd. Doç. Dr. Yıldıray ÇELİK CEBİR DERS NOTLARI Yrd. Doç. Dr. Yıldıray ÇELİK Karadeniz Teknik Üniversitesi Fen Fakültesi Matematik Bölümü çindekiler 1 Gruplar Teorisi 1 2 Altgruplar, Kosetler ve Lagrange Teoremi 15 3 Normal Altgruplar

Detaylı

Topolojik Uzaylarda Süreklilik Çeşitleri Üzerine

Topolojik Uzaylarda Süreklilik Çeşitleri Üzerine S Ü Fen Ed Fak Fen Derg Sayı 26 (2005) 43-50, KONYA Topolojik Uzaylarda Süreklilik Çeşitleri Üzerine Kemal USLU 1, Şaziye YÜKSEL Selçuk Üniversitesi Fen Edebiyat Fakültesi Matematik Bölümü Kampüs-Konya

Detaylı

Doğrusal Olmayan Devreler, Sistemler ve Kaos

Doğrusal Olmayan Devreler, Sistemler ve Kaos Elektronik ve Haberleşme Mühendisliği İstanbul Teknik Üniversitesi 25 Nisan 2013 Outline 1 2 3 Sabit noktaları: x 1 = 0 ve x 2 = 1 1 r x 0 (, 0) (0, ) = x n x(k + 1) = f (x(k)) f r (x) = rx(1 x) r = 4.2

Detaylı

E³tszlkler Ders Notlar-I

E³tszlkler Ders Notlar-I E³tszlkler Ders Notlar-I wwww.sbelia.wordpress.com E³itsizlikleri çözerke sklkla saylar ve matematiksel ifadeleri kar³la³trrz. Yada bize verile bir matematiksel ifadei e büyük yada e küçük de erii bulmaya

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) MTEMTİ TESTİ (Mat ). u testte srasyla, Matematik ( ) Geometri ( 0) ile ilgili 0 soru vardr.. evaplarnz, cevap kâğdnn Matematik Testi için ayrlan ksmna işaretleyiniz.. armaşk saylar kümesi üzerinde işlemi,

Detaylı

Bu bölümde, bugüne dek ancak rüyalar n zda görece inizi

Bu bölümde, bugüne dek ancak rüyalar n zda görece inizi Ek 3. Sonsuz Küçük Eleman Bu bölümde, bugüne dek ancak rüyalar n zda görece inizi tahmin edece iniz bir numara gerçeklefltirece iz: 3/5, 7/9, 4/5 ve 3 gibi kesirli say lara bir eleman ekleyece iz. Miniminnac

Detaylı

Afla da yedi matematiksel olgu bulacaks n z. Bu olgular n

Afla da yedi matematiksel olgu bulacaks n z. Bu olgular n Seçim Beliti Afla da yedi matematiksel olgu bulacaks n z. Bu olgular n herbiri bir teoremdir, kan tlanm fllard r. Ancak bu olgular, matematikte çok özel bir yeri olan Seçme Beliti kullan larak kan tlanm

Detaylı

Bölüm 4 Button 4.1 Button Nedir? Button (dü me), tkinter içinde bir snftr; ba³ka bir deyi³le bir widget'tir. Üstelik, Button, öteki GUI araç çantalarnn hemen hepsinde ayn ad ile var olan standart bir widget'tir.

Detaylı

ANT TÜREV VE NTEGRAL HESAPLAMA YÖNTEMLER

ANT TÜREV VE NTEGRAL HESAPLAMA YÖNTEMLER ANT TÜREV VE NTEGRAL HESAPLAMA YÖNTEMLER 1 TEMEL YÖNTEM VE DE KEN DE T RME Bir kapal aralkta tanmlanm³ olan f ve F fonksiyonlar için e er bu aralkta F () f() ko³ulu sa lanyorsa F fonksiyonu, f fonksiyonunun

Detaylı

ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri

ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri ÇÖZÜMLER p q r q q p r q q. p r q q p r 5. p q q r r r, p q q r, r p, q q r q, q p q. p q p q p q p q p q q p p 6. p p q p p q p q p p p q

Detaylı

10. DİREKT ÇARPIMLAR

10. DİREKT ÇARPIMLAR 10. DİREKT ÇARPIMLAR Teorem 10.1. H 1,H 2,, H n bir G grubunun alt gruplarının bir ailesi ve H = H 1 H 2 H n olsun. Aşağıdaki ifadeler denktir. a ) dönüşümü altında dır. b) ve olmak üzere her yi tek türlü

