Motivasyon. Sayısal İşaret & Sistemler. İçerik. Temeller >> Sinyaller. Giriş. Motivasyon

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Motivasyon. Sayısal İşaret & Sistemler. İçerik. Temeller >> Sinyaller. Giriş. Motivasyon"

Transkript

1 Moivasyo Sayısal İşare & Sisemler Zamada bağımsız sisem LTI Giriş + Hz 3 Gz İçeri Moivasyo Ders içeriği Temeller Bir siyali güç ve eerji içeriği Zama değişeii rasformasyo Çif ve Te Siyaller Temeller >> Siyaller Geiş aım: Bağımsız değişeleri fosiyo. Öreler: müzi, arabaı hızı, para, volaj veya aım, vüc ısısı, alp aış hızı.. Siyaller e veya daha fazla değişei fosiyo. Biz e bağımsız değişee bağlı ola siyalleri iceleyeceğiz, özellile zama. ve aradaşı... 4

2 Temeller >> Siyaller Siyaller: Ayrı, am sayı. Süreli, gerçel. Maemai göserim: = e, = /, 5 y =, 5 Ayrı siyaller seri şelide göserilebilir: {y} = {,,,,,,,,,,, } Öre: Yarıdai siyali grafi formda göseriiz. Güç ve Eerji Eerji: siyali oplam mla değeri E lim T T T N E lim N N d Güç: siyal mla değerii oralaması T E P lim d lim T T T T T N E P lim lim N N N N N d 5 7 Temeller >> Siyaller Sisem giriş siyallerii bir çıışa döüşüre bir cr. Ayrı-Zamalı Sisem: Giriş ve çıış siyalleri ayrı. Süreli-Zamalı Sisem: Giriş ve çıış siyalleri süreli. y H Kombiasyo: A/D D/A döüşürücüler. H y Güç ve Eerji Eerji siyali <E<, ve P=., e, Güç siyali <P<, ve E=. { }...,,,,,...} E ve P sosz olrsa eerji veya güç yo. e Öre: Yarıdai siyalleri Eerji ve Gücüü hesaplayıız. 6 8

3 Zama Trasformasyo Üç mhemel rasformasyo: Zama döüşürücü: -, - Siyali esei boyca döüşürür. Zama öeleme: +a, +a Yaay esede a< sağa, a> sola ayar. Zama ölçeği: a, a, a>. Yaay esede a> aşağı, a< yarı ölçeler Zama Trasformasyo Zama ölçe: - -/ Kombiasyo: - - -/ / Zama Trasformasyo Zama-döüşürücü: - - Zama-öeleme: Zama Trasformasyo Kombiasyoda dia. -+3 = -3, = - veya -+3 = -, = -3 Aşağıdai y içi -3+6 farlı sırada elde ediiz: döüşürme/öeleme/ölçe, döüşürme, ölçe/öeleme, öeleme/döüşürme/ölçe. y - 3 3

4 Çif ve Te Siyaller =-, çif -=-, e Herhagi bir siyali parçaya ayrılabilir: Çif{} = +-/ Te{} = --/ Yarıdai aımlar süreli siyaller içi de geçerlidir. Öre: Aşağıdai siyalleri çif ve e parçalara ayırıız: İçeri Birim Basama Birim İmpls Öreler Siyalleri basama göserimi y - 5 Birim Basama Sayısal İşare & Sisemler Ders #: Birim Basama ve İmpls Ayrı birim basama, =, Öelemiş birim basama -, -=,

5 5 7 Birim Basama Süreli birim basama = Öelemiş birim basama -=,, - 8 Birim Basama Süreli birim basama = da süresiz, ürevsiz! Kaymış birim basama: süreli ve ürevli. diger,,, / / lim diger, d d, / / 9 Birim İmpls Ayrı birim impls Öelemiş birim impls,, ,, Birim İmpls Ayrı Birim İmpls özellileri:

6 6 Birim İmpls Süreli birim impls: d, diger, d d, lim / Birim İmpls Süreli öelemiş Birim İmpls: Süreli birim impls özellileri: d d d - d 3 Öreler Aşağıdai ifadeyi hesaplayıız: Aşağıdai siyali çiziiz: i ürevi d/d yi çiziiz d Basama Siyaller Süreli c a b y - w - z - -

7 Basama Siyaller Ayrı İçeri - N y Birim Basama ve İmpls Öreler Eler Delemi Periyodi Siyaller Gerçe Espoasiyel Siyaller Sizoidal Siyaller Komples Epoasiyel Siyaller 5 7 Birim Basama ve İmpls Öreler Sayısal İşare & Sisemler Ders #3: Espoasiyel ve Siüzoidal Siyaller Aşağıdai ifadeyi hesaplayıız: d Aşağıdai siyalleri ürevii hesaplayıız: y - cos d cos d z

8 Eler s Eqaio Eler s formlas: j e cos j si j cos e si e j e j j e j Real Epoeial Sigals = C e a = C e a, where C ad a are real. Eercise: Plo he above epoeials. Will be very sefl for maagig sisoidal ad comple epoeial sigals. Pariclarly drig differeiaio or iegraio of sch sigal fcios. Eercise: Fid eve ad odd compoes of = e j. 9 3 Periodic Sigals 3 Periodiciy codiio: = +T = +N If T is period of, he = +mt where m=,, If N is period of, he = +mn where m=,, Fdameal period T of is he smalles possible vale of T. Fdameal period N of is he smalles possible vale of N. Eercise: Fid T for cos + ad si +. Eercise: Is cos si periodic? Sisoidal Sigals 3 = A cos + = A cos +, where A is amplide, is radia freqecy rad/sec, ad is he phase agle rad. Eercise: Plo A cos +. Eercise: Plo cos, cos, cos, where < <. Realize ha cos + is scaled ad shifed versio of cos. This shold be eogh for ploig ay cosie fcio, similarly ay sie fcio.. Noice ha alhogh A cos + is o eqal o A cos +, i may be he case ha A cos + = A cos +. Do yo ow whe? 8

9 Comple Epoeial Sigals j = Ae j = Ae, where A, ad are real. j Eercise: Is z Ae periodic? Eercise: How abo he discree case? Is Ae periodic? j z Sayısal İşare & Sisemler Ders #4: Sisemleri Özellileri: Lieerli, Zamada bağımsızlı Geeral Epoeial Sigals j = Ae j = Ae, where A, ad are real. Eercise: Plo ad. İçeri Sisem edir? Sisemleri Birleşirilmesi Kayılı ve Kayısız Sisemler Kararlılı ve Tersiirli Lieerli Zamada Bağımsızlı LTI LTI Sisemleri Süperpozisyo

