Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine"

Transkript

1 Geelleşrlmş Oralama Foksyou ve Bazı Öeml Eşszlkler Öğrem Üzere Gabl ADİLOV, Gülek TINAZTEPE & Serap KEALİ * Öze Armek oralama, Geomerk oralama, Harmok oralama, Kuvadrak oralama ve bular arasıdak lşk vere eşszlkler, ora öğrem ve üverse ders programlarıda öğrele öeml koulardadır. Bu kouu öğremde eşkszlkler ek ek ele alıır ve doğrulukları farklı yollarla kaılaır. Bu makalede, bu kouu öğrem le bağlı, farklı br yol zlelr. Bu oralamalar, br Oralama Foksyouu brer özel durumları olduğuda dolayı, adı geçe Oralama Foksyouu daha geel durumu ola Ağırlıklı Oralama Foksyou ele alıır. Bu foksyou moooluk özellğe dayaarak oralamalarla bağlı üm ble eşszlkler (blmeye, çok sayıda dğer eşszlkler de) doğruluğu göserlr. Aahar kelmeler: Ağırlıklı oralama foksyou, armek oralama, geomerk oralama, harmok oralama, kuvadrak oralama, eşszlkler. Absrac O he Geeralzed ea Fuco ad Some Impora Iequales The Arhmec mea, Geomerc mea, Harmoc mea, Quadrac mea ad he equales amog hem are oe of he mpora opcs whch are augh secodary ad hgher educao. I he eachg of hs subjec, he equales are cosdered oe by oe ad s valdy s proved va dffere mehods. I hs arcle, he dffere way relaed o eachg of hs opc s preseed. Sce hese meas are he specal cases of a ea Fuco, hs fuco (Weghed ea Fuco whch s more geeral ea Fuco) s cosdered. By usg he propery of mooocy of hs fuco, he valdy of all he kow equales bewee he meas (also a lo of he ukow equales bewee he meas) ca be show. Key words: Weghed mea fuco, arhmec mea, geomerc mea, harmoc mea, quadrac mea, equales. Grş Eşszlkler Teors maemağ öeml alalarıda brdr. Dğer alalarda, özellkle de Opmzasyo Teorsde, geş şeklde uygulamakadır. Öreğ, Adlov ve Tıazepe de (00a, 00b), br çok geomerk eşszlkler opmalleşrme problemlere uygulamaları verlmşr. Armek oralama, Geomerk oralama, Harmok oralama, ve Kuvadrak oralama arasıdak lşk fade ede eşszlkler, bu Teorde öeml yere sahprler. * Gabl Adlov, Prof. Dr., ers Üverses Eğm Faküles, Gülek Tıazepe, Yrd. Doç. Dr., Akdez Üverses TBYO, Serap Kemal, Öğr. Gör. Dr., Akdez Üverses TBYO, ers Üverses Eğm Faküles Dergs, Cl 5, Sayı, Aralık 009, ss ers Uversy Joural of he Faculy of Educao, Vol. 5, Issue, December 009, pp

2 ADİLOV, TINAZTEPE, KEALİ 95 Öce, bu oralamaları aımlayalım. x x x x = (,,, ) ve x > 0, =,,..., olmak üzere, x + x + L+ x = ( ) Ax Gx ( ) = xxl x H( x) = + + L+ x x x x + x + L+ x K( x) = foksyolarıa, sırası le, Armek oralama, Geomerk oralama, Harmok oralama, ve Kuvadrak oralama der. Bu oralamalar arasıdak lşky vere eşszlkler aşağıdak gbdr: H( x) G( x) A( x) K( x) () Bu eşszlkler zcr her halkası ayrı ele alııp, farklı yollarla spalaır. Öreğ, Gx ( ) Ax ( ) eşszlğ y = l x foksyouu kovekslye dayaarak spalaa blr. Bu makalede, öce + + L+ x x x ( x) = şeklde fade edle Oralama Foksyou ele alıır, H ( x), G( x), A( x), K( x ) foksyolarıı, bu foksyou özel durumları olduğu göserlr. Daha sora, Oralama Foksyouu geel durumu ola Ağırlıklı Oralama Foksyouu çok öeml br özellğ spalaır. () eşszlkler zcr doğruluğu, bu özellğ br soucu olduğu göserlr. Oralama Foksyou ve Armek, Geomerk, Harmok, Kuvadrak Oralamalar x x x x = (,,, ) ve x > 0, =,,..., olmak üzere, Cl 5, Sayı, Aralık 009

3 96 GENELLEŞTİRİLİŞ ORTALAA FONKSİYONU VE BAZI ÖNELİ EŞİTSİZLİKLERİN x x L x ( x) = () şeklde aımlı foksyoa,. Derecede Oralama Foksyou der (Bekebach ve Bellma, 96). parameres özel seçlmş değerler ç bu foksyou celeyelm. Teorem. Aşağıdak eşlkler doğrudur: ( (3) ( (4) ( = (5) ( x) = lm ( x) = G( x) (6) 0 x 0 ( x) = lm ( x) = max{ x, x,..., x } + x + ( x) = lm ( x) = m{ x, x,..., x } (8) x (7) İspa: (3), (4), (5) eşlkler doğruluğu açıkır. (6) yı spalayalım. x l + x+ L+ x x + x + L+ x ( x) = lm ( x) = lm = lm e L Hospal kuralıı uygulayalım. 0 0 xl x+ xl x+ L+ x l x x+ x+ L+ x ( x) = lme = e l x+ l x+ L+ l x = ( xxl x ) Şmd de (7) y spalayalım. a = max{ x, x,..., x } olmak üzere + + L+ x x x + ( x) = lm ( x) = lm + + = ers Üverses Eğm Faküles Dergs

4 ADİLOV, TINAZTEPE, KEALİ 97 x x x + + L+ a a a lm a = a + Bezer şeklde (8) eşly spalaır Ağılıklı Oralama Foksyou ve Br Öeml Özellğ x x x x ve = (,,, ); x > 0, =,,..., ; α = ( α, α, L, α), α 0, = α = olmak üzere, =,,..., ( x; α ) = αx (9) = şeklde aımlı foksyoa Ağırlıklı Oralama Foksyou der (Bekebach ve Bellma, 96). No. () Oralama Foksyou, bu foksyou özel, eş ağırlıklı, haldr. Ya, (9) da α ağırlıklarıı heps ye eş alıırsa, () Oralama Foksyou elde edlr. Bu foksyou paramerese bağlı br özellğ göserelm. Teorem. ( x; α ) Ağırlıklı Oralama Foksyou değşkee göre ara foksyodur. İspa: Her R ç 0 olduğuu gösermelyz. Cl 5, Sayı, Aralık 009

