Sistem Dinamiği ve Modellemesi

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Sistem Dinamiği ve Modellemesi"

Transkript

1 8..0 Sit Diiği v Modlli Doğrul Sitlri Z Dvrışı II. Mrtbd Gili Sitlr Giriş: Sit diiği çözülid, frlı fizil özllilr tşıy doğrul itlri rtritilrii blirly tl bğıtılr rıd bzrli (oloji) urulbili ouud itlri blirli ııflr yrılbili üü oltdır. Böyllil doğrul itlri dii dvrışlrı (z v fr dvrışlrı), ort prfor özllilri bılr öd ögörülbiltdir. Ayrı bu rtriti ftörlr gör bir iti otrol dilbilirliği hıd bir rr vrılbilir. Z bğlı olr dğişilri ( girdii v ( çıtıı il blirl t girdili v v t çıtılı bir iti diiği: () A (+...+A (+A (+A ( () =B (+...+B (+B (+B ( Yurıdi dld ( çıtııı yü rtbd türvi iti gi rtbii blirlr. T (+ (= ( İii rtbd gili it Birii rtbd gili it T ( ( ( ( 0 0 Birii Mrtbd Gili (BMG) Sitlr: Z dvrışı: T (+ (= ( Gl olr rji dpoly itlr BMG it özlliği tşırlr (odtör, yy, dpo, v.) : zç ftörü ( T ) ( ( T : Z biti ( ( T T ( ( L t 3 4 Birii Mrtbd Gili (BMG) Sitlr: ( ( T ) So dğr tori : dr dr dr li ( 0 li 0 ( T ) Düzli rji üri : t T ( T ) 0,63 t T t 3T t 4T dr ( dr (T ) 0,865 (3T ) 0,950 dr dr (4T ) 0,98 dr ( II. Mrtbd Gili (İMG) Sitlr: Bit yy ütl öü izı çoğu i iti tl hlii götrir.sitd bir uvvti (girdi) tii ltıdi i llrı yrdğiştiri (çıtı) ilir f( ( ( (T) Bu difriyl dl görüldüğü gibi. rtbd difriyl trilr içrtdir. Bu yüzd bu itlr İii Mrtbd Gili Sitlr olr dldırılırlr. Siti trfr foiyou difriyl dli Lpl Trforu yrdııyl ld dilir. F( ( X ( (0) (0)) ( X( (0)) X( ( 0) 0: (0) 0 X ( F( 5 6

2 8..0 II. Mrtbd Gili (BMG) Sitlr: İii rtbd itlri lizid iti i, ltril vb. özlilri olup olı bılızı rtriti ii prtr bllirliştir. Bulr öü ftörü v doğl frtır. Doğl fr ( ) :Sit dışrıd hiçbir ti oldığıd v it içriid rji ybı yol ç hiçbir l buludığıd iti rbt vbıı ypğı titrşilri frıı ifd dr. 0 ( ( ( )X( 0 j, j (j) 0, X( 0 7 II. Mrtbd Gili (IMG) Sitlr: İii rtbd itlri lizid iti i, ltril vb. özlilri olup olı bılızı rtriti ii prtr bllirliştir. Bulr öü ftörü v doğl frtır. Söü ftörü(): Siti di diiğid doğ titrşilri yo t ytğii bllirly boyutuz bir prtrdir. Tı olr trfr foiyouuzu pydıı tlı ölri olduğu durudi öü dğri riti öü dğri olr dldırılıştır. riti 4 0 riti Bir iti öü ftörü; o itdi öü tyııı,o it içi riti ol öü tyıı orıı ifd d büyülültür. riti 8 II. Mrtbd Gili (IMG) Sitlr: İii rtbd gili itlri gl trfr foiyou bu ii prtr v bir zç tyıı ullılr şğıdi gibi ifd dilbilir. Sitlri trfr foiyolrı çoğu z bu gllştiriliş for uygu olr ld dilz. Buu içi tl ttil işllr ypılr bulu trfr foiyou bu ifdy bztili grtdir. Dogl Fr Söü Ftörü zç 9 II. Mrtbd Gili (IMG) Sitlr: Bu prtrlri hplı il bulu trfr foiyou il girişt bulu trfr foiyouu özdştir.bu yüzd hr ütl,yy tıı v öü dğri içi ii trfr foiyoud yı dii dvrışı götrtir. Sğ trft =g, =30 N/, =0000 N/ dğrlri ullılr buluuş biri b vbı, ol trft i =0.00, w=00 rd/, 0.5 dğrlri il buluuş z vbı vriliştir. Görüldüğü gibi bu ii it bir birii yı dii dvrış hiptir. 0 II. Mrtbd Gili (IMG) Sitlr: Sğ trft =g, =30 N/, =0000 N/ dğrlri ullılr buluuş biri b vbı, ol trft i =0.00, w=00 rd/, 0.5 dğrlri il buluuş z vbı vriliştir. Görüldüğü gibi bu ii it bir birii yı dii dvrış hiptir. II. Mrtbd Gili (IMG) Sitlr: Trfr foiyouuzu pydı rtriti dl olr d dldırılır. rtriti dliizi ölri iti dii dvrışıı blirlr. Bulu ö ifdlridd görüldüğü gibi öü ftörüü riti dğri dir v iii rtbd gili itlri dii dvrışlrı öü ftörlri bğlı olr grupldırılır. Eğr öü ftörüüz şit i itd tlı ö vrdır v yurıd yptığıız tı grği itiiz riti öülü it olr dldırılır. Eğr öü ftörüüz d büyü i iti ii grçl öü vrdır v itiiz riti ütü öülü it olr dldırılır. Bu ii it içi itlri z vbı hpldığıd ütl foiyolr buluur v bu itlr düzgü (lııız) dii dvrış götrirlr.

3 8..0 II. Mrtbd Gili (IMG) Sitlr: Eğr öü ftörüüz d üçü i rö içriidi ifd gtif ouç vrir v iti ii rşı.(şli) yı öü vrdır v itiiz riti ltı öülü it olr dldırılır.riti ltı öülü itlri z vbı hpldığıd rşı yı ütlü ifdlr buluur, bu ifdlr iüoydl foiyolrı oluştururlr (Eulr şitlilri). İMG Sitlri biri ipul girdi vplrı: İpul girdi i olr t=0 ıd uygul bir lı it gibi düşüülbilir. Bu girdii Lpl Trforu birdir. Bu bpl z vbı buluur d trfr foiyouu tr Lpl trforu lıır v ld dil z vbı d iti dii dvrış rtritilrii götrir. Dolyıı il iti dvrışı lıılıdır.bu yüzd bu tür itlr titrşi itlri olr d dldırılırlr. 3 4 İMG Sitlri biri ipul girdi vplrı: riti Ütü Söülü Sit > Siti diiriitı pozitif bir yıdır. ölr gl ifd vril şitlilrd hplır. Bu ölr ullılr bulu trfr foiyou şğıdi ford oltır. ( )( ) İMG Sitlri biri ipul girdi vplrı: riti Ütü Söülü Sit > Siti z vbı t vril Lpl Döüşüü tblou yrdııyl buluur.(forül 59). - t t L ( )( ) ( )t ( )t ( ( )t ( ( )t Sit vbı görüldüğü gibi ii dt ütl foiyou toplıd oluştdır 5 6 İMG Sitlri biri ipul girdi vplrı: riti Ütü Söülü Sit > Ör: vril i itd = g, =30 N/, =00 N/ olduğu durud iti rtriti ifdlrii hplyıız, ölrii buluuz, z vbıı hplyıız rd/ ( t t İMG Sitlri biri ipul girdi vplrı: riti Söülü Sit = Siti diiriitı ıfırdır.siti ii öü birbiri şittir v şğıdi gibi hplır. Bu ölr ullılr bulu trfr foiyou şğıdi ford oltır. ( ) Siti z vbı t vril Lpl Döüşüü Tblou yrdııyl buluur.(forül 0). - L ( t t ( t t 7 8 3