10 Sisem Nedir? Sisem: Giriş siyallerii çıış siyallerie döüşüre c Ayrı Zamalı Siyaller: y = H H y Sisemleri Bağlaması Geri besleme: y = H y + H + H y Süreli Siyaller: y = H H y H Hız orol crise corol Pe ço bağlaı ombiasyo Sisemleri Bağlaması 38 Seri Bağlama: y = H H H Öre: radyo alıcısıı arasıdai amplifiaör Paralel Bağlama: y = H + H H Öre: paralel elefolar H H + y y Kayılı ve Kayısız Sisemler Kayısız veya sai Sisemler: Sisem çıışı y sadece aıdai girişe bağlı y, i bir fosiyo. Kayılı veya diami Sisemler: Sisem çıışı y aaıda öce veya sorai girişe bağlıdır y, i bir fosiyodr - < < Öre: resisör: y = R 4 apasiör: birim geciirici: y = - aümülaör: y C d y

11 Sabilie ve Tersiirli 4 Sabilie: Bir sisem çıışı veya girişi sıırlı ise b sisem sabildir. Eğer <, brada y <. Öre: Tersiirli: Bir sisemi farlı girişlerie arşı farlı çıışlar elde ediliyorsa b sisem ersiirdir. Bir sisem ersiir ise b sisem çıışıı girişe çevire bir ers sisem mevcr. Öreler: y 4 w y 4 y d y Sisem y y Ters Sisem w y y w= y d dy w d Zamada Bağımsızlı LTI Bir sisem zamada bağımsız ise girişei bir ayma çıış siyalide de ayı aymaya sebep olmaadır: = - y = y - = - y = y - Aşağıdai siyalleri zama bağımsız olp olmadığıı belirleyiiz: 43 y y y si Lieerli Bir sisem aşağıdai şarları aşıyorsa lieerdir: oplama: = + y = y + y homojeli: = a y = a y, a herhagibir omples sabi. İi özelli e bir işlem alıda oplaabilir: Süperpozisyo: = a + b y = a y + b y = a + b y = a y + b y Bir sisemi lieerliği asıl orol edilir? Öre: Aşağıdai sisemler lieer midir? LTI Sisemleri Süperpozisyo Bir LTI sisem içi: girişie arşı y çıışı verilmiş ols Sisemi herhagi bir girişie cevabı siyalii ölçeleyere veya zama aydırara elde edilebilir: = a - + a - + a - + y = a y- + a y- + a y- + Pe ço problemi çözümüe olaa sağlamaadır. Bda sora alaılaca pe ço özelliği emelii olşra bir raldır. y y y cos 4 44

12 LTI Sisemleri Süperpozisyo Öre: Bir LTI sisemi siyalie cevabı y oldğa göreö b sisemi ve siyallerie cevabıı blz. y / / - İçeri Siyalleri İmpls Ciside Göserim İmpls Cevabı Kovolüsyo Toplamı Kovolüsyo Amacı İi Siyali Kovol Eme Yöemi 47 Sayısal İşare & Sisemler Ders #5: Ayrı-Kovolüsyo Siyalleri İmpls Ciside Göserim Herhagibir siyal aydırılmış implslar şelide göserilebilir: Ba siyalleri öelemesi adı verilir: 46 48

13 Impls Cevabı Bir sisemi birim implsa arşı çıışıa impls cevabı adı verilir ve h olara göserilir. Süreli sisemler içi: h = H Sisem H Ayrı sisemler içi: h = H Sisem H h h Kovolüsyo Toplamı LTI sisemleri oplama özelliğide: LTI sisemleri homojeliğide: LTI siemleri zama bağımsızlığıda: y H y H y h 49 5 Kovolüsyo Toplamı Ayrı bir LTI sisem H içi, h impls cevabı ols. Siseme herhagi bir siyali giriş olara verildiğide Öce siyalii birim implslar şelide göser: Yei çıış siyali y aşağıdai gibi olacaır: y H H Kovolüsyo Taımı y h oplamı ovolüsyo veya süperpozisyo oplamı olara adladırılır ve aşağıdai gibi göserilir: y * h B ve h çarpımı olmadığıa dia ediiz. Kovolüsyo: h yı ers çevir i her bir değeri içi h yı öeleyere siyalide geçir

14 İi Siyali Kovolüsyo Dör farlı yöem: Türeme: Kovolüsyo oplamı cebirsel olara üreilebilir. y A ij i j Süperpozisyo: siyalii ölçeledirilmiş ve öelemiş birim implslar. olara göserilir. Sisem LTI oldğ içi, y ölçeledirilmiş h siyalleri şelide yazılabilir. 53 İi Siyali Kovolüsyo 54 Dizi: ve h siyallerii yazılır. İi boyl bir A dizisi olşrlr, A ij =ihj. y içi formül y A ij i j i+j= Grafi: h zama eseide ers çevirilir ve h- elde edilir. Daha sora zama eseide aydırılara h- elde edilir. -, aralığıda bir değeri içi h-, üzeride aydırılara o değeri içi ovolüsyo oplamı hesaplaır. y h 4

Ele Alınacak Ana Konular. Hafta 3: Doğrusal ve Zamanla Değişmeyen Sistemler (Linear Time Invariant, LTI)

Ele Alınacak Ana Konular. Hafta 3: Doğrusal ve Zamanla Değişmeyen Sistemler (Linear Time Invariant, LTI) 5..5 Ele Alıaca Aa Koular Ayrı-zama işaretleri impuls dizisi ciside ifade edilmesi Ayrı-zama LTI sistemleri ovolüsyo toplamı gösterilimi Hafta 3: Doğrusal ve Zamala Değişmeye Sistemler (Liear Time Ivariat

Detaylı

hafta 5: DOĞRUSAL, ZAMANDA DEĞİŞMEZ (DZD) SİSTEMLER LINEAR, TIME INVARIANT (LTI) SYSTEMS İçindekiler

hafta 5: DOĞRUSAL, ZAMANDA DEĞİŞMEZ (DZD) SİSTEMLER LINEAR, TIME INVARIANT (LTI) SYSTEMS İçindekiler hafa 5: DOĞRUSAL, ZAMANDA DEĞİŞMEZ (DZD) SİSTEMLER LINEAR, TIME INVARIANT (LTI) SYSTEMS İçideiler. Hem doğrusal, hem zamada değişmez sisemler.... Kesili zama doğrusal, zamada değişmez sisemler... 6.. Kalama

Detaylı

Elektrik&Elektronik Müh. Böl. İşaret İşleme Uygulamaları Deney 2

Elektrik&Elektronik Müh. Böl. İşaret İşleme Uygulamaları Deney 2 Ayrı Sistemler Eletri&Eletroi Mü. Böl. İşaret İşleme Uygulamaları Deey 2 Prof. Dr. Aydı Aa Dr. Erol Öe Baatti Karaaya Koray Sistemleri Özellileri 1. Doğrusallı Liearity: y a ay Ölçeleme scalig, a armaşı

Detaylı

C L A S S N O T E S. Sinyaller & Sistemler - Sinyaller VEKTÖRLER

C L A S S N O T E S. Sinyaller & Sistemler - Sinyaller VEKTÖRLER Syaller & Ssemler - Syaller VEKTÖRLER Veörler belrl yö, doğrl e büyülüe zl doğr parçalarıdır. Yöledrlmş doğr parçaları yalış değl, aca es br aımlamadır. Doğrl e yö aramlarıda dolayı eörler belrl oordalara

Detaylı

Sisteme gire aışaı eerjisi; ieti, potasiyel, aış eerjileri ile i eerjii toplamıda oluşmata olup, Q m& g m& Z g Z z0 ref. E g E + E p + u+ E A + gz +u+

Sisteme gire aışaı eerjisi; ieti, potasiyel, aış eerjileri ile i eerjii toplamıda oluşmata olup, Q m& g m& Z g Z z0 ref. E g E + E p + u+ E A + gz +u+ 4. BÖLÜM AÇIK SİSEMLERDE ERMODİNAMİĞİN I. KANUNU Aı aışlı sistemleri sııfladırılması Aı Sistem Aışlı Kararlı aışlı Kararsız aışlı dm dm 0 m& g m& 0 m& g m& dt dt Not: Aı sistemlerde eerji depolaması sözousu

Detaylı

D( 4 6 % ) "5 2 ( 0* % 09 ) "5 2

D( 4 6 % ) 5 2 ( 0* % 09 ) 5 2 3 BÖLÜM KAALI SİSEMLEDE EMODİNAMİĞİN I KANUNU I Yasaya giriş Birii bölümde eerjii edilide var veya yo edilemeyeeği vurgulamış, sadee biçim değiştirebileeği belirtilmişti Bu ile deeysel souçlara dayaır

Detaylı

Hafta 1: İşaretler ve Sistemler

Hafta 1: İşaretler ve Sistemler Hafa 1: İşareler ve Sisemler 1 Ele Alıacak Aa Koular Sürekli-zama ve ayrık-zama işareler Bağımsız değişkei döüşürülmesi Üsel ve siüzoidal işareler İmpuls ve birim basamak foksiyoları Sürekli-zama ve ayrık-zama

Detaylı

Bölüm I Sinyaller ve Sistemler

Bölüm I Sinyaller ve Sistemler - Güz Haberleşme Sisemleride emel Bilgiler Güz - uay ERŞ. Haa Bölüm I Siyaller ve Sisemler emel Bilgiler Siyaller ve Sııladırılması Güç ve Eerji Furier Serileri Furier rasrmu ve Özellikleri Dira Dela Fksiyu

Detaylı

ı ı ı ğ ş ı ı ıı ıı ıı ı ı ıı ıı ıı ıı ııı

ı ı ı ğ ş ı ı ıı ıı ıı ı ı ıı ıı ıı ıı ııı Ş Ü Ğ Ü Ğİ Ö İ Ö öç Ş İ Ğ ç ç ö Ü Ş ö Ö ç ç ö ö ö Ğ Ğ Ü Ş Ü Ş İ İ ö ö ç ç İ Ç İ Ü Ş İ Ç Ç Ü Ş İ İ ö İ Ü İ İ Ü Ü Ü Ü İ Ü ö ç ö Ç İ ç İ İ ç ç ç İ İ İ ö ö İ ö ö ç İ ö ç İ İ İ ç ç ö ç ö ç ç İ ç İ ö ç ç ç ö

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açı Ders Malzemeleri http://ocw.mit.edu Bu materyallerde alıtı yapma veya Kullaım Koşulları haıda bilgi alma içi http://ocw.mit.edu/terms veya http://www.aciders.org.tr adresii ziyaret ediiz. 18.102

Detaylı

LİNEER CEBİR DERS NOTLARI. Ayten KOÇ

LİNEER CEBİR DERS NOTLARI. Ayten KOÇ LİNEER CEBİR DERS NOTLARI Aye KOÇ I MATRİSLER I.1. Taım F bir cisim olmak üzere her i = 1,2,..., m, j = 1,2,..., içi aij F ike a11 a12... a1 a21 a22... a 2 M M... M am1 am2... am (1) şeklide dikdörgesel

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

HAFTA 1: SİNYALLER. Sayfa 1

HAFTA 1: SİNYALLER. Sayfa 1 HAFTA : SİNYALLER. Siyal edir?.... Periyodik Siyaller... 4.3 Kullaışlı Siyaller... 9.3. Birim dürtü ve birim basamak foksiyoları... 9.3.. Kesikli zamada birim dürtü ve birim basamak dizileri... 9.3.. Sürekli

Detaylı

v = ise v ye spacelike vektör,

v = ise v ye spacelike vektör, D.P.Ü. Fe Bilimleri Estitüsü 1. ayı Mayıs 6 emi-pozitif Ortogoal Matrisler içi Alteratif İi Yötem WO ALERNAIVE MEHOD FOR EMI-POIIVE OROGONAL MARICE B. BÜKCÜ* *Gaziosmapaşa Üiversitesi, Fe-Edebiyat Faültesi,

Detaylı

İspatlarıyla Türev Alma Kuralları

İspatlarıyla Türev Alma Kuralları İspalarıyla Türev Ala Kuralları Muarre Şai dy f( ) f() y f() y f () li d 0. f() a (a R) ise f ()? f( ) f() a a f () li li 0 0 f () 0 5. f() ise f ()? f () li 0 ( ) ( ) f () li 0 ( ) f () li li 0 ( ) 0.

Detaylı

9/29/2015. Ele Alınacak Ana Konular. Hafta 1: İşaretler ve Sistemler. Sürekli-zaman ve ayrık-zaman işaretler. Bağımsız değişkenin dönüştürülmesi

9/29/2015. Ele Alınacak Ana Konular. Hafta 1: İşaretler ve Sistemler. Sürekli-zaman ve ayrık-zaman işaretler. Bağımsız değişkenin dönüştürülmesi Ele Alıacak Aa Koular Sürekli-zama ve ayrık-zama işareler Bağımsız değişkei döüşürülmesi Hafa : İşareler ve Sisemler Üsel ve siüzoidal işareler İmpuls ve birim basamak foksiyoları Sürekli-zama ve ayrık-zama

Detaylı

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve BÖLÜM III Kogrüaslar Taım 3. N sabit bir sayı, a, b Z olma üzere, eğer ( a b) ise a ile b, modülüe göre ogrüdür deir ve a b(mod ) şelide gösterilir. Asi halde, yai F ( a b) ise a ile b ye modülüe göre

Detaylı

Iki Boyutlu Sabit Katsay l Lineer Homogen Diferensiyel Denklem Sistemleri (Euler Metodu)

Iki Boyutlu Sabit Katsay l Lineer Homogen Diferensiyel Denklem Sistemleri (Euler Metodu) Iki Boyulu Sabi Kasay l Lineer Homogen Diferensiyel Denklem Sisemleri (Euler Meodu) Bu bölümde sabi kasay l, lineer, homogen 8 >< d = a 1x + b 1 y >: dy d = a 2x + b 2 y sisemi ele al nmakad r. Burada

Detaylı

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2 LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ SABİT NOKTA İTERASYONU YÖNTEMİ Bu yötemde çözüme gitmek içi f( olarak verile deklem =g( şeklie getirilir. Bir başlagıç değeri seçilir ve g ( ardışık

Detaylı

1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz.

