Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım"

Transkript

1 Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu vidalarda N= adet satı aldığıda aç taesii edi üretimide ullaabileceğii belirleme amacıyla, 3,5 cm li vidalar yığııda rasgele seçtiği =5 vidaı boylarıı ölçere aşağıdai değerleri elde etmiştir. Çielge. Bir Fabriaı Üretimide Rasgele Seçile 5 Vidaı Boyları.(cm) No Boy(cm) No Boy(cm) No Boy(cm) No Boy(cm) No Boy(cm) Piyasadai tüm 3,5cm stadardıdai vidaları oluşturduğu yığıı içide boyları 3,4 cm ile 3,7 cm aralığıda olaları oraı, vidaları boylarıa ilişi rasgele bir değişei gösterme üere, O= O (3, 4 < < 3,7) () ise, N tae vidada üreticii edi üretimide ullaabilecelerii sayısıı, S = O N () olacağı açıtır. O oraıı bulabilme içi rasgele değişeii olasılı dağılımıı belirlemesi gereir. Ham Verileri Sııfladırılması ve Histogramı yığııı olasılı dağılımıı 5 birimli bu öreğe ilişi verilerde ögörebilme içi, öre verileri Çielge. de olduğu gibi sııfladırılara Şeil. dei histogram oluşturulabilir.

2 Çielge. 5 vidaı boylarıa göre çolu çielgesi. Çivi Boyu (cm) Çetele Çivi Sayısı 3, < 3, 3 3, < 3,4 6 3,4 < 3,6 7 3,6 < 3,8 5 3,8 < 4, 4 Çivileri Oraı. Toplam 5. Şeil 5 vidaı boylarıa ilişi histogram. f, Çolu , Boy(cm) Normal Dağılım Şeil. dei histogram, 5 vidaı boylarıa göre dağılımı simetri ve uçlara doğru heme heme ayı orada aaldığıı göstermetedir. Bua göre, tüm 3,5cm li stadart boydai vidalarda oluşa yığıdai vidaları boy öelliğii simgeleye i, olasılı yoğulu fosiyou, f( ) = e, < < π (3)

3 ola, ormal dağılımlı rassal bir değişe olduğu varsayılabilir. Şeil. de gösterile alaa de gele, ortalamalı ve değişeli, ormal bir ~ N (, ) değişeii, [a,b] aralığıda olma olasılığıı, b O ( a< < b) = e d (4) π a olacağı açıtır. Dolayısıyla, vida boylarıı ormal dağıldığı varsayımıa dayaara, () dei ora, (4) dei taımlamaya göre, 3,7 3,4 O= O (3, 4 < < 3,7) = e d π (5) biçimide hesaplaabilir. Şeil. a baralığıdai ormal eğri altıda O ( a< < b) gele ala. değerie arşılı ( < < ) O a b a b

4 Aritmeti Ortalama ve Değişe Aca, (5) dei tümlevi sayısal değerii bulabilme içi, rastsal değişeie ilişi ormal dağılımı, ve öteölçüm değerlerie de gere olduğu açıtır. Sırasıyla yığı ortalaması ve değişesie arşılı gele ve öteölçüm değerleri, yığıı temsil ede birimli { },,, öre verileride, ˆ = i (6) i= ˆ s = ( ) i (7a) i= veya ortalamada farlar yerie doğruda gölem değerlerii areleri alıara, ˆ s = i i i i + = i= i= + i= i= = i i + = i= i= (7b) biçimide tahmi edilebilir. Veri sayısı a olduğuda, ortalama ve değişe doğruda (6) ve (7) ye göre hesaplaabilir. Veri sayısı ço olduğuda, ardışı olara alt ve üst sıırları esişmeye K tae aralıta sııfladırılara, ıcı sııftai verileri sılı sayısı olma üere, aritmeti ortalama ve değişe, f ˆ = f = K K = = f ve orta değeri ve (8) K ˆ s = f ( ) (9) = formüllerie göre hesaplaır. Aritmeti ortalama ve değişe hesabıda, sııfladırılmamış verilere uygulaa (6) ve (7) ile, sııfladırılmış verilere uygulaa (8) ve (9) formüllerii verdiği değerler arasıdai far ço adır. Sııf aralılarıdai veriler e adar baışımlı ise, bu far o adar aalır. Verileri sııfladırılmasıda bilgi aybıı e aa idirece urallara uyma oşuluyla uygulamada, bir veri ümesii betimleyici aritmeti ortalama, değişe ve beeri ölçütleri sııfladırılmış verilerde hesaplaması yeğleir.

5 Çielge. dei verileri ortalama ve değişesii, sııfladırılmamış ve sııfladırılmış verilere göre asıl hesaplaacağı Çielge.3 ve Çielge.4 de gösterilmiştir. Çielge.3 Sııfladırılmamış verileri ortalama ve stadart sapmasıı hesaplaması.. i i i ( ) 3, -,4976, ,6 3, -,3976, ,67 3 3,7 -,3376,397376, ,5 -,576, , ,3 -,76,439776,89 6 3,3 -,876,359376,4 7 3,33 -,776,35476, ,36 -,476,78576, ,37 -,376,893376,3569 3,4 -,976,95576,68 3,43 -,776,676,7649 3,48 -,76,7676,4 3 3,49 -,76,3976,8 4 3,5,4,576,3 5 3,53,4,576, ,57,64,389376, ,6,94,853776,96 8 3,66,54,3576 3, ,69,84, ,66 3,7,4, ,8384 3,78,74,7476 4,884 3,8,34, ,56 3 3,89,384, ,3 4 3,9,44, ,88 5 3,99,484, ,9 Toplam 87,69, ,557 Ortalama = 87,69 = 3,576 5 Değişe ( )( ) ˆ s = 39,557-(5 3,576 ) =,57456=, i i

6 Çielge 4 5 vidaı boylarıa ilişi aritmeti ortalama ve stadart ayrılışı sııfladırılmış verilerde hesaplaması. f f f ( ) f ( ) 3, < 3, 3. 3, < 3, ,4 < 3, ,6 < 3, ,8 < 4, 4.6 3, 9,3 -,48,66464, ,3 9,8 -,8,4364, ,5 4,5 -,8,64,448 3,7 8,5,9,36864,843 3,9 5,6,39,53664,64656 Toplam 5. 87,7,5584 K = = = 3,58 5 Ortalama ˆ f ( 87,7) Değişe i i= = ˆ s = i f i= = = (,5584) =, K ( ) ( )

7 Stadart Normal Eğri Altıdai Alalar Uygulamada ço sı arşılaşıla (5) deie beer belirli tümlevleri hesaplamasıda, her hagi bir ormal değişei Z = () biçimide, ortalaması ve varyası ola stadart ormal bir Z ~ N (,) değişeie döüştürülere, EK dei Stadart Normal Eğri Altıdai Alalar Çielgesi de yararlaılır. Bua göre, Şeil.3 tei stadart ormal eğri altıdai alaa de gele (5) dei ora, 3,4 3,58 3,7 3,58,8,9 O= O (3,4 < < 3,7) O ( < Z < = O,65,65 < Z <, 55, 55 = O (, 4 < Z <,8 ) = O ( < Z <, 435) + O ( < Z <,759) biçimide taımlaabilir ve Stadart Normal Eğri Altıdai Alalar Çielgesi de O ( < Z <, 435),68 O ( < Z <, 759), 734 değerleri yerie oara, sö ousu olasılı, O= O (3, 4 < < 3, 7) =,68 +, 734 =, 436, 44 olara elde edilir. Şeil.3 Z ~ N(;) dağılımıa ilişi stadart ormal eğri altıdai O (, 4,8) değerie arşılı gele alaa de ola, ~ N (3,58;,65) dağılımıa ilişi ormal eğri altıda O ( 3, 4 3,7 ) değerie arşılı gele alaı hesaplaması. -,4,8 3,4 3,58 3,7 Bu bilgileri ışığıda artı, üreticii piyasadai bu vidalarda N= adet satı alması durumuda, S, 44 = 44 adetii edi üretimide ullaabileceği soucua varılır.

8 Bir Yığıı Belee Değerie İlişi İstatistisel Çıarım Tür Stadartlar Estitüsü(TSE) stadartlarıa göre üretilece ürüleri her hagi bir öelliğie ilişi stadart; α, stadart ormal eğrii sağ uyru altıdai α olasılığıa de gele stadart ormal değer olma üere, yığııdai birimleri %( α) adarıı, ± () α aralığıda olması biçimidedir. Sö ousu stadarda uygu olduğu öe sürüle bir ürüü, belirli aralılarla, belirlee stadardı sağlayıp sağlamadığı TSE tarafıda deetleir. Bu deetimlerde, sö ousu stadarda uygu olduğu öe sürüle yığıı temsil ede birimli rasgele bir öreği betimleye aritmeti ortalama ve değişe, alıa öreği, TSE i belirlediği stadarda uygu bir yığıda gelip gelmediği yoluda verilece istatistisel arar içi aıt olara ullaılır. Bu tür istatistisel bir arar içi, yığıı belee değerie ilişi %( α) li güve aralığı belirleere, yığıı belee değerii tahmii ola öre ortalamasıı bu aralı içie düşüp düşmediğie baılır. Öre ortalaması belirlee güve sıırları arasıda ise, %( α) güvele ürüü stadardı sağladığı ; değilse, sağlamadığı ararıa varılır. Böyle bir istatistisel arar, gerçete ürü stadardı sağladığı halde, eldei aıtlara göre, stadardı sağlamadığı yoluda yalış bir arar verme risi %α düeyide tutulara alımış olur. Bir Yığıı Belee Değerie İlişi Güve Aralığı Bir yığııda birimli rasgele alıaca öreleri ortalamaları da, örete öreğe değişi değerler alabilece bir rasgele değişe olup, Mere Erey Teoremi e göre olasılı dağılımı, ~ N, (3) biçimide taımlıdır. birimli öre ortalaması i, ( α ) olasılıla, Şeil.4 tei gibi, e göre baışımlı olara alabileceği değerlere ilişi aralığı alt ve üst sıırları, stadart ormal

9 Z = (4) değişeii α olasılıla daha büyü yada daha üçü olacağı stadart ormal değer α olma üere, O < Z < = O < < ( ) α α α α bağıtısıa göre taımlaır. = O + < + < + α α = O α < < + α = α (5) (5) e göre, ortalaması ve değişesi ola bir yığııda rasgele seçile birimli bir öreği ortalamasıı, ( α ) olasılıla ± α (6) aralığıda olması beleir. Şeil.4 Ortalaması ve değişesi ve ola bir yığıda rasgele seçilece birimli öre ortalaması α lı güve aralığı. i ( ) α α α - α α α + α

10 Çielge. dei verileri, %99 oraıda 3,5±,5cm aralığıda olma stadardıı sağlaya vidalara mı ilişi olduğu, öre ortalaması = 3,58 değerii, = 3,5,5,5 =, 5 =,9 ve,58 = 5 değerleri, (6) da yerlerie oara buluaca %99 lu güve aralığıı alt ve üst sıırları arasıda olup olmadığıa baılara belirleir. = 3,58,,9 3,5 ±,58 3,5 ±, 5 verileri sö ousu stadardı sağladığı söyleebilir. Soru: Güve düeyi %95 olsaydı, verilece arar e olurdu? aralığıda olduğuda, %99 güvele, Çielge. dei Diat edilirse, buraya adar %( α) lı güve aralığı oluşturulure, yığıı belee değeri ve değişesie ilişi değerleri doğru olduğu varsayılara, { },,, öreğii yığııda mı geldiği sorusuu yaıtladırılmasıda ullaıldı. Eğer amacımı, yalıca yığııı belee değerii tahmi etme ise, (5) dei güve aralığı (7) dei biçimde taımlaara, örete hesaplaa aritmeti ortalamaya göre yığıı belee değeri içi bir tahmi aralığı belirleebilir. O < Z < = O < < ( ) α α α α = O < < α α = O ( ) α > ( )( ) > ( ) α = O α < < + α = α (7)

11 Aca (7) ye göre oluşturulaca tahmi aralığıı yorumuda diatli olma gereir. (7) dei aralığı alt ve üst sıırları rassal olduğuda, -α olasılığı; yığıı belee değerii belirlee tahmi sıırları içide olma olasılığı değil, öre çapı ayı ola örelerde beer biçimde oluşturulaca tahmi aralılarıda yığıı belee değerii içerece olaları oraıı, oluşturula tahmi aralığı sayısı sosua gidere yaısayacağı oradır. Bua göre, yuarıda verile öre içi,,9 3,58 ±,58 3,58 ±, 5 tahmi aralığıı, yığıı gerçe belee değerii içerme şası %99 dur deir. Bir Yığıı Belee Değerie İlişi Deece Sıaması Yuarıdai örete olduğu gibi, bir yığıı belee değerie ilişi güve aralığı oluşturara verdiğimi arar, yığıı belee değeri üerie urulu D : = * D : * (8) biçimide birbirii tümleyei ola ii öermede birii doğru abul edileceği istatistisel bir arardır. Bu tür ararlarda, arar vericii arşılaşabileceği dört olası durum, ve bu durumları gerçeleşme olasılıları aşağıda öetlediği gibidir. Gerçete D öermesi Karar verici D öermesii Doğru olabilir Yalış olabilir Kabul edebilir Red edebilir Güve düeyi α I.Tür Hata α, Alamlılı düeyi II.Tür Hata β Sıamaı gücü β α olasılığı, gerçete D öermesi doğruye, eldei aıtlara göre D ı red etme (I.Tür Hata) risi; β olasılığı ise, gerçete D öermesi yalışe, eldei aıtlara göre D ı abul etme (II.Tür Hata) risidir. (8) dei gibi bir deecei sıamasıda, D öermesii gerçete doğru olduğu varsayımı altıda, I.Tür Hata risi, α göe alıara, yığııda rasgele

12 birimli öre verileride elde edile aıta göre arar verilir. Dolayısıyla, (8) dei gibi bir istatistisel bir deece sıaması souda, D öermesii abul edilmiş olması, β olasılıla; red edilmiş olması da, α olasılıla yalış bir arar olabilir. İstatistisel itelili olmaya ararları ise, esel olara arar hata rislerii bilere alımış olmaları sö ousu değildir. Bir yığıı belee değerie ilişi (8) dei gibi bir deecei sıamasıda, (6) dai güve aralığıı alt ve üst sıırlarıı hesaplama yerie, öre ortalamasıı h * = (9) biçimide hesaplaaca stadart değerii, Şeil.4 dei, düşmediğie baılır. α α aralığıa düşüp Alıa vida öreğii, stadart yığıda gelip gelmediğie arar verme, α =, alamlılı düeyide, D : = 3,5 D : 3,5 deecesii, = 5, =, 9, = 3,58 bilgileri doğrultusuda sıamatır. Stadartlaştırılmış h * 3,58 3,5 = = =,,9 5 öre ortalamasıı mutla değeri, etei Stadart Normal Eğri Altıdai Alalar çielgesii alalar bölümüdei,,,5 =, 495 değerie arşılı gele,,5 =,58 değeride üçü olduğu içi, %99 güvele, alıa öreği stadart yığıda geldiği ararıa varılır.

13 EKLER Stadart Normal Eğri Altıdai Alalar Stadart Normal Eğri Altıdai Alalar φ( ) = e d π

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı) 3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

6 (saatte 6 müşteri aramaktadır), servis hızı ise. 0.6e

6 (saatte 6 müşteri aramaktadır), servis hızı ise. 0.6e İST KUYRUK TEORİSİ ARASIAV SORULARI ( MAYIS ). Bir baaı müşteri hizmetleride te işi hizmet vermetedir. Müşteriler ortalama daiada bir arama yapmatadır bua arşı ortalama servis süresi ise daia sürmetedir.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI

WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI VII. Ulusal Temiz Eerji Sempozyumu, UTES 008 7-9 Aralı 008, İstabul WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI Seyit Ahmet AKDAĞ, Öder GÜLER İstabul Tei Üiversitesi, Eerji

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1)

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1) TÜMEVARIM Matematite ulladığımız teoremleri ispatlamasıda pe ço ispat yötemi vardır. Özellile doğal sayılar ve birço ouda ispatlar yapare tümevarım yötemii sıça ullaırız. Tümevarım yötemii P Öermesii doğruluğuu

Detaylı

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise YTÜ-İktisat İstatistik II Örekleme ve Öreklem Dağılımları BASİT RASSAL ÖRNEKLEME N tae ese arasıda taelik bir öreklem seçilmesii istediğii düşüelim. eseli olaaklı her öreklemi seçilme şasıı eşit kıla seçim

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ TEMEL KAVRAMLAR PARAMETRE: Populasyou sayısal açıklayıcı bir ölçüsüdür ve aakütledeki tüm elemalar dikkate alıarak hesaplaabilir. Aakütledeki tek bir elema dahi işlemi

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

İstatistiksel Proses Kontrol - Seminer Notları -

İstatistiksel Proses Kontrol - Seminer Notları - MÜSEM - KALİTE YÖNETİCİLİĞİ UZMANLIK SERTİFİKA PROGRAMI 06 Nisa 00 İstatistisel Proses Kotrol - Semier Notları - Marmara Üiversitesi, Tei Eğitim Faültesi e-posta eoer@marmara.edu.tr GSM 053 910016 - Telefo

