KESİN PROJE RAPORU PROJENİN ADI PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ DANIŞMAN ÖĞRETMEN

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "KESİN PROJE RAPORU PROJENİN ADI PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ DANIŞMAN ÖĞRETMEN"

Transkript

1 KESİN PROJE RAPORU PROJENİN ADI HANGİ ADAYI SEÇELİM? PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ ÖZEL KÜLTÜR FEN LİSESİ ATAKÖY KISIM, BAKIRKÖY - İSTANBUL DANIŞMAN ÖĞRETMEN REYHAN KAYMAK

2 Proje Adı: HANGİ ADAYI SEÇELİM? Proje Öğrencileri:Nedim Çağatay Proje Danışmanı:Reyhan Kaymak Proje Dalı :Matematik Giriş : Proje konumuzu belirlerken daha çok gündelik yaşamda karşılaşılan zorluklara bir çözüm getirmeye özen gösterdik.insan hayatında önemli bir işe başlangıç yaparken karar verme sürecinde karşılaşılan güçlüklere optimal bir çözüm sunmak istedik.bu nedenle projemize çeşitli sorular düşünerek başladık.bunlardan bir kaçı şöyle idi: Evinizi satmak istiyorsunuz ve bir dizi teklif varken, birini kabul etmeden önce kaç defa değerlendirme yaparsınız? Bilgisayarda satranç oynarken bir hamle yapmadan önce bilgisayar kaç pozisyon düşünür? İşe alımlarda istenilen pozisyona uygun çok fazlakişi var ve en hızlı sürede doğru kararı vermek için gerekli olan ihtimallerin olasılığı nedir? Yöntem: Bu sorular arasından üçüncüyü kendimize araştırma konusu olarak belirledik ve çalışmalarımıza başladık. Problem 1 :Bir iş yerinde bir pozisyon için elemana ihtiyacımız var.bu kişilerin arasından en iyisini seçmek istiyoruz.bunun için nasıl bir seçim uygulamalıyız? (Tek koşulumuz hepsini görebilecek kadar bekleme şansımız yok ve görüşmeye gelenlerin bir daha geri çağırılamayacaktır.) Çözüm: n tane potansiyel işçi adayı ile tanıştığımızı düşünelim. Tanıştıktan sonra aralarında 1 den n e kadar sıralama yaptığımızı farzedelim.en iyisine 1 numara vereceğiz. Öncelikle, görüşmede 3 potansiyel kişi ile tanışacağınızı düşünelim. Görüşmeye hangi sırada gireceklerini bilmiyoruz ve her olası sıralamanın eşit olduğunu düşünelim 3! = 3*2*1 = 6 farklı olası permütasyon vardır: Farzedin ki kuralımız tanıştığın ilk kişiyi seçmek Bu kural olası ilk 2 permütasyonda çalışacaktır. Başka bir deyişle, başarı olasılığınız 2/6 = 1/3 = 33%

3 Eğer kuralımız basitçe ikinciyi seçmek olsaydı, en iyiyi seçme ile aynı olasılığa sahip olacaktı. 1/3. Üçüncüyü seçme amacıyla hareket etseydik birinciyi seçme olasılığımız gene 1/3 olacaktı. Şansımızı artırmak için yeni bir kural bulalım istedik: Bırakın birinci gitsin. Gidenden daha güzel olan ilkini seçelim. Şimdi şansımız ne olacaktır? Eğer 6 farklı olası permütasyon varsa, bunların hangisinde, bu kural en iyi eşi seçmenizi sağlayacaktır? Yukarıda yeralan permütasyonların ilk ikisinde yukarıdaki kural çalışmayacaktır. Fakat, 213, 231 ve 312 olanlarda çalışacaktır. Son olasılık olan 321 de neden çalışmayacağını araştırdık. Bununla beraber, 123 ve 132 durumlarında en iyi seçmede kural başarısız olacaktır. Çünkü, en iyi tercih listenin birincisidir. Kural, son durumda en iyi kaçırmanızıda sağlayacaktır. Çünkü, ilk kişi gittikten sonra, henüz gidenden daha iyi eşi seçmek, bir sonrakini seçmenizi sağlayacaktır. 321 olan son sıralamaya göre, ikinci birinciden daha iyidir. Hatırlayın, ikinciyi gördüğünde, sıralamada 2 nolu olduğunu bilmiyordun. Henüz üçüncü kişiyi görmediğimizden, şu an için tek bildiğimiz ikinci kişinin en iyisi olabileceğidir. Her üçünü de gördükten sonra sıralama yapabilirsiniz. Tanıştığınız sıra ile 3, 2 ve 1. Kural (karar teorisinde durdurma kuralı) Bırakın birinci gitsin. Gidenden daha güzel olan ilkini seçin 213, 231 ve 312 durumlarında başarıyla en iyi potansiyel adayı seçmeyi sağlayacaktır Sonuç olarak, bu kuralı kullanmak : Bırakın birinci gitsin. Gidenden daha güzel olan ilkini seçin 213, 231 ve 312 durumlarında en iyi potansiyel elemanı yarı zamanda başarıyla seçmemizi sağlar. Ve bu kural ile en iyi adayı seçme ihtimali 3/6 = 50% olacaktır. Bu kural ile en iyi elemanı seçme olasılığınız, daha basit olan % 33 başarı sağlayan ikinciyi seçkuralından daha yüksektir. Problem 2: 4 potansiyel eleman ile görüşüleceğini düşünelim. Hepsi ile tanışıldıktan sonra en iyisi 1 olmak üzere 1 den 4 e kadar sıralama yapabiliriz. Her seferinde biri ile tanışmayı düşünelim. Diğer problemdeki koşullar bu problem içinde geçerlidir.

4 Çözüm: 4 potansiyel eleman ile, aşağıda yeraldığı üzere 4! = 24 olası permutasyon mümkündür Düşünelim ki aynı durdurma kuralı kullanıyoruz Bırakın birinci gitsin. Gidenden daha güzel olan ilkini seçin Hangi permütasyonda bu kural en iyi adayı seçmenizi sağlamıştır? Bu kuralın en iyi kişiyi seçmenizi sağlama olasılığı nedir? Sorusuna cevap aradık. Şimdi daha genel durumu değerlendirelim. Düşünelim ki toplam n tane potansiyel elemanla görüşeceğiz.tanıştıktan sonra 1 den n e kadar onları sınıflandırabileceğiz ve 1 en iyisi olacaktır. Onlarla teker teker tanışıyoruz ve bir tanesini gönderirsek, o kişiye tekrar dönemeyeceğiz.eğer bu insanların tüm olası permütasyonları muhtemelen eşitse, hangi prosedür listedekilerin en iyisini seçme şansınızı artıracaktır? Listeden sadece bir kişiyi seçerseniz, toplamda n kişi olduğundan, bu kişinin en iyisi olma şansı 1/n dir. Bu ihtimali artıran bir karar prosedürü gördük: n=3 ve n=4 olan durumlarda, en uygun durdurma kuralı şöyledir: İlk m kişinin geçmesine müsaade edin ve ilk m kişinin herhangi birinden daha iyi olan sonraki kişiyi seçin. Bu metodu kullanarak en iyi kişiyi seçme olasılığını hesaplayabilmek için nasıl başarısız olabileceğini anlamamız gerekir. Bu metodun başarısız olabileceği iki yol vardır: 1. En iyi kişi ilk m kişinin arasındadır En iyi kişi, şu ilk gruptaki m kişilerinin hepsinden iyi olan kişiden sonra gelir. Buna rağmen, bu metod başarılı olacaktır. Eğer, ilk m kişisinin gitmesine izin verildikten sonra, m+1 veya m+2 veya m+3 kişileri gözönünde bulundurulduğunda, n kişisine kadar en iyi kişiyi seçmede başarılı olunacaktır. İlk m kişisinin gittiğini düşünerek m+1 kişisini gözönüne alalım. m+1 kişisinin en iyisi olma olasılığı nedir ve eğer en iyisi idiyse, bu metodun bu kişiyi seçme ihtimali nedir diye sormalıyız. m+1 kişisinin en iyi olma olasılığı 1/n dir ve bu metod kesinlikle bu kişiyi seçecektir (olasılık 1). Çünkü, bu kişi önceki m kişiden açıkça daha iyi olacaktır. Bu nedenle, eğer m+1 kişisi en iyisi ise, bu metodun bu kişiyi seçme olasılığı 1/n dir.

5 Fakat, birinci m kişisi geçtikten sonra en iyi kişi görünmeyebilir. En iyi kişi n kişisine kadar olan m+1 veya m+2 veya m+3 veya olabilir. Dolayısıyla, birinci m kişisi geçtikten sonra, ikinci kişinin en iyi olma olasılığını da ekleyelim. Diğer bir deyişle, birinci m kişisinin gittiğini ve m+2 kişisinin değerlendirildiğini düşünelim. Şimdi soruyoruz, m+2 kişisinin en iyi olma olasılığı nedir, eğer en iyi ise, bu metodun en iyiyi seçebilme olasılığı nedir? m+2 kişisinin en iyisi olma olasılığı 1/n. m+2 kişisinden önce gelen birinci m kişisinden daha iyi birisi varsa bu metot onu seçecektir. Diğer bir deyişle, eğer birinci m+1 kişisi birinci m ile aynı grupta ise süreç başarılı olacaktır. Ve bunun olasılığı m/(m+1). Bu nedenle, listede olmak şartıyla, bu sürecin m+2 kişisini başarıyla seçme olasılığı (1/n)*(m/(m+1)).Buradan bir matematiksel model olarak geliştireceğiz. Kural gereği birinci m atlanmıştır. m+k kişisinin en iyi olma olasılığı ve seçilmesi 1 m m k k = 0, 1, 2, (n m) 1/n bir kişinin en iyi olma olasılığıdır. Bu prosedürün bu kişiyi seçmesi için, ilk m+k kişisinin en iyisi ilk m kişileri arasından olmalıdır. Ve bunun olasılığı m/(m+k).bu bakımdan, bu metodun başarılı olduğuna dair son olasılığı elde etmek için, birbirini dışlayan olayların herbirinin olasılığını ilave etmeliyiz. En iyi kişi (m+1).nci kişi veya (m+2).nci veya (m+3).ncü veya n.nci kişiye kadar. n kişi arasından, ilk m kişisinin gidişinden sonra en iyiyi seçme olasılığı ve bir sonraki kişinin birinci m kişilerinden seçilmesi için n 1 m Pm ( ) i m 1 n i 1 Örneğin, 10 kişi ile tanışacağınızı düşünelim. Eğer ilk 3 kişi giderse, bu prosedürün en iyiyi seçme olasılığı ve ilk 3 ten daha iyiyi seçme olasılığı nedir? P(3).4287 i i 110 i 4 i m için iyi bir değeri bulmak için, ilk m kişi gittikten sonra en iyi kişiyi seçme olasılığı için formül n 1 m Pm ( ) i m 1 n i 1 = n 1 m 1 n i i m m m m 1 m m n 1 n 1 n 1 n 1 n 1 m n m 1 n m 2 n 2 n 1

6 Toplamı bulmak için, n çok geniş olması halinde, x = m/n, m n 1 n 1 n 1 n 1 n 1 m n m 1 n m 2 n 2 n 1 n x i m i gibidir. n n 1 x x f ( ti ) t x dt x ln x i m i i m t x Şimdi bu olasılığı maksimize edecek x değerini bulabiliriz. Çünkü, olasılığımız x fonksiyonu -xlnx in tek kritik noktası, x=1/e iken, türevi f (x) = lnx-1 0 olmasıdır. -xlnx in ikinci türevi -2 dir. Negatif değer olduğundan, x=1/e nin kritik noktasının fonksiyonun maksimumu olduğunu biliyoruz. Dolayısıyla, maksimum olasılık x=1/e iken ortaya çıkar. x = 1/e iken maksimum olasılık oluşur m 1 n Çünkü x iken m nx n dir. e e Sonuç olarak n artarken, en uygun m değeri n/e olur.diğer bir deyişle, kaç kişi ile buluşulacağının bir önemi yoktur. En uygun strateji 1/e kısmın gitmesine izin vermek ve ilk gruptakilerden daha iyi olan birinciyi seçmektir. 1/e kesiri yaklaşık.368 anlamı; uygun strateji ilk % 36.8 lik kısmın birini seçmeden gitmesine izin vermek ve sonrasında % 36.8 lik ilk gruptan daha iyi olan birini seçmek olacaktır. Sonuç: Sonuç olarak, xlnx olasılığa yaklaşım verdiği için, n kişilik tüm gruptan en iyiyi seçmek konusunda prosedür çalışacaktır. X=1/e iken olasılık en büyük olacaktır.yani, n dahada genişlerken, bu prosedürü kullanarak en iyiyi seçme olasılığı 1/e veya % 36.8 e yaklaşmaktadır. Diğer bir deyişle, rastgele tahminde bulunarak, n genişlerken en iyi kişiyi seçme şansı sıfıra yaklaşacaktır. Buna rağmen, bu uygun durdurma prosedürünü kullanarak, en iyi kişiyi seçme olasılığı yaklaşık % 36.8 e yaklaşacaktır. KAYNAKLAR 1) Albert N. Shiryaev,Optimal Stopping Rules 2)F. Thomas Bruss. "Sum the odds to one and stop." Annals of Probability, Vol. 28, ,(2000)

