Küresel Harmoniklerin Tekrarlama Bağıntıları İle Hesaplanması. Recursive Relations Of The Spherical Harmonics And Their Calculations

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Küresel Harmoniklerin Tekrarlama Bağıntıları İle Hesaplanması. Recursive Relations Of The Spherical Harmonics And Their Calculations"

Transkript

1 S.Ü. Fen-Edebiyat Fakültesi Fen Dergisi Sayı (00) -6, KONA Küresel Haroniklerin Tekrarlaa Bağıntıları İle Hesaplanası Erhan AKIN, Atilla GÜLEÇ, Hüseyin ÜKSEL ÖZET: Bu çalışada atoik ve oleküler hesaplaalarda yaygın olarak kullanılan küresel haroniklerin istenilen bir ax değerine kadar ükün olan tü ve kuantu sayı çiftleri için sayısal değerlerini veren bir tekrarlaa bağıntısı elde ediliştir. Elde edilen bu tekrarlaa bağıntısının, çok büyük kuantu sayıları ve tü açı değerlerinde duyarlı sonuçlar verdiği bilgisayar hesaplaaları ile doğrulanıştır. Anahtar Kelieler: Küresel Haronikler, Gaunt Katsayıları. Recursive Relations Of The Spherical Haronics And Their Calculations ABSTRACT: In this study a recursive relation was obtained for the spherical haronics which is widely used in atoic and olecular calculations. The recursive relation gives the values of spherical haronics for all possible cobinations of quantu nubers and up to an arbitrary ax value. It was also verified that this recursive relation gives accurate results for very large quantu nuber cobinations and for all angles. Key Words: Spherical Haronics, Gaunt Coefficients. Bu ifadedeki. GİRİŞ Kopleks küresel haronikler, Condon-Shortley fazında biçiinde yazılır []. ( ) ( θ, ) ), ( =, ϕ (+ )( )! = i + P (cosθ ) e 4π ( + )! P ler ilgili noralize Legendre polinoları olup x cosθ olak üzere iϕ () Selçuk Üniversitesi, Fen-Edebiyat Fakültesi, Fizik Bölüü, 4049 KONA.

2 Küresel Haroniklerin Tekrarlaa Bağıntıları ile Hesaplanası + d = ( x ) + P ( x) ( x ) ()! dx şeklinde tanılanır []. Küresel haroniklerin belli bir θ ve ϕ açısı altında belli kuantu sayıları için sayısal değerleri, atoik ve oleküler hesaplaalarda öne taşır. Örneğin Hartree-Fock-Roothaan denkleinin çözüünde [] ve bir çekirdekte erkezleniş Slater-tipi ato orbitalinin başka bir çekirdekte erkezleniş Slater-tipi ato orbitalleri cinsinden seri açılıını kullanan ρ oleküler hesaplaa yöntelerinde [4,5] S n (, ; R ) ile gösterilen overlap ζ ζ, n ab integrallerinin hesaplanası gerekir. Bu overlap integrallerinin hesaplanasında ise küresel haroniklerin sayısal değerlerini kullanan D, döne katsayılarının hesaplanası gerekir [6]. [4] ve [5] kaynaklarında bulunan analitik ifadelerde özellikle büyük kuantu sayılarına ve kritik θ ve ϕ açılarına sahip çok sayıda küresel haroniğin duyarlı bir şekilde hesaplanası gerekir. Ayrıca Slater-tipi orbitaller üzerinden spin-spin çekirdek etkileşi integrallerinin analitik olarak hesaplanasında da küresel haroniklerin sayısal değerleri gereklidir [7]. Bu hesaplaalar genellikle her bir kuantu sayı çifti için ayrı hesaplaa yapan analitik bağıntılarla gerçekleştirilektedir [8]. Weniger ve Steinborn tarafından önerilen küresel haroniklerin tekrarlaa bağıntısı yalnızca kuantu sayısına göre tekrarlaa şeklindedir [9]. Bu çalışada ise he he de kuantu sayılarına göre tekrarlaa bağıntıları türetilerek daha genel bir hesaplaa yöntei ortaya konuluştur. ve. TEORİ () eşitliği ile verilen küresel haronik, A + i (+ )( )! iϕ = ( x ) e ()! 4π ( + )! + d = ( x ) + B (4) dx tanıları kullanılarak (, ϕ) = θ A B (5) şeklinde yazılabilir. Bu duruda + (, ϕ) = A + B+ θ (6) ve + (, ϕ) = A + B+ θ (7)

3 Erhan AKIN, Atilla GÜLEÇ, Hüseyin ÜKSEL şeklini alır. Bu çalışada (6) ve (7) ifadelerindeki A ve B fonksiyonları için tekrarlaa bağıntıları, + ( ) ( + ) A = A ve pozitif değerleri için A ( )( + ) iϕ = ( x ) e A ν = F ( ) B ν + xb ν + ( x ) Bν (8), (9) B (0) olarak elde ediliştir. Burada ( n) = n!!( n )! şeklinde tanılanan bino katsayıları F olup A 4π ve B =, < 0 için B 0 dır. (0) ifadesinde =+ ve 0 0 = 0 0 ν = ν = yi gösterektedir ve keyfi bir değerine kadar hesaplanacak küresel haronikler için ν = 0,,, Λ, = 0,,, Λ, ν ax ax = iϕ değerlerini alır. Aynı zaanda B B ve A = ( ) e A ifadeleri (5) eşitliğinde dikkate alınırsa = ( ) e iϕ () ifadesini kullanak hesaplaalarda öneli ölçüde zaan tasarrufu sağlar.. BİLGİSAAR HESAPLAMALARI Bu çalışada küresel haroniklerin sayısal değerlerini hesaplaak için Fortran 77 progralaa dili kullanılıştır. Bilgisayar prograında istenilen bir değerine kadar ükün ve pozitif değerleri için (8)-() ifadelerindeki ve değerleri iki ayrı dizi şeklinde bilgisayar hafızasına kaydediliştir. Böylece (6) ve (7) eşitliği kullanılarak nin pozitif değerleri için ükün tü ax lerin sayısal değerleri, Weniger ve Steinborn un çalışalarında [9] yapıldığı şekilde kopleks aritetiği kullanaak için ϕ = 0 alınarak üç θ değerinde hesaplanıştır. Ayrıca bu hesaplaa sonuçları kullanılarak () eşitliği yardııyla negatif değerlerine sahip ler de hesaplanıştır. A B () eşitliğinden görüldüğü gibi küresel haroniklerin sayısal değerlerinin hesaplanasında ilgili noralize Legendre polinolarının sayısal değerlerinin duyarlı bir şekilde hesaplanası gerekir. [0] nolu çalışada böyle bir hesaplaa ancak 0 ve 45 < θ < 90 için iki ayrı analitik ifade kullanılarak yapılış olup çok büyük kuantu < θ < 45