4 8..0 İMG Sitlri biri ipul girdi vplrı: ritiriti Söülü Sit = Ör: ou bşıd vril i itd = g, =30 N/, olduğu durud iti riti öülü olı içi grli yy tyııı hplyıız. Dh or bu yy tyııı ullr iti rtriti ifdlrii hplyıız, ölrii buluuz, z vbıı hplyıız N/ 5 5 rd/ Siti ölri şğıdi gibi buluur. Z vbı içi yi Lpl Döüşüü Tblou d 0. şitli ullılır. İMG Sitlri biri ipul girdi vplrı: ritiriti Söülü Sit = Ör: Siti ölri şğıdi gibi buluur. Z vbı içi yi Lpl Döüşüü Tblou d 0. şitli ullılır. ( t 5 5 t Sit vbıı ildiğiizd riti ütü öülü it bzr bir dvrış gözllriz.li it dh hızlı (0.6 bşlgıç ouu dötdir. 9 0 İMG Sitlri biri ipul girdi vplrı: riti Altı Söülü Sit < Siti diiriitı ıfırd üçü bir yıdır.siti rşı şli ii öü vrdır. i i Siti z vbı t vril Lpl Döüşüü Tblou yrdııyl buluur.(forül 36). - L i( t İMG Sitlri biri ipul girdi vplrı: riti Altı Söülü Sit < Sit vbı görüldüğü gibi bir dt ütl zrf ğrii içriid lı bir iü foiyou şliddir. t Siti z vbı ifdid d gözllbilği üzr iü ğriii frı doğl frt frlı bir frtır. Bu gözll fr öülü titrşilri frı ( d ) dir v tı grği şğıdi gibi hplır. i( d İMG Sitlri biri ipul girdi vplrı: riti Altı Söülü Sit < Ör: i itd = g, =30 N/, =500 N/ olduğu dur ud iti rtriti ifdlrii hplyıız, ölrii buluuz, z vbıı hplyıız rd/ Sit, öü ftörü bird üçü olduğu içi riti ltı öülü itdir. İMG Sitlri biri ipul girdi vplrı: riti Altı Söülü Sit < Ör:Siti ölri şğıdi gibi buluur. Z vbı içi yi Lpl Döüşüü Tblou d 36. şitli ullılır i i 50 ( t i(

5 8..0 İMG Sitlri biri ipul girdi vplrı: riti Altı Söülü Sit < riti ltı itlr görüldüğü üzr dii dvrışı lıı yp itlrdir. Bu yüzd özl olr titrşi itlri olr dldırlırlr. Şidd gözlbilği gibi öü ftörüü rtı iti dh z lıı ypı v dh ı ürd bşlgıç ouu döi bp oltdır. 5 5

Sistem Dinamiği ve Modellemesi

Sistem Dinamiği ve Modellemesi 5.0.03 Sit Diiği v Modlli Doğrul Sitlri Z Dvrışı II. Mrtbd Gcili Sitlr Giriş: Sit diiği çözülid, frlı fizil özllilr tşıy doğrul itlri rtritilrii blirly tl bğıtılr rıd bzrli (oloji) urulbili oucud itlri

Detaylı

UFUK ÖZERMAN- 2012-2013 Page 1

UFUK ÖZERMAN- 2012-2013 Page 1 - GÜZ P,Q,R fokiolrı poliom olmk üzr d d P Q R d d v P d d Q d P d R P p q dklmi içi P şrıı ğl = okı di ok dir, çözümlri di okıı civrıd şklid rrız. =+-+- +... = = okı; p=q/ P, q= R/ P fokiolrı okıd liik

Detaylı

7 KONTROL SİSTEMLERİNİN ZAMAN TANIM BÖLGESİ ANALİZİ

7 KONTROL SİSTEMLERİNİN ZAMAN TANIM BÖLGESİ ANALİZİ 7 ONTOL SİSTEMLEİNİN ZAMAN TANIM BÖLGESİ ANALİZİ 7. Sürkli Sitlri Z Yıtı: Giriş Bir kotrol itid ğr çıkış işrtii giriş işrtii lirli koşullr ltıd tkip ti itiyor, giriş v çıkış işrtlri z fokiyou olrk krşılştırılır.

Detaylı

Eğitim-Öğretim Güz Yarıyılı Diferansiyel Denklemler Dersi Çalışma Soruları

Eğitim-Öğretim Güz Yarıyılı Diferansiyel Denklemler Dersi Çalışma Soruları - Eğiim-Öğrim Güz rıılı Difril Dklmlr Dri Çlışm Sorlrı 6 // Aşğıd vril kvv rilrii kıklık rıçplrıı lirliiz. = = di ok civrıd kvv rii rdımıl vril difril dklmlri çözüüz. - -= - + -= - + += dklmii kil oklrıı

Detaylı

Sistem Dinamiği ve Modellemesi

Sistem Dinamiği ve Modellemesi 5..3 Sistm Dimiği v Modllmsi Doğrusl Sistmlri Frks Dvrışı Giriş: Drs ksmıd şu kdr yıl çözümlmlrd, doğrusl sistmlri imuls girdi, bsmk girdi gibi çşitli girdilr krşı zm cvlrıı icldik. Bzı durumlrd doğrusl

Detaylı

ü ü üü ş ş ş Ü ÜÜ ü ü üü ş ü ş ş ö ç ş ş ç ş ü ü ü ç ç ş ü ş ş ü ü ü ö ş ö ş ö ş ş ç ş ü ş ç ş Ç ç Ü öü ü ü üü ü ü üü ç ş ç ş ö ö ü ç ş ç ş ş ö ç ş ö

ü ü üü ş ş ş Ü ÜÜ ü ü üü ş ü ş ş ö ç ş ş ç ş ü ü ü ç ç ş ü ş ş ü ü ü ö ş ö ş ö ş ş ç ş ü ş ç ş Ç ç Ü öü ü ü üü ü ü üü ç ş ç ş ö ö ü ç ş ç ş ş ö ç ş ö ş ü ş ü ü üü ü ş ö ş ş ö Ü ş ş ş ö Ç ö öü ö ö Ç ş ş ş ö ç ç ş ş ş ş ü ç ş ö ü ü ü üü ş ş ş Ü ÜÜ ü ü üü ş ü ş ş ö ç ş ş ç ş ü ü ü ç ç ş ü ş ş ü ü ü ö ş ö ş ö ş ş ç ş ü ş ç ş Ç ç Ü öü ü ü üü ü ü üü ç ş ç

Detaylı

Bölüm 7.2: Matrisler. Transpoz. Konjuge. Adjoint

Bölüm 7.2: Matrisler. Transpoz. Konjuge. Adjoint ölü.: Mrsler ugüü derszde rs eors err edeeğz. Mrs ouud ddörge elelrd oluş r eledır sır ve süu zı öre rsler şğıddır: j C Trspoz j ı rspozu T j dır. Öre T T T Kojuge j ı Kojuges j dır. Öre djo ı djo T dır

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

MENKUL KIYMET DEĞERLEMESİ

MENKUL KIYMET DEĞERLEMESİ MENKUL KIYMET EĞERLEMESİ.. Hiss Sdii Tk ömlik Gtirisii Hsaplaması Bir mkul kıymti gtirisi, bkl akit akımlarıı, şimdiki piyasa fiyatıa şitly iskoto oraıdır. Mkul kıymti özlliği gör bu akit akımları faiz