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

MATEMATİK-II dersi. Bankacılık ve Finans, İşletme, Uluslararası Ticaret. Bölümleri için FİNAL Çalışma Soruları

MATEMATİK-II dersi. Bankacılık ve Finans, İşletme, Uluslararası Ticaret. Bölümleri için FİNAL Çalışma Soruları MATEMATİK-II dersi Bankacılık ve Finans, İşletme, Uluslararası Ticaret Bölümleri için FİNAL Çalışma Soruları ] e d =? = u d= du du d= udu u u e d= e d= e = edu= e + c= e + c ] e d =? = + = e + c e d e

Detaylı

ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR

ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR SELİM HADAR DANIŞMAN ÖĞRETMEN SANDRA GÜNER ULUS ÖZEL MUSEVİ

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI PROJENİN ADI: OYUN TEORİSİ İLE İSTANBUL TRAFİĞİNİN İNCELENMESİ HAZIRLAYANLAR: ECE TUNÇKOL-BERKE OĞUZ AKIN MEV KOLEJİ ÖZEL

Detaylı

Lineer Denklem Sistemleri

Lineer Denklem Sistemleri Lineer Denklem Sistemleri Yazar Yrd. Doç.Dr. Nezahat ÇETİN ÜNİTE 3 Amaçlar Bu üniteyi çalıştıktan sonra; Lineer Denklem ve Lineer Denklem Sistemleri kavramlarını öğrenecek, Lineer Denklem Sistemlerinin

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Gezgin Satıcı Problemi 9. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Gezgin Satıcı Problemi Soru n tane şehri olan bir

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

SAĞLIK KURUMLARINDA OPERASYON YÖNETİMİ

SAĞLIK KURUMLARINDA OPERASYON YÖNETİMİ DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ. SAĞLIK KURUMLARINDA OPERASYON YÖNETİMİ

Detaylı

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını OPTİMİZASYON İktisat bilimi açısından optimizasyon, amacımıza en uygun olan seçeneğin belirlenmesidir. Örneğin bir firmanın kârını maksimize edecek olan üretim miktarının belirlenmesi; bir bireyin toplam

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

x 2i + A)( 1 yj 2 + B) u (v + B), y 1

x 2i + A)( 1 yj 2 + B) u (v + B), y 1 Ders 11: Örnekler 11.1 Kulplarla inşalar Bu bölümde kulpları birbirine yapıştırıp tanıdık manifoldlar elde edeceğiz. Artık bu son ders. Özellikle dersin ikinci bölümünde son meyveleri toplamak adına koşarak

Detaylı

1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir? A) ** B) C) D) E)

1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir? A) ** B) C) D) E) İktisadi ve İdari Bilimler Fakültesi MAT 152 Genel Matematik II Final Sorularının Çözümleri: 1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir?

Detaylı

OKUL MÜDÜRÜMÜZLE RÖPORTAJ

OKUL MÜDÜRÜMÜZLE RÖPORTAJ OKUL MÜDÜRÜMÜZLE RÖPORTAJ Kendinizden biraz bahseder misiniz? -1969 yılında Elazığ'da dünyaya geldim. İlk orta ve liseyi orada okudum. Daha sonra üniversiteyi Van 100.yıl Üniversitesi'nde okudum. Liseyi

Detaylı

Mantıksal çıkarım yapmak. 9 ve üzeri

Mantıksal çıkarım yapmak. 9 ve üzeri Aktivite 6 Savaş gemileri Arama algoritmaları Özet Bilgisayarların sıklıkla bir yığın verinin içerisinde bilgi bulmaları gerekir. Hızlı ve verimli yöntemler kullanarak bunu becerirler. Bu aktivitede 3

Detaylı

Yeni Göç Yasas Tecrübeleri

Yeni Göç Yasas Tecrübeleri Eflref Ar kan Bildiğiniz gibi Almanya aile birleşiminin gerçekleşmesi konusunda göç yasasında bazı değişiklikler yapmıştır. Bu değişiklikleri eleştirenler ve olumlu görenler bulunmaktadır. Ben göç yasasının

Detaylı

OYAK ADANA - BALIKESİR - BATMAN - BOLU - DÜZCE HATAY - KAHRAMANMARAŞ - MARDİN - ORDU 19 KASIM 2011 SORULAR

OYAK ADANA - BALIKESİR - BATMAN - BOLU - DÜZCE HATAY - KAHRAMANMARAŞ - MARDİN - ORDU 19 KASIM 2011 SORULAR OYAK TÜBİTAK BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 10. OYAK MATEMATİK YARIŞMASI İL BİRİNCİLİĞİ SINAVI ADANA - BALIKESİR - BATMAN - BOLU - DÜZCE HATAY - KAHRAMANMARAŞ - MARDİN - ORDU RİZE - SAKARYA -

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Gerçekten Asal Var mı? Ali Nesin

Gerçekten Asal Var mı? Ali Nesin Bu yazıda hile yapıyorum... Bir yerde bir hata var. Gerçekten Asal Var mı? Ali Nesin K endinden ve birden başka sayıya bölünmeyen a asal denir. Örneğin, 2, 3, 5, 7, 11, 13, 17, 19 asal dır. Ama 35 asal

Detaylı

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2 OPTIMIZASYON.... Bir Değişkenli Fonksiyonların Maksimizasyonu.... Türev...3.. Bir noktadaki türevin değeri...4.. Maksimum için Birinci Derece Koşulu...4.3. İkinci Derece Koşulu...5.4. Türev Kuralları...5

Detaylı

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.5. Doğrusal olmayan fonksiyonların eğimi Doğrusal fonksiyonlarda eğim her noktada sabittir

Detaylı

SEÇKİSİZ OLMAYAN ÖRNEKLEME YÖNTEMLERİ

SEÇKİSİZ OLMAYAN ÖRNEKLEME YÖNTEMLERİ SEÇKİSİZ OLMAYAN ÖRNEKLEME YÖNTEMLERİ SEÇKİSİZ OLMAYAN ÖRNEKLEME YÖNTEMLERİ Seçkisiz olmayan örnekleme yöntemleri Fraenkel ve Wallen(2006) ın sınıflandırmasıyla tutarlı olarak ; Sistematik Örnekleme Amaçsal

Detaylı

ÜNİTE MATEMATİK-1 İÇİNDEKİLER HEDEFLER ÜSTEL VE LOGARİTMA FONKSİYONLARI. Prof.Dr.Ahmet KÜÇÜK. Üstel Fonksiyon Logaritma Fonksiyonu

ÜNİTE MATEMATİK-1 İÇİNDEKİLER HEDEFLER ÜSTEL VE LOGARİTMA FONKSİYONLARI. Prof.Dr.Ahmet KÜÇÜK. Üstel Fonksiyon Logaritma Fonksiyonu HEDEFLER İÇİNDEKİLER ÜSTEL VE LOGARİTMA FONKSİYONLARI Üstel Fonksiyon Logaritma Fonksiyonu MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK Bu ünite çalışıldıktan sonra, Üstel fonksiyonun tanımı öğrenilecek Üstel fonksiyonun

Detaylı

ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları

ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları. 9 + = 6. A dan B ye 5 farklı şekilde gidebilir. B den C ye 3 farklı şekilde gidebilir. 5.3 = 5. 4.5 = 0 7. 5.3.3.5 5 3. kişi için iki durum

Detaylı

12/27/2011. Yenileme kararları. Bu dersin amacı

12/27/2011. Yenileme kararları. Bu dersin amacı Yenileme kararları Bu dersin amacı Elimizdeki varlığı serviste tutmalı mıyız yoksa yeni bir makine ile değiştirmeli miyiz sorusuna cevap vermektir. Bu alternatifler birbirini dışlayan alternatiflerdir,

Detaylı

a. Aynı sırada çekilen herhangi iki kartın aynı d. 4. çekişte iki torbadan da 4 numaralı kartların e. 2. ve 4. çekişte aynı numaralı kartların

a. Aynı sırada çekilen herhangi iki kartın aynı d. 4. çekişte iki torbadan da 4 numaralı kartların e. 2. ve 4. çekişte aynı numaralı kartların Örnek Problem - Sinemada, yan yana koltukta oturan arkadaş, ara verildiğinde kalkıyorlar. Dönüşte, aynı koltuğa rastgele oturduklarına göre; hiçbirinin ilk yerine oturmaması olasılığı Örnek Problem - 4

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Sloan Yönetim Okulu 15.010/15.011 Massachusetts Teknoloji Enstitüsü Güzl 2004 Professors Berndt, Chapman, Doyle ve Stoker

Sloan Yönetim Okulu 15.010/15.011 Massachusetts Teknoloji Enstitüsü Güzl 2004 Professors Berndt, Chapman, Doyle ve Stoker Sloan Yönetim Okulu 15.010/15.011 Massachusetts Teknoloji Enstitüsü Güzl 2004 Professors Berndt, Chapman, Doyle ve Stoker ÖDEV #5 ÇÖZÜMLER 1. a. Oyun Analizi i. Nash Dengesi Bir çift hamle Nash dengesidir

Detaylı

B Ö L Ü M. ve kitaplar yayınlamış olan bir bilim adamıdır. 2 JULIUS WILHELM RICHARD DEDEKIND ( ), Gauss un öğrencilerinden biridir.

B Ö L Ü M. ve kitaplar yayınlamış olan bir bilim adamıdır. 2 JULIUS WILHELM RICHARD DEDEKIND ( ), Gauss un öğrencilerinden biridir. B Ö L Ü M 2 DOĞAL SAYILAR En basit ve temel sayılar doğal sayılardır, sayı kelimesine anlam veren saymak eylemi bu sayılarla başlamıştır. Fakat insanoğlunun var oluşundan beri kullanılan bu sayıların açık

Detaylı

ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL

ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL HAZIRLAYAN ÖĞRENCİ: Tilbe GÖKÇEL DANIŞMAN ÖĞRETMEN: Emel ERGÖNÜL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI... 3 2. GİRİŞ... 3

Detaylı

Olasılık (Probability) Teorisi

Olasılık (Probability) Teorisi Olasılık (Probability) Teorisi akin@comu.edu.tr http://akin.houseofpala.com Genetik Olasılık, genetik Genlerin gelecek generasyona geçmesinde olasılık hesapları kullanılır Akrabalık derecesinin hesaplanmasında,

Detaylı

Piramit Satırları. Aşağıdaki girdi rakamlarından hangisi son satırda sonucun "0 (sıfır)" olmasını sağlar?

Piramit Satırları. Aşağıdaki girdi rakamlarından hangisi son satırda sonucun 0 (sıfır) olmasını sağlar? Piramit Satırları İşlem makinesi ilk satırdaki 4 rakamı girdi olarak almaktadır. Her satırda, makine sayılar arasındaki farkı hesaplamaktadır. Aşağıdaki resimde örnek bir işlem görülmektedir. Aşağıdaki

Detaylı

d) x TABAN ARĐTMETĐĞĐ

d) x TABAN ARĐTMETĐĞĐ YILLAR 00 00 00 00 00 007 008 009 010 011 ÖSS-YGS - 1 1 - - - - - - - TABAN ARĐTMETĐĞĐ Genel olarak 10 luk sayı sistemini kullanırız fakat başka sayı sistemlerine de ihtiyaç duyarız Örneğin bilgisayarın

Detaylı

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25 1 İçindekiler 1. Bölüm: SIRALAMA (PERMÜTASYON)... 5 2. Bölüm: SEÇME (KOMBİNASYON)...13 3. Bölüm: BİNOM AÇILIMI...21 4. Bölüm: OLASILIK...25 5. Bölüm: FONKSİYONLARIN SİMETRİLERİ VE CEBİRSEL ÖZELLİKLERİ...37

Detaylı

ENF110 Temel Bilgisayar Uygulamaları Vize Öncesi Tüm Notlar - Episode 2 Excel

ENF110 Temel Bilgisayar Uygulamaları Vize Öncesi Tüm Notlar - Episode 2 Excel Excel de pratik işlem: Sayı girdiğimizde arttırmak istediğimiz zaman teker teker sayıları yazmamıza gerek yok. Hücrenin sağındaki yeşil kare sayesinde verilerimizi çoğaltabiliriz. (Eğer sadece 5 i girip

Detaylı

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2 SERBEST LİE CEBİRLERİNİN ALT MERKEZİ VE POLİSENTRAL SERİLERİNİN TERİMLERİNİN KESİŞİMLERİ * Intersections of Terms of Polycentral Series and Lower Central Series of Free Lie Algebras Zeynep KÜÇÜKAKÇALI

Detaylı

MARKOV ZİNCİRLERİNDE DURUMLARIN SINIFLANDIRILMASI

MARKOV ZİNCİRLERİNDE DURUMLARIN SINIFLANDIRILMASI SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II MARKOV ZİNCİRLERİNDE DURUMLARIN SINIFLANDIRILMASI DERS NOTLARI 1 Önceki derslerimizde pek çok geçişten sonra n-adım geçiş olasılıklarının

Detaylı

ALIŞTIRMA-UYGULAMA YAZILIMLARI

ALIŞTIRMA-UYGULAMA YAZILIMLARI ALIŞTIRMA-UYGULAMA YAZILIMLARI Öğretim Aşamaları Bilginin Sunulması Öğrencinin Yönlendirilmesi Öğretici Programlar Uygulama Alıştırma- Uygulama Yazılımları Değerlendirme 2 Alıştırma-Uygulama Yazılımları

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Gezgin Satıcı Problemi 9. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Gezgin Satıcı Problemi Soru n tane şehri olan bir

Detaylı

Olas l k Hesaplar (II)

Olas l k Hesaplar (II) Olas l k Hesaplar (II) B ir önceki yaz daki örneklerde olay say s sonluydu. Örne in, iki zarla 21 olay vard. fiimdi olay say m z sonsuz yapaca z. Kolay bir soruyla bafllayal m: [0, 1] aral nda rastgele

Detaylı

PROJEYİ HAZIRLAYANLAR YUSUFHAN BAŞER BERKE SERTEL NAİLE ÇOLAK

PROJEYİ HAZIRLAYANLAR YUSUFHAN BAŞER BERKE SERTEL NAİLE ÇOLAK KESİN PROJE RAPORU PROJENİN ADI: ÜÇGENİN ELEMANLARI ARASINDAKİ SİMETRİK FONKSİYONLAR PROJEYİ HAZIRLAYANLAR YUSUFHAN BAŞER BERKE SERTEL OKUL ADI VE ADRESİ ÖZEL KÜLTÜR FEN LİSESİ Ataköy 9.-10. Kısım, 34156

Detaylı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı FOURIER SERİLERİ Bu bölümde Fourier serilerinden bahsedeceğim. Önce harmoniklerle (katsıklıklarla) ilişkili sinüsoidin tanımından başlıyacağım ve serilerin trigonometrik açılımlarını kullanarak katsayıları

Detaylı

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler DÖRDÜNCÜ BÖLÜM 4.1. Aritmetik işlemler Bu bölümde öğrencilerin lisede bildikleri aritmetik işlemleri hatırlatacağız. Bütün öğrencilerin en azından tamsayıların toplama, çıkarma, çarpma ve bölme işlemlerini

Detaylı

Projenin Amacı: Çok kullanılan trigonometrik oranların farklı ve pratik yöntemlerle bulunması

Projenin Amacı: Çok kullanılan trigonometrik oranların farklı ve pratik yöntemlerle bulunması Projenin Adı: Trigonometrik Oranlar için Pratik Yöntemler Projenin Amacı: Çok kullanılan trigonometrik oranların farklı ve pratik yöntemlerle bulunması GİRİŞ: Matematiksel işlemlerde, lazım olduğunda,

Detaylı

MUTLAK DEĞER MAKİNESİ. v01

MUTLAK DEĞER MAKİNESİ. v01 MUTLAK DEĞER MAKİNESİ Önce makinemiz nasıl çalışıyor öğrenelim. Makinemiz üç kısımdan oluşuyor. Giriş, Karar ve Sonuç. Giriş kısmına attığımız top bir sayıyı ya da bir ifadeyi temsil ediyor. (2) sayısını

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Geometride Kombinatorik 11. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Köşegenlerin Arakesiti Geometride Kombinatorik

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü OYUN TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü TANIM ''Oyun Teorisi'', iki yada daha fazla rakibi belirli kurallar altında birleştirerek karşılıklı olarak çelişen olasılıklar

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ

ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ ÖZEL EGE LİSESİ ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ HAZIRLAYAN ÖĞRENCİ: ATAHAN ÖZDEMİR DANIŞMAN ÖĞRETMEN: DEFNE

Detaylı

Bu optimal reklam-satış oranının reklam etkinliğini (reklam esnekliği) fiyat esnekliğine bölerek de hesaplarız anlamına gelir.

Bu optimal reklam-satış oranının reklam etkinliğini (reklam esnekliği) fiyat esnekliğine bölerek de hesaplarız anlamına gelir. Sloan Yönetim Okulu 15.010/ 15.011 Massachusetts Teknoloji Enstitüsü Đş Kararları için Đktisadi Analiz Profesör McAdams, Montero, Stoker ve van den Steen 2000 Final Sınavı Cevapları: Asistanların Notlandırması

Detaylı

( ) FAKTÖRĐYEL YILLAR /LYS. Örnek( 4.)