4 Küresel Haroniklerin Tekrarlaa Bağıntıları ile Hesaplanası sayıları için bu hesaplaaların çok duyarlı oladığı bildiriliştir. Bu çalışada ax = 60 için θ nın 45 ile 0 ve 90 ye çok yakın olduğu üç kritik açı değerinde hesaplaalar yapılıştır. Bu hesaplaa sonuçlarının bazıları Tablo de görülektedir. Bu tablonun son sütununda θ = 45 için Weniger ve Steinborn un sonuçları veriliştir. Ayrıca hesaplaa sonuçlarının doğruluğunu test etek için * l () ( θ ) (θ = < > l, ϕ),ϕ + = () in ile verilen aynı erkezli iki küresel haroniğin çarpı ifadesi kullanılıştır [9]. Bu son eşitlikte topla içindeki katsayılar Gaunt katsayılarıdır ve Tablo : Seçilen bazı küresel haroniklerin sayısal değerleri (=9). θ [9] D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D+000 in ax( = ax(,, ) ) + ax( ax( ) + çift sayı için tek sayı için şeklinde tanılanıştır. () eşitliğinde = 5, 7 =, = 5, = alınırsa topla içerisindeki küresel haronikler için 9 ve = 0,,4, Λ, 60,, = ) + değerlerini alabilir. Bu ve değerleri için () eşitliğindeki topla içerisindeki küresel haroniklerin sayısal değerleri Tablo de üç faklı θ değerinde veriliştir. Son sütunda verilen değerler ise Weniger ve Steinborn un sonuçlarını gösterektedir

5 Erhan AKIN, Atilla GÜLEÇ, Hüseyin ÜKSEL 4. SONUÇLAR ve TARTIŞMA Bu çalışada elde edilen tekrarlaa şeklindeki (6) ve (7) ifadeleri kullanılarak kritik üç θ değeri için ( 0.07,45,89.9 ) hesaplanan küresel haroniklerin sayısal değerleri Tablo de veriliştir. Bu tablodan görüldüğü gibi θ = 45 için bulunan sonuçlar literatür ile [9] uyu içindedir. θ = 0.07 ve θ = açılarında yapılan hesaplaaların doğruluğu ise () eşitliği kullanılarak test ediliştir. () eşitliğinden elde edilen sonuçlar Tablo de veriliştir. Bu tablodan görüldüğü gibi küresel haroniklerin sayısal değerleri () eşitliğini sağlaaktadır. Weniger ve Steinborn un çalışalarında [9] da küresel haronikler duyarlı bir şekilde hesaplanabilektedir. Ancak Weniger ve Steinborn un yönteinde tekrarlaa yalnızca kuantu sayısına göre yapılaktadır. Ayrıca sözü edilen çalışada θ nın kritik değerleri için bir hesaplaa yapılaıştır. Bu çalışada ise (6) ve (7) tekrarlaa bağıntısı he he de kuantu sayılarına göre elde edildiği için küresel haroniklerin sayısal değerlerini hesaplaak için bu çalışada önerilen yönte daha kullanışlıdır. Tablo : Küresel haroniklerin sayısal değerlerinin () eşitliği kullanılarak doğrulanası. θ () Eşitliğinin Sol Tarafı () Eşitliğinin Sağ tarafı D D D D D D-00 KANAKLAR [] Condon, E.U. and Odabaşı, H., Atoic Structure, Cabridge Univ.Press., Cabridge, 988. [] Messiah, A., Quantu Mechanics, North-Holland, Asterda, Appendix BIV, 96. [] Guseinov, I.I., Restricted Open Shell Hartree-Fock Theory, J.Mol.Struct. (THEOCHEM), 4, 998. [4] Guseinov, I.I., Expansion of Slater-Type Orbitals About a Displaced Center and the Evaluation of Multicenter Electrıon-Repulsion Integrals, Phys.Rev.A,,985. [5] Guseinov, I.I., Evaluation of Multielectron Molecular Integrals over Slater-Type Orbitals Using Binoial Coefficients, J.Mol.Struct. (THEOCHEM), 47, 997. [6] Guseinov, I.I., Evaluation of Two-Center Overlap and Nuclear Attraction Integrals for Slater-Type Orbitals, Phys.Rev.A,,985. [7] Guseinov, I.I. and Iaov, E.M., Analytical evaluation of One- and Two-Center Spin-Spin Nuclear Attraction Integrals Over Slater-Type Orbitals, J.Phys.B,,

6 Küresel Haroniklerin Tekrarlaa Bağıntıları ile Hesaplanası [8] Guseinov, I.I., On the Evaluation of Multielectron Molecular Integrals Over Slater-Type Orbitals Using Binoial Coefficients, J.Mol.Struct. (THEOCHEM), 5, 995. [9] Weniger, E.J. and Steinborn, E.O., Progras for Coupling of Spherical Haronics, Coputer Physics Counications, 5, 98. [0] Guseinov, I.I., Atav, Ü., Özen, A., üksel, H. and Aliyeva, T.H., Calculation of Rotation Coefficients for Overlap Integrals Over Arbitrary Atoic Orbitals, Turkish J.Phys.(DOĞA), /0,

Bloch-Gruneisen Fonksiyonu ile Bazı Katıların Elektriksel Özdirencinin Sıcaklığa Göre Değişiminin Analitik İncelenmesi

Bloch-Gruneisen Fonksiyonu ile Bazı Katıların Elektriksel Özdirencinin Sıcaklığa Göre Değişiminin Analitik İncelenmesi SU Journal of Science (E-Journal), 213, 8 (1): 54-59 Bloch-Gruneisen Fonksiyonu ile Bazı Katıların Elektriksel Özdirencinin Sıcaklığa Göre eğişiinin Analitik İncelenesi Mustafa Karakaya 1,*, İskender Askeroğlu

Detaylı

İsrafil Isa oglu Hüseyin (Guseinov)

İsrafil Isa oglu Hüseyin (Guseinov) İsrafil Isa oglu Hüseyin (Guseinov) Profesör (Türk Vatandaşlığına Girişi: 08.07.1996., T.C. Üniversitelerarası Kurul Başkanlığının Doktora, Doçentlik ve Profesörlük Belgesi-1997) Doğum Tarihi: 15.05.1934

Detaylı

FEN VE MÜHENDİSLİKTE MATEMATİK METOTLAR 10. KİTAP DİFERANSİYEL DENKLEMLER III DD III

FEN VE MÜHENDİSLİKTE MATEMATİK METOTLAR 10. KİTAP DİFERANSİYEL DENKLEMLER III DD III FEN VE MÜHENDİSİKTE MATEMATİK METOTAR 0. KİTAP DİFERANSİYE DENKEMER III DD III 8 İÇİNDEKİER I. SO() ve KÜRESE HARMONİKER A) SO Spektruu B) Diferansiyel Operatör Tesilleri C) Uzay Tersinesi D) Küresel Haronikler

