DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ"

Transkript

1 DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkaı : Yrd.Doç.Dr. İsmail YILDIZ ARAŞTIRMADA PLANLAMA VE ÇÖZÜMLEME (03-09 Ocak 014 Y.ÇELİK) Araştırma Süreci (The research process): 1)Araştırma Öerisi (Research idea): Araştırmaı e öemli, e çok ilgiç kabul edile aşaması araştırma öerisii suulduğu adımdır. Bu bölümde araştırma öerisii ede ilgiç olduğu, farklı yalarıı, katkısı açık bir öeri ile dile getirilmelidir. )Kayak Tarama (Literature review): Kouyla ilgili tüm kayakları taraması sürecidir. Kayak tararke özellikle araştırmaları sistematik olarak derleye derleme türü çalışmalarda yararlamak gerekir. Daha öce yayılamış bir araştırmaı tekrar yapılması doğru değildir. Harcaacak zama ve emeği başka bir araştırma içi ayrılması daha matıklıdır. 3) Araştırma Problemii Kuramsal Formülasyou (Theoretical formulatio of the research problem ad hypothesis) Araştırma problemi içi söyleecek e iyi söz İyi taımlaa bir problemi yarısı çözülmüş sayılır deyişidir. Araştırma problemi ve ilgili hipotezleri formülasyou e öemli bir aşamadır. Araştırmaı belirgileşmesii ve araştırmada bekletileri açığa çıkarır. 4)Araştırma Dizayı ve Plalaması (Desig ad pla the study) Araştırma içi e uygu araştırma dizayıı e olduğu, araştırma yötemi seçimii hagisi olacağı, araştırmaya dahil edilecek bireyleri kimler olacağı, kullaılacak örekleme yötemleri ve verileri aalizi içi kullaılacak istatistiksel testleri eler olacağı belirtilmelidir. 5)Araştırma Öerisii Yazılması (Writig the research proposal) Araştırıcı araştırma öerisii bilimsel ve etik kurallara uygu bir şekilde yazmalıdır. 1

2 6)Uygu Foları İcelemesi (Eamie the appropriate fudig) Araştırma hagi alada yapıldıysa o alaa uygu bir fo bulmak gerekir. Folar devlet kuruluşları veya özel folar olabilir. Bu kouda e iyi fo arama yeri iteret olaaklarıdır. 7)Etik Oay Alma (Obtai etical approval) Yapıla çalışmada etik oay almak gerekliyse buu atlamak veya ihmal etmek büyük sorulara ede olur. Bu durum araştırıcıyı hukuki sorular yaşamasıa da ede olur. Hagi çalışmaları etik oay alması gerektiğii detaylı öğremek içi etik komitei yayılamakta olduğu yöetmeliği icelikleri ile okumak gerekir. 8)Veri Toplama ve Aalize Hazırlama (Collect the data ad collate to aalyse) Verileri toplarke yasızlığa dikkat etmek gerekir. Yalı elde edile verileri yalı souçlar vermesi bekleir. Bu durum araştırmaı yasızlığıa aykırı bir durumdur. İstatistik bilim dalıda bias (yalılık), çok fazla ele alıa bir koudur. Tüm istatistikler, formülasyolar ve yötemleri yasız olması içi uğraş verilir. 9) Verleri Aalizi ve Yorumu (Aalyse the data ad iterpret fidigs) Verileri aalizi çok öemli bir aşama olduğu bilie bir durumdur. Veri aalizi başlı başıa iyi bir istatistik bilgisi gerektirir. Seçile istatistik test, souçları öemli ölçüde olumlu veya olumsuz bir şekilde etkiler. 10)Souçları uygulamalar içi alamlaştırılması (Research fidigs ad practice implicatios) Araştırmada elde edile souçları uygulaabilirliği çok öemlidir. Araştırmaları gülük yaşatımızda soruları çözmeye yöelik olduğu uutulmamalıdır. 11) Raporu Hazırlaması (Report o the study) koulmasıdır. Araştırma raporu, tüm uzu çalışmaları souda ürüü bir raporla ortaya

3 1)Araştırmada örek hacmi ve gücü göz öüde tutmak Araştırıcıları istatistik uzmaıa e çok sordukları sorularda biri; Araştırmamı örek hacmi e olmalıdır? şeklideki sorudur. Biyoistatistik uzmaı yukarda ifade edile zorluğu çözmede ve yol göstermede öemli bir görev üstleebilir. Araştırmada geelleebilir souçlar elde etmek içi örek hacmi kousuda öemli deilecek ölçütleri belirlemesi gerekir. ) Aketler Biyoistatistik uzmaı geellikle aket düzelemede daha çok deeyimlidir. Akette kullaılacak ölçekler, soru sayısı, şık sayısı, soru şekillerii düzelemesi araştırmada geelleebilir souçlara ulaşmak içi öemli koulardır. 3) Öreği ve kotrol grubuu seçilmesi Üzeride araştırma yapılacak öreği doğru seçilmiş olması gerekir. Seçile kou ve hipotezlere uygu örek seçilmedikçe doğru souçlar elde edilemez. 4)Araştırmaı Düzei Araştırma düzei hazırlamak verileri değerledirilmeside kullaılacak ola aaliz kadar öemlidir ve istatistik uzmaı bu kouda öemli sayılacak şekilde fikir verebilir. 5) Laboratuar deeyleri Tıbbi araştırıcılar geellikle hastadaki biyolojik varyasyou ve etkilerii araştırırlar. Acak gözde kaçırılmaması gereke kou, bu varyasyou laboratuar ile ola ilişkisidir. 6) Verileri görütülemesi İyi seçilmiş grafik veya şekilleri araştırma souçlarıı çok açık bir şekilde suulmasıa yardımcı olur. İstatistik uzmaı verileri görütülemeside kullaılacak yötemlerde yardımcı olabilir. 7) Taımlayıcı istatistikler ve istatistiksel aalizleri seçimi Araştırmada kullaıla taımlayıcı istatistikler ve istatistiksel aalizler verilere ve seçile araştırma düzeie uygu olmalıdır. Bazı durumlarda ortaca (medya) değer, aritmetik ortalama değeride daha iyi bir ölçüm değeri olur. 3

