Veri Madenciliği. Bölüm 2. Veri Önişleme. Doç. Dr. Suat Özdemir. w3.gazi.edu.tr/~suatozdemir

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Veri Madenciliği. Bölüm 2. Veri Önişleme. Doç. Dr. Suat Özdemir. w3.gazi.edu.tr/~suatozdemir"

Transkript

1 Bölüm 2. Veri Önişleme w3.gazi.edu.tr/~suatozdemir

2 Veri-Nesne-Nitelik 10 Veri: Nesneler ve nesnelerin niteliklerinden oluşan küme Nesne terimi yerine kayıt (record), varlık (entity), örnek (sample, instance) kullanılabilir Nitelik (attribute) bir nesnenin (object) bir özelliğidir bir insanın yaşı, ortamın sıcaklığı.. Nitelik yerine boyut (dimension), özellik (feature, characteristic) kullanılabilir Nitelikler ve bu niteliklere ait değerler bir nesneyi oluşturur. Nesneler grubu veriyi oluşturur Öğrenci kayıt listesi Nesne (Objects) Tid Refund Marital Status Nitelik (Attributes) Taxable Income 1 Yes Single 125K No 2 No Married 100K No 3 No Single 70K No 4 Yes Married 120K No Cheat 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No 10 No Single 90K Yes VERİ

3 Ayrık ve sürekli nitelikler Ayrık Nitelik / Discrete Attribute Sonlu sayıda değerden oluşan nitelikler E.g., posta kodu, meslek, ya da doküman seti içerisindeki kelimeler Tamsayı değerler olarak ifade edilebilir İkili / binary nitelikler de ayrık niteliklerin özel bir türüdür Sürekli Nitelik / Continuous Attribute Değeri gerçek sayılar olan nitelikler E.g., sıcaklık, yükseklik, ya da ağırlık Floating-point değerler olarak ifade edilebilir

4 Neden veri önişleme? Gerçek hayatta karşılaştığımız veriler genelde eksik (missing or incomplete), hatalı (noisy), ve tutarsız (inconsistent) olma eğilimindedir. Düşük kaliteli veri Veri kalitesini düşüren sorunlar: Noise / Gürültü Outliers / Sapan veri Missing values / Eksik veri Duplicate data / Tekrarlı veri Veri iletim hataları Teknolojik sınırlamalar Veri isimlendirmede veya yapısında uyumsuzluk

5 Noise / Gürültü Orjinal veride oluşan istenmeyen değişimlerdir Örnek: telefonda konuşurken sesimizin bozulması, televizyon ekranındaki karlanma Anlamlandırılamayan veri Verinin hata ve sapan veri içermesi İki Sinüs Dalgası İki Sinüs Dalgası + Gürültü

6 Outliers / Sapan veri Sapan veriler veri setinin geri kalan kısmından çok farklı olan verilerdir.

7 Missing Values / Eksik veri Nedenler Bilginin toplanamaması Yaşını, kilosunu ya da gelirini belirtmek istemeyen insanlar Uygun olmayan nitelikler Çocuklar için gelir niteliği uygulanamaz Çözümler Eksik verileri dikkate alma Eksik veriyi tahmin et (ortalama vs.)

8 Duplicate Data / Tekrarlı veri Birbirinin aynısı olan veriler Değişik veritabanlarının birleştirilmesi sırasında ortaya çıkar Birden çok eposta adresine sahip insan Çözüm Veri temizleme

9 Neden veri önişleme? Düşük kaliteli veri düşük kaliteli veri madenciliği sonuçlarına yol açar Veri önişleme? Veri madenciliği kalitesini artırmak Veri madenciliğini kolaylaştırmak Verimliliği artırmak hedeflenir

10 Tanımlayıcı veri özetleme Veri önişlemenin temeli Veriyi daha iyi anlamak ve anlatmak Verinin merkezi eğilimi Ortalama, ortanca (median), mode Verinin dağılımı Çeyreklikler (quartiles), IQR, variance, boxplots

11 Ortalama (Mean) Ortalama (mean) Örnekleme x 1 n n i1 x i Popülasyon Ağırlıklı ortalama x x N n i1 n i1 w x i w i i

12 Ortanca (Median) Veri setinde ortadaki verinin değeri Çift sayıda veri varsa ortadaki iki verinin ortalaması Gruplanmış veriler için interpolation yolu ile bulunur Yaş Frekans median L Ortanca aralığın ilk elemanı 1 n / ( 2 ( f Ortanca aralıktan aşağıdaki aralıklardaki eleman sayılarının toplamı median f ) l ) c 600 / 2 (170) median 16 ( ) Ortanca aralığın genişliği Ortanca aralığın frekansı

13 Mod (Mode) Veri seti içinde en çok tekrarlanan veri Unimodal Bimodal Trimodal Deneysel (empirical) formül mean mode 3( mean median)

14 Simetrik ve Çarpık Veri Ortalama, ortanca ve mod değerleri

15 Simetrik ve Çarpık Veri 15/41

16 Verinin dağılımı Quartiles, outliers and boxplots Çeyrek (Quartile): Q 1 (25 th percentile), Q 3 (75 th percentile) Inter-quartile range: IQR = Q 3 Q 1 Five number summary: min, Q 1, M, Q 3, max Boxplot: ends of the box are the quartiles, median is marked, whiskers, and plot outlier individually Sapan veri (Outlier): usually, a value higher/lower than 1.5 x IQR

17 Verinin dağılımı: Örnek 2, 5, 6, 9, 12 veri seti için five-number summary aşağıdaki gibi verilir: minimum = 2 1. quartile = 3.5 median = 6 3. quartile = 10.5 maximum = 12 IQR = = 7 olduğundan sapan veri tanımı için 1.5xIQR = 10.5 olarak hesaplanır. Bu durumda sapan verileri bulmak için 1. quartile 1.5xIQR = = 7 3. quartile + 1.5xIQR = = 21 Değerleri hesaplanır. Veri seti içinde -7 den küçük ve 21 den büyük herhangi bir değer olmadığından bu veri seti içinde outlier/sapan veri yoktur denilir. 17/41