5 98 GENELLEŞTİRİLİŞ ORTALAA FONKSİYONU VE BAZI ÖNELİ EŞİTSİZLİKLERİN x l x α = l α x = αx = = = l l αx x αx αx = = = α x = Köşel paraez öüdek = α x fades her R ç pozf olduğu açıkır. Köşel paraez çdek fade pozf olması, f ( y) = yl y foksyouu " (0, ) aralığıda koveks olduğuda ( f ( y) = > 0, her y > 0 ç ) İese y eşszlğ (Rockafellar, 970) kullaarak, kolayca göserleblr. Böylece, her R ç 0 olur. Dolayısıyla, ( x; α ) foksyou değşke ara foksyoudur () eşszlk zcr foksyouu kullaarak yazarsak, 0 şekl alır. Buu da doğruluğu Teorem de çıkar. parameres her hag br ara < < L < k dzs alıırsa, ble oralamalar dışıdak farklı oralamalar ç de eşszlkler zcr elde edleblr: L (0) k Geomerk oralama ve Armek oralamalar arasıdak farklı br lşk (sask alamda), Adlov ve Tazepe (005) de araşırılmış ve lgç souçlar elde edlmşdr. Bu oralamalarla bağlı daha farklı eşszlkler Adlov ve Tazepe (009) da celemşdr. Souç Çalışmada, maemağ öeml koularıda ola, ora öğrem ve üverse ders programlarıda yer ala Armek oralama, Geomerk oralama, Harmok oralama, ers Üverses Eğm Faküles Dergs

6 ADİLOV, TINAZTEPE, KEALİ 99 Kuvadrak oralamalar ve bular arasıdak eşszlkler öğrem problem ele alıır, celer ve aşağıdak yolu zlelmes öerlr: ) ( x ) Oralama Foksyou aımlaır; ) Armek oralama, Geomerk oralama, Harmok oralama, Kuvadrak oralama adı le geçe, çok ble foksyoları, ( x ) Oralama Foksyouu değşke özel eğerlerdek durumlara karşılık geldğ göserlr (Teorem ); 3) Daha geel foksyo ola, ( x; α ) Ağırlıklı Oralama Foksyou aımlaır ve () x foksyouu, bu foksyou özel hal (eş ağırlıklı hal, ya =, ç α = ) olduğu göserlr; 4) ( x; α ) foksyouu değşkee göre mooo ara özellğe sahp olduğu göserlr (Teorem ); 5) () eşszlkler zcr doğruluğu, ( x; α ) foksyouu moooluk özellğ br soucu olduğu göserlr; 6) Bu özellğe dayaarak, (0) şeklde daha farklı eşszlkler de elde edlebleceğ göserlr. Eşszlkler öğremde zlee bu yolu sağladığı faydalar aşağıdak gb lseleeblr: a) () eşszlkler zcr her halkasıı ayrı-ayrı ele alıp, spalamasıa gerek yokur. Teorem ve Teorem gb k eorem spalaması yeerldr; b) Oralamaları, ayı br ( x; α ) foksyouu özel durumları olarak öğreldğ ç, aralarıdak lşk daha açık şeklde alaşılmasıı ve öğrem daha kalıcı olmasıı sağlar; c) Kou alaımı merkeze Geelleşrlmş Oralama Foksyouu koulması, yalız () şekldek eşszlkler varlığı değl, < < L < k koşuluu sağlaya,, L, k değşkelere karşılık gele her ürlü oralamalar arasıda da bezer eşszlkler varlığıı ve doğruluğuu gösermeye olaak sağlar. Kayakça Adlov, G.R.ve Tıazepe, R. (00a). Geomerk opmalleşrme problemler üzere I, aemak Düyası, Cl, Sayı 4, -5. Cl 5, Sayı, Aralık 009

7 300 GENELLEŞTİRİLİŞ ORTALAA FONKSİYONU VE BAZI ÖNELİ EŞİTSİZLİKLERİN Adlov, G.R.ve Tıazepe, R. (00b). Geomerk opmalleşrme problemler üzere II, aemak Düyası, Cl, Sayı 5, -7. Adlov, G.R. ve Tıazepe, G. (006). O he asympoc aggregao problem of hgh dmesoal sysems, Sysems ad Corol Leers, 55 (5), Adlov, G.R. ve Tıazepe, G. (009). The sharpeg some equales va absrac covexy, ahemacal Iequales ad Applcaos,, Beckebach, E. ve Bellma, R. (96). Iequales, Spger-Verlag. Rockafellar, R.T. (970). Covex aalyss. Prceo, New Jersey: Prceo Uversy Press. ers Üverses Eğm Faküles Dergs

Rasgele sayıda bağımlı aktüeryal risklerin beklenen değeri için alt ve üst sınırlar

Rasgele sayıda bağımlı aktüeryal risklerin beklenen değeri için alt ve üst sınırlar www.saskcler.org İsaskçler Dergs (8) 64-74 İsaskçler Dergs Rasgele sayıda bağımlı aküeryal rskler beklee değer ç al ve üs sıırlar Fah Tak Kırıkkale Üverses Fe-Edebya Faküles, İsask Bölümü 7-ahşha,Kırıkkale,

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

Polinom İnterpolasyonu

Polinom İnterpolasyonu Polom İterpolasyou (Ara Değer Bulma Br foksyou solu sayıdak, K, R oktalarıda aldığı f (, f (,, f ( değerler bls (foksyou keds blmyor. Bu oktalarda geçe. derecede br tek, P a + a + a + + a (... polumu vardır

Detaylı

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir.

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir. Bölüm 2 Matrsler aım 2.1 F br csm, m, brer doğal sayı olsu. a F ( 1,.., m; j 1,..., ) olmak üzere, a11... a1 fadese m satır sütuda oluşa (veya m tpde) br F matrs der. am 1... a m Böyle br matrs daha sade

Detaylı

GENELLEŞTİRİLMİŞ BULANIK KÜMELER. Mehmet Şahin Gaziantep Üniversitesi, Matematik Bölümü, 27310, Gaziantep

GENELLEŞTİRİLMİŞ BULANIK KÜMELER. Mehmet Şahin Gaziantep Üniversitesi, Matematik Bölümü, 27310, Gaziantep GENEEŞTİRİMİŞ UANIK KÜMEER Mehme Şah Gazaep Üverses, Maemak ölümü, 27310, Gazaep ÖZET: u çalışmada öcelkle P ( br al ale olarak buludura bulaık kümeler GF ales br halka olarak yapıladırılmaka ve bu yapıı

Detaylı

Değişkenler Arasındaki İlişkiler Regresyon ve Korelasyon. Dr. Musa KILIÇ

Değişkenler Arasındaki İlişkiler Regresyon ve Korelasyon. Dr. Musa KILIÇ Değşkeler Arasıdak İlşkler Regresyo ve Korelasyo Dr. Musa KILIÇ http://ks.deu.edu.tr/musa.klc 1. Grş Buda öcek bölümlerde celedğmz koular, br tek değşke ç yorumlamalar yapmaya yöelk statstk yötemler üzerde

Detaylı

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması . Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve

Detaylı

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz;

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz; Öre A. Bezer pe 40 güç ayağıı dayama süreler aşağıda gbdr. Geşlelmş reas ablosu oluşuruuz;, 4,7 3, 3,4 3,3 3, 3,9 4, 3,4 4, 3,8 3,7 3,6 3,8 3,7 3,0,,6 3, 3,,6,9 3, 3,0 3,3 4,3 3, 4, 4,6 3, 3,3 4,4 3,9,9

Detaylı

Đst201 Đstatistik Teorisi I

Đst201 Đstatistik Teorisi I Đst20 Đstatstk Teors I DERSĐN TÜRÜ Zorulu DERSĐN DÖNEMĐ Yaz DERSĐN KREDĐSĐ Ulusal Kred: (4, 0, 0 ) 4 KTS: 7 DERSĐN VERĐLDĐĞĐ Bölüm: Đstatstk 200/20 Öğretm Yılı DERSĐN MCI Đstatstğ matematksel temeller

Detaylı

ZAMAN SKALASINDA BAZI KISMİ DİNAMİK DENKLEMLERİN SALINIMLILIĞI ÜZERİNE

ZAMAN SKALASINDA BAZI KISMİ DİNAMİK DENKLEMLERİN SALINIMLILIĞI ÜZERİNE ZAMAN SKALASINDA BAZI KISMİ DİNAMİK DENKLEMLERİN SALINIMLILIĞI ÜZERİNE DOKTORA TEZİ Dez UÇAR DANIŞMAN Doç. Dr. Yaşar BOLAT MATEMATİK ANABİLİM DALI TEMMUZ AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Detaylı

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu Br KANUN ve Br TEOREM Büyük Türkçe Sözlük kau Đg. law Doğa olaylarıı oluş edeler ortaya koya ve gelecektek olayları öcede kestrme olaağı vere bağıtı; Newto kauu, Kepler kauları. (BSTS / Gökblm Termler

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BULANIK DEĞİŞKENLER VE BULANIK YENİLEME SÜREÇLERİ. Yunus KOCATÜRK

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BULANIK DEĞİŞKENLER VE BULANIK YENİLEME SÜREÇLERİ. Yunus KOCATÜRK ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BULANIK DEĞİŞKENLER VE BULANIK YENİLEME SÜREÇLERİ Yuus KOCATÜRK İSTATİSTİK ANABİLİMDALI ANKARA 7 Her hakkı saklıdır Yrd. Doç. Dr. Hall AYDOĞDU

Detaylı

Zaman Skalasında Box-Cox Regresyon Yöntemi

Zaman Skalasında Box-Cox Regresyon Yöntemi Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:7, Sayı:, Yıl:0, ss.57-70. Zama Skalasıda Bo-Co Regresyo Yötem Atlla Özur İŞÇİ Sbel PAŞALI GÖKTAŞ ATMACA 3 M. Nyaz ÇANKAYA 4 Özet Hata term

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

1. GAZLARIN DAVRANI I

1. GAZLARIN DAVRANI I . GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak

Detaylı

Olabilirlik Oranı Yöntemine Dayalı, Yapısal Homojen Olmayan Varyans Testlerinin Piyasa Modeli İçin Karşılaştırılması

Olabilirlik Oranı Yöntemine Dayalı, Yapısal Homojen Olmayan Varyans Testlerinin Piyasa Modeli İçin Karşılaştırılması Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:6, Sayı:, Yıl:011, ss.135-144 Olablrlk Oraı Yöteme Dayalı, Yaısal Homoje Olmaya Varyas Testler Pyasa Model İç Karşılaştırılması Flz KARDİYEN

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Taımlayıcı İstatstkler br değerler dzs statstksel olarak geel özellkler taımlaya ölçülerdr Taımlayıcı İstatstkler Yer Göstere Ölçüler Yaygılık Ölçüler Yer Göstere Ölçüler Br dağılımı

Detaylı

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR Ölçme, her deeysel blm temel oluşturur. Fzk blmde de teorler sıaması ç çeştl deeyler tasarlaır ve bu deeyler sırasıda çok çeştl ölçümler yapılır. Br fzksel celğ

Detaylı

BEKLENEN DEĞER VE VARYANS

BEKLENEN DEĞER VE VARYANS BEKLEE DEĞER VE VARYAS.1. İadel ve adesz öreklemede tüm mümkü örekler.. Beklee değer.3. Varyas.4. İk değşke ortak dağılımı.5. İstatstksel bağımsızlık.6. Tesadüf değşkeler doğrusal kombasyolarıı beklee

Detaylı

Parametrik Olmayan İstatistik Çözümlü Sorular - 2

Parametrik Olmayan İstatistik Çözümlü Sorular - 2 Parametrk Olmaya İstatstk Çözümlü Sorular - Soru Böbrek hastalarıa at Kreat (KRT) değerlere lşk br araştırma yapılmak stemektedr. Buu ç rasgele seçle hastaya at Kreat değerler aşağıdak gb elde edlmştr

Detaylı

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain *

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain * BİR ESAS İDEAL BÖLGESİ ÜZERİNDEKİ SONLU DOĞURULMUŞ BİR MODÜLÜN DİREK PARÇALANIŞI * Drec Decompoon of A Fnely-Generaed Module Over a Prncpal Ideal Doman * Zeynep YAPTI Fen Blmler Enüü Maemak Anablm Dalı

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

5.1 Olasılık Tarihi. 5.2. Temel Olasılık Kavramları

5.1 Olasılık Tarihi. 5.2. Temel Olasılık Kavramları 5 OLSILIK 5.. Olasılık Tarh 5.. Temel Olasılık Kavramları 5.3. Deeysel Olasılık 5.4. Temel olasılık Teoremler 5.5. Olasılığı Tolaablrlk Kuralı: 5.6. Olasılığı çarım kuralı: 5.7. Değl ağıtısı: 5.8. Koşullu

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 9 Sayı: 1 s. 1-7 Ocak 2007 HİDROLİK PROBLEMLERİNİN ÇÖZÜMÜNDE TAŞIMA MATRİSİ YÖNTEMİ

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 9 Sayı: 1 s. 1-7 Ocak 2007 HİDROLİK PROBLEMLERİNİN ÇÖZÜMÜNDE TAŞIMA MATRİSİ YÖNTEMİ DEÜ MÜHENDİSLİK FAKÜLESİ FEN ve MÜHENDİSLİK DERGİSİ lt: 9 Sayı: s -7 Ocak 7 HİDROLİK PROBLEMLERİNİN ÇÖÜMÜNDE AŞIMA MARİSİ YÖNEMİ (MEHOD OF RANSFER MARIX O HE ANALYSIS OF HYDRAULI PROBLEMS) Rasoul DANESHFARA*,

Detaylı

KONTROL KARTLARI 1)DEĞİŞKENLER İÇİN KONTROL KARTLARI

KONTROL KARTLARI 1)DEĞİŞKENLER İÇİN KONTROL KARTLARI 1 KONTOL KATLAI 1)DEĞİŞKENLE İÇİN KONTOL KATLAI Ölçe,gözle veya deey yolu le elde edle verler değşke(ölçüleblr-sürekl) ve özellk (sayılablr-keskl) olak üzere başlıca k gruba ayrılır. Değşke verler belrl

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

TABAKALI ŞANS ÖRNEKLEME

TABAKALI ŞANS ÖRNEKLEME 6 TABAKAI ŞA ÖREKEME 6.. Populasyo ortalaması ve populasyo toplamıı tam 6.. Populasyo ortalamasıı ve toplamıı varyası 6... Populasyo ortalamasıı varyası 6... Populasyo toplamıı varyası 6..3. Ortalama ve

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

TÜRKİYE ŞEKERPANCARI ÜRETİMİNDE FAKTÖR TALEP ANALİZİ ( ) (TRANSLOG MALİYET FONKSİYONU UYGULAMASI) Yaşar AKÇAY 1 Kemal ESENGÜN 2

TÜRKİYE ŞEKERPANCARI ÜRETİMİNDE FAKTÖR TALEP ANALİZİ ( ) (TRANSLOG MALİYET FONKSİYONU UYGULAMASI) Yaşar AKÇAY 1 Kemal ESENGÜN 2 l Ta rr ım ı Ekooms Kog rres 6-8 - Eylül l 2000 Tek rrdağ TÜRKİYE ŞEKERPANCARI ÜRETİMİNDE FAKTÖR TALEP ANALİZİ (980-998) (TRANLOG MALİYET FONKİYONU UYGULAMAI) Yaşar AKÇAY Kemal EENGÜN 2. GİRİŞ Türkye tarımı

Detaylı

AES S Kutusuna Benzer S Kutuları Üreten Simulatör

AES S Kutusuna Benzer S Kutuları Üreten Simulatör AES S Kutusua Bezer S Kutuları Ürete Smulatör M.Tolga SAKALLI Trakya Üverstes Blgsayar Mühedslğ tolga@trakya.edu.tr Erca BULUŞ Trakya Üverstes Blgsayar Mühedslğ ercab@trakya.edu.tr Adaç ŞAHİN Trakya Üverstes

Detaylı

PORTFÖY OPTİMİZASYONUNDA ORTALAMA MUTLAK SAPMA MODELİ VE MARKOWITZ MODELİNİN KULLANIMI VE İMKB VERİLERİNE UYGULANMASI

PORTFÖY OPTİMİZASYONUNDA ORTALAMA MUTLAK SAPMA MODELİ VE MARKOWITZ MODELİNİN KULLANIMI VE İMKB VERİLERİNE UYGULANMASI Süleyma Demrel Üverstes İktsad ve İdar Blmler Fakültes Dergs Y.2008, C.3, S.2 s.335-350. Suleyma Demrel Uversty The Joural of Faculty of Ecoomcs ad Admstratve Sceces Y.2008, vol.3, No.2 pp.335-350. PORTFÖY

Detaylı

Açık Artırma Teorisi Üzerine Bir Çalışma

Açık Artırma Teorisi Üzerine Bir Çalışma Kocael Üerstes Sosyal Blmler Esttüsü Dergs (4) 27 / 2 : 5-77 Açık Artırma Teors Üzere Br Çalışma Şeket Alper Koç Özet: Bu çalışmada haleler üzere teork r araştırma yapılacaktır. Belrl arsayımlar altıda

Detaylı

Matematik olarak normal dağılım fonksiyonu. 1 exp X 2

Matematik olarak normal dağılım fonksiyonu. 1 exp X 2 Matematk olarak ormal dağılım foksyou f ( ) ep ( ) Şeklde fade edlr. Burada μ artmetk ortalama, σ se stadart sapma değer gösterr ve dağılım foksyou N(μ, σ) otasyou le gösterlr. Bu deklem geometrk görütüsü

Detaylı

=... 29 İÇİNDEKİLER. E(X) = k... 22. 3.5. Pascal (Negatif Binom) Dağılımı... 22 1. 3.6. Hipergeometrik Dağılım... 22. N y= ... 24

=... 29 İÇİNDEKİLER. E(X) = k... 22. 3.5. Pascal (Negatif Binom) Dağılımı... 22 1. 3.6. Hipergeometrik Dağılım... 22. N y= ... 24 İÇİNDEKİLER SİMGE LİSTESİ... KISALTMA LİSTESİ... v ÇİZELGE LİSTESİ... v ŞEKİL LİSTESİ... v ÖNSÖZ... v ÖZET... x ABSTRACT... x GİRİŞ... BÖLÜM : OLASILIK DAĞILIMLARI VE OLASILIK YOĞUNLUKLARI... BÖLÜM : OLASILIK

Detaylı

BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON)

BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON) BÖÜM 4 KASİK OPTİMİZASYON TEKNİKERİ KISITI OPTİMİZASYON 4. GİRİŞ Öcek bölülerde de belrtldğ b optzaso probleler çoğuluğu kısıtlaıcı oksolar çerektedr. Kısıtlaasız optzaso problelerde optu değer ede oksou

Detaylı

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1 ĐÇI DEKILER Sayfa. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR.. Grş.. Đstatstk.3. Populasyo.4. Örek.5. Brm.6. Parametre.7. Değşke 3.8. Ver ve Ver Tpler 3.9. Toplama Sembolü 4 ÇALIŞMA PROBLEMLERĐ 6. VERĐLERĐ

Detaylı

Bir Kompleks Sayının n inci Kökü.

Bir Kompleks Sayının n inci Kökü. Prof.Dr.Hüsy ÇAKALLI Br Komplks Sayıı c Kökü. hrhag br sab doğal sayı olmak ür, br komplks sayıı c kökü, c kuvv bu sayıya ş ola komplks sayıdır. ( r(cos s olsu v (cos s dylm. Bu akdrd ( [ (cos s] dr v

Detaylı

Kredibilite kuramnda panel veri modelleri ve trafik sigortas için bir uygulama

Kredibilite kuramnda panel veri modelleri ve trafik sigortas için bir uygulama www.saskcler.org saskçler Dergs 3 (00) 7-36 saskçler Dergs Kredble kuramda pael ver modeller ve rafk sgoras ç br uygulama Aslha eürk Haceepe Üverses Fe Faküles Aküerya Blmler Bölümü 06800-Beyepe, Akara,ürkye

Detaylı

TARTIŞMA METNİ 2012/71 http ://www.tek.org.tr İMALAT SANAYİNDE YAPISAL DEĞİŞİM VE ÜRETKENLİK: TÜRKİYE, AKDENİZ BÖLGESİ VE MERSİN İLİ KARŞILAŞTIRMASI

TARTIŞMA METNİ 2012/71 http ://www.tek.org.tr İMALAT SANAYİNDE YAPISAL DEĞİŞİM VE ÜRETKENLİK: TÜRKİYE, AKDENİZ BÖLGESİ VE MERSİN İLİ KARŞILAŞTIRMASI TÜRKİYE EKONOMİ KURUMU TARTIŞMA METNİ 202/7 hp ://www.ek.org.r İMALAT SANAYİNDE YAPISAL DEĞİŞİM VE ÜRETKENLİK: TÜRKİYE, AKDENİZ BÖLGESİ VE MERSİN İLİ KARŞILAŞTIRMASI Me Alıok ve İsmal Tucer Bu çalışma

Detaylı

ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA

ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA İstabul Tcaret Üverstes Fe Blmler Dergs Yıl: 11 Sayı: Güz 01 s. 19-35 ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA Cası KAYA 1, Oza KOCADAĞLI Gelş: 30.05.01 Kabul: 14.1.01

Detaylı

α kararlı dağılım, VaR, Koşullu VaR,, Finansal α KARARLI DAĞILIMLARLA FİNANSAL RİSK

α kararlı dağılım, VaR, Koşullu VaR,, Finansal α KARARLI DAĞILIMLARLA FİNANSAL RİSK Marmara Üverstes İ.İ.B.F. Dergs YIL 00 CİLT XXVIII SAYI I S. 549-57 Özet KARARLI DAĞILIMLARLA FİNANSAL RİSK ÖLÇÜMÜ Ömer ÖNALAN * Bu çalışmada fasal kayıları kalı kuyruklu kararlı dağılım zledğ varsayımı

Detaylı

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör.

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör. İ.T.Ü. aka akültes ekak Aa Blm Dalı STATİK - Bölüm KUVVET SİSTELEİ KUVVET Vektörel büyüklük - Kuvvet büyüklüğü - Kuvvet doğrultusu - Kuvvet uygulama oktası - Kuvvet yöü S = (,,..., ) = + +... + = Serbest

Detaylı

6. NORMAL ALT GRUPLAR

6. NORMAL ALT GRUPLAR 6. ORMAL ALT GRUPLAR G br grup ve olsun. 5. Bölümden çn eştlğnn her zaman doğru olamayacağını blyoruz. Fakat bu özellğ sağlayan gruplar, grup teorsnde öneml rol oynamaktadır. Bu bölümde bu tür grupları

Detaylı

(DERS NOTLARI) Hazırlayan: Prof.Dr. Orhan ÇAKIR. Ankara Üniversitesi, Fen Fakültesi, Fizik Bölümü

(DERS NOTLARI) Hazırlayan: Prof.Dr. Orhan ÇAKIR. Ankara Üniversitesi, Fen Fakültesi, Fizik Bölümü FİZ433 FİZİKTE BİLGİSAYAR UYGULAMALARI DERS NOTLARI Hazırlaya: Pro.Dr. Orha ÇAKIR Akara Üverstes, Fe Fakültes, Fzk Bölümü Akara, 7! İÇİNDEKİLER. LİNEER OLMAYAN DENKLEMLERİN KÖKLERİNİN BULUNMASI I/II. LİNEER

Detaylı

Operasyonel Risk İleri Ölçüm Modelleri

Operasyonel Risk İleri Ölçüm Modelleri Bakacılar Dergs, Sayı 58, 006 Grş Operasyoel Rsk İler Ölçüm Modeller Çalışma k bölümde oluşmaktadır. İlk bölümde operasyoel rskler ölçülmes kapsamıda hag ler ölçüm modeller kullaılması gerektğ, söz kousu

Detaylı

FEN VE MÜHENDİSLİKTE MATEMATİK METOTLAR

FEN VE MÜHENDİSLİKTE MATEMATİK METOTLAR FE VE MÜHEDİSLİKTE MTEMTİK METOTLR 3. KİTP MTRİS CEBİRİ f 70 İÇİDEKİLER I. MTRİS CEBİRİ ) Matrsler ve Elemaları B) İşlemler C) İk Özel Matrs D) Dyagoal Matrsler E) İz ve Determat F) Bazı Matrs İşlemler

Detaylı

TRAFİK SİMÜLASYON TEKNİKLERİ

TRAFİK SİMÜLASYON TEKNİKLERİ TRAFİK SİMÜLASYON TEKNİKLERİ 2. HAFTA Doç. Dr. Haka GÜLER (2015-2016) 1. TRAFİK AKIM PARAMETRELERİ Üç öeml rafk akım parameres vardır: Hacm veya akım oraı, Hız, Yoğuluk. 2. KESİNTİSİZ AKIM HACİM E AKIM

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Joural of Egieerig ad Naural Scieces Mühedislik ve Fe Bilimleri Dergisi Sigma 004/ ON THE GENERALIZATION OF CARTESIAN PRODUCT OF FUZZY SUBGROUPS AND IDEALS Bayram Ali ERSOY * Deparme of Mahemaics, Faculy

Detaylı

Bilgisayar Destekli Fen Bilgisi Öğretiminin Öğrencilerin Fen Ve Bilgisayar Tutumlarına Etkisi

Bilgisayar Destekli Fen Bilgisi Öğretiminin Öğrencilerin Fen Ve Bilgisayar Tutumlarına Etkisi The Turkish Olie Joural of Educaioal Techology TOJET Ocober 2003 ISSN: 1303-6521 volume 2 Issue 4 Aricle 12 Bilgisayar Desekli Fe Bilgisi Öğreimii leri Fe Ve Bilgisayar Tuumlarıa Ekisi Yrd. Doç.Dr. Nilgü

Detaylı

BİR BOYUTLU HAREKET FİZİK I. Bir Boyutlu Hareket? 12.10.2011. Hız ve Sürat. 1 boyut (doğru) 2 boyut (düzlem) 3 boyut (hacim) 0 boyut (nokta)

BİR BOYUTLU HAREKET FİZİK I. Bir Boyutlu Hareket? 12.10.2011. Hız ve Sürat. 1 boyut (doğru) 2 boyut (düzlem) 3 boyut (hacim) 0 boyut (nokta) .0.0 r oulu Hareke? İR OYUTLU HREKET FİZİK I bou (doğru bou (düzlem 3 bou (hacm 0 bou (noka u bölümde adece br doğru bounca harekee bakacağız (br boulu. Hareke ler olablr (pozf erdeğşrme ea ger olablr

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ Clt: 2 Sayı: 3 sh 87-02 Ekm 200 VOLTERRA SERİLERİ METODU İLE DOĞRUSAL OLMAYAN SİSTEMLERİN FREKANS BOYUTUNDA ANALİZİ İÇİN NET TABANLI ARAYÜZ TASARIMI (DESIGN

Detaylı

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit Karadez Te Üverstes Blgsayar Mühedslğ Bölümü 5-6 Güz Yarıyılı Sayısal Çözümleme Ara Sıav Soruları Tarh: Kasım 5 Perşembe Süre: daa. f ( ( + a e fosyouu sabt otası olmadığı bldğe göre, a 'ı alableceğ e

Detaylı

Fresnel Denklemleri. 2008 HSarı 1

Fresnel Denklemleri. 2008 HSarı 1 Feel Deklemle 8 HSaı 1 De İçeğ Aa Yüzeyde Mawell Deklemle Feel şlkle Yaıma Kıılma 8 HSaı Kayak(la Oc ugee Hech, Alfed Zajac Addo-Weley,199 Kuaum leko-diamğ (KDİ, Rchad Feyma, (Çev. Ömü Akyuz, NAR Yayılaı,

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BAZI DAĞILIMLAR İÇİN EN ÇOK OLABİLİRLİK VE FARKLI KAYIP FONKSİYONLARI ALTINDA BAYES TAHMİN EDİCİLERİNİN PERFORMANSLARININ KARŞILAŞTIRILMASI Gülca GENCER

Detaylı

Ğ ğ Ç ğ ğ ğ ö ö ğ ğ Ö ğ ğ ö ğ ğ ğ ö ğ ö ğ ö ğ ö ğ ö ğ ğ ö ğ ö ğ ğ ö ğ Ç ğ Ğ ğ ö ğ Ö ğ ö ğ ö ö ğ Ç Ç ö Ç ğ ğ Ç Ç ö Ç ğ ö ğ Ç ğ ö ğ ğ Ç Ç ö ğ ğ ö öç ğ ğ Ç ğ öç Ç ö ğ Ğ ö ö ğ ğ ö ğ ğ Ğ ğ Ö ğ Ğ ğ ğ ğ Ç ğ ğ»

Detaylı

ı ı ı ğ ş ı ı ı ı ı ı ı ı

ı ı ı ğ ş ı ı ı ı ı ı ı ı Ş Ü Ğ ö ö İ ö öç Ğ Ş ö ç İ Ö Ü Ş ö Ö ç ç ğ ö ö ğ ö İ Ş ç ç ç ğ ğ ç İ İ İİ ö ç Ş ö İİ ö ç ç İ İ ğ ö İ ğ ğ ö ğ ö ç ğ ç ğ İç Ş Ü Ş ğ Ü Ş ö İŞ Ü Ş İ ğ İ İ Ü İ ö «İ ö Ş ç ç ğ ö ğ ö ç İ ö ğ ç ö İ İ ğ ğ ğ ğ ğ

Detaylı

Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda, Begül ARKANT tarafıda hazırlaa bu çalışma 3/07/008 tarhde aşağıdak jür tarafıda oy brlğ le Akara Üverstes

Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda, Begül ARKANT tarafıda hazırlaa bu çalışma 3/07/008 tarhde aşağıdak jür tarafıda oy brlğ le Akara Üverstes ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BAĞIMLI GÖZLEMLERLE BOOTSTRAP YÖNTEMİ Begül ARKANT İSTATİSTİK ANABİLİM DALI ANKARA 008 Her hakkı saklıdır Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda,

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

GRAPHIN SPEKTRAL YARIÇAPI İÇİN SINIRLAR

GRAPHIN SPEKTRAL YARIÇAPI İÇİN SINIRLAR T.C. AHİ EVRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ GRAPHIN SPEKTRAL YARIÇAPI İÇİN SINIRLAR Koray BOZDAYI YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI KIRŞEHİR 0 T.C. AHİ EVRAN ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

HĐPERSTATĐK SĐSTEMLER

HĐPERSTATĐK SĐSTEMLER HĐPERSTATĐK SĐSTELER Taım: Bütü kest zorları, şekldeğştrmeler ve yerdeğştrmeler belrlemes ç dege deklemler yeterl olmadığı sstemlere hperstatk sstemler der. Hperstatk sstemler hesabı ç, a) Dege deklemlere,

Detaylı

GRİ MARKOV KESTİRİM MODELİ KULLANILARAK DÖVİZ KURU TAHMİNİ

GRİ MARKOV KESTİRİM MODELİ KULLANILARAK DÖVİZ KURU TAHMİNİ Joural of Ecoomcs, Face ad Accoutg (JEFA), ISSN: 48-6697 Year: 4 Volume: Issue: 3 CURRENCY EXCHANGE RATE ESTIMATION USING THE GREY MARKOV PREDICTION MODEL Omer Oala¹ ¹Marmara Uversty. omeroala@marmara.edu.tr

Detaylı

60. Logaritma ve Üs Alma

60. Logaritma ve Üs Alma 60. Logartma ve Üs Alma L ogartmalar de flk yötemlerle ta mlaablr. Lselerde ta mlad bçm, x = log yy= 0 x, bu yollar br yada e kolay br yada da e zorudur. E kolay d r çükü do ruda uygulamaya yöelktr. E

Detaylı

Cinsiyet Değişkeni Bağlamında Harcama Alt Grupları ve Gelir Đlişkisi: Dumlupınar Üniversitesi Öğrencileri Üzerine Bir Uygulama.

Cinsiyet Değişkeni Bağlamında Harcama Alt Grupları ve Gelir Đlişkisi: Dumlupınar Üniversitesi Öğrencileri Üzerine Bir Uygulama. Cnsye Değşken Bağlamında Harcama Al Grupları ve Gelr Đlşks: Dumlupınar Ünverses Öğrencler Üzerne Br Uygulama Mahmu ZORTUK * Öze: Đksa blmnn en öneml konuları arasında yer alan gelr le ükem lşks her dönem

Detaylı

Çok Aşamalı Sıralı Küme Örneklemesi Tasarımlarının Etkinlikleri Üzerine Bir Çalışma

Çok Aşamalı Sıralı Küme Örneklemesi Tasarımlarının Etkinlikleri Üzerine Bir Çalışma Süleyma Demrel Üverstes, Fe Blmler Esttüsü Dergs, 15- ( 011),17-134 Çok Aşamalı Sıralı Küme Öreklemes Tasarımlarıı Etklkler Üzere Br Çalışma Nlay AKINCI 1, Yaprak Arzu ÖZDEMİR * 1 TRT Geel Müdürlüğü Reklam

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Ayça Hatce TÜRKAN GÜVENİLİRLİK ANALİZİNDE KULLANILAN İSTATİSTİKSEL DAĞILIM MODELLERİ İSTATİSTİK ANABİLİM DALI ADANA, 007 ÇUKUROVA ÜNİVERSİTESİ

Detaylı

REGRESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KARELER VE EN KÜÇÜK MEDYAN KARELER YÖNTEMLERİNİN KARŞILAŞTIRILMASI

REGRESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KARELER VE EN KÜÇÜK MEDYAN KARELER YÖNTEMLERİNİN KARŞILAŞTIRILMASI FEN DEGİSİ (E-DEGİ). 8, 3() 9-9 EGESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KAELE VE EN KÜÇÜK MEDYAN KAELE YÖNTEMLEİNİN KAŞILAŞTIILMASI Özlem GÜÜNLÜ ALMA, Özgül VUPA Dokuz Eylül Üverstes, Fe-Edebyat Fakültes,

Detaylı

BÉZIER YAKLAŞIMI İLE BİR YÜZEYİN OLUŞTURULMASI VE C PROGRAMLAMA İLE CAM KODLARININ TÜRETİLMESİ

BÉZIER YAKLAŞIMI İLE BİR YÜZEYİN OLUŞTURULMASI VE C PROGRAMLAMA İLE CAM KODLARININ TÜRETİLMESİ İMAK-asarım İmalat Aalz Kogres 6-8 Nsa 6 - ALIKESİR ÉZIER YAKLAŞIMI İLE İR YÜZEYİN OLUŞURULMASI VE C PROGRAMLAMA İLE CAM KODLARININ ÜREİLMESİ Cha ÖZEL, Erol KILIÇKAP Fırat Üverstes, Maka Mühedslğ ölümü-elaziğ

Detaylı

TÜRKİYE DE MEYDANA GELEN DEPREMLERİN MARKOV ZİNCİRLERİ İLE MODELLENMESİ. Serpil ÜNAL YÜKSEK LİSANS TEZİ İSTATİSTİK

TÜRKİYE DE MEYDANA GELEN DEPREMLERİN MARKOV ZİNCİRLERİ İLE MODELLENMESİ. Serpil ÜNAL YÜKSEK LİSANS TEZİ İSTATİSTİK TÜRKİYE DE MEYDANA GELEN DEPREMLERİN MARKOV ZİNCİRLERİ İLE MODELLENMESİ Serpl ÜNAL YÜKSEK LİSANS TEZİ İSTATİSTİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ OCAK 2 ANKARA Serpl ÜNAL tarafıda hazırlaa TÜRKİYE

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

Tuğba SARAÇ Yük. Endüstri Mühendisi TAI, Ankara tsarac@tai.com.tr. Özet. 1. Giriş. 2. Gözden Geçirmeler. Abstract

Tuğba SARAÇ Yük. Endüstri Mühendisi TAI, Ankara tsarac@tai.com.tr. Özet. 1. Giriş. 2. Gözden Geçirmeler. Abstract YKGS2008: Yazılım Kaltes ve Yazılım Gelştrme Araçları 2008 (9-0 ekm 2008, İstabul) Yazılım Ürü Gözde Geçrmeler Öem, Hazırlık Sürec ve Br Uygulama Öreğ The Importace of the Software Product Revews, Preparato

Detaylı

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ 5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ Bir lieer deklemi geel çözümüü bulmak homoje kısmı temel çözümlerii belirlemesie bağlıdır. Sabit katsayılı diferasiyel deklemleri temel çözümlerii

Detaylı

Bağıl Değerlendirme Sisteminin Simülasyon Yöntemi ile Test Edilmesi: Kilis 7 Aralık Üniversitesi Örneği

Bağıl Değerlendirme Sisteminin Simülasyon Yöntemi ile Test Edilmesi: Kilis 7 Aralık Üniversitesi Örneği Akademk Blşm 11 - III. Akademk Blşm Koferası Bldrler 2-4 Şubat 2011 İöü Üverstes, Malatya Bağıl Değerledrme Sstem Smülasyo Yötem le Test Edlmes: Kls 7 Aralık Üverstes Öreğ Kls 7 Aralık Üverstes, Blgsayar

Detaylı

Finansal Derinleşme, Ekonomik Büyüme ve Türk Finans Sistemi (1990-2010)

Finansal Derinleşme, Ekonomik Büyüme ve Türk Finans Sistemi (1990-2010) Selçuk Üverses Sosyal Blmler Esüsü Dergs Dr. Mehme YILDIZ Özel Sayısı 24, ss. 9-8 Selcuk Uversy Joural of Isue of Socal Sceces Dr. Mehme YILDIZ Specal Edo 24, p. 9-8 Fasal Derleşme, Ekoomk Büyüme ve Türk

Detaylı

ÖZET Yüksek Lsas Tez NORMAL DAĞILIM VE NORMAL DAĞILIMLA İLGİLİ ÇIKARIMLAR Şeol ÇELİK Akara Üverstes Fe Blmler Esttüsü İstatstk Aablm Dalı Daışma : Doç

ÖZET Yüksek Lsas Tez NORMAL DAĞILIM VE NORMAL DAĞILIMLA İLGİLİ ÇIKARIMLAR Şeol ÇELİK Akara Üverstes Fe Blmler Esttüsü İstatstk Aablm Dalı Daışma : Doç ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ NORMAL DAĞILIM VE NORMAL DAĞILIMLA İLGİLİ ÇIKARIMLAR Şeol ÇELİK İSTATİSTİK ANABİLİM DALI ANKARA 006 Her hakkı saklıdır ÖZET Yüksek Lsas Tez

Detaylı

İleri Teknoloji Bilimleri Dergisi Journal of Advanced Technology Sciences ISSN:2147-3455

İleri Teknoloji Bilimleri Dergisi Journal of Advanced Technology Sciences ISSN:2147-3455 İler Tekoloj Blmler Dergs Joural of Advaced Techology Sceces ISSN:47-3455 GÜÇ SİSTEMLERİNDE HARMONİKLERİN KRİTİK DEĞERLERE ETKİSİ Yusuf ALAŞAHAN İsmal ERCAN Al ÖZTÜRK 3 Salh TOSUN 4,4 Düzce Üv, Tekoloj

Detaylı

Seralarda Isıtma Kapasitelerinin Hesaplanmasına Yönelik Bir Bilgisayar Programı

Seralarda Isıtma Kapasitelerinin Hesaplanmasına Yönelik Bir Bilgisayar Programı Seralarda Isıma Kapaselernn Hesaplanmasına Yönelk Br Blgsayar Programı Gürkan Alp Kağan GÜRDİL 1, Kemal Çağaay SELVİ 1, Hasan ÖNDER 2 1 Ondokuz Mayıs Ünverses, Zraa Faküles, Tarım Maknaları Bölümü, Samsun

Detaylı

Ş Ç ş ş ç ş ş ş ş ş Ç ş ç ş ç ş ç ş ç ö ş ş ö ş ş ş ö ş ö ö ş ş ş ş ç ş ş ş ö ö ş ş ş ş ş ş ş ç ş ş ş ş ş ş ş ç ö ç ç ş ö ş ç ş ş ş ö şş ş ş ş ş ş ş Ş

Ş Ç ş ş ç ş ş ş ş ş Ç ş ç ş ç ş ç ş ç ö ş ş ö ş ş ş ö ş ö ö ş ş ş ş ç ş ş ş ö ö ş ş ş ş ş ş ş ç ş ş ş ş ş ş ş ç ö ç ç ş ö ş ç ş ş ş ö şş ş ş ş ş ş ş Ş Ş Ç ş ş ç ş ş ş ş ş Ç ş ç ş ç ş ç ş ç ö ş ş ö ş ş ş ö ş ö ö ş ş ş ş ç ş ş ş ö ö ş ş ş ş ş ş ş ç ş ş ş ş ş ş ş ç ö ç ç ş ö ş ç ş ş ş ö şş ş ş ş ş ş ş Ş ş ş Ö ö ö Ö ş çş ç ş ş ö ş ö ş ş Ö Ş Ğ ç ş ş ö ş ş

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri uyruk Teorisi Ders Notları: Bazı uyruk Modelleri Mehmet YILMAZ mehmetyilmaz@akara.edu.tr 10 ASIM 2017 11. HAFTA 6 Çok kaallı, solu N kapasiteli, kuyruk sistemi M/M//N/ Birimleri sisteme gelişleri arasıdaki