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açı Ders Malzemeleri http://ocw.mit.edu Bu materyallerde alıtı yapma veya Kullaım Koşulları haıda bilgi alma içi http://ocw.mit.edu/terms veya http://www.aciders.org.tr adresii ziyaret ediiz. 18.102

Detaylı

İstatistiksel Tahminleme. Güven Seviyesi. Verilerin yayılımı ( Örnek hacmi X = X / n Güven seviyesi (1 - )

İstatistiksel Tahminleme. Güven Seviyesi. Verilerin yayılımı ( Örnek hacmi X = X / n Güven seviyesi (1 - ) 04.05.0 İtatitikel Tahmileme İTATİTİKEL TAHMİNLEME VE YORUMLAMA ÜRECİ GÜVEN ARALIĞI Nokta Tahmii Populayo parametreii tek bir tahmi değerii verir μˆ σˆ p Pˆ Aralık Tahmii Populayo parametreii tahmi aralığıı

Detaylı

NİÇİN ÖRNEKLEME YAPILIR?

NİÇİN ÖRNEKLEME YAPILIR? İÇİ ÖREKEME YAPIIR? Zama Kısıdı Maliyeti Azaltma Hata Oraıı Azaltma Souca Ulaşma Hızı Doç.Dr. Ali Kemal ŞEHİRİOĞU Araş.Gör. Efe SARIBAY Örekleme Teorisi kousuu içide, Örekleme Tipleri populasyoda örek

Detaylı

biliniyordu: Eğer 2 a 1 bir asal sayıysa, o zaman S = 2 a 1 (2 a 1) yetkin bir sayıdır. Bunu toplayalım: O halde

biliniyordu: Eğer 2 a 1 bir asal sayıysa, o zaman S = 2 a 1 (2 a 1) yetkin bir sayıdır. Bunu toplayalım: O halde SAYILAR DÜNYASINDA GEZİNTİLER H. Turgay Kaptaoğlu Bu yazıda deri teorilere imede sayıları çoğulula da tamsayıları ilgiç özellileride bahsedeceğiz. Bu özellileri hiçbiri yei değil; yüzyıllar, hatta biyıllar

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkaı : Yrd.Doç.Dr. İsmail YILDIZ ARAŞTIRMADA PLANLAMA VE ÇÖZÜMLEME (03-09 Ocak 014 Y.ÇELİK) Araştırma Süreci (The research

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı

Explanation: Number of bracelets made with 2 blue, 2 identical red and n identical black beads.

Explanation: Number of bracelets made with 2 blue, 2 identical red and n identical black beads. http://oeis.org/a - (,,) Origial wor by Ata Aydi Uslu Hamdi Gota Ozmeese.. Explaatio: Number of bracelets made with blue, idetical red ad idetical blac beads. Usage: Chemistry: CROSSRES: A85 A989 A989

Detaylı

Ele Alınacak Ana Konular. Hafta 3: Doğrusal ve Zamanla Değişmeyen Sistemler (Linear Time Invariant, LTI)

Ele Alınacak Ana Konular. Hafta 3: Doğrusal ve Zamanla Değişmeyen Sistemler (Linear Time Invariant, LTI) 5..5 Ele Alıaca Aa Koular Ayrı-zama işaretleri impuls dizisi ciside ifade edilmesi Ayrı-zama LTI sistemleri ovolüsyo toplamı gösterilimi Hafta 3: Doğrusal ve Zamala Değişmeye Sistemler (Liear Time Ivariat

Detaylı

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY Süleyma Demirel Üiversitesi Vizyoer Dergisi Suleyma Demirel Uiversity The Joural of Visioary İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA ÖZET Yrd. Doç. Dr. Halil ÖZDAMAR 1 İstatistiksel kalite kotrol

Detaylı

D( 4 6 % ) "5 2 ( 0* % 09 ) "5 2

D( 4 6 % ) 5 2 ( 0* % 09 ) 5 2 3 BÖLÜM KAALI SİSEMLEDE EMODİNAMİĞİN I KANUNU I Yasaya giriş Birii bölümde eerjii edilide var veya yo edilemeyeeği vurgulamış, sadee biçim değiştirebileeği belirtilmişti Bu ile deeysel souçlara dayaır

Detaylı

t Dağılımı ve t testi

t Dağılımı ve t testi t Dağılımı ve t teti Studet t Dağılımı Küçük öreklerde (

Detaylı

BÖLÜM II. Asal Sayılar. p ab ise p a veya p b dir.

BÖLÜM II. Asal Sayılar. p ab ise p a veya p b dir. BÖLÜM II Asal Sayılar Taım. p > tam sayısıı de ve ediside başa bölei yosa bu sayıya asal sayı deir. de büyü asal olmaya sayılara da bileşi sayı deir. Teorem. Eğer p bir asal sayı ve p ab ise p a veya p

Detaylı

Burçin Gonca OKATAN YÜKSEK LİSANS TEZİ İSTATİSTİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AĞUSTOS 2007 ANKARA

Burçin Gonca OKATAN YÜKSEK LİSANS TEZİ İSTATİSTİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AĞUSTOS 2007 ANKARA UYUM İYİLİĞİ İÇİN AMICO TEK-ÖRNEK TESTİ VE İĞER UYUM İYİLİĞİ TESTLERİ İLE KARŞILAŞTIRILMASI Burçi Goca OKATAN YÜKSEK LİSANS TEZİ İSTATİSTİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AĞUSTOS 7 ANKARA TEZ

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır.

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır. RASGELE SÜREÇLER Eğer bir büyülüğün her t anında alacağı değeri te bir şeilde belirleyen matematisel bir ifade verilebilirse bu büyülüğün deterministi bir büyülü olduğu söylenebilir. Haberleşmeden habere

Detaylı

t Dağılımı ve t testi

t Dağılımı ve t testi r. Mehme Akaraylı ağılımı ve ei oç. r. Mehme AKSARAYLI.E.Ü. İ.İ.B.F. EKONOMETRİ BÖLÜMÜ mehme.akarayli@deu.edu.r Sude ağılımı Küçük öreklerde (

Detaylı

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI ÖRNEKLEME YÖNTEMLERİ Prof. Dr. Ergu Karaağaoğlu H.Ü. Tıp Fakültesi Biyoistatistik ABD ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI

Detaylı

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler...