18 Verinin dağılımı Varyans ve standart sapma (örnekleme: s, populasyon: σ) Varyans: n i n i i i n i i x n x n x x n s ] ) ( 1 [ 1 1 ) ( 1 1 n i i n i i x N x N ) ( 1 Standart sapma s (veya σ) varyansın kare kökü

19 Normal dağılım eğrisinin özellikleri Normal dağılım eğrisi (μ σ) ile (μ+σ) arasında verilerin yaklaşık %68i bulunur (μ: ortalama, σ: standart sapma) (μ 2σ) ile (μ+2σ) arasında %95i (μ 3σ) ile (μ+3σ) arasında %99.7si

20 Görsel tanımlayıcı veri özetleme Veriyi daha iyi ifade edebilmek için kullandığımız yöntemler Boxplot Histogram, sıklık histogramı, bar chart Eşit bölen (Quantile) grafikleri Q-Q grafikleri Serpme (scatter) grafikleri

21 Boxplot analizi Five number summary nin grafik olarak gösterimi Minimum, Q1, M, Q3, Maximum Boxplot Veri bir kutu olarak gösterilir Kutunun alt ve üst çizgileri 1. ve 3. çeyreklerdir Ortanca bir çizgi ile belirtilir Max ve min değerleri kutunun dışında iki çizgi (Whiskers) ile belirtilir

22 Histogram analizi Basit istatistiksel sınıfları gösteren grafik Veri setindeki çeşitli sınıflara ait verilerin sayısını ya da frekansını veren dikdörtgenlerden oluşur

23 Quantile plot Kullanıcının hem normal verileri hem de aykırılıklarını görmesini sağlar Quantile bilgisi verir Veri x i ile gösterilirse, f i değeri veri setindeki verilerin %100f i sinin x i den küçük ya da eşit olduğunu gösterir Tek değişkenli analiz

24 Quantile-Quantile plot Karşılaştırma yapar, eğilimi gösterir Çift değişkenli analiz M Q3 Quantile-quantile plotları (q-q plot) iki veri setinin aynı dağılım özelliğe sahip olup olmadığını görmek için kullanılır. Q1 Şube 1 de satılan ürünler şube 2 de satılanlardan daha ucuz olma eğiliminde

25 Scatter plot Veri içindeki sapan verileri, kümeleri gösterir

26 Özet: Veri Dağılımının Grafiksel Olarak Gösterimi Histogram Boxplot Quantile plot: each value x i is paired with f i indicating that approximately 100 f i % of data are x i Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

27 Veri önişleme Veri temizleme Eksik veri tamamlama, hatalı verileri düzeltme, tutarsız verileri kaldırma Veri bütünleştirme Artık verileri ortadan kaldırma, veritabanlarını birleştirme Veri değiştirme Veriyi daha anlaşılabilir bir halde ifade etme, normalizasyon Veri azaltma Veri bütünleştirme, nitelik alt kümesi seçme, boyut küçültme, vb.

28 Veri önişleme

29 Veri önişleme Veri temizleme Eksik veri tamamlama, hatalı verileri düzeltme, tutarsız verileri kaldırma Veri bütünleştirme Artık verileri ortadan kaldırma, veritabanlarını birleştirme Veri değiştirme Veriyi daha anlaşılabilir bir halde ifade etme, normalizasyon Veri azaltma Veri bütünleştirme, nitelik alt kümesi seçme, boyut küçültme, vb.

30 Veri temizleme Eksik veri tamamlama, hatalı verileri düzeltme, tutarsız verileri kaldırma Eksik veri tamamlama (missing values) Kaydı yok say Elle doldurma Global bir değerle doldurma Nitelik ortalamasıyla doldurma Eksik verinin ait olduğu grubun nitelik ortalamasıyla doldurma En olası değerle doldurma (regression, Bayesian inference)

31 Veri temizleme Hatalı verileri düzeltme (gürültülü-noisy data) hatalı veri toplama gereçleri veri giriş problemleri veri girişi sırasında kullanıcıların hatalı yorumları veri iletim hataları teknolojik sınırlamalar veri isimlendirmede veya yapısında uyumsuzluk Hatalı verinin tespiti? Sapan veriler Genelde alan uzmanı bilgisi gerektirir

32 Veri temizleme Çözüm yöntemleri Kova metodu (Binning): Veriyi düzleştirme, lokal çözüm Kova ortalaması ile düzleştirme Kova ortancası ile düzleştirme Kova sınırları ile düzleştirme Eğri uydurma (Regression) Demetleme (Clustering) İnsan-bilgisayar incelemesi

33 Kova metodu (Binning) Eşit genişlik (Equal-width (distance) partitioning) Veri setini N eşit aralığa böler: uniform grid Eğer A ve B veri setindeki en büyük ve en küçük değerler ise her bir aralığın genişliği: W = (B A)/N. Basit ancak sapan verilerden etkilenir Çarpık (skewed) veri iyi ifade edilemez

34 Kova metodu (Binning) Eşit derinlik (Equal-depth (frequency) partitioning) Her bir veri aralığı yaklaşık olarak aynı sayıda veri içerir Ölçeklenebilir

35 Binning - Örnek Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34 Partition into equal-frequency (equi-depth) bins: - Bin 1: 4, 8, 9, 15 - Bin 2: 21, 21, 24, 25 - Bin 3: 26, 28, 29, 34 Smoothing by bin means: - Bin 1: 9, 9, 9, 9 - Bin 2: 23, 23, 23, 23 - Bin 3: 29, 29, 29, 29 Smoothing by bin boundaries: - Bin 1: 4, 4, 4, 15 - Bin 2: 21, 21, 25, 25 - Bin 3: 26, 26, 26, 34

36 Regresyon Y1 Y1 y = x + 1 X1 x

37 Demetleme / Kümeleme

38 Veri önişleme Veri temizleme Eksik veri tamamlama, hatalı verileri düzeltme, tutarsız verileri kaldırma Veri bütünleştirme Artık verileri ortadan kaldırma, veritabanlarını birleştirme Veri değiştirme Veriyi daha anlaşılabilir bir halde ifade etme, normalizasyon Veri azaltma Veri bütünleştirme, nitelik alt kümesi seçme, boyut küçültme, vb.