1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz. MAT -MATEMATİK (5-5 YAZ DÖNEMİ) ÇALIŞMA SORULARI. Tabaı a büyük ekseli, b küçük ekseli elips ile sıırlaa ve büyük eksee dik her kesiti kare ola cismi 6ab hacmii buluuz. Cevap :. y = ve y = eğrileri ile

Detaylı

Sistem Dinamiği ve Modellemesi

Sistem Dinamiği ve Modellemesi Sistem Diamiği ve Modellemesi Sistem Nedir? Belli bir görevi yerie getire te bir elemaa veya biribirleri ile fizisel olara ilişiledirilmiş elemalara sistem deir. Sistem Taımı ve Temel Kavramlar Sistem

Detaylı

Ü Ğ Ş Ü Ğ İ ö İ ö öç Ğ ö İ Ü Ş ö Ö ç ç ğ ö ö ğ ö Ğ Ğ «Ü Ş ğ Ü Ş İ ğ İ ğ ğ ğ ö ö ç ç ğ ğ İ ğ Ç ğ ğ Ü Ş İ ğ İ Ç ğ ğ Ç ğ Ü Ş ğ ğ İ ğ ğ ğ ğ İ ö İ ğ İ Ü İ İ Ü Ü Ü Ü İ ğ Ü ğ ö ç ö ğ ğ İ ğ İ ç ç ç İ ğ ğ İ ğ İ

Detaylı

C L A S S N O T E S SİNYALLER. Sinyaller & Sistemler Sinyaller Dr.Aşkın Demirkol

C L A S S N O T E S SİNYALLER. Sinyaller & Sistemler Sinyaller Dr.Aşkın Demirkol Sinyaller & Sisemler Sinyaller Dr.Aşkın Demirkol SİNYALLER Elekriki açıdan enerjisi ve frekansı olan dalga işare olarak anımlanır. Alernaif olarak kodlanmış sinyal/işare de uygun bir anım olabilir. s (

Detaylı

Ğ ğ Ç ğ ğ ğ ö ö ğ ğ Ö ğ ğ ö ğ ğ ğ ö ğ ö ğ ö ğ ö ğ ö ğ ğ ö ğ ö ğ ğ ö ğ Ç ğ Ğ ğ ö ğ Ö ğ ö ğ ö ö ğ Ç Ç ö Ç ğ ğ Ç Ç ö Ç ğ ö ğ Ç ğ ö ğ ğ Ç Ç ö ğ ğ ö öç ğ ğ Ç ğ öç Ç ö ğ Ğ ö ö ğ ğ ö ğ ğ Ğ ğ Ö ğ Ğ ğ ğ ğ Ç ğ ğ»

Detaylı

ı ı ı ğ ş ı ı ı ı ı ı ı ı

ı ı ı ğ ş ı ı ı ı ı ı ı ı Ş Ü Ğ ö ö İ ö öç Ğ Ş ö ç İ Ö Ü Ş ö Ö ç ç ğ ö ö ğ ö İ Ş ç ç ç ğ ğ ç İ İ İİ ö ç Ş ö İİ ö ç ç İ İ ğ ö İ ğ ğ ö ğ ö ç ğ ç ğ İç Ş Ü Ş ğ Ü Ş ö İŞ Ü Ş İ ğ İ İ Ü İ ö «İ ö Ş ç ç ğ ö ğ ö ç İ ö ğ ç ö İ İ ğ ğ ğ ğ ğ

Detaylı

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ 5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ Bir lieer deklemi geel çözümüü bulmak homoje kısmı temel çözümlerii belirlemesie bağlıdır. Sabit katsayılı diferasiyel deklemleri temel çözümlerii

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı 5.Ders Döüşümler Bir Rasgele Değişkei Foksiyouu Olasılık Dağılımı Bu kısımda olasılık dağılımı bilie bir rasgele değişkei foksiyoları ola rasgele değişkeleri olasılık dağılımlarıı buluması ile ilgileeceğiz.

Detaylı

Ele Alınacak Ana Konular. Hafta 2 İşaretler ve Sistemler. Ayrık-zaman impuls ve birim basamak dizileri

Ele Alınacak Ana Konular. Hafta 2 İşaretler ve Sistemler. Ayrık-zaman impuls ve birim basamak dizileri 08.0.05 Ele Alıc A Koulr Süreli-zm ve rı-zm işreler Bğımsız değişei döüşürülmesi Hf İşreler ve Sisemler Üsel ve siüzoidl işreler İmpuls ve birim bsm fosiolrı Süreli-zm ve rı-zm sisemler Sisemleri emel

Detaylı

DENEY 1: ÖRNEKLEME KURAMI

DENEY 1: ÖRNEKLEME KURAMI DENEY : ÖRNEKLEME KURAMI AMAÇ: Örekleme kuramıı ielemei. MALZEMELER Oilokop, güç kayağı, işaret üretei Etegre: x LF398 Direç: x K Ω Kapaiteler: x 00F, x µf ÖN BİLGİ Örekleme, aalog işaretlerde belirli

Detaylı

Aralığın İç Noktasında Süreksizliğe Sahip Dirac Operatörünün Spektral Özellikleri

Aralığın İç Noktasında Süreksizliğe Sahip Dirac Operatörünün Spektral Özellikleri C.Ü. Fe-Edebiyat Faültesi Fe Bilimleri Dergisi 5Cilt 6 Sayı Aralığı İç Notasıda Süresizliğe Sahip Dirac Operatörüü Spetral Özellileri R. Kh. AMİROV ve Y. GÜLDÜ Cumhuriyet Üiversitesi Fe Edebiyat Faültesi

Detaylı

Bölüm 4. Görüntü Bölütleme. 4.1. Giriş

Bölüm 4. Görüntü Bölütleme. 4.1. Giriş Bölüm 4 Görüü Bölüleme 4.. Giriş Görüü iyileşirme ve görüü oarmada arklı olarak görüü bölüleme görüü aalizi ile ilgili bir problem olup görüü işlemei göserim ve aılama aşamalarıa görüüyü hazırlama işlemidir.