4 Araştırmada kullaıla taımlayıcı istatistikler ve istatistiksel aalizler verileri dağılışıa araştırmadaki hipotezlere uygu bir şekilde kullaılmalıdır. Araştırıcılar e çok bu koularda yalışlık yapmaktadırlar. Bu edele, uygu taımlayıcı istatistikleri kullaılması ve aalizleri seçimi istatistik uzmaı yardımıyla gerçekleştirilmesi faydalı olur. TANIMLAYICI İSTATİSTİKLER ( Pazartesi Y. ÇELİK) Taımlayıcı istatistiklere giriş Tablo ve diyagramları verileri alamlı bir şekilde özetledikleri bir öceki bölümde gösterilmişti. Acak veriler hakkıda yorum yapmak veya iki farklı veri setii birbiriyle karşılaştırmak içi bazı taımlayıcı istatistiklere gereksiim olur. Taımlayıcı istatistikleri sağlıkla ilgili yayılarda veya gülük yaşatımızda sıkça kullamaktayız. Öreği bir kadı doğum kliiğide haftalık ortalama yapıla ameliyat sayısıı dile getirmek içi, birçok haftada gözlee ameliyet sayılarıı ortalama değerii verilmesi ile olasıdır. Verile bu ortalama taımlayıcı bir istatistiği açıklar. Bu bölümde verilecek ola taımlayıcı istatistikler, katitatif değişkeler içi kullaıla ortalamalar ve yaygılık ölçüleri olarak taıa ölçülerdir. Kalitatif değişkeleri taımlaya e iyi ölçüler oralardır. Oralar Ora, geel olarak herhagi iki sayıı bölümü ile elde edile soucu açıklar. "Oratı" ve "ora" olarak iki şekilde ele alıabilir. Oratı, bir bölümü tam ile karşılaştıra bir ora olarak taımlaabilir. Oraı sıkça kullaıla şekli "yüzde" dir. Bu ora, oratıı 100 ile çarpılması soucu elde edile sayısal değerdir. Oralar, özellikle frekas tablosu şeklide sııfladırılmış değişkede veriler içi taımlayıcı istatistik olarak kullaılmaktadır. Öreği cisiyeti ifade ede bir değişkei ele 4

5 alalım. Bu değişke içi beş' i erkek 51' i kadı ola 56 gözlem yapılmış olsu. Cisiyeti erkek olalarla ilgili souçlar aşağıda gösterilmiştir. a)erkek' leri toplam bireye oratısı 5/56=0.089, veya b)toplam birey içide erkekleri yüzdesi =8.9, veya c)toplam birey içide erkekleri kadılara göre oraı 5/51=0.089 şeklide gösterilebilir. Ortalamalar Ortalama, değişkei gözlee değerleri arasıda e yoğu oktayı ifade eder. Bu ifadeye göre, ortalama bir veri setii orta oktası veya merkezi eğilim ölçüsü olduğu söyleebilir. Ortalamalar sadece katitatif değişkeler içi taımlaabilir. Kalitatif değişkeleri oralarla taımlamak gerekir. Geellikle kullaıla üç ayrı ortalama vardır. Bular sırasıyla aritmetik ortalama(mea), ortaca(medya) ve tepe değeri(mod)' dur. Şimdi, sırasıyla buları ele alalım ve asıl hesapladıklarıı görelim. Aritmetik ortalama Aritmetik ortalama, ele alıa verileri toplamlarıı toplam veri sayısıa bölümesi ile elde edilir. Bu durumu, sembollerle göstermeye çalışalım. Gözlemleri 1,...,, toplam gözlem sayısıı ve bu gözlemleri aritmetik ortalamasıı ile gösterelim. Toplam ifadesi (sigma) sembolü ile gösterildiğie göre, Aritmetik Ortalama: i1 i şeklide ifade edilebilir. i (bir'de 'e kadar verileri göstere bir idistir) 5

6 Örek , 3.7,.4, 0.3 verilerii ortalaması şeklidedir. Ortaca (Medya) Ortaca verileri orta oktasıı ifade ede bir değerdir. Verileri yarısı ortacada daha küçük, diğer yarısı ise daha büyük değere sahiptir. Sııfladırılmış verilerde ortacaı hesaplamasıda yapıla ilk iş verileri küçükte büyüğe sıralamaktır. Ortaca değerde bu sıraı tam ortasıda yer almaktadır. Örek: Gözlem değerleri; 8,,11,5,6 şeklide ise buları küçükte büyüğe sıralıışı;,5,6,8,11 şeklide olur. Bu sıralamada orta okta(ortaca) 6 'dır. Eğer gözlem değerlerii toplam sayısı çift ise gerçek bir ortaca yoktur. Bu durumda ortadaki iki değeri aritmetik ortalaması ortacayı verir. Örek: Gözlem değerleri; 8,,11,5,6,5 ise buları küçükte büyüğe sıralaışı,5,5,6,8,11 olur. Bu sıralamada ortaca 1/(5+6)= 5.5 olur. Yukardaki bu durum gözlem içi geelleirse ; değeri tek ise: Ortaca, (+1)/' ci değerdir. değeri çift ise: Ortaca, (/)'ci değer ile (/+1) ' ci değeri orta oktasıdır. Tepe Değeri(Mod) 6

7 Tepe değeri veri kümesi içide e yüksek frekasa sahip ola değerdir. Kesikli değişke içi yapıla frekas tablosuda da durum ayıdır. Bu frekas tablosuda e yüksek frekasa sahip değer tepe değeridir Özel Ortalamalar Aritmetik ortalama, ortaca ve tepe değerie ek olarak özel durumlar içi kullaıla değişik ortalamalar mevcuttur. Bu bölümde geometrik ortalama ve tartılı ortalama ele alıacaktır. Geometrik Ortalama Ora olarak ölçülmüş arta veya azala miktarları ortalamasıı bulmada kullaıla bir ortalamadır. adet değeri, geometrik ortalaması; 1,..., G.O olur. Ağırlıklı Ortalama Elde edile gözlemleri birbirie orala ağırlıkları farklı olduğu durumlarda kullaılması gerekli ola bir ortalamadır.,,..., k gözlem değeri ve her bir gözlem değerie karşı gele ağırlık w, w,..., ile gösterilmişse ağırlıklı ortalama; k i1 k i1 w i 1 şeklide ifade edilebilir. w i i w k 1 k Yaygılık Ölçüleri Ortalamalar, değişkei gözlee değerleri arasıda e yoğu oktayı ifade ederek araştırıcıya faydalı bilgiler verirler. Acak verileri dağılımıı taımlamak içi yeterli değildirler. 7

8 Değişim Aralığı Veri setide e bütük ve e küçük değerleri farkı olarak bilie bir değerdir. Uç değerlerde fazla etkileir. Değişim aralığıı basit bir şekilde hesaplaabilmesi bir avatajdır. Verilerdeki değişim hakkıda kaba bir fikir verir. Değişim aralığıı geel gösterimi; gibidir. D.A. X ma X mi Stadart Sapma ve Varyas E iyi yaygılık ölçüsüü stadart sapma olduğu uutulmamalıdır. Örek içi varyas hesaplaırke, ortalamada ayrılışları kareleri toplamı yerie (-1)' e bölüür. Bu durum popülasyo varyasıı daha iyi tahmi ettiği içi yapılır. Örek stadart sapma değeri S semolü ile gösterilir. Popülasyo'u stadart sapması ise, sembolü ile gösterilmektedir. Varyas ve stadart sapma; Varyas, S ( i ) ( 1) ( i ) Stadart sapma, S veya ( 1) S ( ) 1 formülleri ile hesaplaabilir. Soucu formülü kullaılması daha kolaydır. Birçok hesap makiasıda ortalama ve stadart sapma içi foksiyo tuşları vardır. Tuşlar geellikle ortalama ve stadart sapma içi sırasıyla, 1 şeklide gösterilmektedir. 8

9 puaları; Verile zeka testi pualarıı ele alarak stadart sapmalarıı bulalım. Söz kousu 70, 85, 90, 100, 110, 115, 130 Bu puaları toplamı i 700, kareleri toplamı ise, i 7450 gibi buluur. Bu souçları stadart sapma formülüde yerie koyalım. S i ( i ) 1 (700) olarak buluur. Zeka testi pualarıı ortalaması 100 pua olarak bulumuştu. O halde ortalama ve stadart sapma s şeklide gösterilebilir. Bu durum, bireyleri % 68.6' ı bu sıırlarda puaa sahip olduğu, %95.44' ü s 100 ( 0. 1), %99.73'ü ise 3s 100 3( 0. 1) aralığıda, geri kala çok az miktarı ise 4 s sıırları içide yer aldığı söyleebilir. Stadart Hata Popülasyou stadart sapması adire biliir. Bu edele, buu yerie örek stadart sapması kullaarak S, stadart hatayı, S S formülüde tahmi ederiz. Varyasyo Katsayısı Varyasyo katsayısı büyük bir kolaylık sağlar. Bu katsayı, dağılışı ortalamasıı yüzdesi gibi ifade edilebile dağılışı stadart sapmasıdır. Varyasyo katsayısı, 9

10 S VK 100 şeklide ifade edilir. POPÜLASYON DAĞILIŞLARI ( Y.ÇELİK) Popülasyo dağılışları istatistiği e öemli koularıda biridir. Bir zama aralığıda icelee olayları sözü edilecek bir dağılış düzeide dağıldığı görülür. Dağılışlar, olayları birbiriyle e kadar ilişkili olduğu ve aralarıda ardışık olarak bir sıralaışı olduğuu açıkça gösterir. Bu durum, ilgiç bir gözlemi ortaya koyar. İstatistik bu dağılımlarda yararlaarak asıl testler geliştirdiğii iceleyeceğiz. BİNOM DAĞILIŞI Biomial bir deey aşağıdaki özelllikleri gösterir: 1. Deey adet bezer deemede oluşur.. Her bir deeme iki souçta birisiyle souçlaır. Bularda birisi başarı diğeri başarısızlık olarak adladırılır. 3. Başarıı olasılığı p ile gösterilir ve bu değer deemede deemeye sabit kalır. 4. Deemeler birbiride bağımsızdır ve bir deemei soucu diğer hiç bir deemei soucuu etkilemez. 5. Rastgele değişkei deemede başarıı sayısı olarak kabul edilir. Biom dağılışı içi basit olarak kullaıla formül şu şekildedir. deemede istee olay sayısı, ve istee olayları herbirii olma olasılığı p ise ve olaylar birbiride bağımsız olarak meydaa geliyorsa; b (,, p ) ( ) p q! p q! ( )! 10