39 Veri bütünleştirme Artık verileri ortadan kaldırma, veritabanlarını birleştirme Schema bütünleştirme Varlık tanımlama (entity identification) problem Veritabanı 1 -> Cust_id Veritabanı 2 -> Cust_number Metadata kullanımı Her niteliği tanımla Artık/tekrarlı veri temizleme Korelasyon analizi Chi-square test

40 Korelasyon Analizi Correlation coefficient (also called Pearson s product moment coefficient) r A, B ( A A)( B N AB B) ( AB) N N AB AB where n is the number of tuples, A and B are the respective means of A and B, σ A and σ B are the respective standard deviation of A and B, and Σ(AB) is the sum of the AB crossproduct. If r A,B > 0, A and B are positively correlated (A s values increase as B s). The higher, the stronger correlation. r A,B = 0: independent; r A,B < 0: negatively correlated

41 Pearson s product moment coefficient r A,B değerlerinin anlamı Correlation Negative Positive None 0.09 to to 0.09 Small 0.3 to to 0.3 Medium 0.5 to to 0.5 Strong 1.0 to to 1.0

42 Korelasyon Analizi - Örnek

43 Chi-square Test Ayrık / kategorik veri için korelasyon Χ 2 (chi-square) test ( Observed Expected Expected 2 2 ) The larger the Χ 2 value, the more likely the variables are related The cells that contribute the most to the Χ 2 value are those whose actual count is very different from the expected count Correlation does not imply causality # of hospitals and # of car-theft in a city are correlated Both are causally linked to the third variable: population

44 Chi-square Test - Örnek Χ 2 (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two categories) (250 90) (50 210) ( ) Bu hipotezin yanlış olduğunu red etmek için Bağımsızlık derecesi = (r-1)(c-1)=(2-1)(2-1)=1 ve belli bir önem derecesi için chisquare dağılımının kritik değer tablosuna bakılır önem değeri için male female Sum (row) fiction 250(90) 200(360) 450 non-fiction 50(210) 1000(840) 1050 Sum(col.) < olduğundan Cinsiyet ve okuma tercihi birbirlerinden bağımsız değil denir (çok kuvvetli bir ilişki vardır). 2 ( ) 840 2

45 Kritik değer tablosu

46 Veri önişleme Veri temizleme Eksik veri tamamlama, hatalı verileri düzeltme, tutarsız verileri kaldırma Veri bütünleştirme Artık verileri ortadan kaldırma, veritabanlarını birleştirme Veri değiştirme Veriyi daha anlaşılabilir bir halde ifade etme, normalizasyon Veri azaltma Veri bütünleştirme, nitelik alt kümesi seçme, boyut küçültme, vb.

47 Veri değiştirme Veriyi daha anlaşılabilir bir halde ifade etme, normalizasyon Düzeltme (smoothing) Birleştirme (aggregation) Genelleme Normalizasyon Max-min normalizasyon Z-score normalizasyon Normalizasyon by decimal scaling Nitelik oluşturma En-boy -> Alan

48 Veri değiştirme Min-max normalization: to [new_min A, new_max A ] v mina v' ( new _ maxa new _ mina) new _ mina maxa mina Ex. Let income range $12,000 to $98,000 normalized to [0.0, 1.0]. Then $73,600 is mapped to 73,600 12,000 (1.0 0) ,000 12,000 Z-score normalization (μ: mean, σ: standard deviation): v' Ex. Let μ = 54,000, σ = 16,000. Then 73,600 54,000 16,000 Normalization by decimal scaling v A A v' v 10 j Where j is the smallest integer such that Max( ν ) < 1 v <1 olacak şekilde v değerini en büyük yapacak j değeri

49 Veri önişleme Veri temizleme Eksik veri tamamlama, hatalı verileri düzeltme, tutarsız verileri kaldırma Veri bütünleştirme Artık verileri ortadan kaldırma, veritabanlarını birleştirme Veri değiştirme Veriyi daha anlaşılabilir bir halde ifade etme, normalizasyon Veri azaltma Veri bütünleştirme, nitelik alt kümesi seçme, boyut küçültme, vb.

50 Veri azaltma Veri boyutunu düşür Orijinal verinin özelliklerini koru Boyut küçültmek için harcanan zaman veri madenciliği yaparken kazanacağımız zamanı geçmemelidir Bazı metotlar Veri küpü birleştirme Nitelik altkümesi seçme Boyut azaltma Numerosity reduction (Veriyi modellerle yada görsel olarak ifade etme) Ayrıştırma ve konsept hiyerarşisi geliştirme

51 Nitelik altkümesi seçme Veriye ait tüm nitelikler yapılacak iş için önemli olmayabilir Alışveriş eğiliminin belirlenmesi/müşterilerin telefon numaraları Tekrarlı/redundant nitelikler Verinin dağılım özelliğini bozmadan veriyi ifade edebilecek en küçük nitelik altkümesinin seçilmesi Sonuçta ortaya çıkan örüntü sayısı azaltılarak veri anlaşılması daha kolay hale getirilir Veriyi iyi şekilde ifade edecek nitelik altkümesi nasıl bulunacak?

52 Nitelik altkümesi seçme İyi ve kötü nitelikler bağımsızlık testleri, karar ağaçları gibi yöntemlerle belirlenir Bilgi kazancı vb. n nitelik için 2 n altküme (exponential) Sezgisel (heuristic) yöntemler : İleri adım adım seçme (Step-wise forward selection) Boş küme ile başlayıp en iyi nitelikler kümeye dahil edilir Geri adım adım eleme (Step-wise backward elimination) Tüm nitelikler ile başlanıp, her basamakta en kötü olan(lar) elenir İleri seçme ve geri elemenin birleştirilmesi Karar ağacı çıkarma (Decision-tree induction) Ağaç ortaya çıkarılır ağaç üzerinde görülmeyen nitelikler kötü/önemsiz olarak nitelendirilir ve elenir

53 Nitelik altkümesi seçme Sezgisel yöntemler 53/41

54 Boyut azaltma (Dimentionality Reduction) Kodlama (encoding) ve değiştirmeyle veriyi sıkıştırma Wavelet transforms Principle Component Analysis (PCA)

55 Numerosity reduction Veriyi modellerle yada görsel olarak daha küçük formlarda ifade etme Eğri uydurma modelleri Histogramlar Demetleme Örnekleme

56 Regresyon Analizi Bağımlı değişken ile bir veya daha çok bağımsız değişken arasındaki ilişkiyi incelemek amacıyla kullanılan bir analiz yöntemidir. Regresyon analizi ile bağımlı ve bağımsız değişkenler arasında bir ilişki var mıdır? Eğer bir ilişki varsa bu ilişkinin gücü nedir? Değişkenler arasında ne tür bir ilişki vardır? gibi sorulara cevap aranmaya çalışılır. y Y1 Y1 X1 y = x + 1 x

57 Histogramlar Equ-width/Eşit genişlik Equ-depth/Eşit derinlik V optimal (Barlar arasında en düşük varyans) Olası bütün histogramlardan barlar arasından en düşük varyansa sahip olanı seç MaxDiff (Veriler arasındaki en fazla fark eden değer çiftleri sınırları belirler) B kova sayısı En yüksek B-1 tane farkı belirle ve kovaları ayır

58 Demetleme / Kümeleme Veri setini benzerliklerine göre demetlere ayırma Sadece demeti ifade eden bilgiyi sakla Merkez ve çap Gruplu yapıya sahip veri setinde daha iyi sonuç verir Hiyeraşik demetleme yapılabilir ve indeks ağaçları olarak ifade edilebilir

59 Örnekleme Tüm veri seti N i temsil edecek küçük veri seti s i seçmek Basit metotların performansı iyi değil Uyarlanabilir metotlar Strafied örnekleme Belli bir kurala göre sınıfla her sınıftan eşit sayıda örnek al

60 Örnekleme çeşitleri Simple random sampling There is an equal probability of selecting any particular item Sampling without replacement Once an object is selected, it is removed from the population Sampling with replacement A selected object is not removed from the population Stratified sampling: Partition the data set, and draw samples from each partition (proportionally, i.e., approximately the same percentage of the data) Used in conjunction with skewed data

61 Sampling: With or without Replacement Raw Data

62 Sampling: Cluster or Stratified Sampling Raw Data Cluster/Stratified Sample

63 Ayrıştırma ve konsept hiyerarşisi geliştirme Sayısal veri Binning Histogram analizi

64 Kategorik veri Şema seviyesinde (kullanıcılar tarafından) Cadde<semt<şehir<ülke Gruplama {ankara,kayseri,konya}-> içanadolu Anlamsal bağlantılar Bazen adres olarak sadece şehir bilgisi yetebilir. Cadde sokak numara nitelikleri atılır. 66/41

Veri-Nesne-Nitelik. Bölüm 2. Veri Önişleme

Veri-Nesne-Nitelik. Bölüm 2. Veri Önişleme 10 Bölüm 2. Veri Önişleme http://ceng.gazi.edu.tr/~ozdemir Veri-Nesne-Nitelik Veri: Nesneler ve nesnelerin niteliklerinden oluşan küme Nesne terimi yerine kayıt (record), varlık (entity), örnek (sample,

Detaylı

VERİ MADENCİLİĞİ (Veri Önişleme-1) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Veri Önişleme-1) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Veri Önişleme-1) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma Kümeleme

Detaylı

Konular. VERİ MADENCİLİĞİ Veri Önişleme. Değer Kümeleri. Veri Nedir? Nitelik Türleri. Konular. Veri Veri Önişleme Benzerlik ve farklılık

Konular. VERİ MADENCİLİĞİ Veri Önişleme. Değer Kümeleri. Veri Nedir? Nitelik Türleri. Konular. Veri Veri Önişleme Benzerlik ve farklılık 0 VERİ MADENCİLİĞİ Veri Önişleme Yrd. Doç. Dr. Şule Gündüz Öğüdücü Veri Nedir? nesneler ve nesnelerin niteliklerinden oluşan küme kayıt (record), varlık (entity), örnek (sample, instance) nesne için kullanılabilir.

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) Data Editör iki arayüzden oluşur. 1. Data View 2. Variable

Detaylı

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme İstatistik ve Olasılığa Giriş Robert J. Beaver Barbara M. Beaver William Mendenhall Presentation designed and written by: Barbara M. Beaver İstatistik ve Olasılığa Giriş Ders 3 Verileri Sayısal Ölçütlerle

Detaylı

VERİ KÜMELERİNİ BETİMLEME

VERİ KÜMELERİNİ BETİMLEME BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ

BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ İŞTİRME Araştırma rma SüreciS 1.Gözlem Genel araştırma alanı 3.Sorunun Belirlenmesi Sorun taslağının hazırlanması 4.Kuramsal Çatı Değişkenlerin açıkça saptanması

Detaylı

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME YZM 317 YAPAY ZEKA DERS#10: KÜMELEME Sınıflandırma (Classification) Eğiticili (supervised) sınıflandırma: Sınıflandırma: Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğunu bilinir Eğiticisiz (unsupervised)

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI 1 UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI Örnek 1: Ders Kitabı 3. konuda verilen 100 tane yaş değeri için; a. Aritmetik ortalama, b. Ortanca değer, c. Tepe değeri, d. En küçük ve en

Detaylı

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine

Detaylı

Yarışma Sınavı A ) 60 B ) 80 C ) 90 D ) 110 E ) 120. A ) 4(x + 2) B ) 2(x + 4) C ) 2 + ( x + 4) D ) 2 x + 4 E ) x + 4

Yarışma Sınavı A ) 60 B ) 80 C ) 90 D ) 110 E ) 120. A ) 4(x + 2) B ) 2(x + 4) C ) 2 + ( x + 4) D ) 2 x + 4 E ) x + 4 1 4 The price of a book is first raised by 20 TL, and then by another 30 TL. In both cases, the rate of increment is the same. What is the final price of the book? 60 80 90 110 120 2 3 5 Tim ate four more

Detaylı

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 1 BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 Bu bölümde bir veri seti üzerinde betimsel istatistiklerin kestiriminde SPSS paket programının kullanımı açıklanmaktadır. Açıklamalar bir örnek üzerinde hareketle

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 İstatistik

Detaylı

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir?

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir? İSTATİSTİK Bir sonuç çıkarmak ya da çözüme ulaşabilmek için gözlem, deney, araştırma gibi yöntemlerle toplanan bilgiye veri adı verilir. Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin

Detaylı

Pazarlama Araştırması Grup Projeleri

Pazarlama Araştırması Grup Projeleri Pazarlama Araştırması Grup Projeleri Projeler kapsamında öğrencilerden derlediğiniz 'Teknoloji Kullanım Anketi' verilerini kullanarak aşağıda istenilen testleri SPSS programını kullanarak gerçekleştiriniz.

Detaylı

SPPS. Verileri Düzenleme ve Değiştirme 3 - Data Menüsü. Y. Doç. Dr. İbrahim Turan Nisan 2011

SPPS. Verileri Düzenleme ve Değiştirme 3 - Data Menüsü. Y. Doç. Dr. İbrahim Turan Nisan 2011 SPPS Verileri Düzenleme ve Değiştirme 3 - Data Menüsü Y. Doç. Dr. İbrahim Turan Nisan 2011 Data Menüsü 1- Define Variable 1- Properties (Değişken Özelliklerini Tanımlama) Değişken özelliklerini tanımlamak

Detaylı

CS 553 INTELLIGENT DATA ANALYSIS PROJECT WORKSHOP ORHUN ALP ORAL

CS 553 INTELLIGENT DATA ANALYSIS PROJECT WORKSHOP ORHUN ALP ORAL 1 CS 553 INTELLIGENT DATA ANALYSIS PROJECT WORKSHOP ORHUN ALP ORAL 2 PROJECT OUTLINE 1. Domain Information 2. Dataset: Extraction, Features and possible values 3. Preprocessing: Statistics, missing values,

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Sürekli Rastsal Değişkenler

Sürekli Rastsal Değişkenler Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım

Detaylı

Çalıştığı kurumun prestij kaynağı olup olmaması KIZ 2,85 ERKEK 4,18

Çalıştığı kurumun prestij kaynağı olup olmaması KIZ 2,85 ERKEK 4,18 1 * BAĞIMSIZ T TESTİ (Independent Samples t test) ÖRNEK: Yapılan bir anket çalışmasında katılımcılardan, çalıştıkları kurumun kendileri için bir prestij kaynağı olup olmadığını belirtmeleri istenmiş. 30

Detaylı

Veri Objeleri ve Attribute (öznitelik) tipleri

Veri Objeleri ve Attribute (öznitelik) tipleri Veri Objeleri ve Attribute (öznitelik) tipleri Verinin Temel İstatistiksel Tanımı Verinin Görselleştirilmesi Verilerin Benzerliklerinin Ölçülmesi SMY 535, Veri Madenciliği, Güz 2015, Ders #2 2 Record Relational

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

BİYOİSTATİSTİK PARAMETRİK TESTLER

BİYOİSTATİSTİK PARAMETRİK TESTLER BİYOİSTATİSTİK PARAMETRİK TESTLER Doç. Dr. Mahmut AKBOLAT *Bir testin kullanılabilmesi için belirli şartların sağlanması gerekir. *Bir testin, uygulanabilmesi için gerekli şartlar; ne kadar çok veya güçlü

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir.

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. BİYOİSTATİSTİK Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. Veri Analiz Bilgi El ile ya da birtakım bilgisayar programları

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

Gözetimli & Gözetimsiz Öğrenme

Gözetimli & Gözetimsiz Öğrenme Bölüm 5. Sınıflandırma 1 http://ceng.gazi.edu.tr/~ozdemir Gözetimli & Gözetimsiz Öğrenme Predictive Data Mining vs. Descriptive Data Mining Gözetimli (Supervised) öğrenme= sınıflandırma (clasification)

Detaylı

Veri Madenciliği. Bölüm 5. Sınıflandırma 1. Doç. Dr. Suat Özdemir.

Veri Madenciliği. Bölüm 5. Sınıflandırma 1. Doç. Dr. Suat Özdemir. Bölüm 5. Sınıflandırma 1 http://ceng.gazi.edu.tr/~ozdemir Gözetimli & Gözetimsiz Öğrenme Predictive Data Mining vs. Descriptive Data Mining Gözetimli (Supervised) öğrenme= sınıflandırma (clasification)

Detaylı

Kazanımlar. Z puanları yerine T istatistiğini ne. zaman kullanacağını bilmek. t istatistiği ile hipotez test etmek

Kazanımlar. Z puanları yerine T istatistiğini ne. zaman kullanacağını bilmek. t istatistiği ile hipotez test etmek T testi Kazanımlar Z puanları yerine T istatistiğini ne 1 zaman kullanacağını bilmek 2 t istatistiği ile hipotez test etmek 3 Cohen ind sini ve etki büyüklüğünü hesaplamak 1 9.1 T İstatistiği: zalternatifi

Detaylı

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz.

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. PARAMETRİK TESTLER Tek Örneklem t-testi 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. H0 (boş hipotez): 200 öğrencinin matematik dersinden aldıkları

Detaylı

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri Yrd. Doç. Dr. Safa KARAMAN 1 2 Giriş Veri kümesi Verileri betimlemenin ve özetlemenin bir diğer yolu da verilerin bir

Detaylı

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1 İÇİNDEKİLER ÖNSÖZ... v 1. BÖLÜM Örneklem Genişliğinin Elde edilmesi... 1 1.1. Kitle ve Parametre... 1 1.2. Örneklem ve Tahmin Edici... 2 1.3. Basit Rastgele Örnekleme... 3 1.4. Tabakalı Rastgele Örnekleme...

Detaylı

01.02.2013. Statistical Package for the Social Sciences

01.02.2013. Statistical Package for the Social Sciences Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

VERİ SETİNE GENEL BAKIŞ

VERİ SETİNE GENEL BAKIŞ VERİ SETİNE GENEL BAKIŞ Outlier : Veri setinde normal olmayan değerler olarak tanımlanır. Ders: Kantitatif Yöntemler 1 VERİ SETİNE GENEL BAKIŞ Veri setinden değerlendirme başlamadan çıkarılabilir. Yazım

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat...

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

Data Communications. Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü. 10. Hata Kontrolü

Data Communications. Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü. 10. Hata Kontrolü Veri İletişimi Data Communications Suat ÖZDEMİR Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü 10. Hata Kontrolü Konular Giriş Blok kodlama Lineer blok kodlar Cyclic kodlar Checksum http://ceng.gazi.edu.tr/~ozdemir

Detaylı

25/10/2008. Bölüm 1 Verileri Grafiklerle İfade Etme. Bir bireyi belirleyen niteliklerin her

25/10/2008. Bölüm 1 Verileri Grafiklerle İfade Etme. Bir bireyi belirleyen niteliklerin her İstatistik ve Olasılık Kaynak: Robert J. Beaver Barbara M. Beaver Willia Mendenhall Presentation designed and written by: Barbara M. Beaver A division of Thoson Learning, Inc. İstatistik ve Olasılık Bölü

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

TÜRKİYE DENGELEME GÜÇ PİYASASI TALİMAT MİKTARLARI ÜZERİNE İSTATİSTİKSEL BİR ÇALIŞMA 1. Gökhan Ceyhan Yazılım ARGE Uzmanı, EPİAŞ

TÜRKİYE DENGELEME GÜÇ PİYASASI TALİMAT MİKTARLARI ÜZERİNE İSTATİSTİKSEL BİR ÇALIŞMA 1. Gökhan Ceyhan Yazılım ARGE Uzmanı, EPİAŞ TÜRKİYE DENGELEME GÜÇ PİYASASI TALİMAT MİKTARLARI ÜZERİNE İSTATİSTİKSEL BİR ÇALIŞMA 1 Gökhan Ceyhan Yazılım ARGE Uzmanı, EPİAŞ ÖZET Bu makalede, Türkiye Dengeleme Güç Piyasası (DGP) kapsamında 2015 Ocak

Detaylı

Çok fazla bilgiden gizli kalmış örüntüleri ortaya çıkarma sürecine Veri Madenciliği denir.

Çok fazla bilgiden gizli kalmış örüntüleri ortaya çıkarma sürecine Veri Madenciliği denir. Veri Madenciliği Çok fazla bilgiden gizli kalmış örüntüleri ortaya çıkarma sürecine Veri Madenciliği denir. istatistik + makine öğrenmesi + yapay zeka = veri madenciliği Veri madenciliği süreçleri CRISP-DM

Detaylı

Dr. Hidayet Takçı. Veri Madenciliği Dersi GYTE Dr. Hidayet Takçı 10/05/2008 1

Dr. Hidayet Takçı. Veri Madenciliği Dersi GYTE Dr. Hidayet Takçı 10/05/2008 1 İkinci Ders Veri Madenciliği: Veri Dr. Hidayet Takçı Veri Madenciliği Dersi GYTE Dr. Hidayet Takçı 10/05/2008 1 Veri Nedir? Sayısal veya mantıksal her türlü değer bir veridir. Öznitelik Bir nesneye ait

Detaylı

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ DÖNEM I-I. DERS KURULU Konu: Bilimsel yöntem ve istatistik Amaç: Biyoistatistiğin tıptaki önemini kavrar ve sonraki dersler için gerekli terminolojiye hakim olur.

Detaylı

Merkezi Yığılma ve Dağılım Ölçüleri

Merkezi Yığılma ve Dağılım Ölçüleri 1.11.013 Merkezi Yığılma ve Dağılım Ölçüleri 4.-5. hafta Merkezi eğilim ölçüleri, belli bir özelliğe ya da değişkene ilişkin ölçme sonuçlarının, hangi değer etrafında toplandığını gösteren ve veri grubunu

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon Kazanımlar 1 2 3 4 5 6 Değişkenlerin ilişkisini açıklamak ve hesaplamak için Pearson korelasyon katsayısı Örneklem r ile evren korelasyonu hakkında hipotez testi yapmak Spearman

Detaylı

ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Nokta Grafikleri. Ders 2 Minitab da Grafiksel Analiz-II Tanımlayıcı İstatistikler

ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Nokta Grafikleri. Ders 2 Minitab da Grafiksel Analiz-II Tanımlayıcı İstatistikler ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Nokta Grafikleri Nokta grafikleri örnek veri dağılımlarını değerlendirmek ve karşılaştırmak için kullanılır. Bir nokta grafiği örneklem verilerini gruplandırır

Detaylı

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir.

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir. BÖLÜM 1: FREKANS DAĞILIMLARI 1.1. Giriş İstatistik, rasgelelik içeren olaylar, süreçler, sistemler hakkında modeller kurmada, gözlemlere dayanarak bu modellerin geçerliliğini sınamada ve bu modellerden

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma

Detaylı

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) SPSS Data Editör iki arayüzden oluşur. 1. Data View

Detaylı

Probability Density Function (PDF, Sürekli fonksiyon)

Probability Density Function (PDF, Sürekli fonksiyon) Varyans Bir serideki her elemanın ortalamadan farklarının karelerinin toplamının, serideki eleman sayısına bölümü ile elde edilir. Standart Sapma Varyansın kareköküdür. Eğer birçok veri ortalamaya yakın

Detaylı

İÇİNDEKİLER 1. GİRİŞ...

İÇİNDEKİLER 1. GİRİŞ... İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel

Detaylı

3. Ders Çok Boyutlu (Değişkenli) Veri Analizi

3. Ders Çok Boyutlu (Değişkenli) Veri Analizi 3. Ders Çok Boyutlu (Değişkenli) Veri Analizi Veri: Boy ölçüleri (boy-kol-omuz-kalça-bacak uzunluğu) Ölçü birimi: cm boy kol omuz kalca bacak 18 77 98 12 11 163 66 72 9 97 183 73 99 113 91 16 86 7 95 12

Detaylı

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH ORTALAMA ÖLÇÜLERİ Ünite 6 Öğr. Gör. Ali Onur CERRAH Araştırma sonucunda elde edilen nitelik değişkenler hakkında tablo ve grafikle bilgi sahibi olunurken, sayısal değişkenler hakkında bilgi sahibi olmanın

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

UYGULAMA 1 SPSS E GİRİŞ. SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir.

UYGULAMA 1 SPSS E GİRİŞ. SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir. 1 UYGULAMA 1 SPSS E GİRİŞ SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir. Bu menülerin işlevleri ve alt menüleri ile komutları

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 3.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Merkezi Eğilim Ölçüleri, belli bir özelliğe ya da değişkene

Detaylı

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma...

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma... İçindekiler İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii BÖLÜM 1 Ölçme, İstatistik ve Araştırma...1 Ölçme Nedir?... 3 Ölçme Süreci... 3 Değişkenler

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama Doç.

Detaylı

Verilerin Özetlenmesinde Kullanılan Tablolar ve Grafiksel Yöntemler

Verilerin Özetlenmesinde Kullanılan Tablolar ve Grafiksel Yöntemler Verilerin Özetlenmesinde Kullanılan Tablolar ve Grafiksel Yöntemler Frekans Dağılımları Verilerin Düzenlenmesi Sıralı dizi bir dizi verinin küçükten büyüğe yada büyükten küçüğe göre sıralanması Dağılı

Detaylı

Adım Adım SPSS. 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü. Y. Doç. Dr. İbrahim Turan Nisan 2011

Adım Adım SPSS. 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü. Y. Doç. Dr. İbrahim Turan Nisan 2011 Adım Adım SPSS 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü Y. Doç. Dr. İbrahim Turan Nisan 2011 File (Dosya) Menüsü Excel dosyalarını SPSS e aktarma Variable View (Değişken Görünümü 1- Name (İsim - Kod)

Detaylı

Üç Boyutlu Serpilme (Saçılım) Grafikleri

Üç Boyutlu Serpilme (Saçılım) Grafikleri Üç Boyutlu Serpilme (Saçılım) Grafikleri 3D Scatterplot of boy vs kol vs bacak 90 boy 0 70 0 90 70 00 0 bacak 0 0 90 kol 3D Scatterplot of kol vs omuz vs kalca 90 kol 0 70 00 kalca 0 0 0 0 00 omuz Merkez

Detaylı

Istatistik ( IKT 253) 1. Çal şma Sorular - Cevaplar

Istatistik ( IKT 253) 1. Çal şma Sorular - Cevaplar TOBB-ETÜ, Iktisat Bölümü Istatistik ( IKT 253) 1. Çal şma Sorular - Cevaplar Soru 1: Bir hafta boyunca saat 2-3pm aras nda bir ma¼gazay ziyaret eden insan say s aşa¼g daki gibidir Pzt. Sa. Çar. Per. Cu.

Detaylı

3/6/2014. Küresel Isınma. Öğrenme Amaçlarımız. Küresel Isınma. Aritmetik Ortalama. Veri Özetleme ve Gösterme

3/6/2014. Küresel Isınma. Öğrenme Amaçlarımız. Küresel Isınma. Aritmetik Ortalama. Veri Özetleme ve Gösterme Küresel Isınma Küresel Yer-Okyanus Sıcaklık Endeksi Yıllık Ortalama 5 Yıllık Kayan Ortalama Veri Özetleme ve Sunum (Grafiksel Teknikler) Sıcaklık Değişikliği ( o C) Yrd. Doç. Dr. Ümit Deniz Uluşar Bilgisayar

Detaylı

Data View ve Variable View

Data View ve Variable View SPSS i çalıştırma 0 SPSS İlk Açılışı 1 Data View ve Variable View 2 Değişken Tanımlama - 1 3 Değişken Tanımlama - 2 4 Boş Veri Sayfası 5 Veri Girişi - 1 6 Veri Girişi - 2 7 Dosya Kaydetme 1 2 3 8 File

Detaylı

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI Tarih/Saat/Yer: 24.06.16/11:00-12:30/AS010 Instructor: Prof. Dr. Hüseyin Oğuz

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatistikler 1 Tanımlayıcı İstatistikler Bir veri setini tanımak veya birden fazla veri setini karşılaştırmak için kullanılan ve ayrıca örnek verilerinden hareket ile frekans dağılışlarını

Detaylı

CHAPTER 8: CONFIDENCE INTERVAL ESTIMATION: ONE POPULATION

CHAPTER 8: CONFIDENCE INTERVAL ESTIMATION: ONE POPULATION CHAPTER 8: CONFIDENCE INTERVAL ESTIMATION: ONE POPULATION A point estimator of a population parameter is a function of the sample information that yields a single number An interval estimator of a population

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

12. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. yasinortakci@karabuk.edu.tr

12. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. yasinortakci@karabuk.edu.tr 1. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi DIVIDED DIFFERENCE INTERPOLATION Forward Divided Differences

Detaylı

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R Geçen Ders Envanter yonetımı: Gazetecı problemı Rastsal Rakamlar Üret Talebi hesapla Geliri hesapla Toplam maliyeti hesapla Günlük ve aylık

Detaylı

Ders 1 Minitab da Grafiksel Analiz-I

Ders 1 Minitab da Grafiksel Analiz-I ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 1 Minitab da Grafiksel Analiz-I İstatistik Nedir? İstatistik kelimesi ilk olarak Almanyada devlet anlamına gelen status kelimesine dayanılarak kullanılmaya

Detaylı

Bar Diyagramı ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 3 Minitab da Grafiksel Analiz-III. Bar Diyagramı İçin Checklist.

Bar Diyagramı ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 3 Minitab da Grafiksel Analiz-III. Bar Diyagramı İçin Checklist. ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 3 Minitab da Grafiksel Analiz-III (Bar-Pareto-Neden Sonuç-Saçılım Diagramları) Sayıları, ortalamaları veya diğer özet istatistiksileri kıyaslamak için

Detaylı

Hipotez Testleri. Mühendislikte İstatistik Yöntemler

Hipotez Testleri. Mühendislikte İstatistik Yöntemler Hipotez Testleri Mühendislikte İstatistik Yöntemler Hipotez Testleri Parametrik Testler ( z ve t testleri) Parametrik Olmayan Testler (χ 2 Testi) Hipotez Testleri Ana Kütle β( µ, σ ) Örnek Kütle b ( µ

Detaylı

İstatistiksel Kavramların Gözden Geçirilmesi

İstatistiksel Kavramların Gözden Geçirilmesi İstatistiksel Kavramların Gözden Geçirilmesi Anlamlı Basamaklar Konusu ve Olasılık Ekonometri 1 Konu 1 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial

Detaylı

LİKERT TİPİ ÖLÇEKLERE FARKLI BİR YAKLAŞIM Kelime Tabanlı Ölçekler ile Gülenyüz Ölçeklerin Karşılaştırılması

LİKERT TİPİ ÖLÇEKLERE FARKLI BİR YAKLAŞIM Kelime Tabanlı Ölçekler ile Gülenyüz Ölçeklerin Karşılaştırılması LİKERT TİPİ ÖLÇEKLERE FARKLI BİR YAKLAŞIM Kelime Tabanlı Ölçekler ile Gülenyüz Ölçeklerin Karşılaştırılması Kemal KURŞUN Dr. Hakan BAYRAMLIK Orhan ÇİMENCİ Hacettepe Üniversitesi Kara Harp Okulu Kara Harp

Detaylı

Temel Ġstatistik. Tanımlayıcı Ġstatistik. Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri. Y.Doç.Dr. Ġbrahim Turan Mart 2011

Temel Ġstatistik. Tanımlayıcı Ġstatistik. Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri. Y.Doç.Dr. Ġbrahim Turan Mart 2011 Temel Ġstatistik Tanımlayıcı Ġstatistik Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri Y.Doç.Dr. Ġbrahim Turan Mart 2011 Yer / Konum Ölçüleri 1- Aritmetik Ortalama (Mean): Deneklerin aldıkları değerlerin

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

ÖĞRENCİLERİNİN SINAV NOTLARI DAĞILIMININ DEĞERLENDİRİLMESİ: İNŞAAT MÜHENDİSLİĞİ ÖĞRENCİLERİ ÖRNEĞİ

ÖĞRENCİLERİNİN SINAV NOTLARI DAĞILIMININ DEĞERLENDİRİLMESİ: İNŞAAT MÜHENDİSLİĞİ ÖĞRENCİLERİ ÖRNEĞİ ÖĞRENCİLERİNİN SINAV NOTLARI DAĞILIMININ DEĞERLENDİRİLMESİ: İNŞAAT MÜHENDİSLİĞİ ÖĞRENCİLERİ ÖRNEĞİ Barış Yılmaz Celal Bayar Üniversitesi, Manisa baris.yilmaz@bayar.edu.tr Tamer Yılmaz, Celal Bayar Üniversitesi,

Detaylı

WEEK 11 CME323 NUMERIC ANALYSIS. Lect. Yasin ORTAKCI.

WEEK 11 CME323 NUMERIC ANALYSIS. Lect. Yasin ORTAKCI. WEEK 11 CME323 NUMERIC ANALYSIS Lect. Yasin ORTAKCI yasinortakci@karabuk.edu.tr 2 INTERPOLATION Introduction A census of the population of the United States is taken every 10 years. The following table

Detaylı

19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I

19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I 19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I Bir dil dershanesinde öğrenciler talep ettikleri takdirde, öğretmenleriyle

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

UYGULAMA 2 TABLO YAPIMI

UYGULAMA 2 TABLO YAPIMI 1 UYGULAMA 2 TABLO YAPIMI Amaç: SPSS 10 istatistiksel paket programında veri girişi ve tablo yapımı. SPSS 10 istatistiksel paket programı ilk açıldığında ekrana gelen görüntü aşağıdaki gibidir. Bu pencere

Detaylı

Merkezi Limit Teoremi

Merkezi Limit Teoremi Örnekleme Dağılımı Merkezi Limit Teoremi Şimdiye kadar normal dağılıma uygun olan veriler ile ilgili örnekler incelendi. Çarpıklık gösteren veriler söz konusu olduğunda ne yapılması gerekir? Hala normal

Detaylı

NİCELİKSEL KONTROL GRAFİKLERİ

NİCELİKSEL KONTROL GRAFİKLERİ NİCELİKSEL KONTROL GRAFİKLERİ Prof. Dr. Nihal ERGİNEL Anadolu Üniversitesi X BİRİMLER VE HAREKETLİ DEĞİŞİM ARALIĞI KONTROL GRAFİĞİ X- Birimler Kontrol Grafiği n= birimlik örnekler alınır. Üretim hızı oldukça

Detaylı

İSTATİSTİK SPSS UYGULAMA

İSTATİSTİK SPSS UYGULAMA İSTATİSTİK SPSS UYGULAMA Yrd. Doç. Dr. H. İbrahim CEBECİ SPSS UYGULAMA Bu bölümde SPSS veri girişi, Basit grafik hazırlama, örneklem çekimi ve tanımlayıcı istatistiksel analizler hakkında SPSS uygulamaları

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU FREKANS DAĞILIMLARINI TANIMLAYICI ÖLÇÜLER Düzenlenmiş verilerin yorumlanması ve daha ileri düzeydeki işlemler için verilerin bütününe ait tanımlayıcı ve özetleyici ölçülere ihtiyaç

Detaylı