BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER"

Transkript

1 BÖLÜM 3 YER ÖLÇÜLERİ

2 İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii ortaya koymaktı. Şimdi ise A ve B gibi iki gruba ait frekas poligolarıı aşağıdaki şekilde olduğuu varsayalım.

3 Şekilde iceleeceği üzere her iki gruba ait frekas poligolarıı bezer şekle sahiptir. Bua karşı, B grubuu frekas poligou A ı sağıda bulumaktadır. Ayrıca A grubuu ortalaması 60, B i ise 90 dır. Bezer dağılıma sahip her iki grup arasıdaki farklılığı, ortalamalar yai 60 ile 90 ı karşılaştırmak suretiyle ortaya koymak mümküdür. Diğer bir ifadeyle, poligo A ile poligo B yi mukayese etmek yerie poligoları temsil ede ortalamaları mukayese edersek, dolayısıyla poligoları mukayese etmiş oluruz. Çükü her iki grubu gösterdikleri dağılışı şekli birbirii bezeridir. Yukarıdaki açıklamalarda alaşılacağı üzere gözlemleri e çok topladığı kısım ele alıa ölçü bakımıda dağılışı merkezii oluşturur, bu da ortalamadır.bezer şekilde poligo (dağılışı) sağıda ve soluda uzaa kuyruklar da gözlemler arasıdaki varyasyou ( farklılığı) ifade eder.

4 Bir dağılışta gözlemleri e çok topladığı oktayı katitatif bir değer olarak belirleye ölçülere Yer Ölçüleri deir. Bu bakımda yer ölçüleri gözlemleri çoğuluğuu temsil ederler. Yer ölçüleri ayı zamada dağılışı merkezii veya X eksei üzerideki yerii, bir diğer ifade ile dağılışı merkezii oriie ola uzaklığıı belirlerler. E çok bilie ve kullaıla yer ölçüleri Aritmetik ortalama, Tartılı ortalama, Medya (orta değer), Mod (tepe değeri), Geometrik ortalama, Harmoik ortalama, Kareli ortalama ve Katiller (böleler) olarak sıralaabilir. Bu bölümde bular arasıda ilk dördü iceleecektir.

5 Aritmetik Ortalama Aritmetik ortalama istatistikte çok kullaılması edeiyle çok iyi bilimesi gereke bir ortalama veya bir yer ölçüsüdür. Bu ortalama hem ham verilerde hem de sııfladırılmış verilerde kolayca hesaplaabilir. Aritmetik ortalama, herhagi bir öreği meydaa getire gözlem değerlerii toplamıı, toplam gözlem sayısıa bölümesiyle elde edile değer olarak taımlaabilir. i i Burada; : aritmetik ortalamayı i : i ci gözlem değerii, : gözlem sayısıı göstermektedir.

6 Örek : Beş lise öğrecisii matematik derside aldıkları otlar sırasıyla 7,6,5,8,4 pua olduğua göre öğrecileri otlarıı aritmetik ortalamasıı buluuz. Çözüm: Aritmetik ortalama formülüe göre; i i olarak hesaplaır. Örekte de görüldüğü üzere aritmetik ortalamaı hesaplama tekiği çok basittir. Basit bir matematiksel formülle ifade edilmesi ve kolayca uygulaabilmesi yaıda teorik bakımda gösterdiği çeşitli özellikleri edeiyle bu ortalamaı geiş bir uygulama alaı vardır.

7 Sııfladırılmış Verilerde Aritmetik Ortalamaı Hesaplaması Verileri sııfladırılması amacıyla düzelee frekas tabloları bazı bilgileri kaybıa sebep olmaktadır. Bu edele aritmetik ortalamaı gerçek değerii buluması oldukça güçtür. Buula beraber, frekas tablolarıda sııf değerlerii veya sııf orta değerlerii gözlee değer gibi dikkate alarak aritmetik ortalama hesaplaabilir. Bu amaçla k k f f f + f f f + f f Burada; : aritmetik ortalamayı : ci sııfı sııf değerii f : ci sııfı frekasıı k : sııf sayısıı göstermektedir.

8 Örek: Kırk koyuu ağırlıkları ile ilgili frekas tablosu içi aritmetik ortalamayı hesaplayıız. Sııf Limitleri (Koy. Ağr.(kg)) f (Koy.Say) Toplam 40

9 Öce sııf değerleri buluur ve formül gereği frekaslarla çarpılır ve toplaırsa Sııf Limitleri (Koy. Ağr.(kg)) f (Koy.Say) Sııf Değeri ( ) f Σ 40-48

10 k k f f * * * kg olarak hesaplaır. Örek 3. 3: Bir koyu sürüsüde yaşlı aaçlarda doğa dişi kuzuları doğum ağırlıklarıa(kg) ait aşağıdaki frekas tablosu içi göre aritmetik ortalamayı buluuz(düz güeş ve ark.,983).

11 Doğum Ağırlığı (kg) Kuzu sayısı (f) Sııf Değeri () f Toplam k k f f kg

12 Aritmetik ortalama örekteki aşırı değerlerde çok etkileir. Aritmetik ortalamaı bu zayıf yöüe karşı aşağıda verilmiş ola bazı matematik özellikleri aritmetik ortalamayı istatistik aaliz açısıda öemli kılar. a)gözlemleri aritmetik ortalamada farklarıı (sapmalarıı) cebirsel toplamı sıfıra eşittir.yai, i ( i ) i i i 0 i i i i

13 Yukarıdaki beş öğrecii otları ile ilgili veri içi bu durumu gösterelim. i ( i ) (7 6) + (6 6) + (5 6) + (8 6) + (4 6) b) Gözlemleri, aritmetik ortalamada sapmalarıı kareleri toplam miimumdur. Diğer bir deyişle, gözlemleri ortalamada farklı bir değerde sapmalarıı kareleri toplamı, ortalamada sapmalarıı kareleri toplamıda daha büyüktür. i ( i ) < i ( i A), A

14 Yukarıdaki beş öğrecii otları ile ilgili veri içi bu durumu gösterelim. i ( i ) (7 6) (6 6) + + (5 6) 0 + (8 6) + (4 6) A 4 6 ise 5 ( i A) ( i i i 4) (7 4) (6 4) (5 4) (8 4) + (4 4) Böylece i ( i ) < i ( i A) Olur. 0<30

15 Tartılı Ortalama: Gözlemleri temsil ettikleri değer bakımıda farklılık gösterdikleri durumlarda kullaıla bir yer ölçüsüdür. Yer Ölçüleri k k t t t t t t t t t Tartılı ortalama, ayı örek içide farklılık göstere gözlemleri ortalamasıı bulmak içi buları temsil ettiği birim sayılarıa göre tartılması gerekir

16 Örek: Bir öğrecii değişik derslerie ait aşağıda verile otlarıı tartılı ortalamasıı hesaplayıız. Dersler Türk Dili Gıda kimyası İstatistikstatistik Haftalık Kredi saati 3 4 Aldığı Not Toplam 9 50

17 Dersler Türk Dili Gıda Kimyası Haftalık Kredi saati (t) Aldığı Not () 00 t t k k t t İstatistikstatistik Toplam

18 Dersler Haftalık Kredi saati (t) Aldığı Not () t Türk Dili Gıda Kimyası İstatistikstatistik Toplam Bu tabloya ait aritmetik ortalama hesaplaırsa 50 3 i i 83.33

19 Derslerdeki başarı öceki durumda farklı olsa idi aritmetik ortalama değişmeyecekti acak tartılı ortalama ise Dersler Türk Dili Gıda Kimyası İstatisti k Toplam Haftalık Kredi saati (t) Aldığı Not () 65 t t k k t t olarak hesaplaacaktır. 87.

20 Medya (Orta Değer): Medya, küçükte büyüğe doğru sıralamış gözlemlerde ortaya düşe değer olarak taımlaabilir. Başka bir deyişle medya, örekteki gözlemleri iki eşit kısma ayıra değer olup gözlemleri %50 si bu değerde küçük, %50 si ise bu değerlerde büyüktür. a) Eğer tek ise, med ((+)/) Örek: X{6,8,,6,5,0,7} içi medyaı buluuz. Çözüm: Öcelikle bu veriler büyüklük sırasıa göre dizilir, X{6,0,,5,7,8,6}, 7 olduğua göre med ((+)/) ((7+)/) (4) 5 Eğer çift ise,

21 b) Eğer çift ise, med + ( ) ( + ) Örek: X{6,8,,6,5,0,7,40} içi medyaı buluuz. Çözüm: Öcelikle bu veriler büyüklük sırasıa göre dizilir, X{6,0,,5,7,8,40,6}, 8 olduğua göre med 8 ( ) + 8 ( + ) (4) + (5)

22 Sııfladırılmış Verilerde Medya med b F f ( m ) s + * m c Burada; b s :medyaı içide buluduğu sııfı alt sııf sıırıı, : toplam gözlem sayısıı, F m- : medyaı içide buluduğu sııfda bir öceki sııfı de daha az yığmalı frekasıı, fm:medyaı içide buluduğu sııfı frekasıı, c:sııf aralığıı göstermektedir.

23 Örek: 40 koyuu ağırlığı ile ilgili frekas tablosua ait medyaı hesaplayıız Yer Ölçüleri Sııf Limitleri (Koy. Ağr.(kg)) f (Koy.Say)

24 Sııf sıırları buluur ve sıralaır Yer Ölçüleri Sııf Limitleri (Koy. Ağr.(kg)) f (Koy.Say) Sııf Sıırları (Koy. Ağr.(kg)) Sııf Sıırları (Koy. Ağr.(kg))

25 De daha az yığmalı frekaslar buluur Yer Ölçüleri Sııf Limitleri (Koy. Ağr.(kg)) f (Koy.Say) Sııf Sıırları (Koy. Ağr.(kg)) Sııf Sıırları (Koy. Ağr.(kg)) 38.5 F

26 Medyaı taımıda çıkılarak medya sııfı belirleir Yer Ölçüleri Sııf Limitleri (Koy. Ağr.(kg)) f (Koy.Say) Sııf Sıırları (Koy. Ağr.(kg)) Sııf Sıırları (Koy. Ağr.(kg)) 38.5 F

27 Medyaı taımıda çıkılarak medya sııfı belirleir Yer Ölçüleri Sııf Limitleri (Koy. Ağr.(kg)) f (Koy.Sa y) Sııf Sıırları (Koy. Ağr.(kg)) F med b F f ( m ) s + * 40 ( 3) *4 m kg c

28 Hagi Durumlarda medya kullaılır? Aritmetik ortalama,öreği oluştura gözlemlerde aşırı değer veya değerler buluduğu durumlarda çok etkileir ve yaıltıcı souç verir. Örekte aormal derecede düşük veya yüksek bir veya birkaç değer varsa, aritmetik ortalama bekleede düşük veya yüksek buluur. Bu gibi aritmetik ortalamaı sağlıklı bir şekilde çalışmadığı durumlarda başka bir yer ölçüsü ola medya kullaılır. Medya, öreği meydaa getire gözlemlerde aormal değerlerde etkilemez. Ayrıca aritmetik ortalama, açık uçlu frekas tablolarıda hesaplaamayacağıda yer ölçüsü olarak medya kullaılır.

29 Mod (Tepe Değeri): Mod, herhagi bir örekte e fazla tekrarlaa gözlem değeri olarak taımlaabilir. İstatistikte çok az kullaıla bu değer, özellikle verileri simetrik bir dağılış göstermedikleri durumlarda iyi bir yer ölçüsü olmaktadır. Ayı zamada örekteki aşırı değerlerde etkilemez. Sııfladırılmamış Verilerde Mod u Hesaplaması Örek: X{6,5,7,4,5,8,5,0} içi modu buluuz. Çözüm: E fazla tekrarlaa gözlem değeri 5 olması edeiyle mod5 dir. Eğer bir örekte e fazla tekrarlaa değer yalız bir tae ise örek tek modlu, iki tae ise iki modlu (bimodal), ikide fazla olduğuda ise örek çok modlu (multimodal) olur. Bua karşı örekteki değerleri hepsi birbiride farklı ise veya gözlemler ayı sayıda tekrarlaıyorsa, o zama mod yoktur.

30 Örek: Aşağıda her bir veri grubu içi modu buluuz. a) 6,5,7,8,5,4,5 b) 0,80,45,80,45,75,45,80,45,80 c) 0,5,8,,5,6 d) 6,30,5,,30,6,5, Çözüm: Modu taımıa göre her grubu modu şöyledir : a)grubu modu 5 olup 3 defa tekrarlamıştır. b)grubu mod 45 ve mod 80 olup 4 er defa tekrarlamışlardır. c)gruptaki değerleri hepsi birbiride farklı olduğuda veya bir defa tekrarladığıda mod yoktur. d)gruptaki bütü gözlemler ayı frekaslı olduklarıda (eşit sayıda, yai iki defa ) mod yoktur.

31 Sııfladırılmış Verilerde Modu Hesaplaması d mod b s + * c d + d Burada; b s :modu içide buluduğu sııfı alt sııf sıırıı, d : mod sııfı ile bir öceki sııfı frekasları arasıdaki fark, d : mod sııfı ile bir soraki sııfı frekasları arasıdaki fark, c:sııf aralığıı göstermektedir.

32 Örek: 40 koyuu ağırlığı ile ilgili frekas tablosua ait modu hesaplayıız Yer Ölçüleri Sııf Limitleri (Koy. Ağr.(kg)) f (Koy.Say) Sııf Sıırları (Koy. Ağr.(kg))

33 Modu taımıda çıkılarak mod sııfı kolayca belirleir Yer Ölçüleri Sııf Limitleri (Koy. Ağr.(kg)) f (Koy.Say) Sııf Sıırları (Koy. Ağr.(kg))

34 Mod formülüdeki değerler yerie yazılırsa Yer Ölçüleri Sııf Limitleri (Koy. Ağr.(kg)) f (Koy.Say) Sııf Sıırları (Koy. Ağr.(kg)) mod d b s + * c d + d d -83 d -74 mod kg 3 *

35 Aritmetik ortalama, medya ve mod arasıdaki ilişki Yer Ölçüleri med mod a) ise frekas poligouu şekli simetriktir. Simetrik

36 Aritmetik ortalama, medya ve mod arasıdaki ilişki Yer Ölçüleri < med < mod b) ise frekas poligouu şekli sola çarpıktır. Sola çarpık

37 Aritmetik ortalama, medya ve mod arasıdaki ilişki Yer Ölçüleri c) mod < med < ise frekas poligouu şekli sola çarpıktır. Sağa çarpık Aritmetik ortalama, medya ve mod arasıdaki bu ilişkiler biliiyorsa frekas poligouu çizmede dağılışı şekli hakkıda fikir sahibi oluabilir.

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkaı : Yrd.Doç.Dr. İsmail YILDIZ ARAŞTIRMADA PLANLAMA VE ÇÖZÜMLEME (03-09 Ocak 014 Y.ÇELİK) Araştırma Süreci (The research

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

TEMEL KAVRAMLAR GİRİŞ

TEMEL KAVRAMLAR GİRİŞ TEMEL KAVRAMLAR GİRİŞ İstatistik kelimesii kökei Almaca olup devlet alamıa gelmektedir. İstatistik kelimesi gülük hayatta farklı alamlarda kullaılmaktadır. Televizyoda bir futbol müsabakasıı izleye bir

Detaylı

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler...

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler... ÜİTE KAVRAMSAL ADIM Sayfa o.... 8 9 İstatistik, Veri ve Grafikler.... 8 Merkezi, Eğilim ve Yayılım Ölçüleri... 8 Açıklık, Çeyrekler Açıklığı........................................................ 8 Varyas

Detaylı

Öğrenci Numarası İmzası: Not Adı ve Soyadı

Öğrenci Numarası İmzası: Not Adı ve Soyadı Öğreci Numarası İmzası: Not Adı ve Soyadı SORU 1. a) Ekoomii taımıı yapıız, amaçlarıı yazıız. Tam istihdam ile ekoomik büyüme arasıdaki ilişkiyi açıklayıız. b) Arz-talep kauu edir? Arz ve talep asıl artar

Detaylı

İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ DUYARLI ORTALAMALAR

İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ DUYARLI ORTALAMALAR SAÜ. BÖLÜM İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ DUYARLI ORTALAMALAR PROF. DR. MUSTAFA AKAL İÇİNDEKİLER 1. ORTALAMANIN TANIMI VE FAYDALARI. HASSAS ORTALAMALAR.1. Aritmetik Ortalama.. Kareli Ortalama..

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1 ĐÇI DEKILER Sayfa. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR.. Grş.. Đstatstk.3. Populasyo.4. Örek.5. Brm.6. Parametre.7. Değşke 3.8. Ver ve Ver Tpler 3.9. Toplama Sembolü 4 ÇALIŞMA PROBLEMLERĐ 6. VERĐLERĐ

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

İstatistik Nedir? Sistem-Model Kavramı

İstatistik Nedir? Sistem-Model Kavramı İstatistik Nedir? İstatistik rasgelelik içere olaylar, süreçler, sistemler hakkıda modeller kurmada, gözlemlere dayaarak bu modelleri geçerliğii sıamada ve bu modellerde souç çıkarmada gerekli bazı bilgi

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

NİÇİN ÖRNEKLEME YAPILIR?

NİÇİN ÖRNEKLEME YAPILIR? İÇİ ÖREKEME YAPIIR? Zama Kısıdı Maliyeti Azaltma Hata Oraıı Azaltma Souca Ulaşma Hızı Doç.Dr. Ali Kemal ŞEHİRİOĞU Araş.Gör. Efe SARIBAY Örekleme Teorisi kousuu içide, Örekleme Tipleri populasyoda örek

Detaylı

Temel Ġstatistik. Tanımlayıcı Ġstatistik. Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri. Y.Doç.Dr. Ġbrahim Turan Mart 2011

Temel Ġstatistik. Tanımlayıcı Ġstatistik. Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri. Y.Doç.Dr. Ġbrahim Turan Mart 2011 Temel Ġstatistik Tanımlayıcı Ġstatistik Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri Y.Doç.Dr. Ġbrahim Turan Mart 2011 Yer / Konum Ölçüleri 1- Aritmetik Ortalama (Mean): Deneklerin aldıkları değerlerin

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ 4. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ PARANIN ZAMAN DEĞERİ VE GETİRİ ÇEŞİTLERİ Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Paraı Zama Değeri Paraı Zama Değeri Yatırım

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

COĞRAFYADA Olasılık ve Đstatistik Ders Notları Doç. Dr. Hasan. ÇOMÜ, Fef, Coğrafya Bölümü, Çanakkale

COĞRAFYADA Olasılık ve Đstatistik Ders Notları Doç. Dr. Hasan. ÇOMÜ, Fef, Coğrafya Bölümü, Çanakkale COĞRAFYADA Olasılık ve Đstatistik Ders Notları Doç. Dr. Hasa ÇOMÜ, Fef, Coğrafya Bölümü, Çaakkale e-posta:tatli@comu.edu.tr 1 Giriş Doğa bilimleri ve/veya sosyal olaylarda karşılaştığımız problemleri birçoğuda,

Detaylı

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir:

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir: 1 BİLEŞİK FAİZ: Basit faiz hesabı kısa vadeli(1 yılda az) kredi işlemleride uygulaa bir metot idi. Ayrıca basit faiz metoduda her döem içi aapara sabit kalmakta olup o döem elde edile faiz tutarı bir soraki

Detaylı

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI:

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: www.testhae.com SAYILAR DERS NOTLARI Bölüm / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: -RAKAM -SAYI -DOGAL SAYILAR -SAYMA SAYILARI -ÇFT DOGAL SAYILAR -TEK DOGAL SAYILAR -ARDISIK DOGAL SAYILAR -ARDISIK ILK

Detaylı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı Damızlık Değeri, geotipik değer, allel frekasları Aki Pala, aki@comu.edu.tr ttp://members.comu.edu.tr/aki/ Damızlık değeri esabı µ Ökkeş =800 gr gülük calı ağırlık Sürü A Sürü µ Döller µ 500gr 700 DD esabı

Detaylı

LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I BAHAR DÖNEMİ ARASINAV SORULARI

LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I BAHAR DÖNEMİ ARASINAV SORULARI LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I 2015-2016 BAHAR DÖNEMİ ARASINAV SORULARI Tarih: 22/04/2016 Istructor: Prof. Dr. Hüseyi Oğuz Saat: 11:00-12:30

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve BÖLÜM III Kogrüaslar Taım 3. N sabit bir sayı, a, b Z olma üzere, eğer ( a b) ise a ile b, modülüe göre ogrüdür deir ve a b(mod ) şelide gösterilir. Asi halde, yai F ( a b) ise a ile b ye modülüe göre

Detaylı

KOMBİNASYON: ve r birer pozitif doğal sayı olmak üzere r olsu. farklı elemaı r elemalı alt kümelerii sayısıa i r 2. Örek:! C(,r) = r!. r! li kombiasyou deir ve gösterilir. C(,r) = r P(,r)! = = r r! r!.

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde fazla dağılışı karşılaştırmak ç kullaıla veya ayrıca örek verlerde hareketle frekas dağılışlarıı sayısal olarak düzeleye değerlere taımlayıcı statstkler der. Aalzlede

Detaylı

JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER

JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER Prof. Dr. Hüseyi Çelebi Ders Notları İstabul 014 Jeolojide matematik ve statistiksel yötemler 1 Ösöz Jeolojide matematik ve istatistiksel yötemler ders otları

Detaylı

n, 1 den büyük bir sayma sayısı olmak üzere,

n, 1 den büyük bir sayma sayısı olmak üzere, KÖKLÜ SAYILAR, de üyük ir sayma sayısı olmak üzere, x = α deklemii sağlaya x sayısıa α ı yici derecede kökü deir. x m = x m O halde tersi düşüülürse, ir üslü sayıı üssü kesirli ise, o sayı köklü sayı içimide

Detaylı

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri Yrd. Doç. Dr. Safa KARAMAN 1 2 Giriş Veri kümesi Verileri betimlemenin ve özetlemenin bir diğer yolu da verilerin bir

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

Hipotez Testleri. Parametrik Testler

Hipotez Testleri. Parametrik Testler Hipotez Testleri Parametrik Testler Hipotez Testide Adımlar Bir araştırma sorusuu belirlemesi Araştırma sorusua dayaa istatistiki hipotezleri oluşturulması (H 0 ve H A ) Hedef populasyoda öreklemi elde

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ .4.26 5. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ Mekul Kıymet Yatırımlarıı Değerlemesi Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Temel Değerleme Modeli Mekul Kıymet Değerlemesi

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ TEMEL KAVRAMLAR PARAMETRE: Populasyou sayısal açıklayıcı bir ölçüsüdür ve aakütledeki tüm elemalar dikkate alıarak hesaplaabilir. Aakütledeki tek bir elema dahi işlemi

Detaylı

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH ORTALAMA ÖLÇÜLERİ Ünite 6 Öğr. Gör. Ali Onur CERRAH Araştırma sonucunda elde edilen nitelik değişkenler hakkında tablo ve grafikle bilgi sahibi olunurken, sayısal değişkenler hakkında bilgi sahibi olmanın

Detaylı

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri V MERSİN MATEMATİK OLİMPİYATI (ÜNV ÖĞR) I AŞAMA SINAV SORULARI ( Nisa 8) de ye taımlı, birebir ve örte f ve g foksiyoları her bir içi koşuluu sağlası g( a ) = ve f ( ) ( ) ( ) f = g a 4 = a ise a sayısı

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R İ H S A N T İ M U Ç İ N D O L A P C İ, Y İ Ğ İ T A K S O Y M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R P U B L I S H E R O F T H I S B O O K Copyright 13 İHSAN TİMUÇİN DOLAPCİ, YİĞİT AKSOY

Detaylı

BÖLÜM II. Asal Sayılar. p ab ise p a veya p b dir.

BÖLÜM II. Asal Sayılar. p ab ise p a veya p b dir. BÖLÜM II Asal Sayılar Taım. p > tam sayısıı de ve ediside başa bölei yosa bu sayıya asal sayı deir. de büyü asal olmaya sayılara da bileşi sayı deir. Teorem. Eğer p bir asal sayı ve p ab ise p a veya p

Detaylı

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir?

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir? KONU:ATOM FİĞİ ebuyukfizikci@otmail.com HAIRLAYAN ve SORU ÇÖÜMLERİ:Amet Selami AKSU Fizik Öğretmei www.fizikvefe.com S.1. Uyarılmış bir idroje atomuda Balmer serisii H β çizgisi gözlemiştir. Bua göre,buu

Detaylı

Öğretim Üyesi. Topoğrafya İnşaat Mühendisliği

Öğretim Üyesi. Topoğrafya İnşaat Mühendisliği Öğretim Üyesi Mehmet Zeki COŞKUN Y. Doç. Dr. İşaat Fak., Jeodezi ve Fotogrametri Müh. Ölçme Tekiği Aabilim Dalı (1) 85-6573 coskumeh@itu.edu.tr http://atlas.cc.itu.edu.tr/~cosku Adres Öğreci görüşme saatleri:

Detaylı

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir.

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir. DENEY NO: 7 MOSFET ÖLÇÜMÜ ve UYGULAMALARI DENEYĐN AMACI: Bu deeyi amacı MOS elemaları temel özelliklerii, ve p kaallı elemaları temel uygulamalarıı öğretmektir. DENEY MALZEMELERĐ Bu deeyde 4007 MOS paketi

Detaylı

Bu bölümde kan tlayaca m z teoremi, artan ve üstten s -

Bu bölümde kan tlayaca m z teoremi, artan ve üstten s - 18. S rl ve Arta Diziler Bu bölümde ka tlayaca m z teoremi, arta ve üstte s - rl bir gerçel say dizisii üsts ra çarpmas a ramak kal r biçimide özetleyebiliriz. (Üsts r kavram Bölüm 19 da görece iz.) flte

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK AKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY ÖYÜ DENEY I VİDALARDA OTOBLOKAJ DENEY II SÜRTÜNME KATSAYISININ BELİRLENMESİ DERSİN

Detaylı

ÜNİTE. İSTATİSTİĞE GİRİŞ Prof.Dr.Erkan OKTAY İÇİNDEKİLER HEDEFLER İNDEKSLER

ÜNİTE. İSTATİSTİĞE GİRİŞ Prof.Dr.Erkan OKTAY İÇİNDEKİLER HEDEFLER İNDEKSLER HEDEFLER İÇİNDEKİLER İNDEKSLER Basit İdeksler Bileşik İdeksler Tartısız İdeksler Tartılı İdeksler Mekâ İdeksleri İSTATİSTİĞE GİRİŞ Prof.Dr.Erka OKTAY İktisadi göstergeleri daha iyi yorumlayıp karşılaştırılabilecek

Detaylı

Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması Güz Dönemi

Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması Güz Dönemi Mühedislik Fakültesi Edüstri Mühedisliği Bölümü Doç. Dr. Nil ARAS ENM4 Tesis Plalaması 6-7 Güz Döemi 3 Sisteme ekleecek tesis sayısı birde fazladır. Yei tesisler birbirleri ile etkileşim halide olabilirler

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl@deu.edu.tr Taımlayıcı İstatstkler Yer Ölçüler (Merkez Eğlm Ölçüler) Duyarlı Ortalamalar

Detaylı

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir.

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir. 203-204 Bahar REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyo Basit doğrusal regresyo modeli: y i = β 0 + β x i + ε i Modeli matris gösterimi, y i = [ x i ] β 0 β + ε i şeklidedir. x y 2 gözlem

Detaylı

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI ÖRNEKLEME YÖNTEMLERİ Prof. Dr. Ergu Karaağaoğlu H.Ü. Tıp Fakültesi Biyoistatistik ABD ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI

Detaylı

PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK...111. Konu Özeti...111. Testler (1 11)...115. Yazılıya Hazırlık Soruları (1 2)...

PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK...111. Konu Özeti...111. Testler (1 11)...115. Yazılıya Hazırlık Soruları (1 2)... ÜNİTE PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK Bölüm PERMÜTASYON, KOMBİNASYON BİNOM VE OLASILIK! = (...... ) PERMÜTASYON, KOMBİNASYON BİNOM, OLASILIK VE İSTATİSTİK PERMÜTASYON, KOMBİNASYON,

Detaylı

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ AKIŞKA BORUSU ve ATİLATÖR DEEYİ. DEEYİ AMACI a) Lüle ile debi ölçmek, b) Dairesel kesitli bir borudaki türbülaslı akış şartlarıda hız profili ve eerji kayıplarıı deeysel olarak belirlemek ve literatürde

Detaylı

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler 3. Ders Parametre Tahmii Tahmi Edicilerde Araa Özellikler Gerçek düyada rasgelelik olgusu içere bir özellik ile ilgili ölçme işlemie karş l k gele X rasgele de¼gişkeii olas l k (yo¼guluk) foksiyou, F ff(;

Detaylı

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Amacı : YGS de başarılı olmak isteyen bir öğrencinin, istatistiksel yöntemler çerçevesinde, sınavda çıkan soru sayısını,

Detaylı

Matematik Olimpiyatları İçin

Matematik Olimpiyatları İçin KONU ANLATIMLI Matematik Olimpiyatları İçi İdirgemeli Diziler, Kombiatorik ve Cebirsel Uygulamaları LİSE MATEMATİK OLİMPİYATLARI İÇİN Lokma Gökçe, Osma Ekiz İdirgemeli Diziler ve Uygulamaları Lokma Gökçe,

Detaylı

İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM

İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM 17 Şubat 01 CUMA Resmî Gazete Sayı : 807 TEBLİĞ Bilgi Tekolojileri ve İletişim Kurumuda: İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM Amaç, Kapsam,

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

BAŞKENT ÜNİVERSİTESİ Makine Mühendisliği Bölümü

BAŞKENT ÜNİVERSİTESİ Makine Mühendisliği Bölümü BAŞKENT ÜNİVERSİTESİ Makie Mühedisliği Bölümü 1 STAJLAR: Makie Mühedisliği Bölümü öğrecileri, öğreim süreleri boyuca 3 ayrı staj yapmakla yükümlüdürler. Bularda ilki üiversite içide e fazla 10 iş güü süreli

Detaylı

Obje Tabanlı Sınıflandırma Yöntemi ile Tokat İli Uydu Görüntüleri Üzerinde Yapısal Gelişimin İzlenmesi

Obje Tabanlı Sınıflandırma Yöntemi ile Tokat İli Uydu Görüntüleri Üzerinde Yapısal Gelişimin İzlenmesi Obje Tabalı Sııfladırma Yötemi ile Tokat İli Uydu Görütüleri Üzeride Yapısal Gelişimi İzlemesi İlker GÜNAY 1 Ahmet DELEN 2 Mahmut HEKİM 3 1 Gaziosmapaşa Üiversitesi, Mühedislik ve Doğa Bilimleri Fakültesi,

Detaylı

H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Kısım Bir Reel Değişkeli Foksiyolar Teorisi Prof.Dr.Hüseyi Çakallı 3 H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Reel

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde

Detaylı

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 İstatistik

Detaylı

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için ÖzelKredi İstekleriize daha kolay ulaşmaız içi Yei özgürlükler keşfedi. Sizi içi öemli olaları gerçekleştiri. Hayalleriizi süsleye yei bir arabaya yei mobilyalara kavuşmak mı istiyorsuuz? Veya özel güler

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

ORMAN ENVANTERİ VE MEŞCERE ÖLÇÜMÜ

ORMAN ENVANTERİ VE MEŞCERE ÖLÇÜMÜ ORMAN ENVANTERİ VE MEŞCERE ÖLÇÜMÜ Ormaı e öemli bölümüü, kapitali büyük kısmıı oluştura, ağaç serveti oluşturmaktadır. Ormada ağaç serveti deilice, var ola hacim ve buu faizi durumuda ola hacim artımı

Detaylı

MEKANİK TESİSATTA EKONOMİK ANALİZ

MEKANİK TESİSATTA EKONOMİK ANALİZ MEKANİK TESİSATTA EKONOMİK ANALİZ Mustafa ÖZDEMİR İ. Cem PARMAKSIZOĞLU ÖZET Düya çapıda rekabeti ö plaa çıktığı bu gükü şartlarda, e gelişmiş ürüü, e kısa sürede, e ucuza üretmek veya ilk yatırım ve işletme

Detaylı

FEN BİLİMLERİ TESTİ. 1. Burak DNA modeli yapmak için nükleotitteki yapılara ait tabloda belirtilen sayıdaki gibi kartondan şekiller yapıyor.

FEN BİLİMLERİ TESTİ. 1. Burak DNA modeli yapmak için nükleotitteki yapılara ait tabloda belirtilen sayıdaki gibi kartondan şekiller yapıyor. FEN BİLİMLERİ ESİ 1. Burak N modeli yapmak içi ükleotitteki yapılara ait tabloda belirtile sayıdaki gibi kartoda şekiller yapıyor. 3. şağıda bir N molekülüü eşlemesi gösterilmiştir. Şekil emsil ettiği

Detaylı

Hava. çıkışı. Fan. Şekil 1 6/7 Motor şasi ve fan gurubunun yalıtımı

Hava. çıkışı. Fan. Şekil 1 6/7 Motor şasi ve fan gurubunun yalıtımı Uygulama /0 Fa ve motor gurubu şasi üzerie cıvatalamış olup şasi de fabrika zemiie dübellerle bağlamak istemektedir. Şasi ve üzerideki toplam kütle 00 kg dır. Motor döme devri =000 dev/dak. Sistemi yere

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

3. Bölüm Paranın Zaman Değeri. Prof. Dr. Ramazan AktaĢ

3. Bölüm Paranın Zaman Değeri. Prof. Dr. Ramazan AktaĢ 3. Bölüm Paraı Zama Değeri Prof. Dr. Ramaza AktaĢ Amaçlarımız Bu bölümü tamamladıkta sora aşağıdaki bilgi ve becerilere sahip olabileceksiiz: Paraı zama değeri kavramıı alaşılması Faiz türlerii öğremek

Detaylı

İDEAL ÇARPIMLARI (IDEAL PRODUCTS)

İDEAL ÇARPIMLARI (IDEAL PRODUCTS) T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ (IDEAL PRODUCTS) 070216013 TUĞBA ÖZMEN 080216038 AYŞE MUTLU 080216064 SEVİLAY HOROZ Nil ehri, Düyaı e uzu ehridir (6.650

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

İstatistiksel Tahminleme. Güven Seviyesi. Verilerin yayılımı ( Örnek hacmi X = X / n Güven seviyesi (1 - )

İstatistiksel Tahminleme. Güven Seviyesi. Verilerin yayılımı ( Örnek hacmi X = X / n Güven seviyesi (1 - ) 04.05.0 İtatitikel Tahmileme İTATİTİKEL TAHMİNLEME VE YORUMLAMA ÜRECİ GÜVEN ARALIĞI Nokta Tahmii Populayo parametreii tek bir tahmi değerii verir μˆ σˆ p Pˆ Aralık Tahmii Populayo parametreii tahmi aralığıı

Detaylı

BEKLENEN DEĞER VE VARYANS

BEKLENEN DEĞER VE VARYANS BEKLEE DEĞER VE VARYAS.1. İadel ve adesz öreklemede tüm mümkü örekler.. Beklee değer.3. Varyas.4. İk değşke ortak dağılımı.5. İstatstksel bağımsızlık.6. Tesadüf değşkeler doğrusal kombasyolarıı beklee

Detaylı

YAPIM YÖNETİMİ - EKONOMİSİ 04

YAPIM YÖNETİMİ - EKONOMİSİ 04 İşaat projelerii içi fiasal ve ekoomik aaliz yötemleri İşaat projeleri içi temel maliyet kavramları Yaşam boyu maliyet: Projei kafamızda şekillemeye başladığı ada itibare başlayıp kullaım ömrüü tamamlayaa

Detaylı

ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR

ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR 1) 60 sayısıı asal çarpalarıa ayrılmış şekli aşağıdakilerde hagisidir? A)..5 D)..5 B)..5 E)..5 C)..5 1.Yötem: 60 180 90 45 60..5 tir. 15 5 5 1.Yötem: Öğrecilerimizi1.Yötemde

Detaylı

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) S-1) Bir otoyol üzerinde radarla hız kontrolü yapan, polis ekipler tarafından tespit edilen tane aracın hızları aşağıdaki tabloda

Detaylı

TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI.

TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI. TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI Birici Bölüm DENEME-4 Bu sıav iki bölümde oluşmaktadır. * Çokta seçmeli

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı