ÖN SÖZ. Değerli Adaylar,

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ÖN SÖZ. Değerli Adaylar,"

Transkript

1 ÖN SÖZ eğerli daylar, Okul ve meslek yaşamının en önemli sınavlarından birine, Kamu Personeli Seçme Sınavı(KPSS) na hazırlanmaktasınız ve buradaki başarınız gelecekteki iş yaşamınızı ciddi şekilde etkileyecek. Türkçe, Matematik, Tarih, oğrafya ve nayasa gibi birbirinden çok farklı branş ve içerikten oluşan KPSS Genel Yetenek- Genel Kültür bölümü; hem ğitim ilimleri hem lan ilgisi hem de grubu kadrolarına başvuracak öğrenciler için ortak ve zorunludur. u bölümdeki başarı diğer bölümlerin de sonucunu haliyle doğrudan etkileyecektir. u bölümlerin içinde de tartışmasız en kapsamlı olanı ve altyapı gerektireni matematiktir. linizdeki kaynak da bu noktalar dikkate alınarak hazırlanmıştır. Tüm bölümler; matematik altyapısı olmayan ya da öğrenim hayatına uzun süre ara vermiş öğrencilerin konuları aşama aşama, kolaydan zora ve basitten karmaşığa doğru çalışabilecekleri şekilde planlanmıştır. olayısıyla öğrenciler, kitaptaki açıklama ve uyarıları dikkate alarak ilerlediğinde ilgili konulardaki soruları rahatlıkla çözebildiklerini fark edecekler hem de daha ileri konular için bir altyapı oluşturabileceklerdir. üzenli, sabırlı ve dikkatli bir çalışmayla matematiğin hiç de zor ve korkulacak bir ders olmadığını anlayacağınız bu kitap temel bir başvuru kaynağıdır. Kitabın çalışmalarınızda yararlı olması dileğiyle PGM KMİ ailesi olarak KPSS ve meslek hayatınızda başarılar dileriz. Kenan Osmanoğlu - Kerem Köker

2 İÇİNKİLR MTMTİK oğal Sayı - Tam Sayı oğal Sayı - Tam Sayı oğal Sayı - Tam Sayı oğal Sayı - Tam Sayı irinci ereceden enklemler irinci ereceden enklemler şitsizlikler şitsizlikler Pozitif - Negatif Sayılar Pozitif - Negatif Sayılar Tek Sayı - Çift Sayı Tek Sayı - Çift Sayı rdışık Sayılar rdışık Sayılar rdışık Sayılar asamak nalizi asamak nalizi Çözümleme Çözümleme Taban ritmetiği Taban ritmetiği sal Sayılar - sal Çarpanlara yırma sal Sayılar - sal Çarpanlara yırma Faktöriyel Faktöriyel ölme ölme ölünebilme Kuralları ölünebilme Kuralları O OKK O-OKK O-OKK Rasyonel Sayı Rasyonel Sayı Rasyonel Sayı Rasyonel Sayı Rasyonel Sayı Mutlak eğer Mutlak eğer Üslü Sayılar Üslü Sayılar Köklü Sayılar Köklü Sayılar Üslü Köklü Sayılar Karma Çarpanlara yırma Çarpanlara yırma Çarpanlara yırma Çarpanlara yırma Oran Orantı Oran Orantı Oran Orantı Oran Orantı enklem Kurma Problemleri enklem Kurma Problemleri enklem Kurma Problemleri enklem Kurma Problemleri enklem Kurma Problemleri enklem Kurma Problemleri Yaş Problemleri Yaş Problemleri Yüzde - Faiz Problemleri Yüzde - Faiz Problemleri v

3 İÇİNKİLR Kâr - Zarar Problemleri Kâr - Zarar Problemleri Karışım Problemleri Karışım Problemleri İşçi Problemleri İşçi Problemleri Hareket Problemleri Hareket Problemleri Kümeler Kümeler İşlem İşlem Modüler ritmetik Modüler ritmetik Permütasyon Permütasyon Kombinasyon Kombinasyon Olasılık Olasılık Tablo - Grafik Yorumlama Tablo - Grafik Yorumlama Tablo - Grafik Yorumlama Tablo - Grafik Yorumlama Tablo - Grafik Yorumlama GOMTRİ oğruda çı oğruda çı Üçgende çı - çı Kenar ağıntıları Üçgende çı - çı Kenar ağıntıları Üçgende çı Üçgende çı - Kenar ağıntıları ik Üçgen ik Üçgen Özel Üçgen Özel Üçgen çıortay - Kenarortay ağıntıları Üçgende çıortay ağıntıları Üçgende Kenarortay ağıntıları Üçgende lan Üçgende lan Üçgende enzerlik ve lan Üçgende enzerlik ve lan Üçgende enzerlik ve lan Üçgende enzerlik ve lan Çokgen ve örtgen Çokgen ve örtgen Çokgen ve örtgen Paralelkenar - şkenar örtgen ikdörtgen - Kare Yamuk - eltoid Çember - aire Çember - aire Çemberde çı Çemberde Uzunluk airede lan nalitik Geometri nalitik Geometri nalitik Geometri nalitik Geometri Katı isim Katı isim Matematik - Geometri evap nahtarı vi

4 MTMTİK

5 M T M T İ K oğal Sayı - Tam Sayı , negatif olmayan en küçük tam sayı; y, pozitif olmayan en büyük tam sayıdır. una göre, -y farkı ) 2 ) 1 ) 0 ) 1 ) 2 6. ve y sayma saylar 3+y=20 olduğuna göre, +3ynin alabileceği en büyük değer ) 12 ) 20 ) 36 ) 52 ) ve y birbirinden farklı birer rakamdır. una göre, 2 + 3y nin alabileceği en büyük değer ile en küçük değerin toplamı ) 41 ) 42 ) 43 ) 44 ) ve y birbirinden farklı iki basamaklı tam sayılardır. una göre, +y toplamı en az ) 198 ) 197 ) 0 ) 20 ) 21 3.,y,z birbirinden farklı rakamlardır. una göre, 3 + 2y - z nin alabileceği en küçük değer ) 10 ) 9 ) 8 ) 7 ) 6 8. ve y birer doğal sayı ve 5 = 4y olduğuna göre, 2 + y nin alabileceği en küçük değer ) 0 ) 6 ) 13 ) 14 ) 15 4.,y,z negatif tam sayılardır. una göre, y zçarpımının alabileceği en büyük değeri ) 6 ) 4 ) 3 ) 1 ) 0 9. ve y birer doğal sayı +y=15 5., y, z birbirinden farklı negatif olmayan tam sayılardır. una göre, + 2y + 3z nin alabileceği en küçük değer 2 olduğuna göre, y nin alabileceği en büyük değer ) 0 ) 14 ) 50 ) 56 ) ) 3 ) 7 ) 8 ) 9 ) 14 3

