ÖN SÖZ. Değerli Adaylar,

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ÖN SÖZ. Değerli Adaylar,"

Transkript

1 ÖN SÖZ eğerli daylar, Okul ve meslek yaşamının en önemli sınavlarından birine, Kamu Personeli Seçme Sınavı(KPSS) na hazırlanmaktasınız ve buradaki başarınız gelecekteki iş yaşamınızı ciddi şekilde etkileyecek. Türkçe, Matematik, Tarih, oğrafya ve nayasa gibi birbirinden çok farklı branş ve içerikten oluşan KPSS Genel Yetenek- Genel Kültür bölümü; hem ğitim ilimleri hem lan ilgisi hem de grubu kadrolarına başvuracak öğrenciler için ortak ve zorunludur. u bölümdeki başarı diğer bölümlerin de sonucunu haliyle doğrudan etkileyecektir. u bölümlerin içinde de tartışmasız en kapsamlı olanı ve altyapı gerektireni matematiktir. linizdeki kaynak da bu noktalar dikkate alınarak hazırlanmıştır. Tüm bölümler; matematik altyapısı olmayan ya da öğrenim hayatına uzun süre ara vermiş öğrencilerin konuları aşama aşama, kolaydan zora ve basitten karmaşığa doğru çalışabilecekleri şekilde planlanmıştır. olayısıyla öğrenciler, kitaptaki açıklama ve uyarıları dikkate alarak ilerlediğinde ilgili konulardaki soruları rahatlıkla çözebildiklerini fark edecekler hem de daha ileri konular için bir altyapı oluşturabileceklerdir. üzenli, sabırlı ve dikkatli bir çalışmayla matematiğin hiç de zor ve korkulacak bir ders olmadığını anlayacağınız bu kitap temel bir başvuru kaynağıdır. Kitabın çalışmalarınızda yararlı olması dileğiyle PGM KMİ ailesi olarak KPSS ve meslek hayatınızda başarılar dileriz. Kenan Osmanoğlu - Kerem Köker

2 İÇİNKİLR MTMTİK oğal Sayı - Tam Sayı oğal Sayı - Tam Sayı oğal Sayı - Tam Sayı oğal Sayı - Tam Sayı irinci ereceden enklemler irinci ereceden enklemler şitsizlikler şitsizlikler Pozitif - Negatif Sayılar Pozitif - Negatif Sayılar Tek Sayı - Çift Sayı Tek Sayı - Çift Sayı rdışık Sayılar rdışık Sayılar rdışık Sayılar asamak nalizi asamak nalizi Çözümleme Çözümleme Taban ritmetiği Taban ritmetiği sal Sayılar - sal Çarpanlara yırma sal Sayılar - sal Çarpanlara yırma Faktöriyel Faktöriyel ölme ölme ölünebilme Kuralları ölünebilme Kuralları O OKK O-OKK O-OKK Rasyonel Sayı Rasyonel Sayı Rasyonel Sayı Rasyonel Sayı Rasyonel Sayı Mutlak eğer Mutlak eğer Üslü Sayılar Üslü Sayılar Köklü Sayılar Köklü Sayılar Üslü Köklü Sayılar Karma Çarpanlara yırma Çarpanlara yırma Çarpanlara yırma Çarpanlara yırma Oran Orantı Oran Orantı Oran Orantı Oran Orantı enklem Kurma Problemleri enklem Kurma Problemleri enklem Kurma Problemleri enklem Kurma Problemleri enklem Kurma Problemleri enklem Kurma Problemleri Yaş Problemleri Yaş Problemleri Yüzde - Faiz Problemleri Yüzde - Faiz Problemleri v

3 İÇİNKİLR Kâr - Zarar Problemleri Kâr - Zarar Problemleri Karışım Problemleri Karışım Problemleri İşçi Problemleri İşçi Problemleri Hareket Problemleri Hareket Problemleri Kümeler Kümeler İşlem İşlem Modüler ritmetik Modüler ritmetik Permütasyon Permütasyon Kombinasyon Kombinasyon Olasılık Olasılık Tablo - Grafik Yorumlama Tablo - Grafik Yorumlama Tablo - Grafik Yorumlama Tablo - Grafik Yorumlama Tablo - Grafik Yorumlama GOMTRİ oğruda çı oğruda çı Üçgende çı - çı Kenar ağıntıları Üçgende çı - çı Kenar ağıntıları Üçgende çı Üçgende çı - Kenar ağıntıları ik Üçgen ik Üçgen Özel Üçgen Özel Üçgen çıortay - Kenarortay ağıntıları Üçgende çıortay ağıntıları Üçgende Kenarortay ağıntıları Üçgende lan Üçgende lan Üçgende enzerlik ve lan Üçgende enzerlik ve lan Üçgende enzerlik ve lan Üçgende enzerlik ve lan Çokgen ve örtgen Çokgen ve örtgen Çokgen ve örtgen Paralelkenar - şkenar örtgen ikdörtgen - Kare Yamuk - eltoid Çember - aire Çember - aire Çemberde çı Çemberde Uzunluk airede lan nalitik Geometri nalitik Geometri nalitik Geometri nalitik Geometri Katı isim Katı isim Matematik - Geometri evap nahtarı vi

4 MTMTİK

5 M T M T İ K oğal Sayı - Tam Sayı , negatif olmayan en küçük tam sayı; y, pozitif olmayan en büyük tam sayıdır. una göre, -y farkı ) 2 ) 1 ) 0 ) 1 ) 2 6. ve y sayma saylar 3+y=20 olduğuna göre, +3ynin alabileceği en büyük değer ) 12 ) 20 ) 36 ) 52 ) ve y birbirinden farklı birer rakamdır. una göre, 2 + 3y nin alabileceği en büyük değer ile en küçük değerin toplamı ) 41 ) 42 ) 43 ) 44 ) ve y birbirinden farklı iki basamaklı tam sayılardır. una göre, +y toplamı en az ) 198 ) 197 ) 0 ) 20 ) 21 3.,y,z birbirinden farklı rakamlardır. una göre, 3 + 2y - z nin alabileceği en küçük değer ) 10 ) 9 ) 8 ) 7 ) 6 8. ve y birer doğal sayı ve 5 = 4y olduğuna göre, 2 + y nin alabileceği en küçük değer ) 0 ) 6 ) 13 ) 14 ) 15 4.,y,z negatif tam sayılardır. una göre, y zçarpımının alabileceği en büyük değeri ) 6 ) 4 ) 3 ) 1 ) 0 9. ve y birer doğal sayı +y=15 5., y, z birbirinden farklı negatif olmayan tam sayılardır. una göre, + 2y + 3z nin alabileceği en küçük değer 2 olduğuna göre, y nin alabileceği en büyük değer ) 0 ) 14 ) 50 ) 56 ) ) 3 ) 7 ) 8 ) 9 ) 14 3

6 1 oğal Sayı - Tam Sayı , y, z birer pozitif reel sayı ve +y+z=6 olduğuna göre, y znin alabileceği en büyük değer ) 0 ) 4 ) 6 ) 7 ) bir tam sayı ve ifadesi doğal sayı olduğuna göre, in alabileceği değerler toplamı ) 0 ) 6 ) 12 ) 21 ) ve y birer doğal sayı, y =24 olduğuna göre, +ynin alabileceğin en küçük değer ) 10 ) 12 ) 14 ) 20 ) ve y birer sayma sayısı y =24 olduğuna göre, 3 + 2y nin alabileceği en büyük değer ) 24 ) 25 ) 40 ) 51 ) ve y birer tam sayı 13. y =15 olduğuna göre, +ynin alabileceği en küçük ve en büyük değerin toplamı ) 0 ) 10 ) 16 ) 20 ) 24 ve y birer tam sayı 12 + = 8 y olduğuna göre, in alabileceği en büyük ve en küçük değerlerinin toplamı ) 9 ) 12 ) 14 ) 15 ) , y, z birer sayma sayısı ve =4y-z olduğuna göre, +y+zaşağıdakilerden hangisi olabilir? ) 50 ) 25 ) 5 ) 0 ) , y, z birer sayma sayısı ve 14. ve y birer tam sayı ve 2 y + y = 6 olduğuna göre, y kaç farklı değer alabilir? ) 8 ) 6 ) 5 ) 4 ) 3 2 = 3y 2y = 3z olduğuna göre, +y+znin alabileceği en küçük değer ) 38 ) 19 ) 0 ) 19 ) 38 4

7 oğal Sayı - Tam Sayı - 1 ÇÖZÜMLR 1. Negatif olmayan tam sayılar kümesi = {0,1,2,3, } olduğundan kümesinin en küçük elemanı sayısını vereceğinden = 0 olur. Pozitif olmayan tam sayılar kümesi = {, 3, 2, 1,0} olduğundan. kümesinin en büyük elemanı y sayısını vereceğinden y = 0 olur. una göre, y = 0 0 = 0 evap y nin en büyük değeri alabilmesi için ve y yerine büyük değerler yazılmalıdır. ve y farklı rakamlar olduğundan katsayısı büyük olan y yerine 9, katsayısı küçük olan yerine 8 yazılmalıdır. öylece 2 + 3y = = = 43 olur y nin en küçük değeri alabilmesi için ve y yerine küçük değerler yazılmalıdır. ve y farklı rakamlar olduğundan katsayısı büyük olan y yerine 0, kat sayısı küçük olan yerine 1 yazılmalıdır. öylece 2 + 3y = = 2 olur. olayısıyla 2 + 3y nin alabileceği en büyük ve en küçük değerin toplamı = 45 evap y z nin en küçük değeri alabilmesi için ve y yerine küçük, z yerine büyük değer yazılmalıdır. ve y farklı rakamlar olduğundan katsayısı büyük olan yerine 0, katsayısı küçük olan y yerine 1 yazılmalıdır. z yerine büyük bir rakam yani 9 yazılmalıdır. öylece 3 + 2y z = = 2 9 = 7 evap y = 20 için denkleminde yerine değerler yazıp, y nin değerlerini bulalım. = 1 y = 17 = 2 y = 14 = 3 y = 11 = 4 y = 8 = 5 y = 5 = 6 y = 2 dir y nin en büyük olması için y = 17 ve = 1 olmalıdır. una göre, + 3y = = 52 evap İki basamaklı tam sayılar kümesi = { 99, 98,, 10, 10, 11, 99} olur. irbirinden farklı iki tam sayının toplamının en küçük olması için bu sayıların yerine 99 ve 98 yazılmalıdır. una göre, + y = ( 99) + ( 98) = 197 evap 8. oğal sayılar kümesi N = {0,1,2,3, } dir. 5 = 4y = 4k ve y = 5 k dır. k = 0 = 0 ve y = 0 k = 1 = 4 ve y = 5 k = 2 = 8 ve y = y nin en küçük değerini alması için ve y en küçük olmalıdır. una göre 2 + y = = 0 evap 4., y ve z negatif tam sayı olduğundan üçünün çarpımı negatif olur. Çarpımın en büyük negatif sayı olması için, y ve z nin 1 olması gerekir. una göre, y z = ( 1) ( 1) ( 1) = 1 evap 9. + y = 15 iken y nin en büyük olması için ile y nin arasındaki farkın küçük olması gerekir. ve y doğal sayı olduğundan = 7 ve y = 8 olmalıdır. una göre, y = 7 8 = 56 evap y + z = 6 iken y z nin en büyük olması için, y ve z nin birbirine yakın sayılar olması gerekir. = y = z = 2 alınırsa y z = = 8 evap 5., y ve z negatif olmayan tam sayılar olduğundan = {0,1,2,3, } kümesinin elemanlarından biri olabilir. + 2y + 3z toplamının en küçük olması için katsayısı büyük 2 olan terime en küçük değer verilmelidir. z = 0, y = 1 ve = 2 seçilirse, 2 + 2y + 3z = = evap 11.. y = 24 iken + y nin en küçük olması için ve y nin birbirine yakın olması gerekir. y = 24 = 1,y = 24 = 2,y = 12 = 3,y = 8 = 4,y = 6 una göre, + y = 4+ 6 = 10 evap 5

8 ÇÖZÜMLR oğal Sayı - Tam Sayı y = 15 = 15,y = 1 = 5,y = 3 = 3,y = 5 = 1,y = 15 = 15,y = 1 = 3,y = 5 = 5,y = 3 = 15,y = 1 + y nin alabileceği en küçük değer 15 1 = 16 olur. n büyük değer = 16 olur. una göre, en büyük ve en küçük değerlerin toplamı = 0 evap 16. ve y sayma sayıları ve çarpımları 24 olduğundan, y = 24 iken 3 + 2y nin değerleri y 3+ 2y = = = = = = = = 74 olarak una göre, 3 + 2y nin alabileceği en büyük değer 74 tür. evap = 8 denklemini sağlayan lerin tam sayı olması için y y nin 12 yi tam bölmesi gerekir. 12 nin tam bölenlerinin kümesi = { 12, 6, 4, 3, 2, 1,1,2,3,4,6,12} dir. y = 1 için in en büyük değeri 20 y = 1 için in en küçük değeri olan 4 una göre, en büyük ve en küçük değerlerinin toplamı 20 4 = 16 evap y + y = 6 ifadesi y parantezine alınırsa y(2 + 1) = tek sayı olduğundan y nin çift sayı olması gerekir. y sayısı; 6 nın da çarpanı olduğundan 6, 2, 2 ve 6 değerlerini alır. olayısıyla y nin 4 farklı değeri vardır. 17. = 4y z ise + z = 4y + y + z = + z + y = 4y + y = 5y una göre, + y + z toplamı 5 in katı olur, ancak y sayma sayı olduğundan + y + z toplamı pozitif bir sayı olmalıdır. Seçenekler incelenirse + y+ z = 15 olabilir. evap evap = 5 + olarak yazılabilir in doğal sayı olması için in 18 i tam bölen sayılar olması gerekir. = = 5+ = 4 N 18 = = 5+ = 3 N 9 = = 5+ = 2 N 6 = = 5+ = 1 N 3 = = 5+ = 4 N = 1 5+ = 5+ = 13 N 1 18 in pozitif böleni olan 1, 2, 3, 6, 9 ve 18 değerleri için ifadesi daima doğal sayı olacağından in alabileceği değerler { 18, 9, 6, 1, 2, 3, 6, 9, 18} olur. una göre toplamları = = 3y ifadesini = y 2 ve 2y = 3z ifadesini de y 3 = z 2 olarak yazabiliriz. y nin karşısındaki sayıları eşitleyelim. 3 9 = = = 9k y 2 6 ve y = 6k y 3 6 = = z = 4k z 2 4 una göre, + y + z = 9k + 6k + 4k = 19k, y ve z sayma sayısı olduğundan k = 1 için + y + z = 19 1 = 19 evap evap 6