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler... ÜİTE KAVRAMSAL ADIM Sayfa o.... 8 9 İstatistik, Veri ve Grafikler.... 8 Merkezi, Eğilim ve Yayılım Ölçüleri... 8 Açıklık, Çeyrekler Açıklığı........................................................ 8 Varyas

Detaylı

TEMEL KAVRAMLAR GİRİŞ

TEMEL KAVRAMLAR GİRİŞ TEMEL KAVRAMLAR GİRİŞ İstatistik kelimesii kökei Almaca olup devlet alamıa gelmektedir. İstatistik kelimesi gülük hayatta farklı alamlarda kullaılmaktadır. Televizyoda bir futbol müsabakasıı izleye bir

Detaylı

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve BÖLÜM III Kogrüaslar Taım 3. N sabit bir sayı, a, b Z olma üzere, eğer ( a b) ise a ile b, modülüe göre ogrüdür deir ve a b(mod ) şelide gösterilir. Asi halde, yai F ( a b) ise a ile b ye modülüe göre

Detaylı

Gibi faktörlerin alt kümlerindeki kritik faktörler (mali ve operasyonel) dikkate alınarak her bir yöntem için ayrı ayrı olmak üzere ;

Gibi faktörlerin alt kümlerindeki kritik faktörler (mali ve operasyonel) dikkate alınarak her bir yöntem için ayrı ayrı olmak üzere ; KULLANILACAK SOFTWARE: AVRA a) Geel Açılama Uzmaları özel değerledirmeleri ve firmaları prestijleri temel olmala beraber, dereceledirme çalışmalarımızda, eoomi ve matemati bilimlerii birlite ürettiği teorilerde

Detaylı

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz;

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz; Öre A. Bezer pe 40 güç ayağıı dayama süreler aşağıda gbdr. Geşlelmş reas ablosu oluşuruuz;, 4,7 3, 3,4 3,3 3, 3,9 4, 3,4 4, 3,8 3,7 3,6 3,8 3,7 3,0,,6 3, 3,,6,9 3, 3,0 3,3 4,3 3, 4, 4,6 3, 3,3 4,4 3,9,9

Detaylı

İstatistik Nedir? Sistem-Model Kavramı

İstatistik Nedir? Sistem-Model Kavramı İstatistik Nedir? İstatistik rasgelelik içere olaylar, süreçler, sistemler hakkıda modeller kurmada, gözlemlere dayaarak bu modelleri geçerliğii sıamada ve bu modellerde souç çıkarmada gerekli bazı bilgi

Detaylı

İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM

İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM 17 Şubat 01 CUMA Resmî Gazete Sayı : 807 TEBLİĞ Bilgi Tekolojileri ve İletişim Kurumuda: İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM Amaç, Kapsam,

Detaylı

tanımlanabilir. Bu nedenle olasılık konusu küme teorisini bir araç olarak kullanmaktadır.

tanımlanabilir. Bu nedenle olasılık konusu küme teorisini bir araç olarak kullanmaktadır. . OLASILIK TEORİSİ İstatistisel araştırmaları temel oularıda biri soucu öcede esi olara bilimeye bazı şasa bağlı olayları (deemeleri) olası tüm mümü souçlarıı hagi sılıla ortaya çıtığıı belirleyebilmetir.

Detaylı

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir.

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir. 203-204 Bahar REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyo Basit doğrusal regresyo modeli: y i = β 0 + β x i + ε i Modeli matris gösterimi, y i = [ x i ] β 0 β + ε i şeklidedir. x y 2 gözlem

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ .4.26 5. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ Mekul Kıymet Yatırımlarıı Değerlemesi Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Temel Değerleme Modeli Mekul Kıymet Değerlemesi

Detaylı

MAK312 ÖLÇME ve DEĞERLENDİRME OTOMATİK KONTROL LABORATUARI 1. Elektriksel Ölçümler ve İşlemsel Kuvvetlendiriciler

MAK312 ÖLÇME ve DEĞERLENDİRME OTOMATİK KONTROL LABORATUARI 1. Elektriksel Ölçümler ve İşlemsel Kuvvetlendiriciler MAK32 ÖLÇME ve DEĞELENDİME OTOMATİK KONTOL LABOATUAI Elektriksel Ölçümler ve İşlemsel Kuvvetlediriciler AMAÇLA:. Multimetre ile direç, gerilim ve akım ölçümleri, 2. Direç ölçümüde belirsizlik aalizii yapılması

Detaylı

Tanım : Bir rassal deney yapıldığında bir deneyin sonucu sadece iki sonuç içeriyorsa bu deneye Bernoulli deneyi denir.

Tanım : Bir rassal deney yapıldığında bir deneyin sonucu sadece iki sonuç içeriyorsa bu deneye Bernoulli deneyi denir. BRNOULLİ DAĞILIMI Broulli dağılımı bir rassal dy yaıldığıda yalızca iyi öü olumlu-olumsuz başarılı-başarısız gibi sadc ii souç ld dildiğid ullaılır. Taım : Bir rassal dy yaıldığıda bir dyi soucu sadc ii

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

BLAST A C G T T A A A C T C G G C I I I I I I I I I A C T T T A A G C C A A G C

BLAST A C G T T A A A C T C G G C I I I I I I I I I A C T T T A A G C C A A G C BLS Öcei erste; DN izilerie,,g, bazlarıı izilişi, RN izilerie,,g,u bazlarıı izilişi ve protei izilerie amio asitleri izilişi baımıa, orta bir alfabe ile yazılmış izileri hizalaması üzerie urulu. Hizalamış