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ. Öğrenim Durumu. Görevler

ÖZGEÇMİŞ VE ESERLER LİSTESİ. Öğrenim Durumu. Görevler ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ Adı Soyadı: Emin Öztekin Doğum Tarihi: 12 Mayıs 1962 Ünvanı: Doç. Dr. Öğrenim Durumu Derece Alan Üniversite Yıl Lisans Fizik Öğretmenliği Ondokuz Mayıs Üniversitesi

Detaylı

ALFA BOZUNUMU MEHMET YÜKSEL ÇÜ FBE FİZİK ABD ADANA-2010

ALFA BOZUNUMU MEHMET YÜKSEL ÇÜ FBE FİZİK ABD ADANA-2010 ALFA BOZUNUMU MEHME ÜKSEL ÇÜ FBE FİZİK ABD ADANA-010 İÇERİK 1. Giriş. Alfa (α) Parçacığı ve Özellikleri 3. Alfa Bozunuu Niçin Olur? 4. eel Alfa Bozunu Reaksiyonları 4.1. Alfa (α) Bozunuunda Enerji ve Moentu

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 1.. Kutupsal Formda Gösterim z x + iy vektörünün pozitif reel eksenle yaptığı açıya θ diyelim. cos θ x, sin θ y ve buradan tan θ y θ arctan y olup θ ya z z

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok Gauss Yasası Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok daha kullanışlı bir şekilde nasıl hesaplanabileceği

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

GABOR ENTROPİ YÖNTEMİ İLE KISA SÜRELİ BEYİN SİNYALLERİNİN ANALİZİ ÜZERİNE YENİ BİR YAKLAŞIM.

GABOR ENTROPİ YÖNTEMİ İLE KISA SÜRELİ BEYİN SİNYALLERİNİN ANALİZİ ÜZERİNE YENİ BİR YAKLAŞIM. Özet GABOR ENTROPİ YÖNTEMİ İLE KISA SÜRELİ BEYİN SİNYALLERİNİN ANALİZİ ÜZERİNE YENİ BİR YAKLAŞIM Hasan ÖZTÜRK *, Gülden KÖKTÜRK ** * Dokuz Eylül Üniversitesi, Makina Müh. Böl., Bornova, 35100 İzir hasan.ozturk@deu.edu.tr

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 2- HATA VE HATA KAYNAKLARI Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ Bir denklemin veya problemin çözümünde kullanılan sayısal yöntem belli bir giriş verisini işleme tabi tutarak sayısal

Detaylı

Özet: Açısal momentumun türetimi. Açısal momentum değiştirme bağıntıları. Artırıcı ve Eksiltici İşlemciler Kuantum Fiziği Ders XXI

Özet: Açısal momentumun türetimi. Açısal momentum değiştirme bağıntıları. Artırıcı ve Eksiltici İşlemciler Kuantum Fiziği Ders XXI Özet: Açısal momentumun türetimi Açısal momentum değiştirme bağıntıları Levi- Civita simgesi Genel olarak, L x, L y, L z, nin eşzamanlı özdurumları yoktur L 2 ve bir bileşeni (L z ) nin eşzamanlı özdurumlarıdır.

Detaylı

u ( )z, ) başlangıç durumdaki yerdeğiştirme vektörünün radyal ve eksenel doğrultuda bileşenlerini, λ k

u ( )z, ) başlangıç durumdaki yerdeğiştirme vektörünün radyal ve eksenel doğrultuda bileşenlerini, λ k SÜREKSİZ TEMAS KOŞULLARININ ÖNGERİLMELİ İKİ KATLI İÇİ BOŞ SİLİNDİRLERDE EKSENEL SİMETRİK BOYUNA DALGA YAYILIMINA ETKİSİ(DIŞ SİLİNDİR İÇ SİLİNDİRE ORANLA DAHA RİJİT) (*) Surkay AKBAROV, (**) Cengiz İPEK

Detaylı

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I DENEY 3 GENLİK (AM) MODÜLASYONU

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I DENEY 3 GENLİK (AM) MODÜLASYONU Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölüü EEM 316 Haberleşe I DENEY 3 GENLİK (AM) MODÜLASYONU 3.1 Aaçlar 1. Genlik (AM) odülasyon prensiplerinin anlaşılası 2. Genlik (AM) sinyalinin

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

Statik Manyetik Alan

Statik Manyetik Alan Statik Manyetik Alan Noktasal Yüke Etki eden Manyetik Kuvvet Akım Elemanına Etki Eden Manyetik Kuvvet Biot-Savart Kanunu Statik Manyetik Alan Statik manyetik alan, sabit akımdan veya bir sürekli mıknatıstan

Detaylı

Fizik 102-Fizik II /II

Fizik 102-Fizik II /II 1 -Fizik II 2010-2011/II Gauss Yasası Nurdan Demirci Sankır Ofis: 325, Tel: 2924331 Kaynaklar: Giancoli, Physics, Principles With Applications, Prentice Hall Serway, Beichner, Fen ve Mühendislik için Fizik

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Paukkale Üniversitesi Mühendislik Bilileri Dergisi Paukkale University Journal of Engineering Sciences Sakarya Üniversitesi için rüzgâr enerjisi potansiyel belirlee çalışası Study to deterine wind energy

Detaylı

A RANKING METHOD FOR NEUTRAL PION AND ETA SELECTION IN HADRONIC EVENTS

A RANKING METHOD FOR NEUTRAL PION AND ETA SELECTION IN HADRONIC EVENTS TR0500099. FİZİK KUW.RESI. hi / 7 ICYLIJI. 200-I, L1ODRI : M Tl A RANKING METHOD FOR NEUTRAL PION AND ETA SELECTION IN HADRONIC EVENTS A. BİNGİ1L University of Gaziantep.Gaziantep, Turkey, bingul@gantep.

Detaylı

KİM-117 TEMEL KİMYA Prof. Dr. Zeliha HAYVALI Ankara Üniversitesi Kimya Bölümü

KİM-117 TEMEL KİMYA Prof. Dr. Zeliha HAYVALI Ankara Üniversitesi Kimya Bölümü KİM-117 TEMEL KİMYA Prof. Dr. Zeliha HAYVALI Ankara Üniversitesi Kimya Bölümü Bu slaytlarda anlatılanlar sadece özet olup ayrıntılı bilgiler ve örnek çözümleri derste verilecektir. BÖLÜM 4 PERİYODİK SİSTEM

Detaylı

8.04 Kuantum Fiziği Ders V ( ) 2. = dk φ k

8.04 Kuantum Fiziği Ders V ( ) 2. = dk φ k Geçen Derste ψ( x) 2 ve φ( k) 2 sırasıyla konum ve momentum uzayındaki olasılık yoğunlukları Parseval teoremi: dxψ( x) 2 = dk φ k ( ) 2 Normalizasyon: 1 = dxψ( x) 2 = dk φ k ( ) 2 Ölçüm: x alet < x çözünürlüğü

Detaylı

Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması.

Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması. Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması. Projenin Amacı: Aritmetik bir dizinin ilk n-teriminin belirli tam sayı kuvvetleri toplamının

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

TOA27 KOPOLİİMİD MEMBRAN MALZEMELERİNİN AYIRMA ÖZELLİKLERİNİN GRUP KATKISI YÖNTEMLERİ İLE TEORİK OLARAK HESAPLANMASI

TOA27 KOPOLİİMİD MEMBRAN MALZEMELERİNİN AYIRMA ÖZELLİKLERİNİN GRUP KATKISI YÖNTEMLERİ İLE TEORİK OLARAK HESAPLANMASI TOA27 KOPOLİİMİD MEMBRAN MALZEMELERİNİN AYIRMA ÖZELLİKLERİNİN GRUP KATKISI YÖNTEMLERİ İLE TEORİK OLARAK HESAPLANMASI Sadiye Halitoğlu, Ş. Birgül Tantekin-Ersolaz İstanbul Teknik Üniv., Kiya-Metalurji Fak.,

Detaylı

Soru No Puan Program Çıktısı 1,3,10 1,3,10 1,3,10

Soru No Puan Program Çıktısı 1,3,10 1,3,10 1,3,10 OREN000 Final Sınavı 0.06.206 0:30 Süre: 00 dakika Öğrenci Nuarası İza Progra Adı ve Soyadı SORU. Bir silindir içerisinde 27 0 C sıcaklıkta kg hava 5 bar sabit basınçta 0.2 litre haciden 0.8 litre hace

Detaylı

I. ÇOK ELEKTRONLU ATOMLAR ĠÇĠN DALGA FONKSĠYONLARI

I. ÇOK ELEKTRONLU ATOMLAR ĠÇĠN DALGA FONKSĠYONLARI 5.111 Ders Özeti #8 Bugün için okuma: Bölüm 1.12 (3. Baskıda 1.11) Orbital Enerjileri ( çok-lu atomlar), Bölüm 1.13 (3. Baskıda 1.12) Katyapı Ġlkesi. Ders #9 için okuma: Bölüm 1.14 (3. Baskıda 1.13) Elektronik

Detaylı

MASSACHUSETTS TEKNOLOJİ ENSTİTÜSÜ Fizik Bölümü Fizik 8.04 Bahar 2006 SINAV 1 Salı, Mart 14, :00-12:30

MASSACHUSETTS TEKNOLOJİ ENSTİTÜSÜ Fizik Bölümü Fizik 8.04 Bahar 2006 SINAV 1 Salı, Mart 14, :00-12:30 Fizik Bölümü Fizik 8.04 Bahar 2006 SINAV 1 Salı, Mart 14, 2006 11:00-12:30 SOYADI ADI Öğrenci No. Talimat: 1. TÜM ÇABANIZI GÖSTERİN. Tüm cevaplar sınav kitapçığında gösterilmelidir? 2. Bu kapalı bir sınavdır.

Detaylı

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün.

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün. 4.2. çı Modülasyonu Yüse reanslı bir işaret ile bilgi taşıa, işaretin genliğinin, reansının veya azının bir esaj işareti ile odüle edilesi ile gerçeleştirilebilir. Bu üç arlı odülasyon yöntei sırasıyla,

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

MEKANİK SİSTEMLERİN KAPALI KONTROLÜNÜN RUNGE-KUTTA YÖNTEMİYLE İNCELENMESİ

MEKANİK SİSTEMLERİN KAPALI KONTROLÜNÜN RUNGE-KUTTA YÖNTEMİYLE İNCELENMESİ . ULUSAL MAKİNA TEORİSİ SEMPOZYUMU Gazi Üniversitesi, Mühendislik-Miarlık Fakültesi, 4-6 Eylül MEKANİK SİSTEMLERİN KAPALI KONTROLÜNÜN RUNGE-KUTTA YÖNTEMİYLE İNCELENMESİ Hira Karagülle Dokuz Eylül Üniversitesi,

Detaylı

Akışkanlar Mekaniği/Aerodinamik Ders Notları Dr. Selman Nas

Akışkanlar Mekaniği/Aerodinamik Ders Notları Dr. Selman Nas 1. GİRİŞ Gerçek akış problelerini çözek bilgisayarların ortaya çıkasından evvel oldukça zor, hatta ikansızdı. Son zaanlarda bilgisayar teknolojisindeki gelişeler bunu bir nebze ükün kılıştır. Gerçek akış

Detaylı

Şekil 8.6 Bilgi akışının sistem içinde düzenlenmesi

Şekil 8.6 Bilgi akışının sistem içinde düzenlenmesi 97 Bu denkle takıının çözüü belirli bir P1(t) ve P3(t) rejii için Z düzeyinin değişiini verir. Bu çözüün ateatiksel tekniklerle gerçekleştirilesi güçtür. Ancak noral progralaa bilen biri tarafından kolayca

Detaylı

G( q ) yer çekimi matrisi;

G( q ) yer çekimi matrisi; RPR (DÖNEL PRİZATİK DÖNEL) EKLE YAPISINA SAHİP BİR ROBOTUN DİNAİK DENKLELERİNİN VEKTÖR-ATRİS FORDA TÜRETİLESİ Aytaç ALTAN Osmancık Ömer Derindere eslek Yüksekokulu Hitit Üniversitesi aytacaltan@hitit.edu.tr

Detaylı

Finansal Varlık Fiyatlama Modelleri Çerçevesinde Piyasa Risklerinin Hesaplanması: Parametrik Olmayan Yaklaşım

Finansal Varlık Fiyatlama Modelleri Çerçevesinde Piyasa Risklerinin Hesaplanması: Parametrik Olmayan Yaklaşım Bankacılar Dergisi, Sayı 6, 007 Finansal Varlık Fiyatlaa Modelleri Çerçevesinde Piyasa Risklerinin Hesaplanası: Paraetrik Olayan Yaklaşı Yrd. Doç. Dr. Kutluk Kağan Süer Aycan Hepsağ Bu çalışada, 05/01/000

Detaylı

SBR331 Egzersiz Biyomekaniği

SBR331 Egzersiz Biyomekaniği SBR331 Egzersiz Biyomekaniği Açısal Kinematik 1 Angular Kinematics 1 Serdar Arıtan serdar.aritan@hacettepe.edu.tr Mekanik bilimi hareketli bütün cisimlerin hareketlerinin gözlemlenebildiği en asil ve kullanışlı

Detaylı

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır.

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır. Manyetik Alanlar Manyetik Alanlar Duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alanın sardığı biliyoruz. Hatta elektrik alan konusunda şu sonuç oraya konulmuştur. Durgun bir deneme yükü

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

İş, Enerji ve Güç Test Çözümleri. Test 1 Çözümleri 4. F = 20 N

İş, Enerji ve Güç Test Çözümleri. Test 1 Çözümleri 4. F = 20 N 3 İş, nerji e Güç Test Çözüleri Test Çözüleri. = 30 N s = 5 4. = 0 N = kg 37 = 5 /s kuetinin yaptığı iş, cisi üzerinde kinetik enerji olarak depolanır. ani kuetinin yaptığı iş, cisin kinetik enerjisine

Detaylı

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere, Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli

Detaylı

PORLA METODU İLE TAHMİN EDİLEN ARMA MODEL PARAMETRELERİ ÜZERİNDE PENCERE FONKSİYONLARININ ETKİSİ

PORLA METODU İLE TAHMİN EDİLEN ARMA MODEL PARAMETRELERİ ÜZERİNDE PENCERE FONKSİYONLARININ ETKİSİ PAMUKKALE ÜNİ VERSİ ESİ MÜHENDİ SLİ K FAKÜLESİ PAMUKKALE UNIVERSIY ENGINEERING COLLEGE MÜHENDİ SLİ K BİLİMLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİL SAYI SAYFA : 2002 : 8 : 2 : 173-178 PORLA

Detaylı

ÖĞRETİM PLANI. Bölüm/Program Adı : öğretim yılında 1. sınıfa kayıt olan öğrenci sayısı : AÇIKLAMALAR : 2

ÖĞRETİM PLANI. Bölüm/Program Adı : öğretim yılında 1. sınıfa kayıt olan öğrenci sayısı : AÇIKLAMALAR : 2 ÖĞRETİM PLANI Fakülte/MYO/YO Adı : Bölüm/Program Adı : 216-217 öğretim yılında 1. sınıfa kayıt olan öğrenci sayısı : Fen-Edebiyat Fakültesi Fizik 15 AÇIKLAMALAR : 2!1 AÇIKLAMALAR : Aşağıdaki tablolarda

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi THE FUZZY ANALYTIC HIERARCHY PROCESS FOR SOFTWARE SELECTION PROBLEMS

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi THE FUZZY ANALYTIC HIERARCHY PROCESS FOR SOFTWARE SELECTION PROBLEMS Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilileri Dergisi Siga 2005/3 THE FUZZY ANALYTIC HIERARCHY PROCESS FOR SOFTWARE SELECTION PROBLEMS Hüseyin BAŞLIGİL * Yıldız Teknik Üniversitesi,

Detaylı

İndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı

İndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı İndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı Meral SÜER * ve Sedat İLHAN * Batman Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü,7060 Batman, Türkiye Dicle Üniversitesi,

Detaylı

PEM Tipi Yakıt Hücresi Sisteminde Kullanılan Kompresör Modelinin Adaptif Denetleyici ile Kontrolü

PEM Tipi Yakıt Hücresi Sisteminde Kullanılan Kompresör Modelinin Adaptif Denetleyici ile Kontrolü PEM ipi Yakıt Hüresi Sisteinde Kullanılan Kopresör Modelinin Adaptif Denetleyii ile Kontrolü Yavuz Eren, Levent Uun, Haluk Görgün, İbrahi Beklan Küçükdeiral, Galip Cansever Elektrik Mühendisliği Bölüü

Detaylı

1 BEÜ./ÖĞR.İŞL FEN-EDEBİYAT FAKÜLTESİ FİZİK BÖLÜMÜ BÖLÜM KODU : 307 (TÜRKÇE PROGRAMI) HAZIRLIK SINIFI 01.

1 BEÜ./ÖĞR.İŞL FEN-EDEBİYAT FAKÜLTESİ FİZİK BÖLÜMÜ BÖLÜM KODU : 307 (TÜRKÇE PROGRAMI) HAZIRLIK SINIFI 01. FEN-EDEBİYAT FAKÜLTESİ FİZİK BÖLÜMÜ BÖLÜM KODU : 30 (TÜRKÇE PROGRAMI) HAZIRLIK SINIFI 01.Yarıyıl Dersleri 02.Yarıyıl Dersleri Ders Kodu Ders Adı İngilizce Ders Adı TE PR KR Ders Kodu Ders Adı İngilizce

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Öde- İçin Çözüler assachusetts Teknoloji Enstitüsü-izik ölüü izik 8.0 Öde # Güz, 999 ÇÖZÜLER Dru Renner dru@it.edu Kası 999 Saat: 0.4 Proble. (Ohanian, saya 9, proble ) u iki otoobilin kütleleri =540kg

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ Adı Soyadı: SEDAT GÜMÜŞ Doğum Tarihi: 20. AĞUSTOS.1966 Öğrenim Durumu: Derece Bölüm/Program Üniversite Yıl Lisans Fizik Ondokuz Mayıs Üniversitesi 1983-1987 Y. Lisans

Detaylı

1 BEÜ./ÖĞR.İŞL FEN-EDEBİYAT FAKÜLTESİ FİZİK BÖLÜMÜ BÖLÜM KODU : 3111 HAZIRLIK SINIFI

1 BEÜ./ÖĞR.İŞL FEN-EDEBİYAT FAKÜLTESİ FİZİK BÖLÜMÜ BÖLÜM KODU : 3111 HAZIRLIK SINIFI HAZIRLIK SINIFI 01.Yarıyıl Dersleri 02.Yarıyıl Dersleri *FİZ000 Hazırlık Preparatory Course 30 *FİZ000 Hazırlık Preparatory Course 30 * İngilizce hazırlık isteğe bağlıdır. 1 BEÜ./ÖĞR.İŞL. 01.Yarıyıl Dersleri

Detaylı

Özel Kasımoğlu Coşkun Fen Lisesi

Özel Kasımoğlu Coşkun Fen Lisesi 4.04.0 tarihinde Okan Üniversitesi Matematik Bölümü tarafından düzenlenen Liselerarası Matematik Yarışması na aşağıda listelenen on iki lise katıldı. Özel Kasımoğlu Coşkun Fen Lisesi Habire Yahşi Anadolu

Detaylı

KUŞADASI YÖRESİ RÜZGAR VERİLERİNİN DENİZ YAPILARININ TASARIMINA YÖNELİK DEĞERLENDİRİLMESİ

KUŞADASI YÖRESİ RÜZGAR VERİLERİNİN DENİZ YAPILARININ TASARIMINA YÖNELİK DEĞERLENDİRİLMESİ KUŞADASI YÖRESİ RÜZGAR VERİLERİNİN DENİZ YAPILARININ TASARIMINA YÖNELİK DEĞERLENDİRİLMESİ Gündüz GÜRHAN Dokuz Eylül Üniversitesi, Deniz Bilileri ve Teknolojisi Enstitüsü İnciraltı/İzir E-Posta:gunduz.gurhan@deu.edu.tr

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

TÜRKİYE DE TURİZM GELİRLERİ İLE EKONOMİK BÜYÜME ARASINDAKİ İLİŞKİ ( )

TÜRKİYE DE TURİZM GELİRLERİ İLE EKONOMİK BÜYÜME ARASINDAKİ İLİŞKİ ( ) SÜ İİBF Sosyal ve Ekonoik Araştıralar Dergisi 63 TÜRKİYE DE TURİZM GELİRLERİ İLE EKONOMİK BÜYÜME ARASINDAKİ İLİŞKİ (992-23) Doğan UYSAL * Savaş ERDOĞAN ** Mehet MUCUK *** Özet Bu çalışa turiz gelirleri

Detaylı

c) Geçme tipi şekil 19 dan belirlenir. Önce şekil 18 den kayma hızı ve ortalama yatak basıncına göre relatif yatak boşluk değeri seçilir.

c) Geçme tipi şekil 19 dan belirlenir. Önce şekil 18 den kayma hızı ve ortalama yatak basıncına göre relatif yatak boşluk değeri seçilir. Örnek: Bir jeneratörün kayalı yatağına F=18 kn luk radyal yük n=15 D/d da etki etektedir. Mil çapı d=8 dir. Aşağıdaki değerleri belirleyiniz ve kontrol ediniz. a)uygun yatak alzeesi (Türbin jeneratörü

Detaylı

Doç. Dr. Orhan BAYRAK

Doç. Dr. Orhan BAYRAK Doç. Dr. Orhan BAYRAK Akdeniz Üniversitesi Fen Fakültesi, Fizik Bölümü 07058-Antalya / Türkiye : ++90 242 310 22 96 : ++90 242 227 89 11 @ : bayrak@akdeniz.edu.tr : http://nukleer.akdeniz.edu.tr/ : Cuma

Detaylı

Işığın Tanecikli Özelliği. Test 1 in Çözümleri

Işığın Tanecikli Özelliği. Test 1 in Çözümleri 37 Işığın Tanecikli Özelliği 1 Test 1 in Çözüleri 1. Fotoeletronların katottan ayrıla ızı, kullanılan ışığın frekansı ile doğru, dalga boyu ile ters orantılıdır. Bu elektronların anado doğru giderken ızlanaları

Detaylı

Vorteks Tüpünde Akışkan Olarak Kullanılan Hava İle Karbondioksitin Soğutma Sıcaklık Performanslarının Deneysel İncelenmesi

Vorteks Tüpünde Akışkan Olarak Kullanılan Hava İle Karbondioksitin Soğutma Sıcaklık Performanslarının Deneysel İncelenmesi CÜ Fen-Edebiyat Fakültesi Fen Bilileri Dergisi (2003)Cilt 24 Sayı 2 Vorteks Tüpünde Akışkan Olarak Kullanılan Hava İle Karbondioksitin Soğuta Sıcaklık Perforanslarının Deneysel İncelenesi *Hüseyin USTA,

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

MIT Açık Ders Malzemeleri Fizikokimya II 2008 Bahar

MIT Açık Ders Malzemeleri Fizikokimya II 2008 Bahar MIT Açık Ders Malzemeleri http://ocw.mit.edu 5.62 Fizikokimya II 2008 Bahar Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

dir. Fonksiyonun (a,b) aralığında integrali ise, her aralıkta alınan integral değerlerini toplanarak, aşağıda verilen şekilde elde edilir.

dir. Fonksiyonun (a,b) aralığında integrali ise, her aralıkta alınan integral değerlerini toplanarak, aşağıda verilen şekilde elde edilir. SAYISAL İNTEGRASYON TEK KATLI İNTEGRASYON Sayısal integrasyon çok geniş bir konudur. Burada problemli olmayan (genelde integrantın tekilliği olmayan, fazla salınım yapmayan, yaklaşım problemi bulunmayan)

Detaylı

A=18 Çekirdekleri için Nükleer Enerji Seviyelerinin Hesaplanması. Nuclear Energy Level Calculations for A = 18 Nuclei

A=18 Çekirdekleri için Nükleer Enerji Seviyelerinin Hesaplanması. Nuclear Energy Level Calculations for A = 18 Nuclei Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, - 009),-5 A=8 Çekirdekleri için Nükleer Enerji Seviyelerinin Hesaplanması Tayfun AKYÜREK, Erdal DİKMEN* Süleyman Demirel Üniversitesi, Fen

Detaylı

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II)

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II) 7.2 Fonksiyon ve Fonksiyon Tanımları (I) Tanım kümesindeki her elemanın değer kümesinde bir ve yalnız bir görüntüsü varsa, tanım kümesinden değer kümesine olan bağıntıya fonksiyon denir. Fonksiyonu f ile

Detaylı

Bölüm-4. İki Boyutta Hareket

Bölüm-4. İki Boyutta Hareket Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme

Detaylı

AÇI YÖNTEMİ Slope-deflection Method

AÇI YÖNTEMİ Slope-deflection Method SAKARYA ÜNİVERSİTESİ İNŞAAT ÜHENDİSLİĞİ BÖLÜÜ Department of Civil Engineering İN 303 YAPI STATIĞI II AÇI YÖNTEİ Slope-deflection ethod Y.DOÇ.DR. USTAA KUTANİS kutanis@sakarya.edu.tr Sakarya Üniversitesi,

Detaylı

PROJEYİ HAZIRLAYANLAR YUSUFHAN BAŞER BERKE SERTEL NAİLE ÇOLAK

PROJEYİ HAZIRLAYANLAR YUSUFHAN BAŞER BERKE SERTEL NAİLE ÇOLAK KESİN PROJE RAPORU PROJENİN ADI: ÜÇGENİN ELEMANLARI ARASINDAKİ SİMETRİK FONKSİYONLAR PROJEYİ HAZIRLAYANLAR YUSUFHAN BAŞER BERKE SERTEL OKUL ADI VE ADRESİ ÖZEL KÜLTÜR FEN LİSESİ Ataköy 9.-10. Kısım, 34156

Detaylı

9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir.

9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir. 9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir. 9.15 Bu bölümde verilen koordinat dönüşümü uygulanırsa;

Detaylı

6. Sunum: Manye-k Bağlaşımlı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

6. Sunum: Manye-k Bağlaşımlı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 6. Sunum: Manye-k Bağlaşımlı Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Bu ders kapsamında ilgilendiğimiz bütün devre elamanlarının ideal

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Pamukkale University Journal of Engineering Sciences Paukkale Üniversitesi Mühendislik Bilileri Dergisi Paukkale University Journal of Engineering Sciences ÇOK KRİTERLİ ABC ANALİZİ PROBLEMİNE FARKLI BİR BAKIŞ AÇISI: BULANIK ANALİTİK HİYERARŞİ PROSESİ - İDEAL

Detaylı

DENEY MONTAJ ŞEMASI I II III ON-OFF VALF BORU KESİTİ

DENEY MONTAJ ŞEMASI I II III ON-OFF VALF BORU KESİTİ DENEY MONTAJ ŞEMASI I II III 200 500 500 ON-OFF VALF 30 BORU KESİTİ DENEY ŞEMASI BORU TRANSDUCER COMPUTER AMPLIFICATOR DIGITAL CONVERTER AN ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF UNSTEADY FLOWS IN

Detaylı

VORTEKS TÜPÜNDE AKIŞKAN OLARAK KULLANILAN HAVA İLE AZOT GAZININ SOĞUTMA SICAKLIK PERFORMANSLARININ DENEYSEL İNCELENMESİ

VORTEKS TÜPÜNDE AKIŞKAN OLARAK KULLANILAN HAVA İLE AZOT GAZININ SOĞUTMA SICAKLIK PERFORMANSLARININ DENEYSEL İNCELENMESİ BAÜ Fen Bil Enst Dergisi (2004)62 VORTEKS TÜPÜNDE AKIŞKAN OLARAK KULLANILAN HAVA İLE AZOT GAZININ SOĞUTMA SICAKLIK PERFORMANSLARININ DENEYSEL İNCELENMESİ *Hüseyin USTA *Volkan KIRMACI **Kevser DİNCER *GÜ

Detaylı

Şekil 5.1 Uçları dışa doğru açılmış, paralel plakalar sistemi

Şekil 5.1 Uçları dışa doğru açılmış, paralel plakalar sistemi 5. Paralel Plakalar Amaç Bu deneyde yüklü bir parçacığı elektrik alan içinde hızlandırmak için kullanılan paralel plakalı elektrot düzeneğinin bir eşdeğeri iki boyutlu olarak teledeltos kağıdına çizilerek,

Detaylı

ÖZGEÇMİŞ ve ESERLER LİSTESİ. : Alanya Alaaddin Keykubat Üniversitesi, Konaklı Belediye Merkezi, Alanya/Antalya. : huseyinertik@akdeniz.edu.

ÖZGEÇMİŞ ve ESERLER LİSTESİ. : Alanya Alaaddin Keykubat Üniversitesi, Konaklı Belediye Merkezi, Alanya/Antalya. : huseyinertik@akdeniz.edu. ÖZGEÇMİŞ ve ESERLER LİSTESİ Adı Soyadı : Hüseyin ERTİK Doğum Tarihi : 18.01.1979 Medeni Durumu : Evli Dil : İngilizce (ÜDS Mart 2012, Puan 86,25) : Alanya Alaaddin Keykubat Üniversitesi, Adres Eğitim Fakültesi,

Detaylı

POLİNOMLARIN TANIMI. ÖĞRENCİNİN ADI SOYADI: KONU: POLİNOMLAR NUMARASI: SINIFI:

POLİNOMLARIN TANIMI.  ÖĞRENCİNİN ADI SOYADI: KONU: POLİNOMLAR NUMARASI: SINIFI: ÖĞRENCİNİN ADI SOYADI: Dersin Adı POLİNOMLARIN TANIMI 1. Aşağıdaki fonksiyonlardan polinom belirtir? I. Dersin Konusu 1 5. P x x n 1 7 x 4 n 5 ifadesi bir polinom belirttiğine göre, bu polinomun derecesi

Detaylı

2. KİRCHHOFF YASALARI AMAÇLAR

2. KİRCHHOFF YASALARI AMAÇLAR 2. KİRCHHOFF YSLRI MÇLR 1. Kirchhoff yasalarının doğruluğunu deneysel sonuçlarla karşılaştırmak 2. Dirençler ile paralel ve seri bağlı devreler oluşturarak karmaşık devre sistemlerini kurmak. RÇLR DC güç

Detaylı

MIT Açık Ders Malzemeleri Fizikokimya II 2008 Bahar

MIT Açık Ders Malzemeleri Fizikokimya II 2008 Bahar MIT Açık Ders Malzemeleri http://ocw.mit.edu 5.62 Fizikokimya II 2008 Bahar Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

Geçen Derste. ρ için sınır şartları serinin bir yerde sona ermesini gerektirir. 8.04 Kuantum Fiziği Ders XXIII

Geçen Derste. ρ için sınır şartları serinin bir yerde sona ermesini gerektirir. 8.04 Kuantum Fiziği Ders XXIII Geçen Derste Verilen l kuantum sayılı açısal momentum Y lm (θ,φ) özdurumunun radyal denklemi 1B lu SD şeklinde etkin potansiyeli olacak şekilde yazılabilir, u(r) = rr(r) olarak tanımlayarak elde edilir.

Detaylı

Kömür Rezerv Tahmininde Variogram Etki Mesafesinin Önemi

Kömür Rezerv Tahmininde Variogram Etki Mesafesinin Önemi MADENCİLİK Eylül - Aralık Septeber - Deceber 1993 Cilt - Volue XXXII Sayı No 3-4 Köür Rezerv Tahininde Variogra Etki Mesafesinin Önei The Iportance of the Variogra Range in Coal Reserve Estiation ÖZET

Detaylı

PKA. Serisi. Duvar Tipi. Düz Panel & Saf Beyaz Yüzey. Kompakt İç Üniteler

PKA. Serisi. Duvar Tipi. Düz Panel & Saf Beyaz Yüzey. Kompakt İç Üniteler Duvar Tipi PK Serisi Kopakt, duvar tipi iç ünite, kolay ontajı ile rahatlık sağlarken, geniș ürün gaı ile (RP35-RP1) tü ekanlara en iyi uyuu sağlar. Yüksek enerji verililiği için tasarlanıș PK Serisi ürünler,

Detaylı

Klasik Ortogonal Polinomlar (MATH484) Ders Detayları

Klasik Ortogonal Polinomlar (MATH484) Ders Detayları Klasik Ortogonal Polinomlar (MATH484) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Kredi AKTS Saati Klasik Ortogonal Polinomlar MATH484 Her İkisi 3 0 0 3 6 Ön Koşul Ders(ler)i

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi. chem.libretexts.org

TOBB Ekonomi ve Teknoloji Üniversitesi. chem.libretexts.org 9. Atomun Elektron Yapısı Elektromanyetik ışıma (EMI) Atom Spektrumları Bohr Atom Modeli Kuantum Kuramı - Dalga Mekaniği Kuantum Sayıları Elektron Orbitalleri Hidrojen Atomu Orbitalleri Elektron Spini

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe University Journal of Science and Engineering AKÜ FEMÜBİD 6 (06) 0330 (576-584) AKU J Sci Eng 6 (06) 0330 (576-584) DOI:

Detaylı

Değerlik Kabuğu Elektron Çiftleri İtmesi (VSEPR) (Valence Shell Electron Pair Repulsion Theory)

Değerlik Kabuğu Elektron Çiftleri İtmesi (VSEPR) (Valence Shell Electron Pair Repulsion Theory) Moleküler Geometri Bir molekülde; atomlar arası oluşan bağlar, çevre atomların merkez atom etrafında üç boyutlu yerleşme düzeni, bağlar arası açılar molekülün geometrisini (şekliniyapısını) belirler. Molekül

Detaylı

Fizik Bölümü Öğretim Planı

Fizik Bölümü Öğretim Planı Hazırlık Sınıfı 01.Yarıyıl leri 02.Yarıyıl leri FİZ000 Hazırlık Preparatory Course 30 FİZ000 Hazırlık Preparatory Course 30 1 01.Yarıyıl leri 02.Yarıyıl leri FİZ 111 Fizik I Physics I 4 2 5 6 FİZ112 Fizik

Detaylı

A Statistical Study for Determination of Surface Roughness of AISI 304 Stainless Steel and EN 5754 Aluminum Alloy Machined by Fiber Laser

A Statistical Study for Determination of Surface Roughness of AISI 304 Stainless Steel and EN 5754 Aluminum Alloy Machined by Fiber Laser Makine Teknolojileri Elektronik Dergisi Cilt: 8, o:, 0 7-6 Electronic Journal of Machine Technologies Vol: 8, o:, 0 7-6 TEKOLOJĐK ARAŞTIRMALAR www.teknolojikarastiralar.co e-i:04-44 Makale Article AII

Detaylı

Ü Ğ Ğ Ğ Ğ Ğ ş Ğ Ğ Ö Ğ ö ö ş ş ö ş Ğ Ğ Ğ Ğ ş ö ş ş ö ş ş ç ş ş ç ş ş ş ş ç ö ö ö ş ö ö ş ç ç ö ö ç Ç Ç ş ş Ğ ç ş ş ş ş ç ş ö ş ç ş ö ş ş ö ç ş ş ö Ö ç ş ö ş ö Ö ç ş ş ş ç ş ö ş ş ç ç ö ö ç ş Ö ö ş ö ö ş

Detaylı

ş Ğ İ İ ş ş ş ş ç ş ş ç ç ş ş ş ş ş ş İ ş ş ç ç ş ş ç ş ş ş ş ş ş ş ş ş ş ş ş ş ç ş ş ş ş ş İ ş ş ş ç ş ş ş ş ş ş ş ç Ü ç ş ş ş ş ş ş ş ç ş ş ş ç ç ş ş ş ş İ ş ş ş ş ş ç ç ş ç ç ş ş ş ş ş ş ş ş ş ç ş ş

Detaylı

SİNYALLER ve SİSTEMLER

SİNYALLER ve SİSTEMLER SİNYALLER ve SİSTEMLER 1. Sinyallerin Sınıflandırılması 1.1 Sürekli Zamanlı ve Ayrık Zamanlı Sinyaller 1.2 Analog ve Sayısal Sinyaller Herhangi bir (a,b) reel sayı aralığında bir x(t) sinyali sonsuz değer

Detaylı

DOĞRUNUN ANALİTİK İNCELEMESİ

DOĞRUNUN ANALİTİK İNCELEMESİ Koordinatlar DOĞRUNUN ANALİTİK İNCELEMESİ Bilindiği gibi, düzlemdeki her bir noktaya bir (a,b) sıralı ikilisi, her bir (a,b) sıralı ikilisine bir nokta karşılık gelir. Eğer bir A noktasına karşılık gelen

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

ASTRONOTİK DERS NOTLARI 2014

ASTRONOTİK DERS NOTLARI 2014 YÖRÜNGE MEKANİĞİ Yöüngeden Hız Hesabı Küçük bi cismin yöüngesi üzeinde veilen hehangi bi noktadaki hızı ve bu hızın doğultusu nedi? Uydu ve çekim etkisinde bulunan cisim (Ye, gezegen, vs) ikili bi sistem

Detaylı

ROBOT MANİPÜLATÖRLERİN DİNAMİĞİ VE KONTROLU

ROBOT MANİPÜLATÖRLERİN DİNAMİĞİ VE KONTROLU ISBN 978-605-84220-2-5 ROBOT MANİPÜLATÖRLERİN DİNAMİĞİ VE KONTROLU Prof. Dr. M. Keal ÖZGÖREN Makina Teorisi Derneği Yayınları Ders Notları Serisi No: 2 ROBOT MANİPÜLATÖRLERİN DİNAMİĞİ VE KONTROLU 3-6 Şubat

Detaylı

11. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

11. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 11. HAFTA BLM323 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 İNTERPOLASYON Deney sonuçları veya benzer çalışmalar için

Detaylı

BÖLÜNMÜŞ FARKLAR (DİVİDED DİFFERENCES)

BÖLÜNMÜŞ FARKLAR (DİVİDED DİFFERENCES) BÖLÜNMÜŞ FARKLAR (DİVİDED DİFFERENCES) Lagrange ve Neville yöntemlerinin bazı olumsuz yanları vardır: İşlem sayısı çok fazladır (bazı başka yöntemlere kıyasla) Data setinde bir nokta ilavesi veya çıkartılması

Detaylı

Anakütleden rassal olarak seçilen örneklemlerden hesaplanan değerlerdir.

Anakütleden rassal olarak seçilen örneklemlerden hesaplanan değerlerdir. İSTATİSTİKTE VERİ GM-0 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Hafta sonu hava yağışlı olacak ı? Bu yıl hangi takı şapiyon olacak? Gelecek yıl döviz kuru ne olur? Bu yıl ülkeizin kişi başına illi geliri ne

Detaylı

ψ( x)e ikx dx, φ( k)e ikx dx ψ( x) = 1 2π θ açısında, dθ ince halka genişliğinin katı açısı: A. Fiziksel sabitler ve dönüşüm çarpanları

ψ( x)e ikx dx, φ( k)e ikx dx ψ( x) = 1 2π θ açısında, dθ ince halka genişliğinin katı açısı: A. Fiziksel sabitler ve dönüşüm çarpanları A. Fiziksel sabitler ve dönüşüm çarpanları B. Seçilmiş bağıntılar Rutherford saçınımının diferansiyel kesiti: Compton kayması Bohr un hidrojenimsi atom modelinde izinli yörüngelerin yarıçapı: olup burada

Detaylı

Matematik Ders Notları. Doç. Dr. Murat Donduran

Matematik Ders Notları. Doç. Dr. Murat Donduran Matematik Ders Notları Doç. Dr. Murat Donduran Mart 18, 28 2 İçindekiler 1 Tanımlı Integral Uygulamaları 5 1.1 Olasılık.............................. 5 3 4 İÇINDEKILER Bölüm 1 Tanımlı Integral Uygulamaları

Detaylı