Detaylı

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz;

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz; Öre A. Bezer pe 40 güç ayağıı dayama süreler aşağıda gbdr. Geşlelmş reas ablosu oluşuruuz;, 4,7 3, 3,4 3,3 3, 3,9 4, 3,4 4, 3,8 3,7 3,6 3,8 3,7 3,0,,6 3, 3,,6,9 3, 3,0 3,3 4,3 3, 4, 4,6 3, 3,3 4,4 3,9,9

Detaylı

SİSTEMLERİN ZAMAN CEVABI

SİSTEMLERİN ZAMAN CEVABI DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MM306 SİSTEM DİNAMİĞİ SİSTEMLERİN ZAMAN CEVABI Kutuplar, Sıfırlar ve Zama Cevabı Kavramı Birici Mertebede Sistemleri Zama Cevabı İkici

Detaylı

YAPAY SİNİR AĞI DESTEKLİ KALMAN FİLTRESİ YARDIMIYLA HEDEF İZLEME. Tarkan SANCAKDAR. Enstitü No:

YAPAY SİNİR AĞI DESTEKLİ KALMAN FİLTRESİ YARDIMIYLA HEDEF İZLEME. Tarkan SANCAKDAR. Enstitü No: İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YAPAY SİNİR AĞI DESTEKLİ KALMAN FİLTRESİ YARDIMIYLA HEDEF İZLEME Y. LİSANS TEZİ Tara SANCAKDAR Estitü No: 51199181 Aabilim Dalı: Uça Mühedisliği Programı:

Detaylı

BÖLÜM XIII. FOURİER SERİLERİ VE FOURİER TRANSFORMU Periyodik fonksiyon

BÖLÜM XIII. FOURİER SERİLERİ VE FOURİER TRANSFORMU Periyodik fonksiyon Devre erisi Ders Ntu BÖLÜM XIII FOURİER SERİLERİ VE FOURİER RANSFORMU Periydik fksiy f( t) f( t ),,,... ve periyt. f ( t )- f( t - ) f( t + ) - f( t + )... Pratikte birçk elektriksel kayak periydik dalga

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

0 1 2 n 1. Doğu Akdeniz Üniversitesi Matematik Bölümü Mate 322

0 1 2 n 1. Doğu Akdeniz Üniversitesi Matematik Bölümü Mate 322 Bölüm 3. İkici Mertebede Lieer ve Sabit Katsaılı Diferesiel Deklemler 4 3. Geel Taımlar ( ) ( ) ( ) a ( ) + a ( ) + a ( ) +... + a ( ) + a ( ) = f ( ) () 0 şeklideki bir deklem. mertebede lieer deklem

Detaylı

ö ğ ğ ğ ö ö ö ö ç ö çö ç ö ö ö ğ ç ö ç ğ ğ ö ğ ö ç ğ ö ğ ç ğ ğ ç ğ Ö ğ ğ ç ç ö ç ğ ö ğ ç ö ğ ç ç ö ö ğ ç ğ ğ ö ğ ç ğ ğ ö ç ö ç ö ö ğ ö ç Ş Ü ğ Ü ö Ö Ş ğ Ş Ü ö ğ ö ğ ö ö Ü ö «Ç ğ ö ğ ç ğ ğ ğ çö ç ğ ö ğ

Detaylı

Ğ Ğ Ğ Ç Ç Ç Ş ç Ş Ü ö çö ö ö Ç ö ç ç ç ö ö ç ç ç ö Ç Ç ç Ç Ç Ç Ç ç ç ç Ç Ö Ç ç Ç ç ç ç ö ç ö ö Ç ç ö ö ö ö ç ö Ş Ş Ü Ü ç ö ö Ö ö ö ö çö ç Ğ ö ç Ğ ö Ü Ü ç ö ö Ö Ç Ç ç Ç Ç ç Ç Ö ö ö ç Ş Ç ç ö Ö Ş Ş Ü Ü ç

Detaylı

Ğ İ Ç Ü Ö Ö ö Ü ö ç İ ö ç ç ğ ç «Ü İ ğ İ Ü Ü İ İ İ ğ Ü Ü İ İ ğ ç ç ğ ğ ö ö Ç Ö İ ö İ ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ ğ ğ ç ğ ö ğ ğ ğ ç ğ ğ ğ ğ ö ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ

Detaylı

DENEY 4 Birinci Dereceden Sistem

DENEY 4 Birinci Dereceden Sistem DENEY 4 Birici Derecede Sistem DENEYİN AMACI. Birici derecede sistemi geçici tepkesii icelemek.. Birici derecede sistemi karakteristiklerii icelemek. 3. Birici derecede sistemi zama sabitii ve kararlı-durum

Detaylı

REAKTÖRLER V Q. t o ...(1.1)

REAKTÖRLER V Q. t o ...(1.1) REAKTÖRLER İçide kimyasal veya biyljik reaksiyları gerçekleşirildiği aklara veya havuzlara reakör adı verilir Başlıa dör çeşi reakör vardır: Tam Karışımlı Kesikli Reakörler: Reakör dldurulup işlem yapılır

Detaylı

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri Korol Siemleri Taarımı Siem Modellerii Zama Cevabı ve Performa Krierleri Prof.Dr. Galip Caever Korol Siemleri Taarımı Prof.Dr.Galip Caever Kapalı dögü iemi oluşurulmaıda öce iem modelide geçici rejim cevabıı

Detaylı

ç ö ö ç ğ ğ ç ğ ğ ö

ç ö ö ç ğ ğ ç ğ ğ ö ç ç ç ç ö ç ğ ğ ğ ğ ç ö ğ ğ ç ç ğ ğ ç ğ ö ö ç ğ ğ ç ç ö ç ö ç ğ ğ ç ö ö ç ö ö ç ğ ğ ç ğ ğ ö ğ ç ğ ö ç ğ ç ç ğ ç ç ö ö ö ç ğ ö ç ğ ç ç ğ ö ç ç ç ö öç ö ç ğ ğ ö ç ğ ç ö ç ç ğ ğ ç ğ ç ğ ö ğ ğ ğ ğ ğ ğ ö ğ

Detaylı

KANTOROVICH-STANCU TİP OPERATÖRLER İLE YAKLAŞIM. Neslihan KOZAN BAŞAK YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

KANTOROVICH-STANCU TİP OPERATÖRLER İLE YAKLAŞIM. Neslihan KOZAN BAŞAK YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KANTOROVICH-STANCU TİP OPERATÖRLER İLE YAKLAŞIM Nesliha KOZAN BAŞAK YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ŞUBAT 00 ANKARA Nesliha Koza BAŞAK taraıda hazırlaa KANTOROVICH-STANCU

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK AKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY ÖYÜ DENEY I VİDALARDA OTOBLOKAJ DENEY II SÜRTÜNME KATSAYISININ BELİRLENMESİ DERSİN

Detaylı

İşaret ve Sistemler. Ders 7: Konvolüsyon (Evrişim)

İşaret ve Sistemler. Ders 7: Konvolüsyon (Evrişim) İşare ve Siseler Ders 7: Konvolüsyon Evrişi Konvolüsyon Evrişi Konvolüsyonconvoluion uzun yıllardır bilinen ve uygulanan aeaiksel bir işle olakla birlike bu işlei anılaak için aeaike çok çeşili eriler

Detaylı

BLAST A C G T T A A A C T C G G C I I I I I I I I I A C T T T A A G C C A A G C

BLAST A C G T T A A A C T C G G C I I I I I I I I I A C T T T A A G C C A A G C BLS Öcei erste; DN izilerie,,g, bazlarıı izilişi, RN izilerie,,g,u bazlarıı izilişi ve protei izilerie amio asitleri izilişi baımıa, orta bir alfabe ile yazılmış izileri hizalaması üzerie urulu. Hizalamış

Detaylı

27310 Gaziantep 27310 Gaziantep. Tel : 0342 360 1200/2412 Tel : 0342 360 1200/2423 Fax : 0342 360 1107 Fax : 0342 360 1107

27310 Gaziantep 27310 Gaziantep. Tel : 0342 360 1200/2412 Tel : 0342 360 1200/2423 Fax : 0342 360 1107 Fax : 0342 360 1107 BATIK YATAY JETLERİN NÜMERİK İMÜLAYONU Yrd.Doç. Dr. Msafa Günal Arş. Gör. Aaç Güen Gazianep Üniersiesi Gazianep Üniersiesi İnşaa Müh. Bölümü İnşaa Müh. Bölümü 73 Gazianep 73 Gazianep gnal@ganep.ed.r agen@ganep.ed.r

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

İŞARETLER ve SİSTEMLER (SIGNALS and SYSTEMS)

İŞARETLER ve SİSTEMLER (SIGNALS and SYSTEMS) İŞARETLER ve SİSTEMLER (SIGNALS and SYSTEMS) Yrd. Doç. Dr. Musafa Zahid YILDIZ musafayildiz@sakarya.edu.r oda no: 469 Kaynaklar: 1. Signals and Sysems, Oppenheim. (Türkçe versiyonu: Akademi Yayıncılık)

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİK- LERİ ) ... BOŞ KÜME. w w w. m a t b a z.

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİK- LERİ ) ... BOŞ KÜME. w w w. m a t b a z. KÜME KAVRAMI Küme matematiği taımsız bir kavramıdır. Acak kümeyi, iyi taımlamış kavram veya eseler topluluğu diye tarif edebiliriz. Kümeler A, B, X, K,... gibi büyük harflerle gösterilir. Bir kümeyi oluştura

Detaylı

SPEKTRAL HESAP. Bir Serbestlik Dereceli Sistemler Bir serbestlik dereceli doğrusal elastik siteme ait diferansiyel hareket denklemi,

SPEKTRAL HESAP. Bir Serbestlik Dereceli Sistemler Bir serbestlik dereceli doğrusal elastik siteme ait diferansiyel hareket denklemi, Nuri ÖHENDEKCİ SPEKAL HESAP Yapıları ekileyen deprem dalgaları amamen belirli değildir; bu dalgaların özelliklerinde rasgelelik vardır. aman parameresine bağlı bu deprem dalgalarının farklı arilerde oluşmasıyla

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

Hafta 10: z -Dönüşümü

Hafta 10: z -Dönüşümü Hft : -Döüşümü Ele Alıc A Kolr -döüşümü -döüşümüü yıslı bölgesi Ters -döüşümü -döüşümüü öellileri -döüşümü llr LTI sistemleri lii -Döüşümü İmpls yıtı h ol bir LTI sistemi, girişie ol yıtıı y =H oldğ görmüştü.

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİKLERİ ) ... BOŞ KÜME. w w w. m a t b a z.

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİKLERİ ) ... BOŞ KÜME. w w w. m a t b a z. KÜME KAVRAMI Küme matematiği taımsız bir kavramıdır. Acak kümeyi, iyi taımlamış kavram veya eseler topluluğu diye tarif edebiliriz. Kümeler A, B, X, K,... gibi büyük harflerle Bir kümeyi oluştura eseleri

Detaylı

1991 ÖYS. )0, 5 işleminin sonucu kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 A) 123 B) 432 C) 741 D) 864 E) 987

1991 ÖYS. )0, 5 işleminin sonucu kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 A) 123 B) 432 C) 741 D) 864 E) 987 99 ÖYS.,8 (, ), işleminin sonucu açtır? A) B) C) D) E) 7. Raamları sıfırdan ve birbirinden farlı, üç basamalı en büyü sayı ile raamları sıfırdan ve birbirinden farlı, üç basamalı en üçü sayının farı açtır?

Detaylı

SEZGİSEL BULANIK CHOQUET İNTEGRAL OPERATÖRÜ YARDIMI İLE OPTİMAL ÜRETİM FAKTÖR SEÇİMİ

SEZGİSEL BULANIK CHOQUET İNTEGRAL OPERATÖRÜ YARDIMI İLE OPTİMAL ÜRETİM FAKTÖR SEÇİMİ SEZGİSE BUANIK CHOQUET İNTEGRA OPERATÖRÜ YARDIMI İE OPTİMA ÜRETİM FAKTÖR SEÇİMİ Murat BEŞER muratbeser @ yahoo.com ÖZET Bu çalışmada il olara -bulaı ümeler ümesi F X i bir alt ümesi ola sezgisel bulaı

Detaylı

Bu bölümde birkaç yak nsak dizi örne i daha görece iz.

Bu bölümde birkaç yak nsak dizi örne i daha görece iz. 19B. Yak sak Gerçel Dizi Örekleri Bu bölümde birkaç yak sak dizi öre i daha görece iz. Verdi imiz örekleri her biri hem kedi bafl a hem de kulla la yötem aç s da öemlidir. Örek 19B.1. lim 1/ = 1. Ka t:

Detaylı

2. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ

2. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ DERS: MATEMATİK II MAT II () ÜNİTE: BELİRLİ İNTEGRALLER KONU:. ARALIKLARIN PARÇALANMASI. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ GEREKLİ ÖN BİLGİLER. semolü ve temel toplm ormülleri. Limiti temel

Detaylı

ş Ğ» ş Ğ ş Ü ğ Ö ğ ğ ğ ç ğ ş ğ ç ç ğ ğ ş ç ğ ş ğ ç ğ ş Ö Ö ç ö ş ç ş ö ş ğ ğ ğ ş ö ç ş ç ğ ğ ğ ç ş ç ö ş ş ç ğ Ö ğ ç ş ş ç ş ö ç ş ç ş ş ö ğ ş ş ö ö ş ö ş ç ş ğ ç ş ç ş ğ ç ç ö ş ö ö ş ö ğ ç ç ö ş ğ ö

Detaylı

Q4.1. Motor. Kablo. Asansör

Q4.1. Motor. Kablo. Asansör Q4.1 Şekilde çelik bir kablo ile yukarı doğru sabi hızla çekilen asansör görülmekedir. Büün sürünmeleri ihmal eiğimizde; Çelik kablonun asansöre uyguladığı kuvve için ne söylenebilir? Kablo Moor v Asansör

Detaylı

Kirişlerin düzlemi doğrultusunda kolonlara rijit (moment aktaran) birleşim ile bağlanması durumu;

Kirişlerin düzlemi doğrultusunda kolonlara rijit (moment aktaran) birleşim ile bağlanması durumu; DEPREM YÜKLERİ (E) Binalara ekiyen deprem yükleri Deprem Yönemeliği ne göre belirlenir. Çaı sisemindeki elemanlara (Kafes kiriş, aşık, sabilie elemanları vb.) deprem yüklerinin ekisi kafes kirişin kolonlara

Detaylı

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1)

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1) TÜMEVARIM Matematite ulladığımız teoremleri ispatlamasıda pe ço ispat yötemi vardır. Özellile doğal sayılar ve birço ouda ispatlar yapare tümevarım yötemii sıça ullaırız. Tümevarım yötemii P Öermesii doğruluğuu

Detaylı

2.2. Fonksiyon Serileri

2.2. Fonksiyon Serileri 2.2. Foksiyo Serileri Taım.. Herhagi bir ( u (x reel (gerçel değerli foksiyo dizisi verilsi. Bu m foksiyo dizisii tüm terimlerii toplamıa, yai u m (x + u m+ (x + u m+2 (x + u m+3 (x + + u m+ (x + = k=m

Detaylı

ğ İ Ü Ü İĞ Ğİ İ İ Ü Ü Ü Ü ğ ğ öğ ğ ö Ö ğ ç ğ ş ğ ğ ç ç ğ ğ ö ğ ş ğ ğ ç ö ş ö ş ş ğ İ ş ğ ğ ç Ö ö ö ş ş ğ ğ ğ ğ ö ş ö ş ğ ğ ğ ğ Ü ğ ç Ş ç Ü ğ ş ş ç ş ş ö ö ş ç ş ş ğ ş ş ğ ğ İ ş ğ ç ğ ç ç ö öğ Ü ğ ç ş ğ

Detaylı

MEKANİK TİTREŞİMLER. Örnek olarak aşağıdaki iki serbestlik dereceli öteleme sistemini ele alalım. ( ) ( ) 1

MEKANİK TİTREŞİMLER. Örnek olarak aşağıdaki iki serbestlik dereceli öteleme sistemini ele alalım. ( ) ( ) 1 MEKANİK TİTREŞİMLER ÇOK SERBESTLİK DERECELİ SİSTEMLER: Gerçe uygulaalarda birço ühendili iei birden fazla erbeli dereei içeretedir. Ço erbeli dereeli ielerin titreşi analizlerinde diferaniyel denle taıları

Detaylı

BÖLÜM II. Asal Sayılar. p ab ise p a veya p b dir.

BÖLÜM II. Asal Sayılar. p ab ise p a veya p b dir. BÖLÜM II Asal Sayılar Taım. p > tam sayısıı de ve ediside başa bölei yosa bu sayıya asal sayı deir. de büyü asal olmaya sayılara da bileşi sayı deir. Teorem. Eğer p bir asal sayı ve p ab ise p a veya p

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matemat Deneme Sınavı. ii basamalı doğal saıdır. 6 en büü saısı ile en üçü saısının toplamı açtır? 8 89 8 6. için, 9 ( ) ifadesinin sonucu aşağıdailerden hangisidir? 6. ile saıları arasındai çift saıların

Detaylı

YAPAY SİNİR AĞLARI İLE KARAKTER TABANLI PLAKA TANIMA

YAPAY SİNİR AĞLARI İLE KARAKTER TABANLI PLAKA TANIMA YAPAY SİNİR AĞLARI İLE KARAKTER TABANLI PLAKA TANIMA Cemil ÖZ 1, Raşi KÖKER 2, Serap ÇAKAR 1 1 Sakara Üiversiesi Mühedislik Fakülesi Bilgisaar Mühedisliği Bölümü, Eseepe, Sakara 2 Sakara Üiversiesi Tekik

Detaylı

Akustik Eko Yok Etme Uygulamasında Uyarlamalı Hammerstein Filtre Yakla

Akustik Eko Yok Etme Uygulamasında Uyarlamalı Hammerstein Filtre Yakla Asti Eo Yo Etm Uyglamasıda Uyarlamalı Hammrsti Filtr Yalaşımları Hammrsti Filtr Approahs i th Appliatio of Aosti Eho Callatio ğba Özg ÖZDİÇ, Rıfat HACIOĞ U Eltri v Eltroi ühdisliği Bölümü Zoglda Karalmas

Detaylı

Deney 1: Ayrık Zamanlı İşaretler, Ayrık Zamanlı Sistemler, Örnekleme Kuramı ve Evrişim

Deney 1: Ayrık Zamanlı İşaretler, Ayrık Zamanlı Sistemler, Örnekleme Kuramı ve Evrişim Deey : Ayrık Zamalı İşaretler, Ayrık Zamalı Sistemler, Örekleme Kuramı ve Evrişim Amaç Bu deeyi amacı ayrık zamalı işaret ve sistemleri taıtılması ve örekleme işlemii iki temel özelliği ola örtüşme ve

Detaylı

İşaret ve Sistemler. Ders 9: Sistemlere Giriş

İşaret ve Sistemler. Ders 9: Sistemlere Giriş İşare ve Sisemler Ders 9: Sisemlere Giriş Sisem Kavramı Belirli bir işi görmek için bir araa geirilmiş alelerin ve devrelerin ümüne birden SİSEM adı verilir. Başka bir deişle sisem, fiziksel bir sürecin

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HERON ÜÇGENLERİ ÜRETME METODLARI

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HERON ÜÇGENLERİ ÜRETME METODLARI T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HERON ÜÇGENLERİ ÜRETME METODLARI Hamza AKBULUT YÜKSEK LİSANS TEZİ ORTAÖĞRETİM ANA BİLİM DALI MATEMATİK ÖĞRETMENLİĞİ PROGRAMI KONYA 009 T.C. SELÇUK ÜNİVERSİTESİ

Detaylı

Yrd.Doç. Dr. Mustafa Akkol

Yrd.Doç. Dr. Mustafa Akkol komşuluğu: Taım: ; isteildiği kadar küçük seçilebile poziti bir sayı olmak üzere a a açık aralığıa a R sayısıı komşuluğu deir Örek : Taım: a a a a ve 0 00 olsu ' i 0 00 0 00 999 00 : Z R bir dizi deir

Detaylı

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün.