9 GOMTRİ

10 G O M T R İ oğruda çı Tümler iki açıdan birinin ölçüsü diğerinin ölçüsünün 3 katından 10 eksiktir. una göre, küçük olan açı kaç derecedir? ) 20 ) 25 ) 45 ) 65 ) dörtgeninde m() = 60 m() = 40 m() = 20 dir. Yukarıda verilenlere göre, 60 o 40 o 20o m() kaç derecedir? ) 110 ) 115 ) 120 ) 125 ) d 3 d o 1 y o d 2 d 4 d 1//d2 ve d 3//d 4 olduğuna göre, y kaç derecedir? 6. ir dar açının ölçüsü, bir doğru açının ölçüsünün yarısından 25 eksik ise, bu dar açının ölçüsü kaç derecedir? ) 140 ) 130 ) 120 ) 110 ) 100 ) 75 ) 70 ) 65 ) 60 ) d//d o m() = o m() = m() = 30 dir. 30 o Yukarıda verilenlere göre, kaç derecedir? ) 20 ) 24 ) 28 ) 30 ) 36 d d [ // [F m() = 27 m() = 117 m() = 128 dir. Yukarıda verilenlere göre, F 117 o 128 o 27 o m(f) kaç derecedir? ) 32 ) 35 ) 38 ) 40 ) [ // [ m() = o 75 m() = y y m() = 75 dir. Yukarıda verilenler göre, + y kaç derecedir? ) 275 ) 280 ) 285 ) 290 ) [F // F m() = 30 m() = 90 o 30 m(f) = Yukarıda verilenlere göre, kaç derecedir? ) 100 ) 110 ) 120 ) 130 )

11 1 oğruda çı [ // [ m() = 56 m() = 48 m() = 5 6 o 4 8 o 13. ir dar açının bütünleri tümlerinden kaç derece fazladır? ) 70 ) 75 ) 80 ) 85 ) 90 Yukarıda verilenlere göre, kaç derecedir? ) 84 ) 76 ) 70 ) 58 ) F d o d//d 1 2 m(f) = 110 m() = 30 m() = 30 o Yukarıda verilenlere göre, kaç derecedir? d [ //[,[ //[F, α K F [K]ile [K] açıortay Yukarıda verilenlere göre m(k) =α kaç derecedir? ) 75 ) 80 ) 85 ) 90 ) 100 ) 80 ) 100 ) 120 ) 140 ) d//d 1 2 ise verilenlere göre, y kaç derecedir? d o 2 y d 2 ) 12 ) 18 ) 20 ) 24 ) [//[//[F, [K] açıortay 100 o α m(k) = 100 ve 160 o F m(kf) = 160 K Yukarıda verilenlere göre m(k) =αkaç derecedir? ) 100 ) 110 ) 120 ) 130 ) F d//d ise a, b, c arasındaki bağıntı aşağıdakilerden hangisi- 1 2 c dir? b d 2 a G d 1 ) a + b + c = 180 ) a = b+ c ) a+ c = b ) a+ b+ c = 90 ) a+ b = c 16. // ve, K, noktaları doğrusal K = K, K =, T 115 o [KF açıortay ve α F m(tf) = 115 Yukarıda verilenlere göre m(k) =α kaç derecedir? ) 10 ) 15 ) 20 ) 25 )

12 oğruda çı - 1 ÇÖZÜMLR 1. α ve β tümler iki açı olsun. O halde α+β= 90 dir. çılardan birinin ölçüsü diğerinin 3 katından 10 eksik olduğuna göre α= 3β 10 dir. uradan α+β= 90 ve α= 3β 10 denklemler ortak çözümlenirse α+β= 90 3β 10 +β= 90 4β= 100 3β 10 β= 25 olur. α+β= 90 α= = 65 olur. O halde küçük olan açı ar açının ölçüsü α olsun. 180 α= 25 = 65 2 evap evap 2. ( ) ile (4 10 ) içters açılar olduğundan ölçüleri birbirine eşittir. Yani = 4 10 = 30 olur. y ile (4 10 ) yöndeş iki açının ölçüleridir. O halde y = 4 10 olur. y = = 110 evap 3. d1 d//d 50 o 1 2 olduğundan m() + m() = m() 3+20 o 30 o d = = 3 = [ K] [ K] = {} K olacak şekilde bir K noktası belirlenirse doğru açı tanımı gereği F K m(k) = 63 ve m(k) = 52 dir. K Δ nde iç açıların ölçüleri toplamı yazılacak olursa m(k) = 65 olur. [ [ // F olduğundan m(k) + m(kf) = m(k) 27 + m(kf) = 65 m(kf) = 38 evap evap 4. [ //[ olduğundan verilen şekilde aynı yöne bakan açıların ölçüleri toplamı 360 dır. uradan m() + m() + m() = 360 dır y = y = 285 evap 8. F K F,, K noktaları doğrusal 180 olacak şekilde bir K noktası seçersek doğru açı tanımından m(k) = 180 olur. 30 FK // olduğundan m(k) + m() = m() = 90 = 120 evap o 40 o 20o Şekilde m() + m() + m() = m() = m() m() = 120 evap 9. [ //[ olduğundan m() + m() = 180 (Karşı durumlu açılar) = 76 evap 279

13 ÇÖZÜMLR oğruda çı F d 1 d//d olduğundan F ile 110 o karşı durumlu açılardır. O halde m(f) + m() = o m() = 180 d 2 m() = 70 dir. 14. [ //[ ;[ [ // F olduğundan ile F bütünler iki açıdır. ütünler iki açının açıortayları arasında kalan açının ölçüsü α= 90 dir. evap Δ nde m() + m() = m() = = 100 evap 11. d//d 1 2 dir. İç ters açıların ölçüleri birbirine eşit olduğundan 2 = y dir.,, noktaları doğrusal olduğundan = = 60 = 12 ve y = 24 evap 15. [ [ [ L K K 100 o α= o F L KL // // // F çizersek FK ile KL, K ile KL ve K ile KL karşı durumlu açılardır. O halde açılar şekildeki gibi yerleştirilebilir. uradan α= 130 evap 12. K F,, K ve,, L noktaları c c doğrusal olacak şekilde çizilirse ters açıların ölçüleri eşit b d 2 olduğundan m(k) = c, a L m(l) = a dır. a K //L olduğundan G d 1 m(k) + m(l) = m() c + a = b evap 13. ar açı α olsun. çının bütünleri 180 α çının tümleri 90 α uradan (180 α) (90 α ) = 180 α 90 + α = 90 evap 16. H m(k) = m(k) = a, 2a a m(k) = m(k) = b a K 45 o dersek m(h) = 2a, T 115 o o b m(l) = 2b olur. α F 2b b L H// olduğundan 2a + 2b = 180 a + b = 90 dir. uradan m(k) = 90 dir. [KF açıortay olduğundan m(fk) = m(kf) = 45 olur. KT üçgeninde iç açıların ölçüleri toplamından α= 180 α= 20 evap 280

kpss matematik geometri tamamı çözümlü kenan osmanoğlu / kerem köker

kpss matematik geometri tamamı çözümlü kenan osmanoğlu / kerem köker kpss soru bankası tamamı çözümlü sözel adaylar için matematik geometri kenan osmanoğlu / kerem köker ÖN SÖZ Değerli daylar, Okul ve meslek yaşamının en önemli sınavlarından birine, Kamu Personeli Seçme

Detaylı

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde KPSS Genel Yetenek Genel Kültür MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2015 KPSS ye Pegem Yayınları ile hazırlanan adayların, 100'ün üzerinde soruyu kolaylıkla

Detaylı

Pegem Pegem. Pegem Pegem. Pegem. Pegem. Pegem

Pegem Pegem. Pegem Pegem. Pegem. Pegem. Pegem İ itörler: Kerem KÖKR - Kenan SMNĞLU Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem KPSS Geometri itörler: Kerem Köker / Kenan smanoğlu KPSS Geometri ISN 978-605-364-197-1

Detaylı

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 1. ve y aralarında asal iki doğal sayıdır. 7 y 11 olduğuna göre, y farkı 5. 364 sayısının en büyük asal böleni A) 3 B) 7 C) 11 D) 13 E) 17 A) B) 3 C) 4

Detaylı

SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde. Lise ve Ön Lisans Adayları İçin MATEMATİK

SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde. Lise ve Ön Lisans Adayları İçin MATEMATİK KPSS Genel Yetenek Genel Kültür Lise ve Ön Lisans Adayları İçin MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2014 KPSS ye Pegem Yayınları ile hazırlanan adayların,

Detaylı

matematik sayısal akıl yürütme mantıksal akıl yürütme

matematik sayısal akıl yürütme mantıksal akıl yürütme kpss 2014 Yeni sorularla yeni sınav sistemine göre hazırlanmıştır. matematik sayısal akıl yürütme mantıksal akıl yürütme geometri soru bankası tamamı çözümlü Kenan Osmanoğlu, Kerem Köker KPSS Matematik-Geometri

Detaylı

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80. 11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?

Detaylı

AÇILAR / TEST-1. B, C, E doğrusal = 50 E C. A, B, L doğrusal = 100 = 30 = 40 C 60 D

AÇILAR / TEST-1. B, C, E doğrusal = 50 E C. A, B, L doğrusal = 100 = 30 = 40 C 60 D ÇIR / TST-1 P = [P] m( P ) = //,, doğrusal m( ) = 30 // m( ) m( ) = = 30 d3 // d3 // d4 m( ) = Verilenlere göre, + + ) 250 ) 260 ) 270 ) 280 ) 300 Verilenlere göre, m( ) ) 25 ) 30 ) 35 ) 40 ) 50 10 Verilenlere

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI

Ortak Akıl MATEMATİK DENEME SINAVI Ortak kıl YGS MTEMTİK ENEME SINVI 1 01511-1 Ortak kıl dem ÇİL li an GÜLLÜ yhan YNĞLIŞ arbaros GÜR arış EMİR eniz KRĞ Ersin KESEN Fatih TÜRKMEN Hatice MNKN Kemal YIN Köksal YİĞİT Muhammet YVUZ Oral YHN

Detaylı

ÖZEL SERVERGAZİ LİSELERİ

ÖZEL SERVERGAZİ LİSELERİ S R İ M Y ÖZL SRVRGZİ LİSLRİ VI. İ L K Ö Ğ R T İ M OKU L L R I R S I MT M Tİ K YRIŞMSI ÇIKLMLR u sınav çoktan seçmeli 5 ve klasik sorudan oluşmaktadır. Sınav süresi 50 dakikadır. Tavsiye edilen süre (5*=05

Detaylı

5. ÜNİTE AÇILAR, ÜÇGENLER VE MESLEKİ UYGULAMALARI

5. ÜNİTE AÇILAR, ÜÇGENLER VE MESLEKİ UYGULAMALARI 5. ÜNİTE ÇILR, ÜÇGENLER VE MESLEKİ UYGULMLRI açılar KONULR 1. çı, çı Türleri ve Mesleki Uygulamaları 2. Tümler ve ütünler çılar ÜÇGENLER 1. Üçgene it Temel ilgiler 2. Üçgen Türleri 3. Üçgenin Yardımcı

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

kpss ezberbozan serisi MATEMATİK GEOMETRİ SORU BANKASI Eğitimde

kpss ezberbozan serisi MATEMATİK GEOMETRİ SORU BANKASI Eğitimde kpss ezberbozan serisi 2016 MATEMATİK GEOMETRİ SORU BANKASI Eğitimde 29. yıl KOMİSYON KPSS EZBERBOZAN MATEMATİK - GEOMETRİ SORU BANKASI ISBN 978-605-318-360-0 Kitapta yer alan bölümlerin tüm sorumluluğu

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder.

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder. LENDİRME ŞEMASI ÜNİTE Üslü 1. Bir tam sayının negatif kuvvetini belirler ve rasyonel sayı olarak ifade eder.. Ondalık kesirlerin veya rasyonel sayıların kendileriyle tekrarlı çarpımını üslü sayı olarak

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR KASIM EKİM EYLÜL Ay Hafta D.Saat i 0 04 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE SÜRE ÖĞRENME ALANI ALT ÖĞRENME ALANI Örüntü Süslemeler si KAZANIMLAR.Doğru, çokgen

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

2011 YGS MATEMATİK Soruları

2011 YGS MATEMATİK Soruları 0 YGS MTEMTİK Soruları. + + ) 8 ) 0 ) 6 ) E). a = 6 b = ( a)b olduğuna göre, ifadesinin değeri kaçtır? ) ) 6 ) 9 ) 8 E). (.0 ) ) 0, ) 0, ) 0, ) E) 6. x = y = 8 z = 6 olduğuna göre, aşağıdaki sıralamalardan

Detaylı

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA İÇİNDEKİLER Matematiğe Giriş... Temel Kavramlar... Bölme - Bölünebilme Kuralları... 85 EBOB - EKOK... Rasyonel Sayılar... Basit Eşitsizlikler... 65 Mutlak

Detaylı

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 1 YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 RASYONEL SAYILAR KÜMESİ VE ÖZELLİKLERİ 07 BASİT EŞİTSİZLİKLER

Detaylı

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ 2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ YGS sonrası adayları puan getirisinin daha çok olan LYS ler bekliyor. Kalan süre içinde adayların girecekleri testlere kaynaklık eden derslere sabırla çalışmaları

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10 LİSNS YRLŞTİRM SINVI- MTMTİK-GOMTRİ SINVI MTMTİK TSTİ SORU KİTPÇIĞI 0 U SORU KİTPÇIĞI LYS- MTMTİK TSTİ SORULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik

Detaylı

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören çocuklarımızın ana ve babalarına da yavrularının öğreniminin tamamlanması

Detaylı

I 5. SINIF ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIM I- 01 I- 02 II- 01 II- 02 II- 03

I 5. SINIF ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIM I- 01 I- 02 II- 01 II- 02 II- 03 I 5. SINIF MATEMATİK VE İŞLEMLER 1.1. En çok dokuz basamaklı doğal sayıları okur ve yazar. 1.2. En çok dokuz basamaklı doğal sayıların bölüklerini, basamaklarını ve rakamların basamak değerlerini belirtir.

Detaylı

2016 Kpss Lisans Matematik & Geometri E-Kursu

2016 Kpss Lisans Matematik & Geometri E-Kursu 2016 Kpss Lisans Matematik & Geometri E-Kursu Özellikler Müfredat Tarihler Özellikler Konu Anlatımları: 2015-2016 yılında konu anlatımlarımıza artık senkron ( canlı ) dersi ekledik. Kpss 2016 Matematik

Detaylı

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25 1 İçindekiler 1. Bölüm: SIRALAMA (PERMÜTASYON)... 5 2. Bölüm: SEÇME (KOMBİNASYON)...13 3. Bölüm: BİNOM AÇILIMI...21 4. Bölüm: OLASILIK...25 5. Bölüm: FONKSİYONLARIN SİMETRİLERİ VE CEBİRSEL ÖZELLİKLERİ...37

Detaylı

Atlas KPSS 23 Dvd+10 Deneme

Atlas KPSS 23 Dvd+10 Deneme Yan?nda 10 Adet Deneme S?nav? Kitab? + 1 Adet Cevap Çözümleme Kitab? - Tarih Atlas KPSS Genel Kültür ve Genel Yetenek Seti 23 DVD + 10 Kitap Atlas KPSS E?itim Seti?le Kurslara Son... Sizler?çin 23 DVD'ile

Detaylı

ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI:

ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: Bu formun ç kt s n al p ço altarak ö rencilerinizin ücretsiz Morpa Kampüs yarıyıl tatili üyeli inden yararlanmalar n sa layabilirsiniz.! ISBN NUMARASI: 84354975 ISBN NUMARASI: 84354975! ISBN NUMARASI:

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º Geometri Çözmek ir yrıcal calıkt ktır ÇI I ve UZUNLUK 1? m()=, m()=, m()= 7º merkezli çemberde m()= 7º Verilenlere göre açısının ölçüsü kaç derecedir? ) 10 ) 1 ) 10 ) 1 ) 17 Verilenlere göre açısının ölçüsü

Detaylı

LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN

LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN Konu Anlatımlı Örnek Çözümlü Test Çözümlü Test Sorulu Karma Testli GEOMETRİ 1 Hazırlayan Erol GEDİKLİ Matematik

Detaylı

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Ay 2016 2017 EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Hafta ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIMLAR EYLÜL 3 4 Sayılar ve İşlemler Çarpanlar

Detaylı

ASAL SAYILAR. www.unkapani.com.tr

ASAL SAYILAR. www.unkapani.com.tr ASAL SAYILAR ve kendisinden aşka pozitif öleni olmayan den üyük doğal sayılara asal sayı denir.,, 5, 7,,, 7, 9, sayıları irer asal sayıdır. En küçük asal sayı dir. den aşka çift asal sayı yoktur. den aşka

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ 14. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ 14. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI EGE ÖLGESİ 4. OKULLR RSI MTEMTİK YRIŞMSI 8. SINIF ELEME SINVI TEST SORULRI. n bir tamsayı olmak üzere, n n 0 ( 4.( ) +.( ) + 7 + 8 ) işleminin sonucu kaçtır? ) 0 ) 5 ) 6 ). ir kitapçıda rastgele seçilen

Detaylı

Tam Sayılarla Çarpma İşlemi Akıllı Ödev 1

Tam Sayılarla Çarpma İşlemi Akıllı Ödev 1 Tam Sayılarla Çarpma İşlemi kıllı Ödev 1 Öğrenci dı Soyadı Sınıfı Ödev Teslim Tarihi Öğretmen Görüşü Soru 1 şağıda sayma pulları ile modellenen matematik işlemlerini bulunuz. a. + + + + + + + + + + + +

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz.

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz. MATEMATİK ASAL ÇARPANLARA AYIRMA A S A L Ç A R P A N L A R A A Y I R M A T a n ı m : Bir tam sayıyı, asal sayıların çarpımı olarak yazmaya, asal çarpanlarına ayırma denir. 0 sayısını asal çarpanlarına

Detaylı

I F L. IĞDIR FEN LİSESİ MÜDÜRLÜĞÜ 2010 YILI 8. SINIFLAR I. MATEMATİK OLİMPİYAT YARIŞMASI Soru kitapçığı türü A 15 Mayıs 2010 Cumartesi,

I F L. IĞDIR FEN LİSESİ MÜDÜRLÜĞÜ 2010 YILI 8. SINIFLAR I. MATEMATİK OLİMPİYAT YARIŞMASI Soru kitapçığı türü A 15 Mayıs 2010 Cumartesi, I F L IĞDIR FEN LİSESİ MÜDÜRLÜĞÜ 2010 YILI 8. SINIFLAR I. MATEMATİK OLİMPİYAT YARIŞMASI Soru kitapçığı türü A 15 Mayıs 2010 Cumartesi, 10.00-12.30 ÖĞRENCİNİN ADI SOYADI T.C. KİMLİK NO OKULU / SINIFI SALON

Detaylı

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3)": ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3): ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4 Üniversite Haz rl k Sözcükte Do al ve Say lar Söz Öbeklerinde ve Tam Say lar Anlam - I - I Kolay Temel Matematik. 8 ( + ) A) 7 B) 8 C) 9 D) 0 E) 6.! ( )": ( ) A) B) 0 C) D) E). 7. + 5 A) 6 B) 7 C) 8 D)

Detaylı

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT ÜÇGNLR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT ÜÇGNLRİN ŞLİĞİ Üçgende çılar 1. Kazanım : ir üçgenin iç açılarının ölçüleri toplamının 180, dış açılarının ölçüleri toplamının 0 olduğunu gösterir. İki Üçgenin şliği.

Detaylı

2004 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

2004 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI 4 II MATEMATİK YARIŞMASI I AŞAMA SORULARI 4? 4 4 A B denkleminde A ve B birbirinden farklı pozitif tam sayılar olduğuna göre, A + B toplamı kaçtır? işleminin sonucu kaçtır? 5 A) B) C) - D) E) - 8 4 x x

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08 LİSNS YRLŞTİRM SINVI- MTMTİK-GMTRİ SINVI MTMTİK TSTİ SRU KİTPÇIĞI 08 U SRU KİTPÇIĞI LYS- MTMTİK TSTİ SRULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik Testi

Detaylı

2005 ÖSS Soruları. 5. a, b, c gerçel sayıları için 2 a = 3 3 b = 4 4 c = 8 olduğuna göre, a.b.c çarpımı kaçtır?

2005 ÖSS Soruları. 5. a, b, c gerçel sayıları için 2 a = 3 3 b = 4 4 c = 8 olduğuna göre, a.b.c çarpımı kaçtır? . + c m 9 + c9 m 9 9 20 ) ) 9 ) 27 ) ) 82 9 5. a, b, c gerçel saıları için 2 a = b = c = 8 olduğuna göre, a.b.c çarpımı kaçtır? ) ) 2 ) ) ) 5 6. a, b, c gerçel saıları için, a.c = 0 a.b 2 > 0 2. 2 2 +

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR 7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR KONULAR 1. DOĞRUDA AÇILAR 2. Açı 3. Açının Düzlemde Ayırdığı Bölgeler 4. Açı Ölçü Birimleri 5. Ölçülerine Göre Açılar 6. Açıortay 7. Tümler Açı 8. Bütünler Açı 9. Ters

Detaylı

GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Eğitimde. Lise ve Ön Lisans Adayları İçin. konu anlatımlı

GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Eğitimde. Lise ve Ön Lisans Adayları İçin. konu anlatımlı KPSS Genel Yetenek Genel Kültür Lise ve Ön Lisans Adayları İçin GEOMETRİ KPSS 206 Pegem Akademi Sınav Komisyonu; 204 KPSS ye Pegem Yayınları ile hazırlanan adayların, 00'ün üzerinde soruyu kolaylıkla çözebildiğini

Detaylı

TMÖZ Türkiye Matematik Öğretmenleri Zümresi

TMÖZ Türkiye Matematik Öğretmenleri Zümresi YGS MATEMATĠK DENEMESĠ-1 Muharrem ġahġn TMÖZ Türkiye Matematik Öğretmenleri Zümresi Eyüp Kamil YEġĠLYURT Gökhan KEÇECĠ Saygın DĠNÇER Mustafa YAĞCI Ġ:K Ve TMÖZ üyesi 14 100 matematik ve geometri sevdalısı

Detaylı

Temel Matematik Testi - 4

Temel Matematik Testi - 4 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: D00. Bu testte 0 soru vardır.. Tavsiye edilen süre 0 dakikadır. Temel Matematik Testi -.

Detaylı

Rakam : Sayıları yazmaya yarayan sembollere rakam denir.

Rakam : Sayıları yazmaya yarayan sembollere rakam denir. A. SAYILAR Rakam : Sayıları yazmaya yarayan sembollere rakam denir. Sayı : Rakamların çokluk belirten ifadesine sayı denir.abc sayısı a, b, c rakamlarından oluşmuştur.! Her rakam bir sayıdır. Fakat bazı

Detaylı

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN E Y L Ü L ÜNİTE SİDRE 000 ORTAOKULU 06-07 EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN 9.09.06/.09.06 6.09.06/0.09.06 Çarpanlar ve Katlar Çarpanlar ve Katlar 8... Verilen

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

TEMEL MATEMATİK TESTİ

TEMEL MATEMATİK TESTİ TEMEL MTEMTİK TESTİ 1. u testte 0 soru vardır.. evaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 010 YGS / MT 1. 0, 0,0 0,. + 1 ) 1 7 0 ) 1 + 1 1.. ( a+ 1) ( a )

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI

Ortak Akıl MATEMATİK DENEME SINAVI Ortak kıl YGS MTEMTİK ENEME SINVI 040- Ortak kıl dem ÇİL yhan YNĞLIŞ arış EMİR elal İŞİLİR eniz KRĞ Engin POLT Ersin KESEN Eyüp ULUT Fatih SĞLM Fatih TÜRKMEN Hakan KIRI Kadir LTINTŞ Köksal YİĞİT Muhammet

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır?

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır? Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994 Matematik Soruları ve Çözümleri 4.10 +.10 1. 4 10 4 işleminin sonucu kaçtır? A) 0,4 B) 4, C) 4 D) 40 E) 400 Çözüm 1 4.10 +.10 4 10 4 4.10 +.10 10 1+ 1 = 4 4 (40+

Detaylı

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan SAYILAR RAKAM VE DOĞAL SAYI KAVRAMI MATEMATİK KAF01 TEMEL KAVRAM 01 Sayıları ifade etmeye yarayan { 0,1,, 3, i i i,9} kümesindeki semollere onluk sayma düzeninde rakam denir. N =... kümesinin elemanlarına

Detaylı

ALES. sýnavlarına en yakın. tek kitap SÖZEL ADAYLAR İÇİN ALES KONU ANLATIMI. Savaş Doğan - Kenan Osmanoğlu - Kerem Köker

ALES. sýnavlarına en yakın. tek kitap SÖZEL ADAYLAR İÇİN ALES KONU ANLATIMI. Savaş Doğan - Kenan Osmanoğlu - Kerem Köker ALES 2016 sýnavlarına en yakın tek kitap SÖZEL ADAYLAR İÇİN ALES KONU ANLATIMI Savaş Doğan - Kenan Osmanoğlu - Kerem Köker Savaş Doğan Kenan Osmanoğlu Kerem Köker ALES KONU ANLATIMLI SÖZEL ADAYLARA 978-605-364-571-9

Detaylı

7 Mayıs 2006 Pazar,

7 Mayıs 2006 Pazar, TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 14. ULUSAL MATEMATİK OLİMPİYATI - 2006 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 7 Mayıs 2006 Pazar, 13.00-15.30

Detaylı

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir?

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir? 8. SINIF. Üslü Sayılar - = T olduğuna göre T kaçtır? A) - B) - C) D) 7 TEST.. 0 - işleminin sonucu kaç basamaklı bir sayıdır? A) B) C) 6 D) 7. n =- 7 için n ifadesinin değeri kaçtır? A) - 8 B) - C) 8 D)

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. A.. n saısının tamsaı bölenlerinin saısı olduğuna göre, n 0. R de tanımlı " " işlemi; ο ο işleminin sonucu 0. (6) 6 (6) ifadesinin eşiti aşağıdakilerden hangisidir? 6 6 (6)

Detaylı

Temel Matematik Testi - 5

Temel Matematik Testi - 5 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: 005. u testte 40 soru vardır.. Tavsiye edilen süre 40 dakikadır. Temel Matematik Testi

Detaylı

GEOMETRİ SORU BANKASI KİTABI

GEOMETRİ SORU BANKASI KİTABI LİSE ÖĞRENCİLERİNİN ÜNİVERSİTE SINAVLARINA HAZIRLANMALARI İÇİN GEOMETRİ SORU BANKASI KİTABI HAZIRLAYAN Erol GEDİKLİ Matematik Öğretmeni SUNUŞ Sevgili öğrenciler! Bu kitap; hazırlandığınız üniversite sınavlarında,

Detaylı

1. BÖLÜM: PERMÜTASYON (SIRALAMA) BÖLÜM: KOMBİNASYON (SEÇME) A. SEÇME (KOMBİNASYON) B. KOMBİNASYON GEOMETRİ İLİŞKİSİ

1. BÖLÜM: PERMÜTASYON (SIRALAMA) BÖLÜM: KOMBİNASYON (SEÇME) A. SEÇME (KOMBİNASYON) B. KOMBİNASYON GEOMETRİ İLİŞKİSİ İçindekiler 1. BÖLÜM: PERMÜTASYON (SIRALAMA)... 10 A. SAYMA KURALLARI... 10 B. FAKTÖRİYEL... 14 C. n ELEMANLI BİR KÜMENİN r Lİ PERMÜTASYONLARI (Dizilişleri)... 17 Ölçme ve Değerlendirme...20 Kazanım Değerlendirme

Detaylı

;] u Y hb* p(a/ > V aaa!a!a!a!!!!!a! BASIN KİTAPÇIĞI

;] u Y hb* p(a/ > V aaa!a!a!a!!!!!a! BASIN KİTAPÇIĞI BASIN KİTAPÇIĞI 00000000 AÇIKLAMA 1. Bu kitapç kta Lisans Yerle tirme S nav -1 Matematik Testi bulunmaktad r. 2. Bu test için verilen toplam cevaplama süresi 75 dakikadır. 3. Bu kitapç ktaki testlerde

Detaylı

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi ÜNE: AM AYIAR N: am ayılar ümesinde Çıkarma şlemi ÖRNE RAR VE ÇÖZÜMER 1. [(+17) (+25)] + [( 12) (+21)] işleminin sonucu A) 41 B) 25 C) 25 D) 41 Çıkarma işlemi yapılırken çıkanın işareti değişir ve eksilen

Detaylı

Öğrenci Seçme Sınavı (Öss) / 15 Haziran Matematik I Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 15 Haziran Matematik I Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 15 Haziran 008 Matematik I Soruları ve Çözümleri 1. ( ).( 4 1 + ) 1 işleminin sonucu kaçtır? A) 7 B) 4 C) 1 D) 4 E) 7 Çözüm 1 ( ).( 4 1 + ) 1 = 7 ( 1).( ) = 1 7 1 = 7 ( ).

Detaylı

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ ADAYIN ÞÝFRESÝ BURAYA YAPIÞTIR DEVLET OLGUNLUK SINAVI DEVLET SINAV MERKEZÝ MATEMATÝK - TEMEL SEVÝYE MATEMATÝK TEMEL SEVÝYE Testin Çözme Süresi: 180 dakika Haziran, 2009 yýlý BÝRÝNCÝ deðerlendiricinin þifresi

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

TEMEL SAYMA KURALLARI

TEMEL SAYMA KURALLARI TEMEL SAYMA KURALLARI SAYMA Toplama Yoluyla Sayma A ve B sonlu ve ayrık kümeler olmak üzere, bu iki kümenin birleşiminin eleman sayısı; s(a,b) = s(a) + s(b) dir. Sonlu ve ayrık iki kümenin birleşiminin

Detaylı

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme Türkiye Ulusal Matematik Olimpiyatları Birinci Aşama Zor Deneme Sınavı 11 Haziran 2016 DENEME SINAVI 4. Deneme Soru Sayısı: 32 Sınav Süresi: 210 dakika Başarılar Dileriz... Page 1 of 9 DENEME SINAVI (4.

Detaylı

( ) MATEMATİK 1 TESTİ (Mat 1) 2009 - ÖSS / MAT-1. 1. Bu testte 30 soru vardır.

( ) MATEMATİK 1 TESTİ (Mat 1) 2009 - ÖSS / MAT-1. 1. Bu testte 30 soru vardır. 009 - ÖSS / MT- MTEMTİK TESTİ (Mat ). u testte 0 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. ( )( ) + 4. m = olduğuna göre, m + ifadesinin değeri işleminin

Detaylı

ÖSYM M TEMEL MATEMATİK TESTİ YGS / MAT. Diğer sayfaya geçiniz. 1. Bu testte 40 soru vardır.

ÖSYM M TEMEL MATEMATİK TESTİ YGS / MAT. Diğer sayfaya geçiniz. 1. Bu testte 40 soru vardır. TEMEL MATEMATİK TESTİ 2011 - YGS / MAT M9991.01001 1. Bu testte 40 soru vardır. 1. 2. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. işleminin sonucu kaçtır?

Detaylı

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI x13. ULUSAL MATEMATİK OLİMPİYATI - 005 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 1. AB = olmak üzere, A

Detaylı

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =?

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =? TANIM MUTLAK DEĞER Örnek...6 : 1 x > 1 y > 1 z ise x y x z z y =? Bir x reel sayısına karşılık gelen noktanın sayı doğrusunda 0 (sıf ır) a olan uzaklığına x sayısının mutlak değeri denir ve x şeklinde

Detaylı

2002 ÖSS Soruları. 5. a, b, c, d pozitif tam sayılar ve 123,4 0, ,234 12,34. işleminin sonucu kaçtır?

2002 ÖSS Soruları. 5. a, b, c, d pozitif tam sayılar ve 123,4 0, ,234 12,34. işleminin sonucu kaçtır? 00 ÖSS Soruları 3,4.,34 0, 34,34 işleminin sonucu kaçtır? ) 0 ) 0, ) 9,9 ) 0, E),. a, b, c, d pozitif tam sayılar ve a 7 a 4 : = c, : = d b 0 b 4 olduğuna göre, c + d nin alabileceği en küçük değer kaçtır?

Detaylı

KPSS GENEL YETENEK MATEMATİK & GEOMETRİ KONU ANLATIMLI SORU BANKASI

KPSS GENEL YETENEK MATEMATİK & GEOMETRİ KONU ANLATIMLI SORU BANKASI KPSS GENEL YETENEK MATEMATİK & GEOMETRİ KONU ANLATIMLI SORU BANKASI KPSS - 011 TÜM ADAYLAR İÇİN KAMU PERSONELİ SEÇME SINAVI KONU ANLATIMLI MODÜLER SET YAZAR Recep AKSOY EDİTÖR Murat CANLI YAYIN KOORDİNATÖRÜ

Detaylı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı Ertuğrul US 01.09.2014 MATEMATİK PROGRAMIM Program 6 aylık (24 haftalık) bir programdır. Konuların veriliş sırasına uyularak çalışılması

Detaylı

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme kpss 04 akıcı ayrıntılı güncel konu anlatımları örnekler yorumlar uyarılar pratik bilgiler ösym tarzında özgün sorular ve açıklamaları matematik sayısal akıl yürütme mantıksal akıl yürütme 0 kpss de 85

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

ALES KONU ANLATIMLI SÖZEL YETENEK

ALES KONU ANLATIMLI SÖZEL YETENEK Savaş Doğan Kenan Osmanoğlu Kerem Köker KONU NLTIMLI SÖZEL YETENEK 978-605-364-363-0 Kitapta yer alan bölümlerin tüm sorumluluğu yazarlarına aittir. 2013, Pegem kademi u kitabın basım, yayın ve satış hakları

Detaylı

geometri kpss 94 soru yakaladık ÖSYM tarzına en yakın özgün sorular ve açıklamaları 2014 kpss de

geometri kpss 94 soru yakaladık ÖSYM tarzına en yakın özgün sorular ve açıklamaları 2014 kpss de kpss 05 konu anlatımlı ayrıntılı çözümlü örnekler uyarılar pratik bilgiler çıkmış sorular ve açıklamaları ÖSYM tarzına en yakın özgün sorular ve açıklamaları geometri 04 kpss de 94 soru yakaladık Editörler

Detaylı

MATEMATİK 29. KPSS KPSS. Genel Yetenek Genel Kültür. yıl. Eğitimde. konu anlatımlı

MATEMATİK 29. KPSS KPSS. Genel Yetenek Genel Kültür. yıl. Eğitimde. konu anlatımlı KPSS Genel Yetenek Genel Kültür MATEMATİK KPSS 2016 Pegem Akademi Sınav Komisyonu; 2015 KPSS ye Pegem Yayınları ile hazırlanan adayların, 100'ün üzerinde soruyu kolaylıkla çözebildiğini açıkladı. konu

Detaylı

Soru Konu Doğru Yanlış Boş

Soru Konu Doğru Yanlış Boş YGS - MATEMATİK DENEME- A Soru Konu Doğru Yanlış Boş Mutlak Değerin Sayıya Eşitliği % % Sayılar Akıl Yürütme % % Okek Dikdörtgen Birleştirme % % Kesirlerin Okeki % % Obeb Problemleri % % Obeb Denklemi

Detaylı

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º ğlence başlıyor yor 1 º 0º üçgeninin alanı kaç birim karedir? ) ) 9 LN SI 1 LN SI 1 )1 ) üçgeninin alanı kaç birim karedir? üçgeninin alanı kaç birim karedir? ) ) ) ) ) ) üçgen, = birim, = birim, m() =

Detaylı

Savaş Doğan Kenan Osmanoğlu Kerem Köker DGS KONU ANLATIMLI SÖZEL SAYISAL YETENEK - DENEMELER ISBN 978-605-364-361-6

Savaş Doğan Kenan Osmanoğlu Kerem Köker DGS KONU ANLATIMLI SÖZEL SAYISAL YETENEK - DENEMELER ISBN 978-605-364-361-6 Savaş Doğan Kenan Osmanoğlu Kerem Köker DGS KONU NLTIMLI SÖZEL SYISL YETENEK - DENEMELER ISN 978-605-364-361-6 Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. Pegem kademi u kitabın basım,

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINAV SORULARI 1. 1999 ÖSS a, b, c pozitif gerçel (reel) sayılar olmak üzere a+ b ifadesindeki her sayı 3 ile çarpılırsa aşağıdakilerden hangisi elde c edilir? 3 a+ b A) B) c a+ 3b C)

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR

SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR 06-07 7.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR Adı Soyadı İmza Adı Soyadı 8 9 0 6 7 Ömer Askerden İmza 06-07 EĞİTİM VE ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU

Detaylı

2. Dereceden Denklemler

2. Dereceden Denklemler . Dereceden Denklemler Yazım hataları olabilir. Tam olarak tashih edilmemiştir. Hataları osmanekiz000@gmail.com mail adresine bildirilseniz makbule geçer.. a + b + 5c = c(a + b) ise a b =? C: 9. ( 4) (

Detaylı

ÇARPANLAR VE KATLAR I sayısının asal çarpanlarına ayrılmış hâli aşağıdakilerden A) B) C) D)

ÇARPANLAR VE KATLAR I sayısının asal çarpanlarına ayrılmış hâli aşağıdakilerden A) B) C) D) 8. Sınıf MATEMATİK ÇARPANLAR VE KATLAR I. Aşağıdakilerden hangisi 6 nın çarpanlarından biridir? A) 3 B) 6 C) 8 D) TEST. 360 sayısının asal çarpanlarına ayrılmış hâli aşağıdakilerden hangisidir? A) 3. 3.

Detaylı

Başlayanlara AKTİF MATEMATİK

Başlayanlara AKTİF MATEMATİK KPSS - YGS - DGS - ALES Adayları için ve 9. sınıfa destek 0 dan Başlayanlara AKTİF MATEMATİK MEHMET KOÇ ÖNSÖZ Matematikten korkuyorum, şimdiye kadar hiç matematik çözemedim, matematik korkulu rüyam! bu

Detaylı

Ö.S.S MATEMATĐK I SORULARI ve ÇÖZÜMLERĐ

Ö.S.S MATEMATĐK I SORULARI ve ÇÖZÜMLERĐ Ö.S.S. 008 MATEMATĐK I SORULARI ve ÇÖZÜMLERĐ 1. ( ).( 4 1 + ) 1 işleminin sonucu kaçtır? A) 7 B) 4 C) 1 D) 4 E) 7 Çözüm 1 ( ).( 4 1 + ) 1 7 ( 1).( ) 1 7 1 7 ( ). -7 1. 4,9 0,49 0,1 + işleminin sonucu kaçtır?

Detaylı

Temel Matematik Testi - 8

Temel Matematik Testi - 8 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: D008. u testte 40 soru vardır.. Tavsiye edilen süre 40 dakikadır. Temel Matematik Testi

Detaylı

2014 / 2015 YGSH HAFTA İÇİ KURS TAKVİMİ (YGSH) DAF NO DERS 2

2014 / 2015 YGSH HAFTA İÇİ KURS TAKVİMİ (YGSH) DAF NO DERS 2 EKİM 2014 TÜRKÇE 425 60 MATEMATİK GEOMETRİ FİZİK KİMYA BİYOLOJİ 80 50 45 30 50 ARİFE 1 Çarşamba 2 Perşembe 3 Cuma TATİL COĞRAFYA TARİH FELSEFE 45 45 20 KURBAN BAYR. 4 Cumartesi TATİL 1.GÜN KURBAN BAYR.

Detaylı

barisayhanyayinlari.com

barisayhanyayinlari.com YGS MATEMATİK KONU ANLATIM FASİKÜLLERİ SERİSİ 1 ISBN 978-605-84147-0-9 Baskı Tarihi Ağustos 015 Baskı Yeri: İstanbul YAYINLARI İletişim tel: (538) 90 50 19 barisayhanyayinlari.com Benim için her şey bir

Detaylı

a) Çıkarma işleminin; eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar.

a) Çıkarma işleminin; eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar. 7. SINIF KAZANIM VE AÇIKLAMALARI M.7.1. SAYILAR VE İŞLEMLER M.7.1.1. Tam Sayılarla Toplama, Çıkarma, Çarpma ve Bölme İşlemleri M.7.1.1.1. Tam sayılarla toplama ve çıkarma işlemlerini yapar; ilgili problemleri

Detaylı

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir? PROL est -. m parabolü eksenini kesmiorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?. f a b c (, ) ) (, ) (, ) (, ) ( 6, ). m parabolü eksenini iki farklı noktada kesmektedir. una göre,

Detaylı