Detaylı

x(x a x b) = a = b (21.4)

x(x a x b) = a = b (21.4) Bölüm 21 AKS YOMLAR VE PARADOKSLAR KÜMELER KURAMININ AKS YOMLARI VE PARADOKSLAR 21.1 KÜMELER N AKS YOMAT K YAPISI Hatrlanaca üzere, bu dersin ba³langcnda, kümeler kuramn aksiyomatik olarak incelemeyece

Detaylı

K NC DERECEDEN DENKLEMLER E TS ZL KLER ve FONKS YONLAR

K NC DERECEDEN DENKLEMLER E TS ZL KLER ve FONKS YONLAR KNC DERECEDEN DENKLEMLER ETSZLKLER ve FONKSYONLAR ÜNTE. ÜNTE. ÜNTE. ÜNTE. ÜNT kinci Dereceden Denklemler. Kazanm kinci dereceden bir bilinmeyenli denklemlerin köklerini ve çözüm kümesini belirler.. Kazanm

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

Önsav 1. Her fley yukardaki gibi olsun. {ƒ 1 (V) g 1 (W) : V X, W Y, V ve W aç k}

Önsav 1. Her fley yukardaki gibi olsun. {ƒ 1 (V) g 1 (W) : V X, W Y, V ve W aç k} Kapak Konusu: Topoloji Çarp m Topolojisi Bu yaz da topolojik uzaylar n kartezyen çarp m n do al bir topolojik uzay yap s yla donataca z. E er ve topolojik uzaylarsa, üzerine en do al topolojik yap, herhalde,

Detaylı

Fath Ünverstes Matematk Olmpyatlar

Fath Ünverstes Matematk Olmpyatlar Fath Ünverstes Matematk Olmpyatlar - 007 www.sbelian.wordpress.com Fatih Üniversitesi Matematik Bölümü tarafndan ilki düzenlenen Liseleraras Matematik Olimpiyat'nn ilk snav 0 Ekim 007 tarihinde üniversite

Detaylı

Okurun bir önceki bölümü okudu unu ve orada ortaya

Okurun bir önceki bölümü okudu unu ve orada ortaya 23. Zorn Önsav ve Birkaç Sonucu Okurun bir önceki bölümü okudu unu ve orada ortaya konulan sorunu anlad n varsay yoruz. O bölümde ele ald m z ama pek baflar l olamad m z kan tlama yönteminden, yani bir

Detaylı

Olas l k Hesaplar (II)

Olas l k Hesaplar (II) Olas l k Hesaplar (II) B ir önceki yaz daki örneklerde olay say s sonluydu. Örne in, iki zarla 21 olay vard. fiimdi olay say m z sonsuz yapaca z. Kolay bir soruyla bafllayal m: [0, 1] aral nda rastgele

Detaylı

14.Konu Reel sayılarının topolojisi. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir.

14.Konu Reel sayılarının topolojisi. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir. 14.Konu Reel sayılarının topolojisi 1.Teorem: cismi tamdır. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir. 2.Tanım: ve verilsin. nın her komşuluğunda

Detaylı

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI Reel sayılar kümesinin "küçük ya da eşit", bağıntısı ile sıralanmış olduğunu biliyoruz. Bu bağıntı herhangi bir X kümesine aşağıdaki şekilde genelleştirilebilir. Bir X kümesi üzerinde aşağıdaki yansıma,

Detaylı

ANAHTARLANMI DO RUSAL S STEMLERE G R

ANAHTARLANMI DO RUSAL S STEMLERE G R ANAHTARLANMI DO RUSAL S STEMLERE G R Ça da³ TOPÇU Ocak 2009 Proje Dan³man: Yrd.Doç.Dr. brahim Beklan KÜÇÜKDEM RAL YILDIZ TEKN K ÜN VERS TES ELEKTR K - ELEKTRON K FAKÜLTESi ELEKTR K MÜHEND SL BÖLÜMÜ PROJE

Detaylı

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir.

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir. 2. SİMETRİK GRUPLAR Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir. Tanım 2.2. X boş olmayan bir küme olsun. S X ile X den X e tüm birebir örten fonksiyonlar

Detaylı

Do al say lar kümesi, yani {0, 1, 2, 3, 4,... } kümesi, toplama

Do al say lar kümesi, yani {0, 1, 2, 3, 4,... } kümesi, toplama Ç karma ve Kare Alma Alt nda Kapal Kümeler Do al say lar kümesi, yani {0, 1, 2, 3, 4,... } kümesi, toplama ve çarpma ifllemleri alt nda kapal d r; bir baflka deyiflle, iki do al say y toplarsak ya da çarparsak

Detaylı

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir.