Detaylı

Sönümlü Serbest Titreşim

Sönümlü Serbest Titreşim .5.. Söülü Srbs Tirşi Sosza kadar dva d sabi glikli irşilrl grçk hayaa karşılaşılaakadır. Bilidiği gibi, sis irşi harki başladıka bir sür sora hark yavaş yavaş zayıflar. olayısıyla hark dklii aşağıdaki

Detaylı

İ İ İ İ İ İ İ İ İ İ İ İ ö ç ç ü Ş ö ö ç ç ö ç Ö ö ç ü Ö ö İ ü ö Ö İ ü ö ç ö ö ç ö ö ö ü ü ü ç ö ö ü ö ü ü ü ü ü ö ü ö ü ö ö Ö ö ü ö ç ü ö ö ö ö Ö Ö ç ç ç ü ö İ İç çü ö ç ü ö ç ö ö ö İ ç ç ç ç ç ö ö ö ç

Detaylı

İNTEGRAL DENKLEM SİSTEMLERİNİN YAKLAŞIK ÇÖZÜMLERİ

İNTEGRAL DENKLEM SİSTEMLERİNİN YAKLAŞIK ÇÖZÜMLERİ İEGRAL DEKLEM SİSEMLERİİ YAKLAŞIK ÇÖZÜMLERİ İil ULGA Yükk Li zi MAEMAİK AABİLİM DALI ISPARA 6 ii.c. SÜLEYMA DEMİREL ÜİVERSİESİ FE BİLİMLERİ ESİÜSÜ İEGRAL DEKLEM SİSEMLERİİ YAKLAŞIK ÇÖZÜMLERİ İSMAİL ULGA

Detaylı

İNTEGRAL KONU ANLATIMI ÖRNEKLER

İNTEGRAL KONU ANLATIMI ÖRNEKLER İNTEGRL KONU NLTIMI ÖRNEKLER Ġtgrl lmk, türi ril ir oksio lmk tır d,, d oksio olrk rildiğii =F i istdiğii rslım d içi i cid idsi: d = + dir, hrhgi ir sit df d koģl sğl = F oksio i gör itgrli dir d F içimid

Detaylı

D (5 1) Benzer biçimde integral için de bir operatör gösterimi düşünülebilir: a

D (5 1) Benzer biçimde integral için de bir operatör gösterimi düşünülebilir: a BÖÜM 5 APACE DÖNÜŞÜMÜ Şu kdr öğrdiklriizd, gl olrk difriyl dklmlri çözmi cbirl dklmlri çözmd dh zor olduğuu frk mişiizdir. O hld cb difriyl dklmlri cbirl hl döüşürck bir yol vr mıdır? Ev, vrdır. Alıd buu

Detaylı

Pontiklerin altında hacim koruma

Pontiklerin altında hacim koruma Pontilrin ltınd hcim orum Gitlich Biomtril ürünlri il - Sırt Korum çözümlri Dh fzl bilgi için www.gitlich-biomtril.com Sırt Korum - Bitç Sırt orum diş çimi onrı lvolr ırtın ontürünü orum için uygulnn bir

Detaylı

ş ş şğ ş ş ş ö Ö ş ö ğ ş ö ö ğ ş ö ö ö ğ ğ ş ş ö ğ ö ş Ü ö ğ ş ş ö ş ğ ş ğ ğ ğ ö ğ ş

ş ş şğ ş ş ş ö Ö ş ö ğ ş ö ö ğ ş ö ö ö ğ ğ ş ş ö ğ ö ş Ü ö ğ ş ş ö ş ğ ş ğ ğ ğ ö ğ ş Ü ğ ğ ş ş ş ş ğ Ğ Ç Ş» ş ö ş ş ğ ş ğ ş Ç ş ğ ş ş ğ ş ş ÜÜ ş ş ö ş Ö Ş Ö ğ ş ö ğ ğ Ü Ş ş ş şğ ş ş ş ö Ö ş ö ğ ş ö ö ğ ş ö ö ö ğ ğ ş ş ö ğ ö ş Ü ö ğ ş ş ö ş ğ ş ğ ğ ğ ö ğ ş ş Ö» Ö Ç ö ğ ş ş ş ö ş ö ö ğ ğ

Detaylı

MEKANİK TİTREŞİMLER. n serbestlik dereceli bir sistem için doğal frekans ifadesi esneklik matrisi kullanılarak şu şekilde verilmiş idi, L (1)

MEKANİK TİTREŞİMLER. n serbestlik dereceli bir sistem için doğal frekans ifadesi esneklik matrisi kullanılarak şu şekilde verilmiş idi, L (1) MEKANİK TİTREŞİMER DUNKEREY METODU Ço serbestl derecel ssteler. doğl fresı, sste oluştur her br serbestl derecese t doğl freslr csde ylşı olr fde edlebletedr. Duerley trfıd verle bu forülsyo l doğl fres

Detaylı

Bir Kompleks Sayının n inci Kökü.

Bir Kompleks Sayının n inci Kökü. Prof.Dr.Hüsy ÇAKALLI Br Komplks Sayıı c Kökü. hrhag br sab doğal sayı olmak ür, br komplks sayıı c kökü, c kuvv bu sayıya ş ola komplks sayıdır. ( r(cos s olsu v (cos s dylm. Bu akdrd ( [ (cos s] dr v

Detaylı

DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 2007 SORULARI

DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 2007 SORULARI DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 007 SORULARI Doğuş Ünivrsitsi Matmatik Kulübü tarafından düznlnn matmatik olimpiyatları, fn lislri takım yarışması sorularından bazıları

Detaylı

Sistem Dinamiği ve Modellemesi

Sistem Dinamiği ve Modellemesi 0..0 St Dğ v odll Dk Stlr odll v Alz Elktrkl Stlr Elktrkl üyüklüklr Elktrk Akıı: r ltk blrl br ktd br zd gç lktrk yükü (lktro)ktrı lktrk kıı dr. r Apr dr. dq I A Grl(lktrkl potyl frkı): Srbt lktrolrı hrkt

Detaylı

Sistem Dinamiği ve Modellemesi

Sistem Dinamiği ve Modellemesi Sitm Diamiği v Modllmi aplac Traformayou v Trafr Fokiyou aplac Traformu : Bir itmi diamik davraışı, o itmi matmatikl modlii ifad d difraiyl dklmlri çözümüd kullaıla bir matmatikl yötmdir. f(t foiyouu aplac

Detaylı

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi 5. Drs Dağılımlarda Rasgl Sayı Ürtilmsi Trs Döüşüm Yötmi sürkli bir rasgl dğişk v bu rasgl dğişki dağılım foksiyou olsu. Dağılımı dstk kümsi üzrid dağılım foksiyou arta v bir-bir bir foksiyo olmaktadır.

Detaylı

Hafta 8: Ayrık-zaman Fourier Dönüşümü

Hafta 8: Ayrık-zaman Fourier Dönüşümü Hafta 8: Ayrı-zama ourir Döüşümü El Alıaca Aa Koular Ayrı-zama ourir döüşümü Ayrı-zama priyodi işartlr içi ourir döüşümü Ayrı-zama ourir döüşümüü özllilri Doğrusal, sabit atsayılı far dlmlriyl taımlaa

Detaylı

Tanım : Bir rassal deney yapıldığında bir deneyin sonucu sadece iki sonuç içeriyorsa bu deneye Bernoulli deneyi denir.

Tanım : Bir rassal deney yapıldığında bir deneyin sonucu sadece iki sonuç içeriyorsa bu deneye Bernoulli deneyi denir. BRNOULLİ DAĞILIMI Broulli dağılımı bir rassal dy yaıldığıda yalızca iyi öü olumlu-olumsuz başarılı-başarısız gibi sadc ii souç ld dildiğid ullaılır. Taım : Bir rassal dy yaıldığıda bir dyi soucu sadc ii

Detaylı

Sistem Dinamiği ve Modellemesi. Doğrusal Sistemlerin Sınıflandırılması Doğrusal Sistemlerin Zaman Davranışı

Sistem Dinamiği ve Modellemesi. Doğrusal Sistemlerin Sınıflandırılması Doğrusal Sistemlerin Zaman Davranışı Sim Dinmiği v Modllmi Doğrul Simlrin Sınıflndırılmı Doğrul Simlrin Zmn Dvrnışı Giriş: Sim dinmiği çözümlmind, frklı fizikl özlliklr şıyn doğrul imlrin krkriiklrini blirlyn ml bğınılr rınd bnzrlik noloji

Detaylı

ELM207 Analog Elektronik

ELM207 Analog Elektronik ELM7 Alog Elkroik Giriş Bir Fourir srisi priyodik bir ) oksiyouu, kosiüs v siüslri sosuz oplmı biçimid bir çılımdır. ) cos b si ) Bşk dyişl, hrhgi bir priyodik oksiyo sbi bir dğr, kosiüs v siüs oksiyolrıı

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matmatk Dnm Sınavı. Bir saıı,6 il çarpmak, bu saıı kaça bölmktir? 6. a, b, c saıları sırasıla,, saıları il trs orantılı a b oranı kaçtır? a c 7. v pozitif tamsaılardır.! ifadsi bir asal saıa şittir.

Detaylı

BÖLÜM 2 EĞRİ UYDURMA VE İNTERPOLASYON

BÖLÜM 2 EĞRİ UYDURMA VE İNTERPOLASYON BÖÜ EĞRİ UYDURA VE İTERPOASYO - Grş İterpolo polomlrı Bölümüş rlr 4 Eşt rlılı ot dğılımlrı ç bt rlr 5 Küb ple eğrler Kım üb ple eğrler 7 Br üze üzerde terpolo 8 E-üçü reler lşımı Bölüm - Eğr udurm ve terpolo

Detaylı

Ğ Ü Ş Ş Ü Ş Ş Ü Ü Ş Ş Ç Ş Ş Ğ Ü Ö Ö Ş Ü Ç Ş Ü Ş Ş Ş Ö Ş Ü Ş Ö Ü Ş Ç « Ö Ö Ş « Ü Ü Ü Ü Ü «Ü Ş Ü «Ö Ö Ç Ö Ö Ö Ö Ö Ş Ü Ç Ş Ç Ş Ö Ö Ü Ğ ÜŞ «Ü Ç Ç Ç Ç Ö Ö Ğ Ö Ö Ö Ö » Ü Ü Ü Ü Ş Ğ Ü Ç Ö « Ç Ö Ü Ş Ö Ş

Detaylı

ü ü ü ü ç ü ü ü üü ç ü ü ü ü ü ü ü ü ü ü ç ü ü ü ç ü ü ü ü ü ü ü ü ü ü ç ü ç ç ç ü ç ü ü üü ü ü ü üü ç ü ç ç ü ü ç ü ü ü ç ü ü üü üü ü ü ü üü ç ü ü ü ü üü ü ü üü ü ü üü ü ü ü ü üü ç ü ü ü üü ç ü ü ü ü

Detaylı

ö ü ş ç» ş ü ü ü ü ç» Ö Ö Ç ş Ö Ü ş ü ü ü ü ü ü ş ü ü ü ü ü üü ö ç ş ö ü ş ç ş ü ü ü ü ç» ü ü ş Ö Ö Ç ü ü ü Ö ü ü ü ü ö ü ö ü ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ç ü ü üü ö ç ş Ö Ü ç ü ç ö ö Ç ü ü ü ü ü ö ü

Detaylı

«ç Ü Ü Ü ü ç ü ü Ö Ü ü ü ü ü ü ü ö ü«ç ü ü ü ç ü ü ü» ü ü ü ü ç ü ü ü ü ü ü ü ü ü ü ü ü ü ç ü üü ü ü ü ü ü ü ü ü ü ç ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ç ü üü ü ü ü ü ü ü Ü

Detaylı

Ğ Ğ ü «Ü Ğ Ö Ğ ü Ü ü Ğ ü ü ü Ç Ş ü Ğ Ğ Ü Ğ Ü Ö ü Ç Ü ü ü Ü ü ü ü ü ü ü Ü ü ü ü Ü ü ü ü ü ü ü Ü ü ü ü ü ü ü ü Ö ü ü ü ü ü üü ü ü üü ü Ü ü» ü ü Ü ü üü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü üü ü ü Ü «ü ü ü

Detaylı

ü ü ü ü ü ü ü Ş ü ü ü ü ü üü ü ü

ü ü ü ü ü ü ü Ş ü ü ü ü ü üü ü ü ü ü İ ü Ç İ İ ü İ İİ İ İ ü ü ü ü ü ü ü Ş ü ü ü ü ü üü ü ü İ İ üü ü ü ü üü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü İ Ç ü ü ü ü ü ü ü ü ü ü ü ü ü İ ü ü ü ü ü ü ü ü Ç üü ü ü ü Ö ü ü ü ü ü ü ü ü ü ü ü ü ü Ç ü

Detaylı

İ ş Ğ İ ş ü ü üü İş ü ü üü ş İ ş Ğ İ ş ş ş ş ş ş ş ü ş ş İ ş ü ü İ ü Ç ş ş ş İ ş ü Ş Ş ş ş ö ş ü ö ş ş ş ş ö ü ö ş ş ş ş ü ö ü ö ş ü ö ü ş ö ş ü ü ş ö İ ü ş ü ş Ş ş ö ş ş ö ü ö ö ö ş İ Ç İ İŞİ ş ö ş ş

Detaylı

ü İİ İ Ü ü ü ö ü ü İ Ö ü ö ö ü ö ö ü ü ü ü ö ö üü ü üü ü ö ö ü ö Ü ü ü İ ö Ö ü ü ü ü İ İ ö ü Ö ü ü ü ü ö ö Ş ö ü ü ü ö ü Ç ö ü ü ü ü ü ü ü ü ü ü ö ö ü ü ö ü ü ü Ü ü ü Ş ü ü ü ü üü ü ö ü İ ö ö üü ü ü Ç

Detaylı

İ ü ü ü ü İ ü üü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü Ş Ş ü üü İ ü üü Ö ü ü ü ü üü üü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü Ö ü ü ü ü ü ü Ş ü ü ü ü ü ü ü ü ü ü İ üü ü ü Ç Ç ü ü ü ü ü ü

Detaylı

Ö ö Ü Ü ÜÜ ö Ö ö ö Ş « ö Ö ö Ö Ö ö ö Ç Ö Ö Ş Ö Ö Ş Ş Ö Ç Ş Ş Ş ö Ö ö Ç ö ö Ö Ö ö ö Ö Ç ö ö Ö Ö Ö» ö ö ö ö Ö ö ö ö ö ö ö ö ö ö ö ö Ö ö Ö Ö Ö Ö Ö Ö ö Ş Ş ö Ş Ş ö ö ö ö Ş Ö Ö ö Ş ö Ş ö ö Ş Ş ö ö ö ö Ö Ş Ö

Detaylı

Ğ Ü Ğ Ğ Ğ Ö Ğ ş ş ö ö ş Ç ş ş Ğ Ğ Ş Ğ ş ş ö ş ş ö ş ş ö ş Ğ Ö ö ö ö Ç ş ö ö ş ş ö ş ö ö ş ö ş ö ö ö ş ş ö ş ö ö ö ş ö ö Ö ş ş ş ş ş ş Ç Ğ Ğ ö ş ş ş ö ö ş ö ö ş Ç ö ş ö ş ö ş ş ş ö ö ş ş ö ş ş ö ş ş ö ş

Detaylı

ş ş» Ğ Ş ş Ş ş Ş Ş Ş ş ş Ş Ç ş ş Ş ş ş ş ş ş ş ş ş ş ş ş ş ş Ş ş Ş ş ş ş Ş ş ş ş ş ş ş ş ş ş Ş ş Ş ş ş ş ş ş ş ş ş Ş ş ş ş ş Ş ş ş ş ş ş Ş ş ş ş Ü Ü ş ş ş ş Ş ş ş Ş ş Ü Ş ş Ş ş ş Ş ş Ş ş ş Ş Ş ş ş ş ş

Detaylı

ÜÜ Ü ö ö ö Ö ö ö ö ö ö Ş Ş Ç ö Ş Ş ö

ÜÜ Ü ö ö ö Ö ö ö ö ö ö Ş Ş Ç ö Ş Ş ö Ş ö Ü ö ö ö ö Ç ö Ç Ö Ö ö ö ÜÜ Ü ö ö ö Ö ö ö ö ö ö Ş Ş Ç ö Ş Ş ö ö ö ö ö Ç ö ö ö ö ö ö ö ö ö ö ö Ş ö Ş Ç Ö ö ö Ş ö ö ö ö ö ö ö ö ö ö ö Ç Ç ö ö Ç ö Ö Ç ö ö Ç ö ö ö ö Ü ö ö Ü ö Ş ö Ü ö ö Ş ö ö Ş Ü ö Ş ö

Detaylı

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü 8. KAALILIK ESM 6 Elktrik Erji Sitmlrii Kotrolü 8. Kouu Amaç v Kapamı Bir itmi ıırlı hr giriş cvabı ıırlı i o itm kararlıdır. Sitm giriş, rfra dğrid vya bozucu dğrd olabilir. Karalılığı diğr bir taımı

Detaylı

ü ü üü İ Ç İİ ü ü üü İ Ç Ü ö üü ü Ç Ü ü ü İ ü İ ö ü üü ü ö ü ö üü ü ü ö ö Ç Ş ü İŞ ö ü ü İ İ İ İ Ç İ Ç ü ü ü ü ö ü ü ü ö Ü ü ü İ Ö Ö ü ü üü ö ü ü üü Ö

ü ü üü İ Ç İİ ü ü üü İ Ç Ü ö üü ü Ç Ü ü ü İ ü İ ö ü üü ü ö ü ö üü ü ü ö ö Ç Ş ü İŞ ö ü ü İ İ İ İ Ç İ Ç ü ü ü ü ö ü ü ü ö Ü ü ü İ Ö Ö ü ü üü ö ü ü üü Ö ü ü ü üü İ Ç İ ü ü üü İ ü ü üü ü ü ü üü ü Ç ö ü ö İ İ ü ü ü İ İ İ ü ü ü üü İ Ç İİ ü ü üü İ Ç Ü ö üü ü Ç Ü ü ü İ ü İ ö ü üü ü ö ü ö üü ü ü ö ö Ç Ş ü İŞ ö ü ü İ İ İ İ Ç İ Ç ü ü ü ü ö ü ü ü ö Ü ü ü İ Ö Ö

Detaylı

B T A n a l o g T r a n s m i t t e r. T e k n i k K ı l a v u z u. R e v 1. 2

B T A n a l o g T r a n s m i t t e r. T e k n i k K ı l a v u z u. R e v 1. 2 B T - 111 A n a l o g T r a n s m i t t e r T e k n i k K ı l a v u z u R e v 1. 2 1. Ö N G Ö R Ü N Ü M, Ü S T Ü N L Ü K L E R İ VE Ö Z E L L İ K L E R İ M i k r o k o n t r o l ö r t a b a n l ı BT- 111

Detaylı

DENEY 5 İkinci Dereceden Sistem

DENEY 5 İkinci Dereceden Sistem DENEY 5 İkici Drcd Sitm DENEYİN AMACI. İkici drcd itmi karaktritiklrii alamak.. Söüm oraı ζ i, ikici drcd itm üzridki tkiii gözlmlmk. 3. Doğal frka i, ikici drcd itm üzridki tkiii gözlmlmk. GENEL BİLGİLER

Detaylı

VİNÇTE ÇELİK KONSTRÜKSİYON

VİNÇTE ÇELİK KONSTRÜKSİYON 0 Haziran www.guvn-kua.h VİNÇTE ÇEİ ONSTRÜSİON ÖZET _09 M. Güvn UT Smbollr v anaklar için "_00_ClikonsruksionaGiris.do" a bakınız. oordina ksnlri "GENE GİRİŞ" d blirildiği gibi DIN 8800 T gör alınmışır.

Detaylı

BÖLÜM 7. Sürekli hal hatalarının değerlendirilmesinde kullanılan test dalga şekilleri: Dalga Şekli Giriş Fiziksel karşılığı. Sabit Konum.

BÖLÜM 7. Sürekli hal hatalarının değerlendirilmesinde kullanılan test dalga şekilleri: Dalga Şekli Giriş Fiziksel karşılığı. Sabit Konum. 9 BÖLÜM 7 SÜRELİ HAL HATALARI ontrol itmlrinin analizind v dizaynında üç özlliğ odaklanılır, bunlar ; ) İtniln bir gçici hal cvabı ürtmk. ( T, %OS, ζ, ω n, ) ) ararlı olmaı. ıaca kutupların diky knin olunda

Detaylı

Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Dişli Takımları Elektromekaniksel Sistemler. Ders #5

Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Dişli Takımları Elektromekaniksel Sistemler. Ders #5 Dr #5 Ooik onrol Fizikl Silrin Modllni Dişli Tkılrı Elkroknikl Silr Prof.Dr.Glip Cnvr 6 Fbrury 007 Ooik onrol Prof.Dr.Glip Cnvr Mknikl Silrin Trnfr Fonkiyonlrı Dişli Tkılrı Vili biikllri düşünli. Yokuş

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

İşaret ve Sistemler. Ders 10: Sistem Cevabı

İşaret ve Sistemler. Ders 10: Sistem Cevabı İşar v Sismlr Drs 0: Sism Cvabı Sismi İmpuls Cvabı Lir, zamala dğişmy bir sism v işarii uyguladığıı düşülim v işari lir, zamala dğişmy bir sism uyguladığıda çıkış işari bilimiyrsa, sismi lirlik özlliğii

Detaylı

Ara Değer Hesabı (İnterpolasyon)

Ara Değer Hesabı (İnterpolasyon) Ar Değer Hesbı İterpolso Ardeğer hesbı mühedsl problemlerde sılıl rşılşıl br şlemdr. İterpolso Ble değerlerde blmee rdeğer d değerler bulumsı şlemdr. Geel olr se br osouu 0,,, gb rı otlrd verle 0,,, değerler

Detaylı

2017 Yazokulu BLNT6NBS Dersnotu

2017 Yazokulu BLNT6NBS Dersnotu İşreler ve Sisemler www.bulelibs.com.r 7 - SAÜ Y Oulu Ders Nolrı/ Bilgisyr Mühedisliği 6 Seçi ARI ri@sry.edu.r 7 Youlu BLNT6NBS Dersou hp://www.bulelibs.com.r/isreler_ve_sisemler_6nbas_dersnou.pdf 7 Youlu

Detaylı

Ele Alınacak Ana Konular. Hafta 5: Periyodik İşaretlerin Fourier Serisi Gösterilimi. LTI Sistemlerin Karmaşık Üstel İşaretlere Yanıtı

Ele Alınacak Ana Konular. Hafta 5: Periyodik İşaretlerin Fourier Serisi Gösterilimi. LTI Sistemlerin Karmaşık Üstel İşaretlere Yanıtı ..5 El Alınc An Konulr LI sismlrin rmşı üsl işrlr ynıı Sürli-zmn priyodi işrlrin Fourir srisi gösrilimi Hf 5: Priyodi İşrlrin Fourir Srisi Gösrilimi Fourir srisinin yınslığı Sürli-zmn Fourir srisinin özllilri

Detaylı

1. ÜNİTE 1. SAYILAR. Not:1.3

1. ÜNİTE 1. SAYILAR. Not:1.3 ) Rlr,,,,,,,,, ) S Sılrı (N + ) ÜNİTE SAYILAR tnısızdır ( ol üzere, sısının sıfır ölerse sonuç tnısız olur) tnısız,,, ) Doğl Sılr (N),,,, ) T Sılr (Z), ni Z Z Z,,,,,,, Z Z Teli-Çiftli: Sonu,,,, ile iten

Detaylı

DERS 7. Türev Hesabı ve Bazı Uygulamalar II

DERS 7. Türev Hesabı ve Bazı Uygulamalar II DERS 7 Türv Hsabı v Bazı Uygulamalar II Bu rst bilşk fonksiyonlarının türvi il ilgili zincir kuralını, üstl v logaritmik fonksiyonların türvlrini, ortalama v marjinal ortalama ğrlri; rsin sonuna oğru,

Detaylı

U MK E K A MP Ç IL IK E Ğ T İ M İ İ 2008

U MK E K A MP Ç IL IK E Ğ T İ M İ İ 2008 U MK E K A MP Ç I L I K E ĞİT İMİ 2008 K A MP Y E R İ S E Ç İMİ V E Ö ZE L L İK L E R İ (Y A Z OP E R A S Y ON L A R I ) U L A Ş I M İÇ İN A R A Ç V E Y A Y A Y A Y OL U N A Y A K I N OL MA L I D I R.

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüeyt BAYILMIŞ Doç.Dr. Cüeyt BAYILMIŞ Syısl Alz SAYISAL ANALİZ İNTERPOLASYON Ar Değer Bulm Doç.Dr. Cüeyt BAYILMIŞ Syısl Alz İÇİNDEKİLER Ar Değer Hesbı İterpolsyo Doğrusl Ar Değer

Detaylı

BÖLÜM 4 LİNEER DİFERANSİYEL DENKLEM SİSTEMLERİ

BÖLÜM 4 LİNEER DİFERANSİYEL DENKLEM SİSTEMLERİ BÖLÜM LİNEER DİFERANSİYEL DENKLEM SİSTEMLERİ GİRİŞ Dnklm sismlrin linr cbir drsindn şin olmlısınız Anck bu ür dnklmlrd hrhngi bir difrnsiyl büyüklük vy ürv bulunmz Bşk bir dyişl cbirsl dnklm sismi, y (

Detaylı

π βk F -F 0.4 0.3 0.2 0.1 0 0.01 0.02 0.03 0.04 kayma 1 2 F + F 1 2 Döndüren kasnak Döndürülen kasnak

π βk F -F 0.4 0.3 0.2 0.1 0 0.01 0.02 0.03 0.04 kayma 1 2 F + F 1 2 Döndüren kasnak Döndürülen kasnak TİMAK-Taarım İmalat Analiz Kongri 6-8 Nian 006 - BALIKESİ KAYIŞ KASNAK MEKANİZMALAINDA KAYMA OLAYINI ETKİLEYEN AKTÖLEİN ANALİZİ M. Ndim GEGE Maina Mühndiliği Bölümü Mühndili aülti -Balıir/Türi Özt Kaış

Detaylı

OLASILIK ve ÝSTATÝSTÝK ( Genel Tekrar Testi-1) KPSS MATEMATÝK. Bir anahtarlıktaki 5 anahtardan 2 si kapıyı açmak - tadır.

OLASILIK ve ÝSTATÝSTÝK ( Genel Tekrar Testi-1) KPSS MATEMATÝK. Bir anahtarlıktaki 5 anahtardan 2 si kapıyı açmak - tadır. OLASILIK v ÝSTATÝSTÝK ( Gnl Tkrar Tsti-1) 1. Bir anahtarlıktaki 5 anahtardan si kapıyı açmak - tadır. Açmayan anahtar bir daha dnnmdiğin gör, bu kapının n çok üçüncü dnmd açılma olasılığı kaçtır? 5 6 7

Detaylı

DENEY 2: AM MODÜLASYON / DEMODÜLASYON

DENEY 2: AM MODÜLASYON / DEMODÜLASYON DENEY 2: AM MODÜLASYON / DEMODÜLASYON AMAÇ: Genlik odülyonu ve deodülyonun ilişkin teorik heplrın ypılı, odültör ve deodültör devrelerinin gerçeklenerek teel kvrlrın inelenei. MALZEMELER Oilokop, güç kyngı

Detaylı

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir.

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir. ÜSTL DAĞILIM Tanım : X > olma üzr sürli bir rasgl dğişn olsun. ğr a > için X rassal dğişni aşağıdai gibi bir dağılıma sahip olursa X rasgl dğişnin üsl dağılmış rassal dğişn v onsiyonuna da üsl dağılım

Detaylı

SİSTEM DİNAMİĞİ VE KONTROL

SİSTEM DİNAMİĞİ VE KONTROL SİSTEM DİNAMİĞİ VE KONTROL ) KONTROL SİSTEMLERİNE GİRİŞ: Kotrol: Br sste çıkışlrıı stee değerlere yöeltek y d öcede belrleş br dvrışı zleeler sğlk ç sste grşler üzerde ypıl şlelere kotrol der. Ototk Kotrol:

Detaylı

İZ OLAS Y ON. Doç. Dr. Turan A slan 11.12.2009

İZ OLAS Y ON. Doç. Dr. Turan A slan 11.12.2009 İZ OLAS Y ON Y ÖN TE M LE R İ Doç. Dr. Turan A slan 11.12.2009 İZ O L A S Y O N Y Ö N T E M L E R İ S ta n d a r t Ö n le m le r S o lu n u m İz o la s y o n u D a m la c ı k İz o la s y o n u T e m a

Detaylı

Ğ Ğ ç ü ü üü ç ü ü ü Ğ ü ü üü ü Ğ ç ç ü ü Ş Ş ç Ç Ş ç ü ü ç ç Ş ü ç ü ü ü ü ç ç ü Ç ç ü ü ü ü üü ü ü üü ü üü ç ü ü ü ü ü ü ü ç ü ç Ş ü ü ü ü üü Ş ç ü ç ü ü ü «ç ü Ç ü ü ç ü ü ü ü ü ü ç ç ü ç ü ü üü Ş ü

Detaylı

ü İ İ İ Ö Ö İ Ö Ü ü ü ç ü ü ü ş ç ç Ü ü ü ü Ö ç ş ş ü Ü ç ş ç ş ü Ö Ü Ö Ö ş ç Ö ü ü Ö ü ç ş ş ü ü şi ş ş üçü ç ş ü ü ü Ü ü İ ü ü Ü ü ü ü ü üü ü ü ü ç ü ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ş ü ü Ö ç

Detaylı

İ ü»ü üü ü ü İ ü üü ü ü ü ü ç ç ç ü Ç ü ü üü ü üü ü ç ü ü ü ü İ İ Ü İİ İ İ İ ü ü ç ü ü ü ü ç ç ü ü ü ç ü ç ü ü ü ü ü ü ü ü ü ü İ Ç ü ü İ ü ü üü ü ü ü ç ç ç ü ü üçü ü ç üç ü İ ü ü ü ü Ö Ç ü İ İ üü ç ü ç

Detaylı

DEĞİŞİME AÇIK OLUN 1 stajbaslatmasinavi@gmail.com

DEĞİŞİME AÇIK OLUN 1 stajbaslatmasinavi@gmail.com Tiri ml rklrii rlıklı vr yömi gör izly bir işlmd döm s iibriyl sk rklrii drm şğıdki gibidir DB Ml Mvd 2 000 Döm içi Ml Alışı 50 000 Alış İd 3 000 Tiri Ml Hs Al Tp 5 000 Tiri Ml Hs Brç Klı 52 000 Yriçi

Detaylı

ü ü İ ü Ç Ç ü üü İ ü ü ü ü üü ü İ ü ğ İ İ ğ ğ Ç ü İ ü Ç ğ ü Ç üü İ Ç ü ü ü ğ ğ ü ü ğ ü ğ ü ğ Ç ü ü Ç İ Ç ğ ğ Ç ü üü İ İ Ç ü ü ğ ü üü İ ü ü ü ü Ç ü üü ğ ğ ü ü ğ ğ ğ Ç ğ ğ ü ü ü ü İ ü Ç ü ü Ç ü üü ğ Ç ğ

Detaylı

Cevap: B. x + y = 5 ve y + z = x = 3z y. x + y = 5 z + y = 3 x t = 2 bulunur. 7x 9y = y 3x 10x = 8y. 3/ 3y = x + z 15k = 4k + z + Cevap: B

Cevap: B. x + y = 5 ve y + z = x = 3z y. x + y = 5 z + y = 3 x t = 2 bulunur. 7x 9y = y 3x 10x = 8y. 3/ 3y = x + z 15k = 4k + z + Cevap: B 6 LYS/MAT MATEMATİK ÇÖZÜMLERİ DENEME. ( ab) ( ab) 6( ab) 6. 6 y z ( ab) ( ab) 6( ab) 6 6 6y y z 6y ( ab) 6 6( y) ( y z) ab.. olur. y v y z. 7 z y / y z k k z y z y t bulunur. 7 9y y 8y k, y k zk A) y 8,

Detaylı

a bir reel (gerçel) sayı ve n bir pozitif tam sayı olsun. 1 dir. n a ye üslü ifade

a bir reel (gerçel) sayı ve n bir pozitif tam sayı olsun. 1 dir. n a ye üslü ifade ÜSLÜ İFADELER A. Tı bir reel (gerçel syı ve bir pozitif t syı olsu.... te olck şekilde, te ı çrpıı ol deir. ye üslü ifde Kurl. sıfırd frklı bir reel syı olk üzere,. 0 0 0 ifdesi tısızdır.. ( R... 0 7..

Detaylı

KAYNAKLI BAĞLANTILAR (Örnekler)

KAYNAKLI BAĞLANTILAR (Örnekler) KAYNAKLI AĞLANTILAR (Örneler) ÖRNEK 1: 50 N lu bir ü, şeilde görüldüğü gibi, 00 li çeli nl nlnış bğlntı prçsı rcılığı ile trıltdır. Kn üzerinde oluşn siu gerilei esplınız. [ ] A 0.707 5 190 180 irincil

Detaylı

«ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş

«ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş Ş ç Ü Ü ÜÜ ö ş ş ç ş ç ş «ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş Ü ç ç Ç ç ş ö ş ç ş ö Ç ş ö Ç ş ö ç ş ç Çö ç ş ş ö ş ş ş ş ş ö ö ş ç ş ç Çö ş ö ş ş ç ş Ü ş ş Ö Ü ş ç ç Çö ö Ş ş Çö ş ö ş ş ç ş

Detaylı

formundadır. Burada verilen bir f fonksiyonu F fonksiyonuna dönüşür ve F fonksiyonuna f in fonksiyon dönüşümü denir. K(s,t) ye çekirdek denir.

formundadır. Burada verilen bir f fonksiyonu F fonksiyonuna dönüşür ve F fonksiyonuna f in fonksiyon dönüşümü denir. K(s,t) ye çekirdek denir. LPLCE DÖNÜŞÜMÜ Lpl dönüşümü yrdımı il ğ rflı difrniyl dnklmin ğ rfınd bulunn fonkiyonun ürkliliği bozul bil(bmk,impul fonkiyonu) difrniyl dnklmlr çözülbilkir. Bu ip dnklmlrl lkrik imlrini çözrkn krşılşılır.

Detaylı

Volon. Marka: B131. Model. Yükselen Milli Sürgülü Vana, Model F907, 17.2Bar(250psi) 10" 12" 14" 16" Volon 135Q. Marka: Model:

Volon. Marka: B131. Model. Yükselen Milli Sürgülü Vana, Model F907, 17.2Bar(250psi) 10 12 14 16 Volon 135Q. Marka: Model: AT LT L No: AAAT T h : P No: m T: ÇB BP) O G A Ö V od B 3 odu Gö d B 3PN U PD Kpm Km p b o u ou u mb Cmx m d) AwwwC d d u u d AwwC u m o p m po p p öh b m ö d m d m dd p ö ½"4" d ½" "8" d ¾" "" d " CTUWWRA

Detaylı

Ü ü ü Ö Ç ü ü ü ö ö ö ü ü ü ü ü ü ö ü Ö ü ö ü ö ü ü ö ü ü ü ü Ç Ç Ç Ö Ç ü ü ü ö ö ü ö ü ö ü ü ü ö ö ö ö ü ü ü ö ü ü Ç ö ü ö ö ö ü ü ö ö ü ü ö ü ö ö ö ö ö ü ü ü ü ü ü ö ü ü ü ü ü ü ö ö ü ö ü ü ö ö Ç ö ü

Detaylı

HARRAN ÜNİVERSİTESİ ZİRAAT FAKÜLTESİ GÜZ YARIYILI VİZE PROGRAMI

HARRAN ÜNİVERSİTESİ ZİRAAT FAKÜLTESİ GÜZ YARIYILI VİZE PROGRAMI HN ÜNVT ZT FÜT -8 GÜZ YY VZ POG GÜN T C C C3 C4 C5 C6 C C8 9:- :3 3) ÖC T. T3) C TH 3) T. TNĞ 3) FDN YT. V H T () C9 C 3) T YOTNOOJ () C3 3. N. ÖT. ÖYZ... :3- : ) TT T) TT +T+TO) TT. U. U. U PZ T 3:- 4:3

Detaylı

ü ü ü ü İ ü ü ü ü Ö ü ü İ ü üü ü İ ü ü Ü ü Ç Ç İ İ İ ü ü ü ü ü

ü ü ü ü İ ü ü ü ü Ö ü ü İ ü üü ü İ ü ü Ü ü Ç Ç İ İ İ ü ü ü ü ü Ğ ü ü Ğ Ğ Ğ ü ü ü ü ü ü İ ü ü ü ü İ ü ü ü ü ü ü ü İ ü Ç İ ü Ü ü Ö ü ü ü Ö ü Ç İ ü ü ü ü İ ü ü ü ü Ö ü ü İ ü üü ü İ ü ü Ü ü Ç Ç İ İ İ ü ü ü ü ü ü ü ü Ç ü ü ü İ İ İ ü ü Ç ü ü Ş ü ü ü ü Ş ü ü ü ü Ş ü ü ü

Detaylı

Diferansiyel Denklemler

Diferansiyel Denklemler Difrsil Dklmlr Doç. Dr. Slhi MADEN Ord Üivrsisi F dbi Fkülsi Mmik Bölümü DĐFERANSĐYEL DENKLEMLER Birii Mrbd Birii Drd Difrsil Dklmlr Birii Mrbd Yüksk Drd Difrsil Dklmlr Yüksk Mrbd Bzı Özl Difrsil Dklmlr

Detaylı

Ş Ğ Ş Ğ Ü Ü Ö Ü «Ğ Ü Ü Ğ Ş Ö Ü Ü Ö Ü Ş Ğ Ü Ş Ç Ş Ş Ş Ö Ü Ş Ğ Ö Ç Ş «Ş Ğ Ç Ö Ö Ç Ö Ö Ş Ğ Ü Ü «Ş Ğ Ü Ü Ü Ü Ü «Ş Ğ Ğ Ö Ş Ü Ş Ü Ü Ü Ü Ü Ü Ü Ü Ü Ö Ü Ğ Ö Ö Ü Ş Ğ Ü Ü Ü Ç Ş Ü Ü Ö Ü Ğ Ç Ü Ö Ü Ş Ğ Ö Ç Ü Ü Ü Ü Ş

Detaylı

BÖLÜM II 2. FOURIER DÖNÜŞÜMÜ. 2.1 Giriş

BÖLÜM II 2. FOURIER DÖNÜŞÜMÜ. 2.1 Giriş BÖLÜM II. FOURIER DÖNÜŞÜMÜ. Giriş Yr ürmizd gözl joizi olaylar zamaa yada uzalığa bağlı olara glişir. Gözl joizi olay zamaı bir osiyou is zama oramı im Domai uzuluğu bir osiyou is uzalı oramı Spac Domai

Detaylı

Bilgi Tabanı (Uzman) Karar Verme Kontrol Kural Tabanı. Bulanık. veya. Süreç. Şekil 1 Bulanık Denetleyici Blok Şeması

Bilgi Tabanı (Uzman) Karar Verme Kontrol Kural Tabanı. Bulanık. veya. Süreç. Şekil 1 Bulanık Denetleyici Blok Şeması Bulanık Dntlyicilr Bilgi Tabanı (Uzman) Anlık (Kskin) Girişlr Bulandırma Birimi Bulanık µ( ) Karar Vrm Kontrol Kural Tabanı Bulanık µ( u ) Durulama Birimi Anlık(Kskin) Çıkış Ölçklm (Normali zasyon) Sistm

Detaylı

8. sınıf ders notları zfrcelikoz@yahoo.com

8. sınıf ders notları zfrcelikoz@yahoo.com III - SAYI ÖRÜNTÜLERİ Htırltm: Syılrı virgülle yrılrk, birbirii rdı dizilmesie syı dizisi, dizideki her bir syıy d terim deir. hrfi verile örütüde syılrı sırsıı belirte semboldür ve ici syıy örütüü geel

Detaylı

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri DERS 9 Grafik Çizimi, Maksimum Minimum Problmlri Bundan öncki drst bir fonksiyonun grafiğini çizmk için izlnbilck yol v yapılabilck işlmlr l alındı. Bu drst, grafik çizim stratjisini yani grafik çizimind

Detaylı

DESTEK DOKÜMANI. Mali tablo tanımları menüsüne Muhasebe/Mali tablo tanımları altından ulaşılmaktadır.

DESTEK DOKÜMANI. Mali tablo tanımları menüsüne Muhasebe/Mali tablo tanımları altından ulaşılmaktadır. Mali Tablolar Mali tablo tanımları mnüsün Muhasb/Mali tablo tanımları altından ulaşılmatadır. Mali tablolarla ilgili yapılabilc işlmlr ii gruba ayrılır. Mali Tablo Tanımları Bu bölümd firmanın ullanacağı

Detaylı

Ş

Ş Ü Ş Ç ç Ö ş Ş Ü ç Ç Ğ Ş ş ç Ü ç ş ş Ç ş ş Ş ç Ç ç Ö Ğ ş Ü Ü ç ş ç ş Ğ Ş Ö ç Ö Ü Ü Ğ ç Ğ Ş şş Ğ ş ç ç ş ş ş Ö ş Ş ş Ü Ü ÜÜ Ö ş ÜŞ ş ç ş Ö Ğ Ğ ç ş Ü Ş Ğ ş ş ş ş ş Ğ ş ş ç ş ş Ü ş Ğ ş «ş Ü ş ş ş ş ş ş ç ç

Detaylı

ORTAM SICAKLIĞININ SOĞUTMA ÇEVRİMİNE ETKİSİNİN SAYISAL OLARAK MODELLENMESİ

ORTAM SICAKLIĞININ SOĞUTMA ÇEVRİMİNE ETKİSİNİN SAYISAL OLARAK MODELLENMESİ ORTAM SICAKLIĞININ SOĞUTMA ÇEVRİMİNE ETKİSİNİN SAYISAL OLARAK MODELLENMESİ Srkan SUNU - Srhan KÜÇÜKA Dokuz Eylül Ünivrsitsi Makina Mühndisliği Bölümü -posta: srhan.kuuka@du.du.tr Özt: Bu çalışmada, komprsör,

Detaylı

İ Ç ğ İ İ İ ü ü İ Ç Ü ü İ İ ü İ İ ü

İ Ç ğ İ İ İ ü ü İ Ç Ü ü İ İ ü İ İ ü +L, f "ffi l İ İ Ç ğ İ İ İ ü ü İ Ç Ü ü İ İ ü İ İ ü İ ü İ İİ İ İ İİ İ İ İ İ Ü Ğ Ö İ İ Ö ü Ö İ İ İ Ç Ğ İ İ İĞİ İ ü Öğ ğ ÖĞ İ Ş Ğ Ğ İ İ İ Ğ Ğ İ Ş Ö Ö Ö İ İ İ İŞ İ İĞİ İ Ş Ö İ İ İ İ İ Ö İ İ Ö Öğ İ İ İ İ İ

Detaylı

DEĞİŞİME AÇIK OLUN 1

DEĞİŞİME AÇIK OLUN 1 İiylılık : Olsı Gidrlr içi iiylı dvrılıp krşılık yrılır Olsı glirlr içi krşılık yrılmz 120 ALICILAR HS 128 HS 121 ALACAK SNT HS 129 ALACAK KARŞ HS (-) Alğı şüpli drm glmsi 128 ŞÜP TİC HS XXX 120 ALICILAR

Detaylı

2010 Ağustos. MİLLER ve KİRİŞLER. 06a. Özet. M. Güven KUTAY

2010 Ağustos.  MİLLER ve KİRİŞLER. 06a. Özet. M. Güven KUTAY 00 ğustos www.guven-kut.ch İR ve KİRİŞR 0 Özet. Güven KUTY İ Ç İ N D K İ R Ortdn tek kuvvet etkisindeki klsik kiriş... simetrik tek kuvvet etkisindeki klsik kiriş... 5 Simetrik iki kuvvet etkisindeki klsik

Detaylı

DEĞİŞİME AÇIK OLUN 1 stajbaslatmasinavi@gmail.com

DEĞİŞİME AÇIK OLUN 1 stajbaslatmasinavi@gmail.com 1 v 2 SORULARI AŞAĞIDAKİ BİLGİLERE GÖRE CEVAPLAYINIZ 20082006 riid ypıl ks syımıd ksd 585 ABD Dlrı ($) ldğ blirlmişir Ayı ri iibriyl Dlr Kssı l sbıı brç plmı 26845 $, lk plmı 26320 $ lrk izlmkdir B rkı

Detaylı