6 1 oğal Sayı - Tam Sayı , y, z birer pozitif reel sayı ve +y+z=6 olduğuna göre, y znin alabileceği en büyük değer ) 0 ) 4 ) 6 ) 7 ) bir tam sayı ve ifadesi doğal sayı olduğuna göre, in alabileceği değerler toplamı ) 0 ) 6 ) 12 ) 21 ) ve y birer doğal sayı, y =24 olduğuna göre, +ynin alabileceğin en küçük değer ) 10 ) 12 ) 14 ) 20 ) ve y birer sayma sayısı y =24 olduğuna göre, 3 + 2y nin alabileceği en büyük değer ) 24 ) 25 ) 40 ) 51 ) ve y birer tam sayı 13. y =15 olduğuna göre, +ynin alabileceği en küçük ve en büyük değerin toplamı ) 0 ) 10 ) 16 ) 20 ) 24 ve y birer tam sayı 12 + = 8 y olduğuna göre, in alabileceği en büyük ve en küçük değerlerinin toplamı ) 9 ) 12 ) 14 ) 15 ) , y, z birer sayma sayısı ve =4y-z olduğuna göre, +y+zaşağıdakilerden hangisi olabilir? ) 50 ) 25 ) 5 ) 0 ) , y, z birer sayma sayısı ve 14. ve y birer tam sayı ve 2 y + y = 6 olduğuna göre, y kaç farklı değer alabilir? ) 8 ) 6 ) 5 ) 4 ) 3 2 = 3y 2y = 3z olduğuna göre, +y+znin alabileceği en küçük değer ) 38 ) 19 ) 0 ) 19 ) 38 4

7 oğal Sayı - Tam Sayı - 1 ÇÖZÜMLR 1. Negatif olmayan tam sayılar kümesi = {0,1,2,3, } olduğundan kümesinin en küçük elemanı sayısını vereceğinden = 0 olur. Pozitif olmayan tam sayılar kümesi = {, 3, 2, 1,0} olduğundan. kümesinin en büyük elemanı y sayısını vereceğinden y = 0 olur. una göre, y = 0 0 = 0 evap y nin en büyük değeri alabilmesi için ve y yerine büyük değerler yazılmalıdır. ve y farklı rakamlar olduğundan katsayısı büyük olan y yerine 9, katsayısı küçük olan yerine 8 yazılmalıdır. öylece 2 + 3y = = = 43 olur y nin en küçük değeri alabilmesi için ve y yerine küçük değerler yazılmalıdır. ve y farklı rakamlar olduğundan katsayısı büyük olan y yerine 0, kat sayısı küçük olan yerine 1 yazılmalıdır. öylece 2 + 3y = = 2 olur. olayısıyla 2 + 3y nin alabileceği en büyük ve en küçük değerin toplamı = 45 evap y z nin en küçük değeri alabilmesi için ve y yerine küçük, z yerine büyük değer yazılmalıdır. ve y farklı rakamlar olduğundan katsayısı büyük olan yerine 0, katsayısı küçük olan y yerine 1 yazılmalıdır. z yerine büyük bir rakam yani 9 yazılmalıdır. öylece 3 + 2y z = = 2 9 = 7 evap y = 20 için denkleminde yerine değerler yazıp, y nin değerlerini bulalım. = 1 y = 17 = 2 y = 14 = 3 y = 11 = 4 y = 8 = 5 y = 5 = 6 y = 2 dir y nin en büyük olması için y = 17 ve = 1 olmalıdır. una göre, + 3y = = 52 evap İki basamaklı tam sayılar kümesi = { 99, 98,, 10, 10, 11, 99} olur. irbirinden farklı iki tam sayının toplamının en küçük olması için bu sayıların yerine 99 ve 98 yazılmalıdır. una göre, + y = ( 99) + ( 98) = 197 evap 8. oğal sayılar kümesi N = {0,1,2,3, } dir. 5 = 4y = 4k ve y = 5 k dır. k = 0 = 0 ve y = 0 k = 1 = 4 ve y = 5 k = 2 = 8 ve y = y nin en küçük değerini alması için ve y en küçük olmalıdır. una göre 2 + y = = 0 evap 4., y ve z negatif tam sayı olduğundan üçünün çarpımı negatif olur. Çarpımın en büyük negatif sayı olması için, y ve z nin 1 olması gerekir. una göre, y z = ( 1) ( 1) ( 1) = 1 evap 9. + y = 15 iken y nin en büyük olması için ile y nin arasındaki farkın küçük olması gerekir. ve y doğal sayı olduğundan = 7 ve y = 8 olmalıdır. una göre, y = 7 8 = 56 evap y + z = 6 iken y z nin en büyük olması için, y ve z nin birbirine yakın sayılar olması gerekir. = y = z = 2 alınırsa y z = = 8 evap 5., y ve z negatif olmayan tam sayılar olduğundan = {0,1,2,3, } kümesinin elemanlarından biri olabilir. + 2y + 3z toplamının en küçük olması için katsayısı büyük 2 olan terime en küçük değer verilmelidir. z = 0, y = 1 ve = 2 seçilirse, 2 + 2y + 3z = = evap 11.. y = 24 iken + y nin en küçük olması için ve y nin birbirine yakın olması gerekir. y = 24 = 1,y = 24 = 2,y = 12 = 3,y = 8 = 4,y = 6 una göre, + y = 4+ 6 = 10 evap 5

8 ÇÖZÜMLR oğal Sayı - Tam Sayı y = 15 = 15,y = 1 = 5,y = 3 = 3,y = 5 = 1,y = 15 = 15,y = 1 = 3,y = 5 = 5,y = 3 = 15,y = 1 + y nin alabileceği en küçük değer 15 1 = 16 olur. n büyük değer = 16 olur. una göre, en büyük ve en küçük değerlerin toplamı = 0 evap 16. ve y sayma sayıları ve çarpımları 24 olduğundan, y = 24 iken 3 + 2y nin değerleri y 3+ 2y = = = = = = = = 74 olarak una göre, 3 + 2y nin alabileceği en büyük değer 74 tür. evap = 8 denklemini sağlayan lerin tam sayı olması için y y nin 12 yi tam bölmesi gerekir. 12 nin tam bölenlerinin kümesi = { 12, 6, 4, 3, 2, 1,1,2,3,4,6,12} dir. y = 1 için in en büyük değeri 20 y = 1 için in en küçük değeri olan 4 una göre, en büyük ve en küçük değerlerinin toplamı 20 4 = 16 evap y + y = 6 ifadesi y parantezine alınırsa y(2 + 1) = tek sayı olduğundan y nin çift sayı olması gerekir. y sayısı; 6 nın da çarpanı olduğundan 6, 2, 2 ve 6 değerlerini alır. olayısıyla y nin 4 farklı değeri vardır. 17. = 4y z ise + z = 4y + y + z = + z + y = 4y + y = 5y una göre, + y + z toplamı 5 in katı olur, ancak y sayma sayı olduğundan + y + z toplamı pozitif bir sayı olmalıdır. Seçenekler incelenirse + y+ z = 15 olabilir. evap evap = 5 + olarak yazılabilir in doğal sayı olması için in 18 i tam bölen sayılar olması gerekir. = = 5+ = 4 N 18 = = 5+ = 3 N 9 = = 5+ = 2 N 6 = = 5+ = 1 N 3 = = 5+ = 4 N = 1 5+ = 5+ = 13 N 1 18 in pozitif böleni olan 1, 2, 3, 6, 9 ve 18 değerleri için ifadesi daima doğal sayı olacağından in alabileceği değerler { 18, 9, 6, 1, 2, 3, 6, 9, 18} olur. una göre toplamları = = 3y ifadesini = y 2 ve 2y = 3z ifadesini de y 3 = z 2 olarak yazabiliriz. y nin karşısındaki sayıları eşitleyelim. 3 9 = = = 9k y 2 6 ve y = 6k y 3 6 = = z = 4k z 2 4 una göre, + y + z = 9k + 6k + 4k = 19k, y ve z sayma sayısı olduğundan k = 1 için + y + z = 19 1 = 19 evap evap 6