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir. 2. SİMETRİK GRUPLAR Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir. Tanım 2.2. boş olmayan bir küme olsun. ile den üzerine bire-bir fonksiyonlar kümesini

Detaylı

SORU 1: X bir sonsuz küme ve A da X kümesinin tüm sonlu alt kümelerinin. A := {B P (X) : B sonlu} SORU 2: X sayılamayan bir küme

SORU 1: X bir sonsuz küme ve A da X kümesinin tüm sonlu alt kümelerinin. A := {B P (X) : B sonlu} SORU 2: X sayılamayan bir küme 2. ÖLÇÜLER 2.1 BazıKüme Sınıfları SORU 1: X bir sonsuz küme ve A da X kümesinin tüm sonlu alt kümelerinin bir sınıfıolsun. A sınıfıx üzerinde bir σ cebir midir? ÇÖZÜM 1: A := {B P (X) : B sonlu} X / A

Detaylı

sonlu altörtüsü varsa bu topolojik uzaya tıkız diyoruz.

sonlu altörtüsü varsa bu topolojik uzaya tıkız diyoruz. Ders 1: Önbilgiler Bu derste türev fonksiyonunun geometrik anlamını tartışıp, yalnız R n nin bir açık altkümesinde değil, daha genel uzaylarda tanımlı bir fonksiyonun türevi ve özel noktalarının nasıl

Detaylı

fonksiyonu, her x 6= 1 reel say s için tan ml d r. (x 1)(x+1) = = x + 1 yaz labilir. Bu da; f (x) = L

fonksiyonu, her x 6= 1 reel say s için tan ml d r. (x 1)(x+1) = = x + 1 yaz labilir. Bu da; f (x) = L Limit Bu bölümde, matematik analizde temel bir görevi olan it kavram incelenecektir. Analizdeki bir çok problemin çözümünde it kavram na gereksinim duyulmaktad r. Bunlardan baz lar ; bir noktada bir e¼griye

Detaylı

Geçen bölümde, Zorn Önsav varsay larak yis ralama Teoremi

Geçen bölümde, Zorn Önsav varsay larak yis ralama Teoremi 25. Hausdorff Zincir Teoremi ve Zorn Önsav n n Kan t Tolga Karayayla Geçen bölümde, Zorn Önsav varsay larak yis ralama Teoremi ve yis ralama Teoremi varsay larak Seçim Aksiyomu kan tland. Bu bölümde önce

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

Alıştırmalara yanıtlar

Alıştırmalara yanıtlar Alıştırmalara yanıtlar Alıştırma 7. Derste tanımlanan yama kürenin yalnızca {z S 2 : z > 0} kısmını parametrize etmekte. Yapmamız gereken şey bütün küreyi böyle yamalarla örtmek. Önce ϕ : D 2 S 2, (x 1,

Detaylı

1956 da... Ali Nesin

1956 da... Ali Nesin 1956 da... Ali Nesin Nesin Yayıncılık Ltd. Şti. künye... Ali Nesin Analiz IV İçindekiler Üçüncü Basıma Önsöz.......................... 1 İkinci Basıma Önsöz........................... 1 Önsöz...................................

Detaylı

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ DERS: CEBİRDEN SEÇME KONULAR KONU: KARDİNAL SAYILAR ÖĞRETİM GÖREVLİLERİ: PROF.DR. NEŞET AYDIN AR.GÖR. DİDEM YEŞİL HAZIRLAYANLAR: DİRENCAN DAĞDEVİREN ELFİYE ESEN

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 3

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 3 1.3. Kompleks Düzlemin Topolojisi Tanım 1. D ε (z 0 ) = {z C : z z 0 < ε} kümesine z 0 ın bir ε komşuluğu denir. Tanım 2. Bir A C kümesi verilsin. z 0 ın sadece A nın elemanlarından oluşan bir komşuluğu

Detaylı

Soru Toplam Puanlama Alınan Puan

Soru Toplam Puanlama Alınan Puan 18.11.2013 No: Ad-Soyad: İmza: Soru 1. 2. 3. 4. 5. 6. 7. 8. Toplam Puanlama 20 20 20 20 20 20 20 20 100 Alınan Puan 405024142006.1 CEBİRSEL TOPOLOJİ ARASINAVI CEVAP ANAHTARI (ÖRGÜN ÖĞRETİM) Not: Süre 90

Detaylı

Mikro 1: Bütçe Kst ve Tercihler

Mikro 1: Bütçe Kst ve Tercihler Mikro 1: ve N.E. Aydnonat 1 1 AÜ & GÜ & BÜ GS Mikroiktisat ve Outline 1 : Özellikler 2 le ilgili Ek Varsaymlar ve Özellikler imdilik sadece iki mal (x 1 ve x 2 ) oldu unu varsayalm. Buna ek olarak mallarn

Detaylı