Detaylı

Kollektif Risk Modellemesinde Panjér Yöntemi

Kollektif Risk Modellemesinde Panjér Yöntemi Douz Eylül Üniversitesi İtisadi ve İdari Bilimler Faültesi Dergisi, Cilt:6, Sayı:, Yıl:, ss.39-49. olletif Ris Modellemesinde anér Yöntemi ervin BAYAN İRVEN Güçan YAAR Özet Hayat dışı sigortalarda, olletif

Detaylı

NİĞDE İLİ RÜZGAR ENERJİSİ POTANSİYELİ WIND ENERGY POTENTIAL OF NIGDE PROVINCE

NİĞDE İLİ RÜZGAR ENERJİSİ POTANSİYELİ WIND ENERGY POTENTIAL OF NIGDE PROVINCE Niğde Üiersitesi Mühedislik Bilimleri Dergisi, Cilt 1, Sayı, (1), 37-47 NİĞDE İLİ RÜZGAR ENERJİSİ POTANSİYELİ Uğur YILDIRIM 1,* Yauz GAZİBEY, Afşi GÜNGÖR 1 1 Makie Mühedisliği Bölümü, Mühedislik Fakültesi,

Detaylı

AÇIK ĐŞLETME BASAMAKLARI TENÖR KONTROLÜNDE JEOĐSTATĐSTĐKSEL TAHMĐN MODELĐ SEÇĐMĐ

AÇIK ĐŞLETME BASAMAKLARI TENÖR KONTROLÜNDE JEOĐSTATĐSTĐKSEL TAHMĐN MODELĐ SEÇĐMĐ Eskişehir Osmagazi Üiversitesi Müh.Mim.Fak.Dergisi C.XXI, S., 2008 Eg&Arch.Fac. Eskişehir Osmagazi Uiversity, Vol..XXI, No:, 2008 Makalei Geliş Tarihi : 2.02.2007 Makalei Kabul Tarihi : 23.03.2007 AÇIK

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK AKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY ÖYÜ DENEY I VİDALARDA OTOBLOKAJ DENEY II SÜRTÜNME KATSAYISININ BELİRLENMESİ DERSİN

Detaylı

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer.

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer. SORU : AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI X raslat deikeii olas l k youluk foksiyou 8x, x f(x) = 0, ö.d olarak verilmitir. Bua göre 0< y içi Y = raslat deikeii X olaslk youluk

Detaylı

Hipotez Testleri. Parametrik Testler

Hipotez Testleri. Parametrik Testler Hipotez Testleri Parametrik Testler Hipotez Testide Adımlar Bir araştırma sorusuu belirlemesi Araştırma sorusua dayaa istatistiki hipotezleri oluşturulması (H 0 ve H A ) Hedef populasyoda öreklemi elde

Detaylı

Kİ KARE TESTLERİ. Biyoistatistik (Ders 2: Ki Kare Testleri) Kİ-KARE TESTLERİ. Sağlıktan Yakınma Sigara Var Yok Toplam. İçen. İçmeyen.

Kİ KARE TESTLERİ. Biyoistatistik (Ders 2: Ki Kare Testleri) Kİ-KARE TESTLERİ. Sağlıktan Yakınma Sigara Var Yok Toplam. İçen. İçmeyen. Biyoistatisti (Ders : Ki Kare Testleri) Kİ KARE TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Saarya Üniversitesi Tıp Faültesi Biyoistatisti Anabilim Dalı uerormaz@saarya.edu.tr Kİ-KARE TESTLERİ 1. Ki-are testleri

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2 Açıklama Sorusu : V kayışlar, ayı mekaizma büyüklükleride düz kayışlara göre daha yüksek dödürme mometlerii taşıyabildikleri bilimektedir. V kayışları düz kayışlara göre gözlee bu üstülüğü sebebi "kama

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ 4. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ PARANIN ZAMAN DEĞERİ VE GETİRİ ÇEŞİTLERİ Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Paraı Zama Değeri Paraı Zama Değeri Yatırım

Detaylı

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1 Örek.1 YÖNEYLEM ARAŞTIRMASI III Markov Süreçleri Ders 7 Yrd. Doç. Dr. Beyazıt Ocakta Web site: ocakta.bau.edu.tr E-mail: bocakta@gmail.com Reault marka otomobil sahilerii bir soraki otomobillerii de Reault

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ PURPLE COMET MATEMATİK BULUŞMASI Nisa 2010 LİSE - PROBLEMLERİ c Copyright Titu Adreescu ad Joatha Kae Çeviri. Sibel Kılıçarsla Casu ve Fatih Kürşat Casu Problem 1 m ve aralarıda asal pozitif tam sayılar

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

ORMAN ENVANTERİ VE MEŞCERE ÖLÇÜMÜ

ORMAN ENVANTERİ VE MEŞCERE ÖLÇÜMÜ ORMAN ENVANTERİ VE MEŞCERE ÖLÇÜMÜ Ormaı e öemli bölümüü, kapitali büyük kısmıı oluştura, ağaç serveti oluşturmaktadır. Ormada ağaç serveti deilice, var ola hacim ve buu faizi durumuda ola hacim artımı

Detaylı

v = ise v ye spacelike vektör,

v = ise v ye spacelike vektör, D.P.Ü. Fe Bilimleri Estitüsü 1. ayı Mayıs 6 emi-pozitif Ortogoal Matrisler içi Alteratif İi Yötem WO ALERNAIVE MEHOD FOR EMI-POIIVE OROGONAL MARICE B. BÜKCÜ* *Gaziosmapaşa Üiversitesi, Fe-Edebiyat Faültesi,

Detaylı

ĠSTATĠSTĠKSEL ÇIKARIM ĠLKELERĠ ÜZERĠNE

ĠSTATĠSTĠKSEL ÇIKARIM ĠLKELERĠ ÜZERĠNE ĠSTATĠSTĠKSEL ÇIKARIM ĠLKELERĠ ÜZERĠNE Dr.Abraham WALD Türkçesi: Mustafa Y. Ata Ġ S T A T Ġ S T Ġ K S E L Ç I K A R I M Ġ L K E L E R Ġ Ü Z E R Ġ N E Dr.Abraham WALD Bu kitabı Türkiye deki tüm yayı hakları

Detaylı

MIXED REGRESYON TAHMİN EDİCİLERİNİN KARŞILAŞTIRILMASI. The Comparisions of Mixed Regression Estimators *

MIXED REGRESYON TAHMİN EDİCİLERİNİN KARŞILAŞTIRILMASI. The Comparisions of Mixed Regression Estimators * MIXED EGESYON TAHMİN EDİCİLEİNİN KAŞILAŞTIILMASI The Comparisions o Mixed egression Estimators * Sevgi AKGÜNEŞ KESTİ Ç.Ü.Fen Bilimleri Enstitüsü Matemati Anabilim Dalı Selahattin KAÇIANLA Ç.Ü.Fen Edebiyat

Detaylı

3. Bir kabı, biri 17 diğeri 55 litre su alan ölçeklendirilmemiş iki kap yardımıyla tam olarak 1 litre suyla nasıl doldurursunuz açıklayınız. (10 P.

3. Bir kabı, biri 17 diğeri 55 litre su alan ölçeklendirilmemiş iki kap yardımıyla tam olarak 1 litre suyla nasıl doldurursunuz açıklayınız. (10 P. 0..006 MAT3 AYRIK MATEMATİK ARASINAV SORULARI Numarası :..................................... Adı Soyadı :...................................... F,. Fiboacci sayısıı gösterme üzere, ( 0 P.) (a) F + = F

Detaylı

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir:

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir: 1 BİLEŞİK FAİZ: Basit faiz hesabı kısa vadeli(1 yılda az) kredi işlemleride uygulaa bir metot idi. Ayrıca basit faiz metoduda her döem içi aapara sabit kalmakta olup o döem elde edile faiz tutarı bir soraki

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

Đki Oyun Yaz Dnemi 22 Haziran 2011, Çarşamba Đst201 Đstatistik Teorisi Dersin konusu: Olasılık Hesabı

Đki Oyun Yaz Dnemi 22 Haziran 2011, Çarşamba Đst201 Đstatistik Teorisi Dersin konusu: Olasılık Hesabı Đki Oyu Yaz Demi 22 Hazira 20, Çarşamba Đst20 Đstatistik Teorisi Dersi kousu: Olasılık Hesabı - Çocuklar, Đstatistik Teorisi bir tarafa, istatistikçileri işi rasgelelik ortamıda hesap yapmaktır. Şöyle

Detaylı

ÖZEL EGE LİSESİ 13. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ 13. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI 1. x,y,z pozitif tam sayılardır. 1 11 x + = 8 y + z olduğuna göre, x.y.z açtır? 3 B) 4 C) 6 D)1 3 1 4. {,1,1,1,...,1 } 1 ümesinin en büyü elemanının diğer 1 elemanın toplamına oranı, hangi tam sayıya en

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

Bir Sınıf Jacobi Matrisi İçin Özdeğer Problemi 1

Bir Sınıf Jacobi Matrisi İçin Özdeğer Problemi 1 S Ü Fe Ed Fa Fe Derg Sayı 7 (6-8, KONYA Bir Sııf Jacobi Matrisi İçi Özdeğer Problemi Oza ÖZKAN Selçu Üiversitesi, Fe-Edebiyat Faültesi, Matemati Bölümü 479 Kampüs, Koya simetri Jacobi matrislerii özdeğerleri

Detaylı

ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI

ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI TMMOB Harita ve Kadastro Mühedisleri Odası 13. Türkiye Harita Bilimsel ve Tekik Kurultayı 18 22 Nisa 2011, Akara ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri uyruk Teorisi Ders Notları: Bazı uyruk Modelleri Mehmet YILMAZ mehmetyilmaz@akara.edu.tr 10 ASIM 2017 11. HAFTA 6 Çok kaallı, solu N kapasiteli, kuyruk sistemi M/M//N/ Birimleri sisteme gelişleri arasıdaki

Detaylı

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ AKIŞKA BORUSU ve ATİLATÖR DEEYİ. DEEYİ AMACI a) Lüle ile debi ölçmek, b) Dairesel kesitli bir borudaki türbülaslı akış şartlarıda hız profili ve eerji kayıplarıı deeysel olarak belirlemek ve literatürde

Detaylı

Elektrik&Elektronik Müh. Böl. İşaret İşleme Uygulamaları Deney 2

Elektrik&Elektronik Müh. Böl. İşaret İşleme Uygulamaları Deney 2 Ayrı Sistemler Eletri&Eletroi Mü. Böl. İşaret İşleme Uygulamaları Deey 2 Prof. Dr. Aydı Aa Dr. Erol Öe Baatti Karaaya Koray Sistemleri Özellileri 1. Doğrusallı Liearity: y a ay Ölçeleme scalig, a armaşı

Detaylı

ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY Cilt/Vol.:5-Sayı/No: 2 : (2004)

ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY Cilt/Vol.:5-Sayı/No: 2 : (2004) ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY Cilt/Vol.:5-Sayı/No: : 343-349 (004 DÜZELTME/ERRATUM Dergimizde Cilt 5, Sayı 'de, Sayfa 5'de yer ala

Detaylı

ISO 45001. M. Görkem Erdoğan. Bu sunuya ve konunun pdf dosyasına www.gorkemerdogan.com adresinden erişilebilir.

ISO 45001. M. Görkem Erdoğan. Bu sunuya ve konunun pdf dosyasına www.gorkemerdogan.com adresinden erişilebilir. ISO 45001 M. Gör Erğa Bu suuya ve ouu pdf syasıa adreside işilebilir. 1 Giriş ISO 45001 e Nede İhtiyaç Duyuldu? Farlılılar Souç 2 Giriş ILO ya göre, h yıl 2.2 milyo çalışa iş azası veya mesle hastalığıda

Detaylı

Gayrimenkul Değerleme Esasları Dönem Deneme Sınavı I

Gayrimenkul Değerleme Esasları Dönem Deneme Sınavı I 1) I. Bia türü II. Bia yaşı III. Bia sııfı IV. İşaat evi V. Yıprama oraı Türkiye de bia metrekare ormal işaat maliyet bedelleri yukarıdakilerde hagilerie göre belirleir? A) Yalız II B) Yalız III C) II

Detaylı

Örnek 2: Helisel dişli alın çarkları:

Örnek 2: Helisel dişli alın çarkları: Örek : Helisel dişli alı çarkları: Bir blum (kütük) haddeleme tezgahıda kullaılmak amacıyla P=00 kw güç ilete ve çevrim (iletim) oraı i=400 (d/dk) / 800(d/dk) ola evolvet profilli stadard helisel dişli

Detaylı

ELASTİK DAVRANIŞ SPEKTRUMUNUN YAPAY SİNİR AĞI YAKLAŞIMI İLE TAHMİNİ

ELASTİK DAVRANIŞ SPEKTRUMUNUN YAPAY SİNİR AĞI YAKLAŞIMI İLE TAHMİNİ ELASTİK DAVRANIŞ SPEKTRUMUNUN YAPAY SİNİR AĞI YAKLAŞIMI İLE TAHMİNİ ÖZET: E.Ç. Kademir-Mazaoğlu 1 ve Ç. Kademir-Çavaş 1 Yardımcı Doçet, İşaat Müh. Bölümü, Uşa Üiversitesi Doçet, Bilgisayar Bil. Bölümü,

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişeni: Bir dağılışı olan ve bu dağılışın yaısına uygun freansta oluşum gösteren değişendir. Şans Değişenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesili Şans

Detaylı

{ 1 3 5} UYGULAMA-2 OLASILIK HESABI { } i, i = 1, 2,, n elemanına aşağıdaki özelliklere sahip bir p. her bir ω. sayısı karşılık getirilsin.

{ 1 3 5} UYGULAMA-2 OLASILIK HESABI { } i, i = 1, 2,, n elemanına aşağıdaki özelliklere sahip bir p. her bir ω. sayısı karşılık getirilsin. UYGULAMA- OLASILIK HESABI Ω. Ω solu sayıda elemaa sahip olsu. Ω { ω, ω,, ω }, U olmak üzere, Ω ı her bir ω i, i,,, elemaıa aşağıdaki özelliklere sahip bir p i sayısı karşılık getirilsi. ) p 0, i,,...,

Detaylı

KALİTE VE SÜREÇ İYİLEŞTİRME İÇİN MÜŞTERİ GERİ BİLDİRİMLERİNİN DEĞERLENDİRİLMESİ

KALİTE VE SÜREÇ İYİLEŞTİRME İÇİN MÜŞTERİ GERİ BİLDİRİMLERİNİN DEĞERLENDİRİLMESİ Altı Sigma Yalı Koferasları (9- Mayıs 8) KALİTE VE SÜREÇ İYİLEŞTİRME İÇİN MÜŞTERİ GERİ BİLDİRİMLERİNİN DEĞERLENDİRİLMESİ Serka ATAK Evre DİREN Çiğdem CİHANGİR Murat Caer TESTİK ÖZET Ürü ve hizmet kalitesii

Detaylı

ifadesi ile, n kişilik bir topluluktakilerinin doğum günlerinin tümünün farklı olması olasılığını

ifadesi ile, n kişilik bir topluluktakilerinin doğum günlerinin tümünün farklı olması olasılığını Çözüler (Wee tr). Bir taraftai (bu tarafı yuarı taraf abul edeli) uçları iişer iişer, rastgele seçere bağlayalı. Bağlaa çiftlerde birii seçip, çifti oluştura iplere A ve A diyeli. A, aşağıda serbest duruda

Detaylı

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi 3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada

Detaylı

Yayılma (Değişkenlik) Ölçüleri

Yayılma (Değişkenlik) Ölçüleri Yayılma (Değşel) Ölçüler Br ver set taıma yada farlı ver set brbrde ayırt etme ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etrafıda

Detaylı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı Damızlık Değeri, geotipik değer, allel frekasları Aki Pala, aki@comu.edu.tr ttp://members.comu.edu.tr/aki/ Damızlık değeri esabı µ Ökkeş =800 gr gülük calı ağırlık Sürü A Sürü µ Döller µ 500gr 700 DD esabı

Detaylı

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için ÖzelKredi İstekleriize daha kolay ulaşmaız içi Yei özgürlükler keşfedi. Sizi içi öemli olaları gerçekleştiri. Hayalleriizi süsleye yei bir arabaya yei mobilyalara kavuşmak mı istiyorsuuz? Veya özel güler

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER

JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER Prof. Dr. Hüseyi Çelebi Ders Notları İstabul 014 Jeolojide matematik ve statistiksel yötemler 1 Ösöz Jeolojide matematik ve istatistiksel yötemler ders otları

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

Tahmin teorisinde amaç örneklem (sample) bilgisine dayanarak anakütleye. (population) ilişkin çıkarsamalar yapmaktır. Bu çıkarsamalar örneklem

Tahmin teorisinde amaç örneklem (sample) bilgisine dayanarak anakütleye. (population) ilişkin çıkarsamalar yapmaktır. Bu çıkarsamalar örneklem YTÜ-İktisat İstatistik II Nokta Tahmii 1 Tahmi teoriside amaç öreklem (sample) bilgisie dayaarak aakütleye (populatio) ilişki çıkarsamalar yapmaktır. Bu çıkarsamalar aakütlei dağılımıı belirleye bilimeye

Detaylı