9 GOMTRİ

10 G O M T R İ oğruda çı Tümler iki açıdan birinin ölçüsü diğerinin ölçüsünün 3 katından 10 eksiktir. una göre, küçük olan açı kaç derecedir? ) 20 ) 25 ) 45 ) 65 ) dörtgeninde m() = 60 m() = 40 m() = 20 dir. Yukarıda verilenlere göre, 60 o 40 o 20o m() kaç derecedir? ) 110 ) 115 ) 120 ) 125 ) d 3 d o 1 y o d 2 d 4 d 1//d2 ve d 3//d 4 olduğuna göre, y kaç derecedir? 6. ir dar açının ölçüsü, bir doğru açının ölçüsünün yarısından 25 eksik ise, bu dar açının ölçüsü kaç derecedir? ) 140 ) 130 ) 120 ) 110 ) 100 ) 75 ) 70 ) 65 ) 60 ) d//d o m() = o m() = m() = 30 dir. 30 o Yukarıda verilenlere göre, kaç derecedir? ) 20 ) 24 ) 28 ) 30 ) 36 d d [ // [F m() = 27 m() = 117 m() = 128 dir. Yukarıda verilenlere göre, F 117 o 128 o 27 o m(f) kaç derecedir? ) 32 ) 35 ) 38 ) 40 ) [ // [ m() = o 75 m() = y y m() = 75 dir. Yukarıda verilenler göre, + y kaç derecedir? ) 275 ) 280 ) 285 ) 290 ) [F // F m() = 30 m() = 90 o 30 m(f) = Yukarıda verilenlere göre, kaç derecedir? ) 100 ) 110 ) 120 ) 130 )

11 1 oğruda çı [ // [ m() = 56 m() = 48 m() = 5 6 o 4 8 o 13. ir dar açının bütünleri tümlerinden kaç derece fazladır? ) 70 ) 75 ) 80 ) 85 ) 90 Yukarıda verilenlere göre, kaç derecedir? ) 84 ) 76 ) 70 ) 58 ) F d o d//d 1 2 m(f) = 110 m() = 30 m() = 30 o Yukarıda verilenlere göre, kaç derecedir? d [ //[,[ //[F, α K F [K]ile [K] açıortay Yukarıda verilenlere göre m(k) =α kaç derecedir? ) 75 ) 80 ) 85 ) 90 ) 100 ) 80 ) 100 ) 120 ) 140 ) d//d 1 2 ise verilenlere göre, y kaç derecedir? d o 2 y d 2 ) 12 ) 18 ) 20 ) 24 ) [//[//[F, [K] açıortay 100 o α m(k) = 100 ve 160 o F m(kf) = 160 K Yukarıda verilenlere göre m(k) =αkaç derecedir? ) 100 ) 110 ) 120 ) 130 ) F d//d ise a, b, c arasındaki bağıntı aşağıdakilerden hangisi- 1 2 c dir? b d 2 a G d 1 ) a + b + c = 180 ) a = b+ c ) a+ c = b ) a+ b+ c = 90 ) a+ b = c 16. // ve, K, noktaları doğrusal K = K, K =, T 115 o [KF açıortay ve α F m(tf) = 115 Yukarıda verilenlere göre m(k) =α kaç derecedir? ) 10 ) 15 ) 20 ) 25 )

12 oğruda çı - 1 ÇÖZÜMLR 1. α ve β tümler iki açı olsun. O halde α+β= 90 dir. çılardan birinin ölçüsü diğerinin 3 katından 10 eksik olduğuna göre α= 3β 10 dir. uradan α+β= 90 ve α= 3β 10 denklemler ortak çözümlenirse α+β= 90 3β 10 +β= 90 4β= 100 3β 10 β= 25 olur. α+β= 90 α= = 65 olur. O halde küçük olan açı ar açının ölçüsü α olsun. 180 α= 25 = 65 2 evap evap 2. ( ) ile (4 10 ) içters açılar olduğundan ölçüleri birbirine eşittir. Yani = 4 10 = 30 olur. y ile (4 10 ) yöndeş iki açının ölçüleridir. O halde y = 4 10 olur. y = = 110 evap 3. d1 d//d 50 o 1 2 olduğundan m() + m() = m() 3+20 o 30 o d = = 3 = [ K] [ K] = {} K olacak şekilde bir K noktası belirlenirse doğru açı tanımı gereği F K m(k) = 63 ve m(k) = 52 dir. K Δ nde iç açıların ölçüleri toplamı yazılacak olursa m(k) = 65 olur. [ [ // F olduğundan m(k) + m(kf) = m(k) 27 + m(kf) = 65 m(kf) = 38 evap evap 4. [ //[ olduğundan verilen şekilde aynı yöne bakan açıların ölçüleri toplamı 360 dır. uradan m() + m() + m() = 360 dır y = y = 285 evap 8. F K F,, K noktaları doğrusal 180 olacak şekilde bir K noktası seçersek doğru açı tanımından m(k) = 180 olur. 30 FK // olduğundan m(k) + m() = m() = 90 = 120 evap o 40 o 20o Şekilde m() + m() + m() = m() = m() m() = 120 evap 9. [ //[ olduğundan m() + m() = 180 (Karşı durumlu açılar) = 76 evap 279

13 ÇÖZÜMLR oğruda çı F d 1 d//d olduğundan F ile 110 o karşı durumlu açılardır. O halde m(f) + m() = o m() = 180 d 2 m() = 70 dir. 14. [ //[ ;[ [ // F olduğundan ile F bütünler iki açıdır. ütünler iki açının açıortayları arasında kalan açının ölçüsü α= 90 dir. evap Δ nde m() + m() = m() = = 100 evap 11. d//d 1 2 dir. İç ters açıların ölçüleri birbirine eşit olduğundan 2 = y dir.,, noktaları doğrusal olduğundan = = 60 = 12 ve y = 24 evap 15. [ [ [ L K K 100 o α= o F L KL // // // F çizersek FK ile KL, K ile KL ve K ile KL karşı durumlu açılardır. O halde açılar şekildeki gibi yerleştirilebilir. uradan α= 130 evap 12. K F,, K ve,, L noktaları c c doğrusal olacak şekilde çizilirse ters açıların ölçüleri eşit b d 2 olduğundan m(k) = c, a L m(l) = a dır. a K //L olduğundan G d 1 m(k) + m(l) = m() c + a = b evap 13. ar açı α olsun. çının bütünleri 180 α çının tümleri 90 α uradan (180 α) (90 α ) = 180 α 90 + α = 90 evap 16. H m(k) = m(k) = a, 2a a m(k) = m(k) = b a K 45 o dersek m(h) = 2a, T 115 o o b m(l) = 2b olur. α F 2b b L H// olduğundan 2a + 2b = 180 a + b = 90 dir. uradan m(k) = 90 dir. [KF açıortay olduğundan m(fk) = m(kf) = 45 olur. KT üçgeninde iç açıların ölçüleri toplamından α= 180 α= 20 evap 280

kpss matematik geometri tamamı çözümlü kenan osmanoğlu / kerem köker

kpss matematik geometri tamamı çözümlü kenan osmanoğlu / kerem köker kpss soru bankası tamamı çözümlü sözel adaylar için matematik geometri kenan osmanoğlu / kerem köker ÖN SÖZ Değerli daylar, Okul ve meslek yaşamının en önemli sınavlarından birine, Kamu Personeli Seçme

Detaylı

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde KPSS Genel Yetenek Genel Kültür MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2015 KPSS ye Pegem Yayınları ile hazırlanan adayların, 100'ün üzerinde soruyu kolaylıkla

Detaylı

Pegem Pegem. Pegem Pegem. Pegem. Pegem. Pegem

Pegem Pegem. Pegem Pegem. Pegem. Pegem. Pegem İ itörler: Kerem KÖKR - Kenan SMNĞLU Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem KPSS Geometri itörler: Kerem Köker / Kenan smanoğlu KPSS Geometri ISN 978-605-364-197-1

Detaylı

SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde. Lise ve Ön Lisans Adayları İçin MATEMATİK

SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde. Lise ve Ön Lisans Adayları İçin MATEMATİK KPSS Genel Yetenek Genel Kültür Lise ve Ön Lisans Adayları İçin MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2014 KPSS ye Pegem Yayınları ile hazırlanan adayların,

Detaylı

matematik sayısal akıl yürütme mantıksal akıl yürütme

matematik sayısal akıl yürütme mantıksal akıl yürütme kpss 2014 Yeni sorularla yeni sınav sistemine göre hazırlanmıştır. matematik sayısal akıl yürütme mantıksal akıl yürütme geometri soru bankası tamamı çözümlü Kenan Osmanoğlu, Kerem Köker KPSS Matematik-Geometri

Detaylı

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80. 11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?

Detaylı

kpss ezberbozan serisi MATEMATİK GEOMETRİ SORU BANKASI Eğitimde

kpss ezberbozan serisi MATEMATİK GEOMETRİ SORU BANKASI Eğitimde kpss ezberbozan serisi 2016 MATEMATİK GEOMETRİ SORU BANKASI Eğitimde 29. yıl KOMİSYON KPSS EZBERBOZAN MATEMATİK - GEOMETRİ SORU BANKASI ISBN 978-605-318-360-0 Kitapta yer alan bölümlerin tüm sorumluluğu

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR KASIM EKİM EYLÜL Ay Hafta D.Saat i 0 04 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE SÜRE ÖĞRENME ALANI ALT ÖĞRENME ALANI Örüntü Süslemeler si KAZANIMLAR.Doğru, çokgen

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 1 YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 RASYONEL SAYILAR KÜMESİ VE ÖZELLİKLERİ 07 BASİT EŞİTSİZLİKLER

Detaylı

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ 2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ YGS sonrası adayları puan getirisinin daha çok olan LYS ler bekliyor. Kalan süre içinde adayların girecekleri testlere kaynaklık eden derslere sabırla çalışmaları

Detaylı

2016 Kpss Lisans Matematik & Geometri E-Kursu

2016 Kpss Lisans Matematik & Geometri E-Kursu 2016 Kpss Lisans Matematik & Geometri E-Kursu Özellikler Müfredat Tarihler Özellikler Konu Anlatımları: 2015-2016 yılında konu anlatımlarımıza artık senkron ( canlı ) dersi ekledik. Kpss 2016 Matematik

Detaylı

Atlas KPSS 23 Dvd+10 Deneme

Atlas KPSS 23 Dvd+10 Deneme Yan?nda 10 Adet Deneme S?nav? Kitab? + 1 Adet Cevap Çözümleme Kitab? - Tarih Atlas KPSS Genel Kültür ve Genel Yetenek Seti 23 DVD + 10 Kitap Atlas KPSS E?itim Seti?le Kurslara Son... Sizler?çin 23 DVD'ile

Detaylı

I 5. SINIF ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIM I- 01 I- 02 II- 01 II- 02 II- 03

I 5. SINIF ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIM I- 01 I- 02 II- 01 II- 02 II- 03 I 5. SINIF MATEMATİK VE İŞLEMLER 1.1. En çok dokuz basamaklı doğal sayıları okur ve yazar. 1.2. En çok dokuz basamaklı doğal sayıların bölüklerini, basamaklarını ve rakamların basamak değerlerini belirtir.

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN

LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN Konu Anlatımlı Örnek Çözümlü Test Çözümlü Test Sorulu Karma Testli GEOMETRİ 1 Hazırlayan Erol GEDİKLİ Matematik

Detaylı

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º Geometri Çözmek ir yrıcal calıkt ktır ÇI I ve UZUNLUK 1? m()=, m()=, m()= 7º merkezli çemberde m()= 7º Verilenlere göre açısının ölçüsü kaç derecedir? ) 10 ) 1 ) 10 ) 1 ) 17 Verilenlere göre açısının ölçüsü

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ 14. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ 14. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI EGE ÖLGESİ 4. OKULLR RSI MTEMTİK YRIŞMSI 8. SINIF ELEME SINVI TEST SORULRI. n bir tamsayı olmak üzere, n n 0 ( 4.( ) +.( ) + 7 + 8 ) işleminin sonucu kaçtır? ) 0 ) 5 ) 6 ). ir kitapçıda rastgele seçilen

Detaylı

ASAL SAYILAR. www.unkapani.com.tr

ASAL SAYILAR. www.unkapani.com.tr ASAL SAYILAR ve kendisinden aşka pozitif öleni olmayan den üyük doğal sayılara asal sayı denir.,, 5, 7,,, 7, 9, sayıları irer asal sayıdır. En küçük asal sayı dir. den aşka çift asal sayı yoktur. den aşka

Detaylı

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT ÜÇGNLR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT ÜÇGNLRİN ŞLİĞİ Üçgende çılar 1. Kazanım : ir üçgenin iç açılarının ölçüleri toplamının 180, dış açılarının ölçüleri toplamının 0 olduğunu gösterir. İki Üçgenin şliği.

Detaylı

GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Eğitimde. Lise ve Ön Lisans Adayları İçin. konu anlatımlı

GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Eğitimde. Lise ve Ön Lisans Adayları İçin. konu anlatımlı KPSS Genel Yetenek Genel Kültür Lise ve Ön Lisans Adayları İçin GEOMETRİ KPSS 206 Pegem Akademi Sınav Komisyonu; 204 KPSS ye Pegem Yayınları ile hazırlanan adayların, 00'ün üzerinde soruyu kolaylıkla çözebildiğini

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

Temel Matematik Testi - 4

Temel Matematik Testi - 4 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: D00. Bu testte 0 soru vardır.. Tavsiye edilen süre 0 dakikadır. Temel Matematik Testi -.

Detaylı

TEMEL MATEMATİK TESTİ

TEMEL MATEMATİK TESTİ TEMEL MTEMTİK TESTİ 1. u testte 0 soru vardır.. evaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 010 YGS / MT 1. 0, 0,0 0,. + 1 ) 1 7 0 ) 1 + 1 1.. ( a+ 1) ( a )

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır?

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır? Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994 Matematik Soruları ve Çözümleri 4.10 +.10 1. 4 10 4 işleminin sonucu kaçtır? A) 0,4 B) 4, C) 4 D) 40 E) 400 Çözüm 1 4.10 +.10 4 10 4 4.10 +.10 10 1+ 1 = 4 4 (40+

Detaylı

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ ADAYIN ÞÝFRESÝ BURAYA YAPIÞTIR DEVLET OLGUNLUK SINAVI DEVLET SINAV MERKEZÝ MATEMATÝK - TEMEL SEVÝYE MATEMATÝK TEMEL SEVÝYE Testin Çözme Süresi: 180 dakika Haziran, 2009 yýlý BÝRÝNCÝ deðerlendiricinin þifresi

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

geometri kpss 94 soru yakaladık ÖSYM tarzına en yakın özgün sorular ve açıklamaları 2014 kpss de

geometri kpss 94 soru yakaladık ÖSYM tarzına en yakın özgün sorular ve açıklamaları 2014 kpss de kpss 05 konu anlatımlı ayrıntılı çözümlü örnekler uyarılar pratik bilgiler çıkmış sorular ve açıklamaları ÖSYM tarzına en yakın özgün sorular ve açıklamaları geometri 04 kpss de 94 soru yakaladık Editörler

Detaylı

KPSS GENEL YETENEK MATEMATİK & GEOMETRİ KONU ANLATIMLI SORU BANKASI

KPSS GENEL YETENEK MATEMATİK & GEOMETRİ KONU ANLATIMLI SORU BANKASI KPSS GENEL YETENEK MATEMATİK & GEOMETRİ KONU ANLATIMLI SORU BANKASI KPSS - 011 TÜM ADAYLAR İÇİN KAMU PERSONELİ SEÇME SINAVI KONU ANLATIMLI MODÜLER SET YAZAR Recep AKSOY EDİTÖR Murat CANLI YAYIN KOORDİNATÖRÜ

Detaylı

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI x13. ULUSAL MATEMATİK OLİMPİYATI - 005 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 1. AB = olmak üzere, A

Detaylı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı Ertuğrul US 01.09.2014 MATEMATİK PROGRAMIM Program 6 aylık (24 haftalık) bir programdır. Konuların veriliş sırasına uyularak çalışılması

Detaylı

( ) MATEMATİK 1 TESTİ (Mat 1) 2009 - ÖSS / MAT-1. 1. Bu testte 30 soru vardır.

( ) MATEMATİK 1 TESTİ (Mat 1) 2009 - ÖSS / MAT-1. 1. Bu testte 30 soru vardır. 009 - ÖSS / MT- MTEMTİK TESTİ (Mat ). u testte 0 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. ( )( ) + 4. m = olduğuna göre, m + ifadesinin değeri işleminin

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º ğlence başlıyor yor 1 º 0º üçgeninin alanı kaç birim karedir? ) ) 9 LN SI 1 LN SI 1 )1 ) üçgeninin alanı kaç birim karedir? üçgeninin alanı kaç birim karedir? ) ) ) ) ) ) üçgen, = birim, = birim, m() =

Detaylı

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme kpss 04 akıcı ayrıntılı güncel konu anlatımları örnekler yorumlar uyarılar pratik bilgiler ösym tarzında özgün sorular ve açıklamaları matematik sayısal akıl yürütme mantıksal akıl yürütme 0 kpss de 85

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

Savaş Doğan Kenan Osmanoğlu Kerem Köker DGS KONU ANLATIMLI SÖZEL SAYISAL YETENEK - DENEMELER ISBN 978-605-364-361-6

Savaş Doğan Kenan Osmanoğlu Kerem Köker DGS KONU ANLATIMLI SÖZEL SAYISAL YETENEK - DENEMELER ISBN 978-605-364-361-6 Savaş Doğan Kenan Osmanoğlu Kerem Köker DGS KONU NLTIMLI SÖZEL SYISL YETENEK - DENEMELER ISN 978-605-364-361-6 Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. Pegem kademi u kitabın basım,

Detaylı

Başlayanlara AKTİF MATEMATİK

Başlayanlara AKTİF MATEMATİK KPSS - YGS - DGS - ALES Adayları için ve 9. sınıfa destek 0 dan Başlayanlara AKTİF MATEMATİK MEHMET KOÇ ÖNSÖZ Matematikten korkuyorum, şimdiye kadar hiç matematik çözemedim, matematik korkulu rüyam! bu

Detaylı

barisayhanyayinlari.com

barisayhanyayinlari.com YGS MATEMATİK KONU ANLATIM FASİKÜLLERİ SERİSİ 1 ISBN 978-605-84147-0-9 Baskı Tarihi Ağustos 015 Baskı Yeri: İstanbul YAYINLARI İletişim tel: (538) 90 50 19 barisayhanyayinlari.com Benim için her şey bir

Detaylı

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir? PROL est -. m parabolü eksenini kesmiorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?. f a b c (, ) ) (, ) (, ) (, ) ( 6, ). m parabolü eksenini iki farklı noktada kesmektedir. una göre,

Detaylı

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır?

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? TEMEL MATEMATİK TESTİ 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 1. 3. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? A)

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI 3 201412-1

Ortak Akıl MATEMATİK DENEME SINAVI 3 201412-1 Ortak Akıl YGS MATEMATİK DENEME SINAVI 011-1 Ortak Akıl Adem ÇİL Ayhan YANAĞLIBAŞ Barış DEMİR Celal İŞBİLİR Deniz KARADAĞ Engin POLAT Erhan ERDOĞAN Ersin KESEN Fatih TÜRKMEN Kadir ALTINTAŞ Köksal YİĞİT

Detaylı

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A KDENİZ ÜNİVERSİTESİ 18. ULUSL NTLY MTEMTİK OLİMPİYTLRI BİRİNCİ ŞM SORULRI SINV TRİHİ VESTİ:30 MRT 2013 - Cumartesi 10.00-12.30 Bu sınav 25 sorudan oluşmaktadır vesınav süresi 150 dakikadır. SINVL İLGİLİ

Detaylı

Geometri Çalýþma Kitabý

Geometri Çalýþma Kitabý YGS GMTRÝ ÇLIÞM ÝTI YGS Geometri Çalýþma itabý opyright Sürat asým Reklamcýlýk ve ðitim raçlarý San. Tic. Þ u kitabýn tamamýnýn ya da bir kýsmýnýn, kitabý yayýmlayan þirketin önceden izni olmaksýzýn elektronik,

Detaylı

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9 OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 015 01 1 Eylül 18 Eylül Kümelerde Temel Kavramlar 1. Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler.

Detaylı

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1 . Alanı 36 5 olan bir ABC ikizkenar üçgeninde ==2 ise bu üçgende B den AC ye inilen dikmenin ayağının C noktasına olan uzaklığı nedir? ) 2,8) 3) 3,2 ) 3,7 ) 4, 2. Ayrıt uzunlukları 4, 0 ve 4 5 olan dikdörtgenler

Detaylı

Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1

Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1 Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1 Öğrenci Adı Soyadı Sınıfı Ödev Teslim Tarihi Öğretmen Görüşü Soru 1 Aşağıda sayma pulları ile modellenen matematik işlemlerini bulunuz. Soru 2 Aşağıda

Detaylı

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI.

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI. Sayfa1 9. Ulusal serimya İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI 2011 Sayfa2 1. Bir ABCD konveks dörtgeninde AD 10 cm ise AB CB? m( Dˆ ) 90, ( ˆ) 150 0 0 m C ve m Aˆ m Bˆ ( ) ( ) olarak

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

ÜNİTELENDİRME ŞEMASI

ÜNİTELENDİRME ŞEMASI LENDİRME ŞEMASI ÜNİTE DOĞRULAR VE AÇILAR. Aynı düzlemde olan üç doğrunun birbirine göre durumlarını belirler ve inşa eder.. Paralel iki doğrunun bir kesenle yaptığı açıların eş olanlarını ve bütünler olanlarını

Detaylı

1.DENEME HAZIRLIK MATEMATİK MATEMATİK TESTİ. 1-En yakın yüzlüğe yuvarlandığında 2200 olan en küçük sayı hangisidir? A-2150 B-2151 C-2190 D-2199

1.DENEME HAZIRLIK MATEMATİK MATEMATİK TESTİ. 1-En yakın yüzlüğe yuvarlandığında 2200 olan en küçük sayı hangisidir? A-2150 B-2151 C-2190 D-2199 1.DENEME HAZIRLIK MATEMATİK MATEMATİK TESTİ 1-En yakın yüzlüğe yuvarlandığında 2200 olan en küçük sayı hangisidir? A-2150 B-2151 C-2190 D-2199 2-Onlar basamağı 5, yüzler basamağı 2 ve binler basamağı 6

Detaylı

TEMEL KAVRAMLAR Test -1

TEMEL KAVRAMLAR Test -1 TEMEL KAVRAMLAR Test -1 1. 6 ( ) 4 A) B) 3 C) 4 D) 5 E) 6 5. 4 [1 ( 3). ( 8)] A) 4 B) C) 0 D) E) 4. 48: 8 5 A) 1 B) 6 C) 8 D) 1 E) 16 6. 4 7 36:9 18 : 3 A) 1 B) 8 C) D) 4 E) 8 3. (4: 3 + 1):4 A) 3 B) 5

Detaylı

4. BÖLÜM GEOMETRİK ÇİZİMLER

4. BÖLÜM GEOMETRİK ÇİZİMLER 4. ÖLÜM GEOMETRİK ÇİZİMLER MHN 113 Teknik Resim ve Tasarı Geometri 2 4. GEOMETRİK ÇİZİMLER 4.1. ir doğruyu istenilen sayıda eşit parçalara bölmek 1. - doğrusunun bir ucundan herhangi bir açıda yardımcı

Detaylı

Ö.S.S. 1994. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ = 43. olduğuna göre a kaçtır?

Ö.S.S. 1994. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ = 43. olduğuna göre a kaçtır? Ö.S.S. 1994 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ 4.10 1. 4 10 +.10 4 işleminin sonucu kaçtır? A) 0,4 B) 4, C) 4 D) 40 E) 400 Çözüm 1 4.10 +.10 4 10 4 4.10 +.10 10 1+ 1 4 4 (40+ ).10 10 4 4 4 (98² 98²) 00.9.

Detaylı

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I Üniversite Hazırlık / YGS Kolay Temel Matematik 0 KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I. 8 ( 3 + ) A) 7 B) 8 C) 9 D) 0 E) 6. 3! 3 ( 3 3)": ( 3) A) B) 0 C) D) E) 3. 7 3. + 5 A) 6 B) 7 C) 8 D) 0

Detaylı

12. SINIF / ÜNİVERSİTE HAZIRLIK YGS DENEME SINAVLARI DAĞILIMI / TÜRKÇE TESTİ

12. SINIF / ÜNİVERSİTE HAZIRLIK YGS DENEME SINAVLARI DAĞILIMI / TÜRKÇE TESTİ YGS DENEME SINAVLARI DAĞILIMI / TÜRKÇE TESTİ 01 Sözcükte ve Söz Öbeklerinde Anlam 02 Cümlede Anlam İlişkileri / Kavramlar 03 Cümle Yorumu 04 Anlatım ve Özellikleri 05 Anlatım Türleri 06 Sözlü Anlatım 07

Detaylı

A SINAV TARİHİ VE SAATİ : 28 Nisan 2007 Cumartesi, 09.30-11.00

A SINAV TARİHİ VE SAATİ : 28 Nisan 2007 Cumartesi, 09.30-11.00 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 12. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2007 Birinci Bölüm Soru kitapçığı türü A SINAV TARİHİ

Detaylı

5.2. 5.2.1. Üçgenin Alanı. Neler Öğreneceğiz? Başlarken

5.2. 5.2.1. Üçgenin Alanı. Neler Öğreneceğiz? Başlarken ölüm 5. Üçgende lan Neler Öğreneceğiz? Üçgenin alanını veren bağıntılar ve üçgenin alanıyla ilgili uygulamaları nahtar Terimler 5... Üçgenin lanı aşlarken İnşaat sektöründe ustalar, çatı, duvar ya da zemini

Detaylı

GEOMETRİ TESTİ LYS 1 / GEOMETRİ. ABC bir eşkenar üçgen. G, ABC üçgeninin ağırlık AB = 3 CD

GEOMETRİ TESTİ LYS 1 / GEOMETRİ. ABC bir eşkenar üçgen. G, ABC üçgeninin ağırlık AB = 3 CD LYS 1 / OMTRİ OMTRİ TSTİ 1. u testte 0 soru vardır. 2. u testin cevaplanması için tavsiye olunan süre 60 dakikadır. 1.. bir eşkenar üçgen 1 4 2 5, üçgeninin ağırlık merkezi = x irim karelere bölünmüş düzlemde

Detaylı

MATEMATİK SINAVI GEOMETRİ TESTİ SORU KİTAPÇIĞI 19 HAZİRAN 2010 BU SORU KİTAPÇIĞI 19 HAZİRAN 2010 LYS 1 GEOMETRİ TESTİ SORULARINI İÇERMEKTEDİR.

MATEMATİK SINAVI GEOMETRİ TESTİ SORU KİTAPÇIĞI 19 HAZİRAN 2010 BU SORU KİTAPÇIĞI 19 HAZİRAN 2010 LYS 1 GEOMETRİ TESTİ SORULARINI İÇERMEKTEDİR. Ö S Y M T.. YÜKSKÖĞRTİM KURULU ÖĞRNİ SÇM V YRLŞTİRM MRKZİ LİSNS YRLŞTİRM SINVI MTMTİK SINVI GOMTRİ TSTİ SORU KİTPÇIĞI 9 HZİRN 00 U SORU KİTPÇIĞI 9 HZİRN 00 LYS GOMTRİ TSTİ SORULRINI İÇRMKTİR. u testlerin

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 18 Kasım 2007 Matematik Soruları ve Çözümleri 1. Bir sayının 0,02 ile çarpılmasıyla elde edilen sonuç, aynı sayının aşağıdakilerden

Detaylı

M G - M A T E M A T İ K D E R S N O T L A R I Sayfa 1

M G - M A T E M A T İ K D E R S N O T L A R I Sayfa 1 NKLM KURM PROLMLRİ YGS MTMTİK. SYI PROLMLRİ ÇÖZM STRTJİSİ ir problemi çözmek için verilen zamanın yarısından fazlasını soruyu anlamaya, kalan zamanı da soruyu çözmeye ayırmalısınız. una göre, soruları

Detaylı

YGS MATEMATİK SORU BANKASI

YGS MATEMATİK SORU BANKASI YGS MATEMATİK SORU BANKASI Sebahattin ÖLMEZ www.limityayinlari.com Sınavlara Hazırlık Serisi YGS Matematik Soru Bankası ISBN: 978-60-48--9 Copyright Lmt Limit Yayınları Bu kitabın tüm hakları Lmt Limit

Detaylı

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30 İçindekiler 1. ÜNİTE Bölüm 1 : Üslü Sayılar... 8 Bölüm 2 : Doğal Sayılar... 18 Bölüm 3 : Doğal Sayı Problemleri... 30 Bölüm 4 :- Çarpanlar ve Katlar, Bölünebilme... 40 Bölüm 5 : Asal Sayılar, Ortak Bölenler,

Detaylı

Ar tık Matematiği Çok Seveceksiniz!

Ar tık Matematiği Çok Seveceksiniz! Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

Diğer sayfaya geçiniz. 2012 KPSS / GYGK CS 33. 31. işleminin sonucu kaçtır? işleminin sonucu kaçtır? A) B) C) A) B) C) 34. 32.

Diğer sayfaya geçiniz. 2012 KPSS / GYGK CS 33. 31. işleminin sonucu kaçtır? işleminin sonucu kaçtır? A) B) C) A) B) C) 34. 32. 31. 33. işleminin sonucu kaçtır? işleminin sonucu kaçtır? 32. 34. işleminin sonucu kaçtır? işleminin sonucu kaçtır? A) 84 B) 80 C) 72 64 60 9 35. 37. x ve y gerçel sayıları işleminin sonucu kaçtır? eşitsizliklerini

Detaylı

2012 YGS MATEMATİK Soruları

2012 YGS MATEMATİK Soruları 01 YGS MATEMATİK Soruları 1. 10, 1, 0, 0, işleminin sonucu kaçtır? A) B), C) 6 D) 6, E) 7. + ABC 4 x 864 Yukarıda verilenlere göre, çarpma işleminin sonucu kaçtır? A) 8974 B) 907 C) 9164 D) 94 E) 98. 6

Detaylı

ÖZEL SAMANYOLU LİSELERİ

ÖZEL SAMANYOLU LİSELERİ ÖZEL SAMANYOLU LİSELERİ 8. İLKÖĞRETİM MATEMATİK YARIŞMASI 31 MART 2012 A KİTAPÇIĞI Bu sınav çoktan seçmeli 40 Test sorusundan oluşmaktadır. Süresi 150 dakikadır. Sınavla İlgili Uyarılar Cevap kağıdınıza,

Detaylı

BÖLME - BÖLÜNEBİLME Test -1

BÖLME - BÖLÜNEBİLME Test -1 BÖLME - BÖLÜNEBİLME Test -1 1. A saısının 6 ile bölümünden elde edilen bölüm 9 kalan olduğuna göre, A saısı A) 3 B) C) 7 D) 8 E) 9. x, N olmak üzere, x 6 ukarıdaki bölme işlemine göre x in alabileceği

Detaylı

Yükseköğretime Geçiş Sınavı (Ygs) / 11 Nisan 2010. Matematik Soruları ve Çözümleri 12 E) 25

Yükseköğretime Geçiş Sınavı (Ygs) / 11 Nisan 2010. Matematik Soruları ve Çözümleri 12 E) 25 Yükseköğretime Geçiş Sınavı (Ygs) / Nisan 00 Matematik Soruları ve Çözümleri. 0, 0,0 0, işleminin sonucu kaçtır? A) B) 4 7 C) 0 8 D) E) Çözüm 0, 0,0 0, = 0,00 0,0 0, = 0,7 0, 000 7 7. = = 000 00 0... işleminin

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal I / 22 Nisan 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal I / 22 Nisan 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal I / 22 Nisan 2007 Matematik Soruları ve Çözümleri 3 1 1. x pozitif sayısı için, 2 1 x 12 = 0 olduğuna göre, x kaçtır? A) 2

Detaylı

İÇİNDEKİLER. Sayısal Mantık

İÇİNDEKİLER. Sayısal Mantık 3 İÇİNDEKİLER Sayısal Mantık SAYI DİZİLERİ 8 ŞEKİL TABANLI MANTIKSAL AKIL YÜRÜTME 12 PROBLEM TABANLI MANTIKSAL AKIL YÜRÜTME 16 ŞİFRELEME 24 GENEL TARAMA TESTLERİ 28 Sözel Mantık SÖZEL MANTIK -I 50 SÖZEL

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır.

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır. KÜMELER Kümelerin birleşimi (A B ): Kümelerin bütün elemanlarından oluşur. Kümelerin kesişimi (A B): Kümelerin ortak elemanlarından oluşur. Kümelerin Farkı (A \ B ) veya (A - B ): Birinci kümede olup ikinci

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28)

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28) TEMEL KAVRAMLAR 6. a ve b birer do al say r. a b = 19 oldu una göre, a + b toplam (YANIT: 8) 1. ( 4) ( 1) 6 1 i leminin sonucu (YANIT: ). ( 6) ( 3) ( 4) ( 17) ( 5) :( 11) leminin sonucu (YANIT: 38) 7.

Detaylı

9. Sınıf. Matematik. Soru Bankası. Yeliz ÇELEN

9. Sınıf. Matematik. Soru Bankası. Yeliz ÇELEN 9. Sınıf Matematik Soru ankası Yeliz ÇELEN opyright Evrensel İletişim Yayın ağıtım San. Tic. Ltd. Şti. u kitabın her hakkı EVRENSEL İLETİŞİM LT. ŞTİ. e aittir. Hangi amaçla olursa olsun, bu kitabın tamamının

Detaylı

2013-2014 EĞİTİM VE ÖĞRETİM YILI TED KDZ EREĞLİ KOLEJİ ORTAOKULU MATEMATİK 8.SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANDIR.

2013-2014 EĞİTİM VE ÖĞRETİM YILI TED KDZ EREĞLİ KOLEJİ ORTAOKULU MATEMATİK 8.SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANDIR. EYLÜL 2013-201 EĞİTİM VE ÖĞRETİM YILI TED KDZ EREĞLİ KOLEJİ ORTAOKULU MATEMATİK 8.SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANDIR. 9-13 Örüntü ve Süslemeler Dönüşüm Geometrisi 1. Doğru, çokgen ve çember modellerinden

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

2. Cevaplar n z, cevap ka d n n Temel Matematik Testi için ayr lan k sm na iflaretleyiniz. 4. A, B ve C birer rakam olmak üzere,

2. Cevaplar n z, cevap ka d n n Temel Matematik Testi için ayr lan k sm na iflaretleyiniz. 4. A, B ve C birer rakam olmak üzere, YGS ENEME SINVI TEMEL MTEMT K TEST 1. u testte Temel Matematikle ilgili 40 soru vard r.. evaplar n z, cevap ka d n n Temel Matematik Testi için ayr lan k sm na iflaretleyiniz. 1. a tam sayı olmak üzere,

Detaylı

(pi) GÜNÜ 1. MATEMATİK ve AKIL OYUNLARI YARIŞMASI TOBB ETÜ MATEMATİK BÖLÜMÜ ÇALIŞMA DOSYASI

(pi) GÜNÜ 1. MATEMATİK ve AKIL OYUNLARI YARIŞMASI TOBB ETÜ MATEMATİK BÖLÜMÜ ÇALIŞMA DOSYASI (pi) GÜNÜ. MTEMTİK ve KIL OYUNLRI YRIŞMSI TO ETÜ MTEMTİK ÖLÜMÜ ÇLIŞM DOSYSI www.akiloyunlari.com KIL OYUNLRI TÜRLERİ 0 Hazine vı miral attı Sihirli Piramit ağlamaca Patika Patika Oluşturma Farklı Komşular

Detaylı

Homoteti (Homothety) DÖNÜfiÜMLERLE GEOMETR. Düzlemde M sabit bir nokta ve k bir reel say olmak

Homoteti (Homothety) DÖNÜfiÜMLERLE GEOMETR. Düzlemde M sabit bir nokta ve k bir reel say olmak ÖNÜfiÜLRL GTR ¾ Homoteti (Homothet) üzlemde sabit bir nokta ve k bir reel sa olmak üzere; P = + k.(p ) ÖRNK üzlemde (5, 6) noktas n n (, 7) merkezli ve k = oranl homoteti ini bulal m. eflitli ini sa laan

Detaylı

SİDRE 2000 ORTAOKULU 2014 2015 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI

SİDRE 2000 ORTAOKULU 2014 2015 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI -6.09.0 DÖNÜŞÜM Sİ 5-9.09.0 ÖRÜNTÜ VE SÜSLEMELER SİDRE 000 ORTAOKULU 0 05 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI,. Doğru, çokgen ve çember modellerinden örüntüler

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

4. SINIF MATEMATİK 1. KİTAP

4. SINIF MATEMATİK 1. KİTAP 4. SINIF MTEMTİK 1. KİTP u kitabın bütün hakları Hacer KÜÇÜKYDIN a aittir. Yazarın yazılı izni olmaksızın kısmen veya tamamen alıntı yapılamaz ve çoğaltılamaz. Copyright 2015 YZR hmet KÜÇÜKYDIN KPK TSRIMI

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

ÇAĞLAR KOLEJİ INGILIZCE KASIM BÜLTEN

ÇAĞLAR KOLEJİ INGILIZCE KASIM BÜLTEN ÇAĞLAR KOLEJİ INGILIZCE KASIM BÜLTEN KISIKLI MAH. HANIMSETİ SK. NO:21, ÇAMLICA - ÜSKÜDAR / İSTANBUL İNFO@CAGLAROKULLARİ.COM 0216 505 38 52 İLKOKUL KASIM AYI KAZANIMLARI 1-A: Sınıf objelerini tanır. En

Detaylı

TMÖZ Türkiye Matematik Öğretmenleri Zümresi

TMÖZ Türkiye Matematik Öğretmenleri Zümresi YGS MATEMATİK DENEMESİ- Muharrem ŞAHİN TMÖZ Türkiye Matematik Öğretmenleri Zümresi Eyüp Kamil YEŞİLYURT Gökhan KEÇECİ Saygın DİNÇER Mustafa YAĞCI İ:K Ve TMÖZ üyesi 4 00 matematik ve geometri sevdalısı

Detaylı

X. Ulusal İlköğretim Matematik Olimpiyatı

X. Ulusal İlköğretim Matematik Olimpiyatı X. Ulusal İlköğretim Matematik Olimpiyatı B 1. Bir kentten diğerine giden bir otobüs, yolun ilk yarısını 40 km/saat, ikinci yarısını ise 60 km/saat hızla gittiyse, otobüsün ortalama hızı kaç km/saat olmuştur?

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

Geometri Çalýþma Kitabý

Geometri Çalýþma Kitabý LYS GMTRÝ ÇLIÞM ÝTI LYS Geometri Çalýþma itabý opyright Sürat asým Reklamcýlýk ve ðitim raçlarý San. Tic. Þ u kitabýn tamamýnýn ya da bir kýsmýnýn, kitabý yayýmlayan þirketin önceden izni olmaksýzýn elektronik,

Detaylı

18 Sağ son örnek x 3 yerine 3 x yazılacak 20 5 Soru denkleminin reel köklerinin olacak

18 Sağ son örnek x 3 yerine 3 x yazılacak 20 5 Soru denkleminin reel köklerinin olacak MAT 1 Hata 73 1 C 135 8 A 137 7 D şıkkına parantez konacak 143 Sol üst örnek Sıkça yapılan yanlış ün son cümlesi O halde. 144 Son örnek tam yerine doğal 208 9 18 yerine 18 8 5 225 2 A 246 6 Doğru cevap:

Detaylı

ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR

ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR SELİM HADAR DANIŞMAN ÖĞRETMEN SANDRA GÜNER ULUS ÖZEL MUSEVİ

Detaylı

file:///c:/users/meb/desktop/ales ÇÖZÜMLER/2011 Ales Sonbahar Sayısal 1 Soru-Çözümleri.htm

file:///c:/users/meb/desktop/ales ÇÖZÜMLER/2011 Ales Sonbahar Sayısal 1 Soru-Çözümleri.htm YGS Deneme Çöz LYS Deneme Çöz İletişim Login ANA MENÜ SINAV ÇÖZÜMLERİ KONU ANLATIMI GEOMETRİ MATEMATİK YAZILILAR TABAN PUANLAR FORMÜLLER YGS-LYS KONULARI Buradasınız : Ana Sayfa >> SINAV ÇÖZÜMLERİ >> ALES

Detaylı

6. Rakamları farklı, iki basamaklı farklı beş doğal sayının. 7. A = 7 + 11 + 15 + 19 + + 99 veriliyor.

6. Rakamları farklı, iki basamaklı farklı beş doğal sayının. 7. A = 7 + 11 + 15 + 19 + + 99 veriliyor. Bölüm: Doğal Sayılar ve Tamsayılar Test: Temel Kavramlar. abc ve cba üç basamaklı doğal sayılardır. abc cba = 97 olduğuna göre, abc biçiminde yazılabilecek en küçük doğal sayının rakamları toplamı A) B)

Detaylı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı matematik SORU BANKASI Süleyman ERTEKİN LYS KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ KONU ÖZETLERİ Öğrenci Kitaplığı SORU BANKASI matematik LYS EDAM Öğrenci Kitaplığı 18 EDAM ın yazılı izni olmaksızın,

Detaylı

AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası

AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası SORU 1 525 + 2834 + 379 toplama işlemini alt alta yazarak yapınız. 525 2834 +379 3738 SORU 2 Manavdan kilogramı 4 TL olan armut

Detaylı

1 8 'i 14 olan sayının 4 7. A) 32 B) 36 C) 64 D) 48 E) 92 nın farkı en az kaçtır? 9. 12! + 13! toplamı aşağıdakilerden hangisine tam bölünemez?

1 8 'i 14 olan sayının 4 7. A) 32 B) 36 C) 64 D) 48 E) 92 nın farkı en az kaçtır? 9. 12! + 13! toplamı aşağıdakilerden hangisine tam bölünemez? , 006 MC Ceir Notları Gökhan DEMĐR, gdemir3@yahoo.com.tr Tam Sayılar TEST I 1. a > üzere a üç asamaklı ir sayıdır. Bu koşulları sağlayan 6 ile tam ölüneilen kaç farklı sayı vardır? A) 10 B) 9 C) 8 D) 7

Detaylı