( ) FAKTÖRĐYEL YILLAR /LYS. Örnek( 4.) YILLAR 00 003 004 005 006 007 008 009 00 0 ÖSS-YGS - - - - 0/ - / /LYS FAKTÖRĐYEL Örnek( 4) 3)!! ) )! 4 )!? den n e kadar olan sayıların çarpımına n! denir n! 34(n-)n 0!!! 3! 3 6 4! 34 4 5!3450 Örnek(

Detaylı

Özel AKEV İlköğretim Okulu Fen ve Matematik Olimpiyatı

Özel AKEV İlköğretim Okulu Fen ve Matematik Olimpiyatı Özel KEV İlköğretim Okulu Fen ve Matematik Olimpiyatı DİKKT! CEVP KĞIDININ TEST -- BÖLÜMÜNE MTEMTİK SORULRI İŞRETLENECEKTİR. ) 3 basamaklı 4 tane sayının aritmetik ortalaması 400 dür. Bu dört sayının birler

Detaylı

MATURA. Bettina Pakoy, 12 Tic.

MATURA. Bettina Pakoy, 12 Tic. MATURA Bettina Pakoy, 12 Tic. MATURA LATİNCEDEN GELİR VE «OLGUN» DEMEKTİR. Matura üç bölümden oluşur: 1. VWA Ön Bilimsel Tez 2. Yazılı sınavlar 3. Sözlü sınavlar BAŞARILI MATURA = BÜTÜN NOTLARIN POZİTİF

Detaylı

Ör: IP =192.168.1.10 = 11000000.10101000.00000001.00001010 S.M=255.255.255.0=11111111.11111111.11111111.00000000. Subnetting (Alt Ağlara Bölme)

Ör: IP =192.168.1.10 = 11000000.10101000.00000001.00001010 S.M=255.255.255.0=11111111.11111111.11111111.00000000. Subnetting (Alt Ağlara Bölme) Network günümüzde her organizasyon için olmazsa olmazlar arasına girdi.her geçen gün çalışma alanlarında artan bilgisayar sayısı tabi ki network altyapısında bazı düzenlemelere gitmemizi gerektirdi.bu

Detaylı

KUYRUK TEORİSİ II DOĞUM-ÖLÜM SÜRECİ

KUYRUK TEORİSİ II DOĞUM-ÖLÜM SÜRECİ SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II KUYRUK TEORİSİ II DOĞUM-ÖLÜM SÜRECİ DERS NOTLARI DOĞUM-ÖLÜM SÜRECİ Kuyruk sistemindeki t zamanındaki müşteri sayısını kuyruk sisteminin

Detaylı

2002 Final Sınavı Cevapları: Asistanların Notlandırması için Hazırlanmıştır. 1. Doğru, Yanlış, Belirsiz

2002 Final Sınavı Cevapları: Asistanların Notlandırması için Hazırlanmıştır. 1. Doğru, Yanlış, Belirsiz Sloan Yönetim Okulu 15.010/ 15.011 Massachusetts Teknoloji Enstitüsü Đş Kararları için Đktisadi Analiz Profesör McAdams, Montero, Stoker ve van den Steen 2002 Final Sınavı Cevapları: Asistanların Notlandırması

Detaylı

ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları

ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları. 9 + = 6. A dan B ye 5 farklı şekilde gidebilir. B den C ye 3 farklı şekilde gidebilir. 5.3 = 5. 4.5 = 0 7. 5.3.3.5 = 5 3. kişi için iki durum

Detaylı

Problem Set 1 Çözümler

Problem Set 1 Çözümler Algoritmalara Giriş Eylül 30, 2005 Massachusetts Institute of Technology 6.046J/18.410J Profesörler Erik D. Demaine ve Charles E. Leiserson Dağıtım 8 0J Professors Erik D. Demaine ve Charles E. Leiserson

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTıRMA MODELININ TANıMı Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

TOBB-ETÜ, Iktisat Bölümü - Istatistik ( IKT 253) 2. Çal şma Sorular - Cevaplar 4. CHAPTER (PROBABILITY METH- ODS - OLASILIK METODLARI)

TOBB-ETÜ, Iktisat Bölümü - Istatistik ( IKT 253) 2. Çal şma Sorular - Cevaplar 4. CHAPTER (PROBABILITY METH- ODS - OLASILIK METODLARI) TOBB-ETÜ, Iktisat Bölümü - Istatistik ( IKT 253) 2. Çal şma Sorular - Cevaplar 4. CHAPTER (PROBABILITY METH- ODS - OLASILIK METODLARI) 1 Soru 1: Bir torba içinde 4 mavi, 4 tane de k rm z bilye olsun. 4

Detaylı

Yrd. Doç. Dr. A. Burak İNNER Bilgisayar Mühendisliği

Yrd. Doç. Dr. A. Burak İNNER Bilgisayar Mühendisliği Yrd. Doç. Dr. A. Burak İER Bilgisayar Mühendisliği Algoritma Analizi İçerik: Temel Kavramlar Yinelemeli ve Yinelemesiz Algoritma Analizi Asimptotik otasyonlar Temel Kavramlar Algoritma: Bir problemin çözümüne

Detaylı

Uygulamadı ki hedef kitlem meslek seçimi arefesindeki ilköğretim 5. Sınıf öğrencileri olacaktır.

Uygulamadı ki hedef kitlem meslek seçimi arefesindeki ilköğretim 5. Sınıf öğrencileri olacaktır. Oyununuzun senaryosunu kısaca tanıtınız amacınıda belirtiniz: Hedef kitlenin gelecekte yapacağı meslek seçimi konusunda bilgi sağlamak amacıyla çeşitli meslek dallarını kullanarak hangi mesleğe ilgi duyduklarını

Detaylı

Alternatif Akım. Yrd. Doç. Dr. Aytaç Gören. Alternatif Akım

Alternatif Akım. Yrd. Doç. Dr. Aytaç Gören. Alternatif Akım Yrd. Doç. Dr. Aytaç Gören Paralel devre 2 İlk durum: 3 Ohm kanunu uygulandığında; 4 Ohm kanunu uygulandığında; 5 Paralel devrede empedans denklemi, 6 Kondansatör (Kapasitans) Alternatif gerilimin etkisi

Detaylı

Matematikte Sonsuz. Mahmut Kuzucuoğlu. Orta Doğu Teknik Üniversitesi Matematik Bölümü İlkyar-2017

Matematikte Sonsuz. Mahmut Kuzucuoğlu. Orta Doğu Teknik Üniversitesi Matematik Bölümü İlkyar-2017 Matematikte Sonsuz Mahmut Kuzucuoğlu Orta Doğu Teknik Üniversitesi Matematik Bölümü matmah@metu.edu.tr İlkyar-2017 17 Temmuz 2017 Matematikte Sonsuz Bugün matematikte çok değişik bir kavram olan sonsuz

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1 Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı Mart 2015 0 SORU 1) Bulanık Küme nedir? Bulanık Kümenin (fuzzy

Detaylı

IKTI 101 (Yaz Okulu) 04 Ağustos, 2010 Gazi Üniversitesi İktisat Bölümü DERS NOTU 05 ÜRETİCİ TEORİSİ

IKTI 101 (Yaz Okulu) 04 Ağustos, 2010 Gazi Üniversitesi İktisat Bölümü DERS NOTU 05 ÜRETİCİ TEORİSİ DERS NOTU 05 ÜRETİCİ TEORİSİ Bugünki dersin işleniş planı: 1. Kârını Maksimize Eden Firma Davranışı... 1 2. Üretim Fonksiyonu ve Üretici Dengesi... 5 3. Maliyeti Minimize Eden Denge Koşulu... 15 4. Eşürün

Detaylı

Etkinlik Temelli Öğrenme

Etkinlik Temelli Öğrenme Etkinlik Temelli Öğrenme Bir sınıf düşünün. Okulun ilk gününde, en az 20 kişiyle dolu bir oda ve hepsi de öğretmeni izliyor. Odanın içinde kitaplar, sıralar, kağıt ve kalem, tepegöz ve yazı tahtası, bilgisayarlar

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi

Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi KAĞIT KATLAMA YOLUYLA KESİRLERİN BELİRLENMESİ Onur NURTAN Danışman Öğretmen: Mustafa YAZAGAN Özel Atacan Anadolu Lisesi Özet: Kare biçimindeki kağıdı tam iki eş parçaya ayıran kırışığına kağıdımızı katlayarak

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I /0 İçerik Matematiksel Modelin Kurulması Grafik Çözüm DP Terminolojisi DP Modelinin Standart Formu DP Varsayımları 2/0 Grafik Çözüm İki değişkenli (X, X2) modellerde kullanılabilir,

Detaylı

14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI

14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI 14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI - 008 SORU -1 1 0.7 0.1 0.48 = 0.018 0.8 0. eşitliğini sağlayan sayısı kaçtır? [ 0.15] SORU - c d d c a b 4 c d b b a ifadesinin i i sayısal ldeğeri

Detaylı

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Sıra İstatistikleri ve Uygulama Alanlarından Bir Örneğin Değerlendirmesi 89 SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Esin Cumhur PİRİNÇCİLER Araş. Gör. Dr., Çanakkale Onsekiz

Detaylı

1) İngilizce Öğrenmeyi Ders Çalışmak Olarak Görmek

1) İngilizce Öğrenmeyi Ders Çalışmak Olarak Görmek 1) İngilizce Öğrenmeyi Ders Çalışmak Olarak Görmek İngilizce öğrenilememesinin ilk ve en büyük sebeplerinden birisi, İngilizce öğrenmeyi ders çalışmak olarak görmek. Çoğu zaman İngilizce iş hayatında başarılı

Detaylı

2016 Kpss Lisans Matematik & Geometri E-Kursu

2016 Kpss Lisans Matematik & Geometri E-Kursu 2016 Kpss Lisans Matematik & Geometri E-Kursu Özellikler Müfredat Tarihler Özellikler Konu Anlatımları: 2015-2016 yılında konu anlatımlarımıza artık senkron ( canlı ) dersi ekledik. Kpss 2016 Matematik

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ 1

Detaylı

O-bOt ile Uygulamalı Deneyler

O-bOt ile Uygulamalı Deneyler O-bOt ile Uygulamalı Deneyler Deney 1: Tekerlek Çapı Gidilen Yol Đlişkisinin Bulunması 1 AMAÇ Bu deneyde, robotu hareket ettirmek için kullandığımız tekerleklerin çaplarının ve motorların dakikada attıkları

Detaylı

Ara Sınav Yanıtları Econ 159a/MGT 522a Ben Polak Güz 2007

Ara Sınav Yanıtları Econ 159a/MGT 522a Ben Polak Güz 2007 Ara Sınav Yanıtları Econ 159a/MGT 522a Ben Polak Güz 2007 Aşağıdaki yanıtlar puanları almak için gerekenden daha fazladır. Genelde daha öz açıklamalar daha iyidir. Soru 1. (15 toplam puan). Kısa yanıtlı

Detaylı

SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II MARKOV ZİNCİRLERİ DERS NOTLARI

SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II MARKOV ZİNCİRLERİ DERS NOTLARI SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II MARKOV ZİNCİRLERİ DERS NOTLARI STOKASTİK (RASSAL) SÜREÇLER Bazen rassal değişkenlerin zamanla nasıl değiştiğiyle ilgileniriz. Örneğin

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

Newton Metodu. Nümerik Kök Bulma. Mahmut KOÇAK ESOGU FEN-ED.FAK. MATEMATİK BÖLÜMÜ. mkocak

Newton Metodu. Nümerik Kök Bulma. Mahmut KOÇAK ESOGU FEN-ED.FAK. MATEMATİK BÖLÜMÜ.  mkocak Nümerik Kök Bulma Mahmut KOÇAK ESOGU FEN-ED.FAK. MATEMATİK BÖLÜMÜ http://www2.ogu.edu.tr/ mkocak Mahmut KOÇAK, March 28, 2008 Newton Metodu - p. 1/7 f( )=0 denklemini nümerik olarak çözelim. Tahmini bir

Detaylı

EXCEL FORMÜL ÖRNEKLERİ

EXCEL FORMÜL ÖRNEKLERİ 1. AY FONKSİYONU A EXEL FORMÜL ÖRNEKLERİ 1 30 1 30 gün 1 ay olduğundan 1 hücresine 1 yazıldı 2 99 4 99 gün 3+1 ay olduğundan 2 hücresine 4 yazıldı 3 125 5 Özet olarak Ay fonksiyonu seçilen hücrede yazılan

Detaylı

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM Yavaş değişen akımların analizinde kullanılacak genel denklem bir kanal kesitindeki toplam enerji yüksekliği: H = V g + h + z x e göre türevi alınırsa: dh d V = dx dx

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 4 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Kümeler Kümeler ve küme işlemleri olasılığın temellerini oluşturmak için çok önemlidir Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Sonlu sayıda, sonsuz sayıda, kesikli

Detaylı

EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK

EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK Amaç: 1 den n ye kadar olan tamsayı ağırlıkları, toplamları n olan en az sayıda ağırlığı kullanarak tartmak. Giriş: Bu araştırmanın temelini Ulusal Bilgisayar

Detaylı

YGS MATEMATİK SORU BANKASI

YGS MATEMATİK SORU BANKASI YGS MATEMATİK SORU BANKASI Sebahattin ÖLMEZ www.limityayinlari.com Sınavlara Hazırlık Serisi YGS Matematik Soru Bankası ISBN: 978-60-48--9 Copyright Lmt Limit Yayınları Bu kitabın tüm hakları Lmt Limit

Detaylı

DERS 8 BELIRSIZ TALEP DURUMUNDA STOK KONTROL. Zamanlama Kararları. Bir Seferlik Karar

DERS 8 BELIRSIZ TALEP DURUMUNDA STOK KONTROL. Zamanlama Kararları. Bir Seferlik Karar DERS 8 BELIRSIZ TALEP DURUMUNDA STOK KONTROL Zamanlama Kararları Miktar kararları Ne zaman sipariş verilecek? kararıyla birlikte verilir. Bu karar, stok yönetimindeki ana kararlardan biridir. Ne zaman

Detaylı

25 sayısını 6 ya böldüğümüzde bölüm 4 ve kalan 1 olur. Şekli inceleyin.

25 sayısını 6 ya böldüğümüzde bölüm 4 ve kalan 1 olur. Şekli inceleyin. BÖLME VE BÖLÜNEBİLME 25 sayısını 6 ya böldüğümüzde bölüm 4 ve kalan 1 olur. Şekli inceleyin. 25 = 6 x 4 + 1 Bölünen = Bölen x Bölüm + Kalan 12312312 sayısını 123 e bölelim. 123 te 123 bir kere var. Sonra

Detaylı

Olasılık ve İstatistik Hatırlatma

Olasılık ve İstatistik Hatırlatma Olasılık ve İstatistik Hatırlatma BSM 445 Kuyruk Teorisi Güz 014 Yrd. Doç. Dr. Ferhat Dikbıyık Bir olayın olasılığı bize ne anlatır? Verilen bir olasılığın manası nedir? Örnek: Tavlada düşeş atma olasılığı

Detaylı

TEMEL KAVRAMLAR Test -1

TEMEL KAVRAMLAR Test -1 TEMEL KAVRAMLAR Test -1 1. 6 ( ) 4 A) B) 3 C) 4 D) 5 E) 6 5. 4 [1 ( 3). ( 8)] A) 4 B) C) 0 D) E) 4. 48: 8 5 A) 1 B) 6 C) 8 D) 1 E) 16 6. 4 7 36:9 18 : 3 A) 1 B) 8 C) D) 4 E) 8 3. (4: 3 + 1):4 A) 3 B) 5

Detaylı

RENAISSANCE CAPITAL MENKUL DEĞERLER A.Ş.

RENAISSANCE CAPITAL MENKUL DEĞERLER A.Ş. TÜREV ARAÇLAR RİSK BİLDİRİM FORMU (Borsa İstanbul A.Ş. Vadeli İşlem ve Opsiyon Piyasası nezdindeki işlemlere ilişkindir.) Önemli Açıklama: Borsa İstanbul A.Ş. Vadeli İşlem ve Opsiyon Piyasası nezdinde

Detaylı

14.12 Oyun Teorisi Ders Notları

14.12 Oyun Teorisi Ders Notları 14.12 Oyun Teorisi Ders Notları Giriş Muhamet Yıldız (Ders 1) Oyun Teorisi Çok Kişili Karar Teorisi için yanlış bir isimlendirmedir. Oyun Teorisi, birden çok ajanın bulunduǧu ve her ajanın ödülünün diǧer

Detaylı

Final Sınavı. Güz 2005

Final Sınavı. Güz 2005 Econ 159a/MGT 522a Ben Polak Güz 2005 Bu defter kitap kapalı bir sınavdır. Sınav süresi 120 dakikadır (artı 60 dakika okuma süresi) Toplamda 120 puan vardır (artı 5 ekstra kredi). Sınavda 4 soru ve 6 sayfa

Detaylı

Akıllı Satranç Uygulaması HAZIRLAYAN: BERKAY ATAMAN DANIŞMAN: DOÇ. DR. FEZA BUZLUCA

Akıllı Satranç Uygulaması HAZIRLAYAN: BERKAY ATAMAN DANIŞMAN: DOÇ. DR. FEZA BUZLUCA Akıllı Satranç Uygulaması HAZIRLAYAN: BERKAY ATAMAN - 150120037 DANIŞMAN: DOÇ. DR. FEZA BUZLUCA İÇERİK 1. Giriş 2. Analiz 3. Modelleme ve Gerçekleme 4. Yapılan Testler 5. Sonuç 6. Demo 1. GİRİŞ Satranç

Detaylı

MATRİKS VERİ TERMİNALİ GELİŞMİŞ ALARM

MATRİKS VERİ TERMİNALİ GELİŞMİŞ ALARM MATRİKS VERİ TERMİNALİ GELİŞMİŞ ALARM Versiyon 7.0.8 1.12.2013 Matriks Bilgi Dağıtım Hizmetleri A.Ş. MATRİKS VERİ TERMİNALİ GELİŞMİŞ ALARM İçindekiler 1. İlk Bilgiler... 2 2. Sekmeler (Alarm Tanımlama

Detaylı

Yoksulun Kazanabildiği Bir Oyun Ali Nesin

Yoksulun Kazanabildiği Bir Oyun Ali Nesin Yosulun Kazanabildiği Bir Oyun Ali Nesin B u yazıda yosulu azandıracağız. Küçü bir olasılıla da olsa, yosul azanabilece. Oyunu açılamadan önce, Sonlu Oyunlar adlı yazımızdai oyunu anımsayalım: İi oyuncu

Detaylı