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün. 4.2. çı Modülasyonu Yüse reanslı bir işaret ile bilgi taşıa, işaretin genliğinin, reansının veya azının bir esaj işareti ile odüle edilesi ile gerçeleştirilebilir. Bu üç arlı odülasyon yöntei sırasıyla,

Detaylı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı Trce ve Kellogg Yöemleri Kullılrk İegrl Operörlerii Özdeğerlerii Nümerik Hesı Erk Tşdemir () ; Yüksel Soyk () ; Melih Göce (3) (¹)Kırklreli Üiversiesi, Kırklreli, Türkiye, erksdemir@homil.com (²)Büle Ecevi

Detaylı

DUMLUPINAR ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ 10. BÖLÜM WDM YAPILARI VE ELEMANLARI

DUMLUPINAR ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ 10. BÖLÜM WDM YAPILARI VE ELEMANLARI DUMLUPINAR ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ 10. BÖLÜM WDM YAPILARI VE ELEMANLARI Tek bir fiber üzeride veri taşıma kapasitesii çok büyük ölçüde artmasıı sağlamıştır. Buula birlikte,

Detaylı

[ ]{} []{} []{} [ ]{} g

[ ]{} []{} []{} [ ]{} g ZAMAN TANIM ALANINDA ÇÖZÜM Yapı özellilerii ortogoalli şartlarıı sağlaaası duruuda, diferasiel hareet delei doğruda üeri ötelerle çözülebilir Depre etisi altıdai ço atlı apılara ugulaa üzere ii arı üeri

Detaylı

(Zamanda Öteleme veya Kaydırma) t Continuous Time (Sürekli Zaman)

(Zamanda Öteleme veya Kaydırma) t Continuous Time (Sürekli Zaman) (Zamada Öeleme veya Kaydırma) ) ( x ) ( ) ( x 4 ) ( ) ( x Coiuous Time (Sürekli Zama) (Zamada Ölçekleme) ) ( x / / / / / 4 ) ( / ) ( x ) ( ) ( x (Zamada Tersie Çevirme) ) ( x ) ( ) ( x Örek: )) / ( ( )

Detaylı

(c) λ>>d. (b) λ d. (a) λ<<d

(c) λ>>d. (b) λ d. (a) λ<<d 1. Geometrik Otik Geometrik otik düzgü düzlem elektromayetik dalgaları arklı malzemeleri ara yüzeyide yasıma ve kırılmasıı ieler. Pratikte dalgaları madde ile etkileşmeside düzgü düzlem dalgalarda bahsedemeyiz.

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ CHLODOWSKY-TAYLOR POLİNOMLARIYLA YAKLAŞIM. Seyide ATAK MATEMATİK ANABİLİM DALI

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ CHLODOWSKY-TAYLOR POLİNOMLARIYLA YAKLAŞIM. Seyide ATAK MATEMATİK ANABİLİM DALI ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ CHLODOWSKY-TAYLOR POLİNOMLARIYLA YAKLAŞIM Seyide ATAK MATEMATİK ANABİLİM DALI ANKARA 202 Her haı salıdır ÖZET Yüse Lisas Tezi CHLODOWSKY-TAYLOR

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz.

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz. Sorular ve Çözümleri 1. GRUPLAR 1) G bir grup olmak üzere aşağıdaki eşitlikleri gösteriiz. i) e G birim elema olmak üzere e 1 = e. ii) a G olmak üzere (a 1 ) 1 = a. iii) a 1, a 2,, a G içi (a 1 a 2 a )

Detaylı

Yataklı vanalar (PN 16) VF 2-2 yollu vana, flanşlı VF 3-3 yollu vana, flanşlı

Yataklı vanalar (PN 16) VF 2-2 yollu vana, flanşlı VF 3-3 yollu vana, flanşlı Tei föy Yatalı vaalar (PN 16) VF 2-2 yollu vaa, flaşlı VF 3-3 yollu vaa, flaşlı Açılama Özelliler: Sızdırmaz tasarım AMV(E) 335, AMV(E) 435 ile olay meai bağlatı 2 ve 3 yollu vaa Ayırma uygulamaları içi

Detaylı

Analiz II Çalışma Soruları-2

Analiz II Çalışma Soruları-2 Aaliz II Çalışma Soruları- So gücelleme: 04040 (I Aşağıdaki foksiyoları (ilgili değişkelere göre türevlerii buluuz 7 cos π 8 log (si π ( si ta e 9 4 5 6 + cot 0 sec sit t si( e + e arccos ( e cos(ta (II

Detaylı

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit Karadez Te Üverstes Blgsayar Mühedslğ Bölümü 5-6 Güz Yarıyılı Sayısal Çözümleme Ara Sıav Soruları Tarh: Kasım 5 Perşembe Süre: daa. f ( ( + a e fosyouu sabt otası olmadığı bldğe göre, a 'ı alableceğ e

Detaylı

İŞ, GÜÇ, ENERJİ BÖLÜM 8

İŞ, GÜÇ, ENERJİ BÖLÜM 8 İŞ, GÜÇ, EERJİ BÖÜ 8 ODE SORU DE SORUARI ÇÖZÜER 5 Cise eti eden sür- tüne uvveti, IFI0 ür F α F T W (F ür ) (Fcosα (g Fsinα)) düzle Ya pı lan net iş de ğe ri α, ve ütleye bağ lı dır G düzle 00,5 G0 0 I

Detaylı

Eğitim Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Çalışma Soruları

Eğitim Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Çalışma Soruları 0 0 Eğiim Öğreim Yılı Güz Dönemi Diferansiel Denklemler Çalışma Soruları 0/0/0 ) 3 8 diferansiel denklemini çözünüz. ) a) d d ( ) diferansiel denklemini çözünüz. b) 3 5 diferansiel denklemini çözünüz.

Detaylı

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri V MERSİN MATEMATİK OLİMPİYATI (ÜNV ÖĞR) I AŞAMA SINAV SORULARI ( Nisa 8) de ye taımlı, birebir ve örte f ve g foksiyoları her bir içi koşuluu sağlası g( a ) = ve f ( ) ( ) ( ) f = g a 4 = a ise a sayısı

Detaylı

Bir Sınıf Jacobi Matrisi İçin Özdeğer Problemi 1

Bir Sınıf Jacobi Matrisi İçin Özdeğer Problemi 1 S Ü Fe Ed Fa Fe Derg Sayı 7 (6-8, KONYA Bir Sııf Jacobi Matrisi İçi Özdeğer Problemi Oza ÖZKAN Selçu Üiversitesi, Fe-Edebiyat Faültesi, Matemati Bölümü 479 Kampüs, Koya simetri Jacobi matrislerii özdeğerleri

Detaylı

ÇELİK KAFES SİSTEM TASARIMI DERS NOTLARI

ÇELİK KAFES SİSTEM TASARIMI DERS NOTLARI BALIKESİR ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÇELİK KAFES SİSTEM TASARIMI DERS PLANI KONULAR 1. Çelik Çaı Siseminin Geomerik Özelliklerinin Belirlenmesi 1.1 Aralıklarının

Detaylı