11 olarak gösterilebilir. Yukardaki formülde! sembolü faktöriyeldir.! faktöriyel olarak ifade edilir ve 1..3.,..., (-1).() çarpımlarıa eşittir. Öreği 4! = = 4 olarak hesaplaır. 0! ise 1 e eşittir. Biom dağılışıı parametreleri ise; Ortalama p S ta dartsapma pq olarak bilimektedir. Biom dağılışıı sayısal bir örek vererek açıklamaya çalışalım. Örek: Voleter olarak ilaç uygulamalarıa katıla geçleri % 40 ı programı tamamlayabilmektedir. Rastgele olarak 6 birey seçildiğide, buları yarısıda fazlasıı programı tamamlaması olasılığı edir? Çözüm : Altı bireyi yarısıda fazlası istediğide: p=1-0.40=0.60 P(>3) olasılığı ise; P(>3)=P( 4)=P(X=4)+ P(X=5)+ P(X=6) 6 4 = (0.6) (0.4) (0.6) (0.4) (0.6) (0.4) olur. 11

12 POİSSON DAĞILIŞI Poisso dağılışıı olasılık yoğuluk foksiyou; e P() veya alıdığıda! e P() olarak gösterilebilir.! Yukardaki formül kullaılarak 0,1,,3,4 gibi eder olayları olasılığı sırasıyla ; e,e e,! e, 3! 3 e, 4! 4,... şeklide buluabilir. Burada e =.718 doğal logaritma değeridir. Örek Yapıla bir araştırmaya göre, yaş erkek popülasyouda kalp hastalığı buluma olasılığıı bide 0.5 olarak bulumuştur. Babası kalp hastalığıda öle yai kalp hastalığı riski taşıya popülasyoda 1000 kişi seçerek bularda ki kalp hastalık oraıı ise bide üç olarak hesaplamıştır. Risk taşıya popülasyoda rastgele üç veya daha fazla kişii ölmesi olasılığıı bulalım. Öcelikle yaş grubudaki popülasyoda ölüm oraıı p= olduğuu ve 1000 hastaı seçilmeside dolayı =1000 olacağıı hatırlayalım. Bu durumda Poisso dağılışıı ortalaması;.p olur alıdığıda e değeri olarak hesaplaır. Bu değeri kullaarak sıfır, bir ve iki hastaya ait olasılıkları sırasıyla şu şekilde bulabiliriz. p(0) e p(1) e (0.607)(0.50) e (0.607)(0.5) p() 0.076! 1

13 olur. Bu üç olasılığı toplamı p(0)+p(1)+p() = olur. Bütü olasılık 1 e eşit olması gerektiği hatırlaırsa, seçile 1000 kişide üç veya daha çok hastaı olma olasılığı ; P( 3) 1 P(0) P(1) P() olur. = =0.013 buluur. Bu olasılık küçük bir olasılıktır. NORMAL ( GAUSSIAN ) DAĞILIŞ Normal Dağılış süreklidir ve ortalamaya göre simetrik bir dağılıştır. Ortalaması ( mu ) ve Stadart Sapması (sigma) ile gösterilir. Herbir ve ı alacağı değere göre değişik ormal dağılışlar elde edilir. Normal dağılışı olasılık dağılışı olması edeiyle eğri altıdaki ala bire eşittir. Normal dağılışı olasılık yoğuluk foksiyou ; 1 1 ( ) f () e içi Olasılık yoğuluk foksiyouda değeri 3.141, e ise.718 olduğu hatırlamalıdır. ise rastlatı değişkei olarak - ile + arasıda yer almaktadır. Dağılış simetrik bir dağılış olması edeiyle, alaı yarısı ortalamaı sağıda diğer yarısı ise ortalamaı soluda yer alır. Normal Dağılışı Özellikleri : 1. Normal dağılış sürekli değişkeleri bir dağılışıdır.. Ortalama, stadart sapması ve N deek sayısı ile belirtilir. 3. Ortalama ve stadart sapma birbirie bağlı değildir. Bular örek hacmi ile ilgilidir. 4. Normal dağılış eğrisi, ortalamaya göre simetriktir. Dağılışı sol yarısı ( 0.50 ), sağ yarısıa eşittir. 5. Normal dağılış eğrisi, - da başlayarak + a doğru dağılış gösterir. Bireyleri %68.6 sı 1S sıırları içide, % ü S sıırları içide, % ü 3S sıırları içide yer alır. Geri 13

14 kala pek öemsiz bir miktarı ise 4S sıırları dışıda yer aldığı içi bu edele bu sıırlar içeriside de % 100 yer alır deilmektedir. STANDART NORMAL DAĞILIŞ Ortalaması 0, stadart sapması 1 ola teorik ormal dağılışa stadart ormal dağılış adı verilir. Stadart ormal dağılışa z dağılışı da deir. Stadart ormal dağılışta, aritmetik ortalama ile herhagi bir z değeri arasıdaki olasılık değerleri z tablosuda toplamıştır. Yetişki kız bireylerde stadardize edilmiş IQ testi skorlarıı ortalaması 100, stadart sapması 13 olduğu bilidiğie göre, 110 ile 130 arasıda skora sahip kızları olasılığıı bulalım Kızları IQ testi dağılışıda 110 ve 130 skor arasıda kala ala Çözüm olarak değişke z ye döüştürülmede öce istee olasılığı P(110<<130) olduğuu hatırlamamız gerekir. Daha öce ifade edildiği gibi, değişkeii z ye döüştürlmesi gerekir. =110 değerii z ye döüştürelim, z =130 değeri ise; z olarak buluur. Bu durumda istee olasılık P(0.77<z<.31) şeklide belirtilebilir. Bu olasılık, z değerlerii vere Tablo B kullaılarak; P(0.77<z<.31) = P(0<z<.31)-P(0<z<0.77) = = 0.10 olur. = olur. 14

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

NİÇİN ÖRNEKLEME YAPILIR?

NİÇİN ÖRNEKLEME YAPILIR? İÇİ ÖREKEME YAPIIR? Zama Kısıdı Maliyeti Azaltma Hata Oraıı Azaltma Souca Ulaşma Hızı Doç.Dr. Ali Kemal ŞEHİRİOĞU Araş.Gör. Efe SARIBAY Örekleme Teorisi kousuu içide, Örekleme Tipleri populasyoda örek

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

Hipotez Testleri. Parametrik Testler

Hipotez Testleri. Parametrik Testler Hipotez Testleri Parametrik Testler Hipotez Testide Adımlar Bir araştırma sorusuu belirlemesi Araştırma sorusua dayaa istatistiki hipotezleri oluşturulması (H 0 ve H A ) Hedef populasyoda öreklemi elde

Detaylı

İstatistik Nedir? Sistem-Model Kavramı

İstatistik Nedir? Sistem-Model Kavramı İstatistik Nedir? İstatistik rasgelelik içere olaylar, süreçler, sistemler hakkıda modeller kurmada, gözlemlere dayaarak bu modelleri geçerliğii sıamada ve bu modellerde souç çıkarmada gerekli bazı bilgi

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI ÖRNEKLEME YÖNTEMLERİ Prof. Dr. Ergu Karaağaoğlu H.Ü. Tıp Fakültesi Biyoistatistik ABD ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI

Detaylı

TEMEL KAVRAMLAR GİRİŞ

TEMEL KAVRAMLAR GİRİŞ TEMEL KAVRAMLAR GİRİŞ İstatistik kelimesii kökei Almaca olup devlet alamıa gelmektedir. İstatistik kelimesi gülük hayatta farklı alamlarda kullaılmaktadır. Televizyoda bir futbol müsabakasıı izleye bir

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY Süleyma Demirel Üiversitesi Vizyoer Dergisi Suleyma Demirel Uiversity The Joural of Visioary İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA ÖZET Yrd. Doç. Dr. Halil ÖZDAMAR 1 İstatistiksel kalite kotrol

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler 3. Ders Parametre Tahmii Tahmi Edicilerde Araa Özellikler Gerçek düyada rasgelelik olgusu içere bir özellik ile ilgili ölçme işlemie karş l k gele X rasgele de¼gişkeii olas l k (yo¼guluk) foksiyou, F ff(;

Detaylı

LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I BAHAR DÖNEMİ ARASINAV SORULARI

LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I BAHAR DÖNEMİ ARASINAV SORULARI LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I 2015-2016 BAHAR DÖNEMİ ARASINAV SORULARI Tarih: 22/04/2016 Istructor: Prof. Dr. Hüseyi Oğuz Saat: 11:00-12:30

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

Öğrenci Numarası İmzası: Not Adı ve Soyadı

Öğrenci Numarası İmzası: Not Adı ve Soyadı Öğreci Numarası İmzası: Not Adı ve Soyadı SORU 1. a) Ekoomii taımıı yapıız, amaçlarıı yazıız. Tam istihdam ile ekoomik büyüme arasıdaki ilişkiyi açıklayıız. b) Arz-talep kauu edir? Arz ve talep asıl artar

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

MEKANİK TESİSATTA EKONOMİK ANALİZ

MEKANİK TESİSATTA EKONOMİK ANALİZ MEKANİK TESİSATTA EKONOMİK ANALİZ Mustafa ÖZDEMİR İ. Cem PARMAKSIZOĞLU ÖZET Düya çapıda rekabeti ö plaa çıktığı bu gükü şartlarda, e gelişmiş ürüü, e kısa sürede, e ucuza üretmek veya ilk yatırım ve işletme

Detaylı

KALİTE VE SÜREÇ İYİLEŞTİRME İÇİN MÜŞTERİ GERİ BİLDİRİMLERİNİN DEĞERLENDİRİLMESİ

KALİTE VE SÜREÇ İYİLEŞTİRME İÇİN MÜŞTERİ GERİ BİLDİRİMLERİNİN DEĞERLENDİRİLMESİ Altı Sigma Yalı Koferasları (9- Mayıs 8) KALİTE VE SÜREÇ İYİLEŞTİRME İÇİN MÜŞTERİ GERİ BİLDİRİMLERİNİN DEĞERLENDİRİLMESİ Serka ATAK Evre DİREN Çiğdem CİHANGİR Murat Caer TESTİK ÖZET Ürü ve hizmet kalitesii

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir:

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir: 1 BİLEŞİK FAİZ: Basit faiz hesabı kısa vadeli(1 yılda az) kredi işlemleride uygulaa bir metot idi. Ayrıca basit faiz metoduda her döem içi aapara sabit kalmakta olup o döem elde edile faiz tutarı bir soraki

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler...

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler... ÜİTE KAVRAMSAL ADIM Sayfa o.... 8 9 İstatistik, Veri ve Grafikler.... 8 Merkezi, Eğilim ve Yayılım Ölçüleri... 8 Açıklık, Çeyrekler Açıklığı........................................................ 8 Varyas

Detaylı

AÇIK ĐŞLETME BASAMAKLARI TENÖR KONTROLÜNDE JEOĐSTATĐSTĐKSEL TAHMĐN MODELĐ SEÇĐMĐ

AÇIK ĐŞLETME BASAMAKLARI TENÖR KONTROLÜNDE JEOĐSTATĐSTĐKSEL TAHMĐN MODELĐ SEÇĐMĐ Eskişehir Osmagazi Üiversitesi Müh.Mim.Fak.Dergisi C.XXI, S., 2008 Eg&Arch.Fac. Eskişehir Osmagazi Uiversity, Vol..XXI, No:, 2008 Makalei Geliş Tarihi : 2.02.2007 Makalei Kabul Tarihi : 23.03.2007 AÇIK

Detaylı

OKUL ÖNCESİ DÖNEM İŞİTME ENGELLİLERDE MÜZİK EĞİTİMİ İLE ÇOCUKLARIN GELİŞİM ÖZELLİKLERİ ÜZERİNE TERAPÖTİK BİR ÇALIŞMA

OKUL ÖNCESİ DÖNEM İŞİTME ENGELLİLERDE MÜZİK EĞİTİMİ İLE ÇOCUKLARIN GELİŞİM ÖZELLİKLERİ ÜZERİNE TERAPÖTİK BİR ÇALIŞMA Joural of Research i Educatio ad Teachig OKUL ÖNCESİ DÖNEM İŞİTME ENGELLİLERDE MÜZİK EĞİTİMİ İLE ÇOCUKLARIN GELİŞİM ÖZELLİKLERİ ÜZERİNE TERAPÖTİK BİR ÇALIŞMA Yard.Doç.Dr. Tüli Malkoç Marmara Üiversitesi

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ TEMEL KAVRAMLAR PARAMETRE: Populasyou sayısal açıklayıcı bir ölçüsüdür ve aakütledeki tüm elemalar dikkate alıarak hesaplaabilir. Aakütledeki tek bir elema dahi işlemi

Detaylı

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1 ĐÇI DEKILER Sayfa. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR.. Grş.. Đstatstk.3. Populasyo.4. Örek.5. Brm.6. Parametre.7. Değşke 3.8. Ver ve Ver Tpler 3.9. Toplama Sembolü 4 ÇALIŞMA PROBLEMLERĐ 6. VERĐLERĐ

Detaylı

NİĞDE İLİ RÜZGAR ENERJİSİ POTANSİYELİ WIND ENERGY POTENTIAL OF NIGDE PROVINCE

NİĞDE İLİ RÜZGAR ENERJİSİ POTANSİYELİ WIND ENERGY POTENTIAL OF NIGDE PROVINCE Niğde Üiersitesi Mühedislik Bilimleri Dergisi, Cilt 1, Sayı, (1), 37-47 NİĞDE İLİ RÜZGAR ENERJİSİ POTANSİYELİ Uğur YILDIRIM 1,* Yauz GAZİBEY, Afşi GÜNGÖR 1 1 Makie Mühedisliği Bölümü, Mühedislik Fakültesi,

Detaylı

ÜNİTE. İSTATİSTİĞE GİRİŞ Prof.Dr.Erkan OKTAY İÇİNDEKİLER HEDEFLER İNDEKSLER

ÜNİTE. İSTATİSTİĞE GİRİŞ Prof.Dr.Erkan OKTAY İÇİNDEKİLER HEDEFLER İNDEKSLER HEDEFLER İÇİNDEKİLER İNDEKSLER Basit İdeksler Bileşik İdeksler Tartısız İdeksler Tartılı İdeksler Mekâ İdeksleri İSTATİSTİĞE GİRİŞ Prof.Dr.Erka OKTAY İktisadi göstergeleri daha iyi yorumlayıp karşılaştırılabilecek

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

COĞRAFYADA Olasılık ve Đstatistik Ders Notları Doç. Dr. Hasan. ÇOMÜ, Fef, Coğrafya Bölümü, Çanakkale

COĞRAFYADA Olasılık ve Đstatistik Ders Notları Doç. Dr. Hasan. ÇOMÜ, Fef, Coğrafya Bölümü, Çanakkale COĞRAFYADA Olasılık ve Đstatistik Ders Notları Doç. Dr. Hasa ÇOMÜ, Fef, Coğrafya Bölümü, Çaakkale e-posta:tatli@comu.edu.tr 1 Giriş Doğa bilimleri ve/veya sosyal olaylarda karşılaştığımız problemleri birçoğuda,

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ 4. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ PARANIN ZAMAN DEĞERİ VE GETİRİ ÇEŞİTLERİ Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Paraı Zama Değeri Paraı Zama Değeri Yatırım

Detaylı

JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER

JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER Prof. Dr. Hüseyi Çelebi Ders Notları İstabul 014 Jeolojide matematik ve statistiksel yötemler 1 Ösöz Jeolojide matematik ve istatistiksel yötemler ders otları

Detaylı

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R İ H S A N T İ M U Ç İ N D O L A P C İ, Y İ Ğ İ T A K S O Y M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R P U B L I S H E R O F T H I S B O O K Copyright 13 İHSAN TİMUÇİN DOLAPCİ, YİĞİT AKSOY

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

Burçin Gonca OKATAN YÜKSEK LİSANS TEZİ İSTATİSTİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AĞUSTOS 2007 ANKARA

Burçin Gonca OKATAN YÜKSEK LİSANS TEZİ İSTATİSTİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AĞUSTOS 2007 ANKARA UYUM İYİLİĞİ İÇİN AMICO TEK-ÖRNEK TESTİ VE İĞER UYUM İYİLİĞİ TESTLERİ İLE KARŞILAŞTIRILMASI Burçi Goca OKATAN YÜKSEK LİSANS TEZİ İSTATİSTİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AĞUSTOS 7 ANKARA TEZ

Detaylı

İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM

İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM 17 Şubat 01 CUMA Resmî Gazete Sayı : 807 TEBLİĞ Bilgi Tekolojileri ve İletişim Kurumuda: İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM Amaç, Kapsam,

Detaylı

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi Makie Tekolojileri Elektroik Dergisi Cilt: 8, No: 4, 011 (75-80) Electroic Joural of Machie Techologies Vol: 8, No: 4, 011 (75-80) TEKNOLOJİK ARAŞTIRMALAR www.tekolojikarastirmalar.com e-issn:1304-4141

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ AKIŞKA BORUSU ve ATİLATÖR DEEYİ. DEEYİ AMACI a) Lüle ile debi ölçmek, b) Dairesel kesitli bir borudaki türbülaslı akış şartlarıda hız profili ve eerji kayıplarıı deeysel olarak belirlemek ve literatürde

Detaylı

Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması Güz Dönemi

Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması Güz Dönemi Mühedislik Fakültesi Edüstri Mühedisliği Bölümü Doç. Dr. Nil ARAS ENM4 Tesis Plalaması 6-7 Güz Döemi 3 Sisteme ekleecek tesis sayısı birde fazladır. Yei tesisler birbirleri ile etkileşim halide olabilirler

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ .4.26 5. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ Mekul Kıymet Yatırımlarıı Değerlemesi Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Temel Değerleme Modeli Mekul Kıymet Değerlemesi

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir.

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir. DENEY NO: 7 MOSFET ÖLÇÜMÜ ve UYGULAMALARI DENEYĐN AMACI: Bu deeyi amacı MOS elemaları temel özelliklerii, ve p kaallı elemaları temel uygulamalarıı öğretmektir. DENEY MALZEMELERĐ Bu deeyde 4007 MOS paketi

Detaylı

ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR

ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR 1) 60 sayısıı asal çarpalarıa ayrılmış şekli aşağıdakilerde hagisidir? A)..5 D)..5 B)..5 E)..5 C)..5 1.Yötem: 60 180 90 45 60..5 tir. 15 5 5 1.Yötem: Öğrecilerimizi1.Yötemde

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

3. Bölüm Paranın Zaman Değeri. Prof. Dr. Ramazan AktaĢ

3. Bölüm Paranın Zaman Değeri. Prof. Dr. Ramazan AktaĢ 3. Bölüm Paraı Zama Değeri Prof. Dr. Ramaza AktaĢ Amaçlarımız Bu bölümü tamamladıkta sora aşağıdaki bilgi ve becerilere sahip olabileceksiiz: Paraı zama değeri kavramıı alaşılması Faiz türlerii öğremek

Detaylı

ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI

ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI TMMOB Harita ve Kadastro Mühedisleri Odası 13. Türkiye Harita Bilimsel ve Tekik Kurultayı 18 22 Nisa 2011, Akara ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI

Detaylı

BEKLENEN DEĞER VE VARYANS

BEKLENEN DEĞER VE VARYANS BEKLEE DEĞER VE VARYAS.1. İadel ve adesz öreklemede tüm mümkü örekler.. Beklee değer.3. Varyas.4. İk değşke ortak dağılımı.5. İstatstksel bağımsızlık.6. Tesadüf değşkeler doğrusal kombasyolarıı beklee

Detaylı

TUTGA ve C Dereceli Nokta Koordinatlarının Gri Sistem ile Tahmin Edilmesi

TUTGA ve C Dereceli Nokta Koordinatlarının Gri Sistem ile Tahmin Edilmesi TMMOB Harita ve Kadastro Mühedisleri Odası, 5. Türkiye Harita Bilimsel ve Tekik Kurultayı, 5 8 Mart 5, Akara. TUTGA ve C Dereceli Nokta Koordiatlarıı Gri istem ile Tahmi Edilmesi Kürşat Kaya *, Levet Taşcı,

Detaylı

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer.

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer. SORU : AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI X raslat deikeii olas l k youluk foksiyou 8x, x f(x) = 0, ö.d olarak verilmitir. Bua göre 0< y içi Y = raslat deikeii X olaslk youluk

Detaylı

PSİKİYATRİ POLİKLİNİĞİNDE KONTROL SÜREKLİLİĞİNİ ETKİLEYEN FAKTÖRLERİN ARAŞTIRILMASI

PSİKİYATRİ POLİKLİNİĞİNDE KONTROL SÜREKLİLİĞİNİ ETKİLEYEN FAKTÖRLERİN ARAŞTIRILMASI Kriz Dergisi 3 (1-2): 133-137 PSİKİYATRİ POLİKLİNİĞİNDE KONTROL SÜREKLİLİĞİNİ ETKİLEYEN FAKTÖRLERİN ARAŞTIRILMASI Ayça GÜRDAL*, Hasa MIRSAL" GİRİŞ VE AMAÇ Ayakta tedavi sürekliliği, diğer tıp dallarıda

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

t Dağılımı ve t testi

t Dağılımı ve t testi t Dağılımı ve t teti Studet t Dağılımı Küçük öreklerde (

Detaylı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı Damızlık Değeri, geotipik değer, allel frekasları Aki Pala, aki@comu.edu.tr ttp://members.comu.edu.tr/aki/ Damızlık değeri esabı µ Ökkeş =800 gr gülük calı ağırlık Sürü A Sürü µ Döller µ 500gr 700 DD esabı

Detaylı

PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK...111. Konu Özeti...111. Testler (1 11)...115. Yazılıya Hazırlık Soruları (1 2)...

PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK...111. Konu Özeti...111. Testler (1 11)...115. Yazılıya Hazırlık Soruları (1 2)... ÜNİTE PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK Bölüm PERMÜTASYON, KOMBİNASYON BİNOM VE OLASILIK! = (...... ) PERMÜTASYON, KOMBİNASYON BİNOM, OLASILIK VE İSTATİSTİK PERMÜTASYON, KOMBİNASYON,

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH ORTALAMA ÖLÇÜLERİ Ünite 6 Öğr. Gör. Ali Onur CERRAH Araştırma sonucunda elde edilen nitelik değişkenler hakkında tablo ve grafikle bilgi sahibi olunurken, sayısal değişkenler hakkında bilgi sahibi olmanın

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI:

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: www.testhae.com SAYILAR DERS NOTLARI Bölüm / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: -RAKAM -SAYI -DOGAL SAYILAR -SAYMA SAYILARI -ÇFT DOGAL SAYILAR -TEK DOGAL SAYILAR -ARDISIK DOGAL SAYILAR -ARDISIK ILK

Detaylı

Analiz II Çalışma Soruları-2

Analiz II Çalışma Soruları-2 Aaliz II Çalışma Soruları- So gücelleme: 04040 (I Aşağıdaki foksiyoları (ilgili değişkelere göre türevlerii buluuz 7 cos π 8 log (si π ( si ta e 9 4 5 6 + cot 0 sec sit t si( e + e arccos ( e cos(ta (II

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

Sürekli Rastsal Değişkenler

Sürekli Rastsal Değişkenler Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım

Detaylı

Obje Tabanlı Sınıflandırma Yöntemi ile Tokat İli Uydu Görüntüleri Üzerinde Yapısal Gelişimin İzlenmesi

Obje Tabanlı Sınıflandırma Yöntemi ile Tokat İli Uydu Görüntüleri Üzerinde Yapısal Gelişimin İzlenmesi Obje Tabalı Sııfladırma Yötemi ile Tokat İli Uydu Görütüleri Üzeride Yapısal Gelişimi İzlemesi İlker GÜNAY 1 Ahmet DELEN 2 Mahmut HEKİM 3 1 Gaziosmapaşa Üiversitesi, Mühedislik ve Doğa Bilimleri Fakültesi,

Detaylı

OKUL ÖNCESİ DÖNEMİ İŞİTME ENGELLİ ÇOCUKLARDA MÜZİK EĞİTİMİ 3

OKUL ÖNCESİ DÖNEMİ İŞİTME ENGELLİ ÇOCUKLARDA MÜZİK EĞİTİMİ 3 The Joural of Academic Social Sciece OKUL ÖNCESİ DÖNEMİ İŞİTME ENGELLİ ÇOCUKLARDA MÜİK EĞİTİMİ 3 ÖET Ece KARŞAL 1 Tüli MALKOÇ 2 Bu çalışmada, Okul öcesi döem işitme egelli çocuklara müzik eğitimi verilmiş

Detaylı

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2 Açıklama Sorusu : V kayışlar, ayı mekaizma büyüklükleride düz kayışlara göre daha yüksek dödürme mometlerii taşıyabildikleri bilimektedir. V kayışları düz kayışlara göre gözlee bu üstülüğü sebebi "kama

Detaylı

VII. OLİMPİYAT SINAVI. Sınava Katılan Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR k polinomu ( )

VII. OLİMPİYAT SINAVI. Sınava Katılan Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR k polinomu ( ) Sıava Katıla Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR 2 997. ( )( )( ) ( ) ( ) k x x x... k. x... 997. x poliomu ( ) a x a x... a x, a 0 ve k < k

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması . Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve

Detaylı

AFYONKARAHİSAR İLİ YENİLENEBİLİR ENERJİ POTANSİYELİ. Ziya DEMİRKOL 1 Mehmet ÇUNKAŞ 2

AFYONKARAHİSAR İLİ YENİLENEBİLİR ENERJİ POTANSİYELİ. Ziya DEMİRKOL 1 Mehmet ÇUNKAŞ 2 S.Ü. Müh. Bilim ve Tek. Derg., c.2, s.1, 2014 Selcuk Uiv. J. Eg. Sci. Tech., v.2,.1, 2014 ISSN: 2147-9364 (Elektroik) AFYONKARAHİSAR İLİ YENİLENEBİLİR ENERJİ POTANSİYELİ Ziya DEMİRKOL 1 Mehmet ÇUNKAŞ 2

Detaylı