Detaylı

GÜÇLÜ BETA HESAPLAMALARI. Güray Küçükkocaoğlu-Arzdar Kiracı

GÜÇLÜ BETA HESAPLAMALARI. Güray Küçükkocaoğlu-Arzdar Kiracı GÜÇLÜ BETA HESAPLAMALAI Güray Küçükkocaoğlu-Arzdar Kracı Özet Bu çalışaı aacı Fasal Varlıkları Fyatlaa Model (Captal Asset Prcg Model) Beta katsayısıı hesaplarke yaygı olarak kulladığı sırada e küçük kareler

Detaylı

Konular. VERİ MADENCİLİĞİ Veri Önişleme. Değer Kümeleri. Veri Nedir? Nitelik Türleri. Konular

Konular. VERİ MADENCİLİĞİ Veri Önişleme. Değer Kümeleri. Veri Nedir? Nitelik Türleri. Konular 0 Koular VERİ MADENCİLİĞİ Ver Öşleme Yrd. Doç. Dr. Şule Güdüz Öğüdücü Öşleme y Taıma Bezerlk ve farklılık Ver Nedr? eseler ve eseler telklerde oluşa küme kayıt (record), varlık (etty), örek (sample, stace)

Detaylı

İşletme İstatistiği. [Type the document subtitle] Ege Yazgan ve Yüce Zerey 10/21/2003

İşletme İstatistiği. [Type the document subtitle] Ege Yazgan ve Yüce Zerey 10/21/2003 ISTANBUL BİLGİ UNİVERSİTY İşletme İstatstğ [Type the documet subttle] Ege Yazga ve Yüce Zerey 1/1/3 [Type the abstract of the documet here. The abstract s typcally a short summary of the cotets of the

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ GÜVENİLİRLİK ANALİZİ ÜZERİNE BİR YAZILIM Volka ETEMAN YÜKSEK LİSANS İstatstk Aabl Dalı 0-04 KONYA Her Hakkı Saklıdır TEZ BİLDİRİMİ Bu tezdek bütü blgler

Detaylı

ş ç ö ç ç ş ş ö ş ş ç ö ö ş ç ç ş ö ö ö ş ş ş ş ş ş ş ö ö ç ç ç ş ş ö ş ö ö ş ö ö ö ş ö ş Ö Ü Ç ö ö Ğ ş ş ö Ö ö ç Ğ ş ş ö Ö ş ş şş ö ş ç ç ö ö ç ş ç ç ç Ö ç ç Ö ç ç ş ş Ö ç ö ş Ö ş ç ç ö ş ö ö ş ö ç ç

Detaylı

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi VERİLERİN SUNUMU GM-0 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Br çalışadan elde edlen verler ha ver ntelğndedr. Ha verlerden blg ednek zor ve zaan alıcıdır. Ha verler çok karaşık durudadır. Verlern düzenlenes

Detaylı

OLİGOPOLİ. Oligopolic piyasa yapısını incelemek için ortaya atılmış belli başlı modeller şunlardır.

OLİGOPOLİ. Oligopolic piyasa yapısını incelemek için ortaya atılmış belli başlı modeller şunlardır. OLİGOOLİ Olgopolc pyasa yapısını ncelemek çn ortaya atılmış bell başlı modeller şunlardır.. Drsekl Talep Eğrs Model Swezzy Model: Olgopolstc pyasalardak fyat katılığını açıklamak çn gelştrlmştr. Olgopolcü

Detaylı

Orkun COŞKUNTUNCEL a Mersin Üniversitesi

Orkun COŞKUNTUNCEL a Mersin Üniversitesi Kuram ve Uygulamada Eğtm Blmler Educatoal Sceces: Theory & Practce - 3(4) 39-58 03 Eğtm Daışmalığı ve Araştırmaları İletşm Hzmetler Tc. Ltd. Şt. www.edam.com.tr/kuyeb DOI: 0.738/estp.03.4.867 Sosyal Blmlerde

Detaylı

WEİBULL DAĞILIMININ ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİN İSTATİSTİKSEL TAHMİN YÖNTEMLERİNİN KARŞILAŞTIRILMASI

WEİBULL DAĞILIMININ ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİN İSTATİSTİKSEL TAHMİN YÖNTEMLERİNİN KARŞILAŞTIRILMASI İstabul Tcaret Üverstes Sosal Blmler Dergs Yıl:8 Saı:5 Bahar 2009 s.73-87 WEİBULL DAĞILIMII ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİ İSTATİSTİKSEL TAHMİ YÖTEMLERİİ KARŞILAŞTIRILMASI Flz ÇAKIR ZEYTİOĞLU* ÖZET Güümüzde

Detaylı

ÜRETİM PLANLAMASINDA HEDEF PROGRAMLAMA VE BULANIK HEDEF PROGRAMLAMA YÖNTEMLERİNİN KARŞILAŞTIRILMASI

ÜRETİM PLANLAMASINDA HEDEF PROGRAMLAMA VE BULANIK HEDEF PROGRAMLAMA YÖNTEMLERİNİN KARŞILAŞTIRILMASI Öer.C.9.S.. Temmuz 00.-. ÜRETİM PLANLAMASINDA HEDEF PROGRAMLAMA VE BULANIK HEDEF PROGRAMLAMA YÖNTEMLERİNİN KARŞILAŞTIRILMASI Semra ERPOLAT Mmar Sa Güzel Saatlar Üverstes Fe Edebyat Fakültes, İstatstk Bölümü,

Detaylı

PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI

PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI Mehmet ARDIÇLIOĞLU *, Galp Seçkn ** ve Özgür Öztürk * * Ercyes Ünverstes, Mühendslk Fakültes, İnşaat Mühendslğ Bölümü Kayser

Detaylı

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ Taımlayıcı İstatstkler (Descrptve Statstcs) Dr. Musa KILIÇ TANIMLAYICI ÖRNEK İSTATİSTİKLERİ YER ÖLÇÜLERİ (Frekas dağılışıı abss eksedek durumuu belrtr.) DEĞİŞİM ÖLÇÜLERİ ( Frekas dağılışıı şekl belrtr.).

Detaylı

ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR.

ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR. ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR Ebubekr İNAN DANIŞMAN Yrd. Doç. Dr. Mehmet Al ÖZTÜRK ADIYAMAN 2011 Her

Detaylı

SESSION 1. Asst. Prof. Dr. Fatih Ecer (Afyon Kocatepe University, Turkey) Abstract

SESSION 1. Asst. Prof. Dr. Fatih Ecer (Afyon Kocatepe University, Turkey) Abstract SESSION 1 Türkye dek Kout Fyatlarıı Tahmde Hedok Regresyo Yötem le Yapay Sr Ağlarıı Karşılaştırılması Comparso of Hedoc Regresso Method ad Artfcal Neural Networks to Predct Housg Prces Turkey Asst. Prof.

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı