LYS MATEMATÝK II - 10

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "LYS MATEMATÝK II - 10"

Transkript

1 ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS UYGULM FÖYÜ (MF-TM) DERSHNELERÝ LYS MTEMTÝK II - 0 PRL - I Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. dý Soadý :... u kitapçýðýn her hakký saklýdýr. Tüm haklarý br ire Eðitim Yaýncýlýk Pazarlama Ltd. Þti. e aittir. Kýsmen de olsa alýntý apýlamaz. Metin ve sorular, kitapçýðý aýmlaan þirketin önceden izni olmaksýzýn elektronik, mekanik, fotokopi a da herhangi bir kaýt sistemile çoðaltýlamaz aýmlanamaz. PRL - I f( )=a +b+c ikinci dereceden bir bilinmeenli fonksionlarýn grafiklerine parabol denir. Uarı: =a parabolünde, a>0 ise parabolün kolları ukarı doğrudur. Örnek: f( )= fonksionunun grafiðini çiziniz. a<0 ise parabolün kolları aşağı doğrudur. Parabolün tepe noktası orijindir. 0 f() 5 Parabolün simetri ekseni =0 doğrusudur. a değeri büüdükçe parabolün kolları birbirine aklaşır. Örnek: (,) noktasý =(m ) parabolü üzerinde olduðuna göre, m kaçtýr? Örnek: f()= fonksionunun grafiðini çiziniz. 0 f() Örnek: 5 þaðýda =a, =b ve =c parabolleri çizilmiþtir. =c =b Örnek: f()= fonksionunun grafiðini çiziniz. 0 f() =a una göre, a, b ve c i küçükten büüðe doðru sýralaýnýz.

2 Örnek: 6 = + fonksionunun grafiðini çiziniz. Örnek: 9 = fonksionunun grafiðini çiziniz. 0 =f() 0 Örnek: 7 = + fonksionunun grafiðini çiziniz. 0 a) Parabolün eksenini kestiði noktalarýn apsisleri: Uarı: =a +c parabolünde, Parabolün simetri ekseni =0 doğrusudur. Parabolün tepe noktası ekseni üzerindedir. Parabolün tepe noktası ekseni üzerinde olduğundan b=0 dır. Tepe noktası (0,c) dir. b) Parabolün eksenini kestiði noktanýn ordinatý: Örnek: 8 f( )= (m ) +(m ) parabolünün tepe noktasý ekseni üzerindedir. a) una göre, m nin deðerini bulunuz. c) Parabolün simetri ekseni: b) Parabolün simetri eksenini bulunuz. c) Parabolün tepe noktasýný bulunuz. d) Parabolün tepe noktasýnýn koordinatlarý: d) Parabolün eksenini kestiði noktaý bulunuz.

3 Uarı: a +b+c=0 denkleminde, e) Parabolü çiziniz. Δ>0 ise denklemin ve gibi farklı iki gerçek kökü vardır. =r c k r T(r,k) 5 ve değerleri parabolün eksenini kestiği noktaların apsisleridir. f()=a +b+c parabolünün eksenini kestiği nokta (0,c) dir. f()=a +b+c parabolünün simetri ekseni + b = r = = doğrusudur. a f()=a +b+c parabolünün tepe noktası: T(r,k) b ac b r = ise k = f(r) = a a Uarı: f()=a +b+c fonksionunun grafiği çizilirken, Parabolün varsa eksenini kestiği noktalar bulunur. Parabolün eksenini kestiği nokta bulunur. Parabolün tepe noktası bulunur. Örnek: Örnek: 0 = +8 a) Parabolünün eksenini kestiði noktanýn ordinatýný bulunuz. f()= m+ parabolünün simetri ekseni = doðrusu olduðuna göre, m kaçtýr? b) Parabolünün eksenini kestiði noktalarý bulunuz. Örnek: f()= +(m )+n parabolünün tepe noktasý T(, ) olduðuna göre, m+n toplamý kaçtýr? c) Parabolünün simetri eksenini bulunuz. d) Parabolünün tepe noktasýný bulunuz. Uarı: =a +b+c parabolünün tepe noktasını tam karee tamamlama öntemi ile de bulabiliriz. =a +b+c = a( r) +k parabolünün tepe noktası T(r,k) dır.

4 Örnek: =( ) + parabolünün tepe noktasýný bulunuz. Örnek: 6 þaðýda tepe noktasý T(,) olan ve eksenini (0,) noktasýnda kesen =f() parabolü çizilmiþtir. =f() una göre, f() kaçtýr? T Örnek: = (+a) +b parabolünün tepe noktasý T(,) olduðuna göre, a+b toplamý kaçtýr? Uarı: f()=a +b+c parabolünde, =r simetri ekseni ise f(r+m)=f(r m) Örnek: 7 Örnek: 5 þaðýda tepe noktasý analitik düzlemin üçüncü bölgesinde olan =a +b+c parabolü çizilmiþtir. =a +b+c = +m parabolünün tepe noktasý = doðrusu üzerinde olduðuna göre, m kaçtýr? una göre, aþaðýdakilerden hangisi anlýþtýr? ) a>0 ) a.b.c<0 C) a+b c>0 D) b ac>0 E) b.c>0

5 PRL - I. f()=(m ) + n +m+n fonksionunun grafiði parabol olduðuna göre, m+n toplamý kaçtýr? ) 9 ) 8 C) 7 D) 6 E) 5. þaðýdaki noktalardan hangisi f()= 5+ parabolünün üzerindedir? ) (, 5) ) (, 8) C) (, 5) D) (, 7) E) (, 0) ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri. þaðýda orijinden geçen = m+m parabolü çizilmiþtir. una göre, m kaçtýr? ) 0 ) C) D) E) 5. þaðýda =m parabolü çizilmiþtir. = m+m KNU TESTÝ =m (, ) noktasý parabolün üzerinde olduðuna göre, m kaçtýr?. þaðýdakilerden hangisi = fonksionunun grafiði olabilir? ) C) E) ) D) 5ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ) ) C) D) E) 6. þaðýdakilerden hangisi = fonksionunun grafiði olabilir? ) C) E) 5 ) D)

6 PRL - I KNU TESTÝ 7. 5 =f() Yukarýdaki =f() parabolünün simetri ekseni aþaðýdakilerden hangisidir? ) =0 ) = C) = D) = E) = ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri 0. f()= a+b parabolünün tepe noktasý T(, ) olduðuna göre, a+b toplamý kaçtýr? ) ) 5 C) 9 D) E). þaðýda tepe noktasýnýn apsisi olan ve eksenini ve noktalarýnda kesen =f() parabolü çizilmiþtir. 8. = +a++a parabolünün simetri ekseni = doðrusudur. una göre, parabol eksenini hangi noktada keser? ) (0, 7) ) (0, 6) C) (0, 5) D) (0, ) E) (0, ) 9. þaðýdaki parabollerden hangisinin tepe noktasý analitik düzlemin III. bölgesindedir? ) = 6+7 ) = ( ) C) =( ) D) = (+) + E) =(+) 6ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri 5 = olduðuna göre, noktasýnýn apsisi kaçtýr? 5 ) ) C) D) E). = +m parabolü eksenini iki farklý noktada kestiðine göre, m nin alabileceði en büük tam saý deðeri kaçtýr? ) ) C) D) E) 5

7 PRL - I. þaðýdakilerden hangisi = ++ fonksionunun grafiði olabilir? ) C) E) ) 9 D) ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri 6. þaðýda eksenini ( 5,0) ve (,0) noktalarýnda kesen =f() parabolü çizilmiþtir. una göre, 5 f() f( 6) ifadesinin deðeri kaçtýr? ) ) 0 C) D) E) 7. þaðýda (,) ve (7,) noktalarýndan geçen =f() parabolü çizilmiþtir. 7 KNU TESTÝ =f() =f(). þaðýda = 9 parabolü çizilmiþtir. una göre, C üçgeninin alaný kaç br dir? = 9 ) 9 ) C) 6 D) E) 7 5. =a +6 parabolünün eksenini kestiði noktalar arasýndaki uzaklýk 8 br olduðuna göre, a kaçtýr? ) ) C) D) E) 5 C 7ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri una göre, =f() parabolünün eksenini kestiði noktalarýn apsisleri toplamý kaçtýr? ) ) C) D) 5 E) 6 8. þaðýda eksenini orijin ve noktasýnda kesen =f() parabolünün içine tepesi parabolün tepe noktasýnda bulunan eþkenar üçgeni çizilmiþtir. =6 br olduðuna göre, parabolün tepe noktasýnýn ordinatý kaç birimdir? ) ) C) D)6 E)

8 PRL - I 9. þaðýda noktasý = parabolü üzerinde olan C karesi çizilmiþtir. una göre, C karesinin alaný kaç br dir? C 0. = (m+) m parabolünün eksenini kestiði noktalarýn apsisleri toplamý tür. una göre, parabolün eksenini kestiði noktanýn ordinatý kaçtýr? ) ) C) D) E) ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri. þaðýda = (+) parabolü çizilmiþtir. <<0 olduðuna göre, C dikdörtgeninin alaný aþaðýdakilerden hangisi ile ifade edilebilir? ) (+) ) (+) C).( ) D) (+) E) (+). þaðýda tepe noktasý IV. bölgede olan =a +b+c parabolü çizilmiþtir. C KNU TESTÝ =f() =a +b+c ) ) C) 0 D) E) 5. þaðýda = parabolünün iç bölgesine eþkenar üçgeni çizilmiþtir. []// tir. una göre, noktasýnýn apsisi kaçtýr? 5 ) ) C) D) E) 8ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri ire Dershaneleri T una göre, aþaðýdakilerden hangisi kesinlikle anlýþtýr? ) a>0 ) a.c<0 C) a.b.c>0 D) b+c<0 E) b+c a>0. f()= a+ parabolünün tepe noktasýnýn ordinatý ( 5) olduðuna göre, apsisi aþaðýdakilerden hangisi olabilir? ) 6 ) C) D) E) - -E -D -E 5-6-C 7-C 8-9-E 0-C -D -D -D -E 5-6-C 7-C 8-C 9-0-E - - -E -

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý ölüm Sýnav DF No. MTEMTÝK - II PRL - I MF TM LYS 09 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. dý Soadý

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý ölüm Sýnav DF No. MTEMTÝK - II PRL - IV MF TM LYS1 12 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. dý

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - II KARMAÞIK SAYILAR - II MF TM LYS 3 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý ölüm Sýnav DF No. MTEMTÝK - II TRÝGNMETRÝ - I MF TM LYS 8 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr.

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - II II. DERECEDEN DENKLEMLER - II MF TM LYS 06 Ders anlatým föyleri öðrenci tarafýndan dersten sonra

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - II EÞÝTSÝZLÝKLER - III MF TM LYS1 15 Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar

Detaylı

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir? PROL est -. m parabolü eksenini kesmiorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?. f a b c (, ) ) (, ) (, ) (, ) ( 6, ). m parabolü eksenini iki farklı noktada kesmektedir. una göre,

Detaylı

Doðruda Açýlar Üçgende Açýlar Açý - Kenar Baðýntýlarý Dik Üçgen ve Öklit Baðýntýlarý Ýkizkenar ve Eþkenar Üçgen Üçgende Alan

Doðruda Açýlar Üçgende Açýlar Açý - Kenar Baðýntýlarý Dik Üçgen ve Öklit Baðýntýlarý Ýkizkenar ve Eþkenar Üçgen Üçgende Alan Ödev Tarihi :... Ödev Kontrol Tarihi :... Kontrol den :... LYS GOMTRİ Ödev Kitapçığı 1 (M-TM) oðruda çýlar Üçgende çýlar çý - Kenar aðýntýlarý ik Üçgen ve Öklit aðýntýlarý Ýkizkenar ve þkenar Üçgen Üçgende

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - II EÞÝTSÝZLÝKLER - I MF TM LYS1 13 Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - II II. DERECEDEN DENKLEMLER - IV MF TM LYS1 08 Ders anlatým föyleri öðrenci tarafýndan dersten

Detaylı

PARABOL TEST / 1. 1. Aþaðýdaki fonksiyonlardan hangisinin grafiði parabol. 5. Aþaðýdaki fonksiyonlardan hangisinin grafiði A(0,2) noktalarýndan geçer?

PARABOL TEST / 1. 1. Aþaðýdaki fonksiyonlardan hangisinin grafiði parabol. 5. Aþaðýdaki fonksiyonlardan hangisinin grafiði A(0,2) noktalarýndan geçer? PARABOL TEST /. Aþaðýdaki fnksinlardan hangisinin grafiði parabl belirtir? 5. Aþaðýdaki fnksinlardan hangisinin grafiði A(0,) nktalarýndan geçer? A) f()=5 f()=+ C) f()= D) f()= f()= 4 + + A) f()= f()=

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLAIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MAEMAÝK - II PARABL - II MF M LYS1 10 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr.

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý Bölüm Sýnav DF No. MTEMTÝK - II TRÝGONOMETRÝ - IX MF TM LYS 6 Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr.

Detaylı

4. f(x) = x 3 3ax 2 + 2x 1 fonksiyonunda f ý (x) in < x < için f(x) azalan bir fonksiyon olduðuna

4. f(x) = x 3 3ax 2 + 2x 1 fonksiyonunda f ý (x) in < x < için f(x) azalan bir fonksiyon olduðuna Artan - Azalan Fonksionlar Ma. Min. ve Dönüm Noktalarý ÖSYM SORULARI. Aþaðýdaki fonksionlardan hangisi daima artandýr? A) + = B) = C) = ( ) + D) = E) = + (97). f() = a + fonksionunda f ý () in erel (baðýl)

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý ölüm Sýnav DF No. MTEMTÝK - II TRÝGONOMETRÝ - IV MF TM LYS Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr.

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No MATEMATÝK - II POLÝNOMLAR - IV MF TM LYS1 04 Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr

Detaylı

LYS GEOMETRÝ. Doðruda Açýlar Üçgende Açýlar Açý - Kenar Baðýntýlarý Dik Üçgen ve Öklit Baðýntýlarý

LYS GEOMETRÝ. Doðruda Açýlar Üçgende Açýlar Açý - Kenar Baðýntýlarý Dik Üçgen ve Öklit Baðýntýlarý LYS GEOMETRÝ Soru Çözüm ersi Kitapçığı 1 (MF - TM) oðruda çýlar Üçgende çýlar çý - Kenar aðýntýlarý ik Üçgen ve Öklit aðýntýlarý Ýkizkenar ve Eþkenar Üçgen Üçgende lan u yayýnýn her hakký saklýdýr. Tüm

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

LYS 1 ÖZ-DE-BÝR YAYINLARI MATEMATÝK DENEME SINAVI 1 MA = a 4, 3 b Bazý M pozitif gerçek sayýlarý için, 5M = M 5 ve. 6.

LYS 1 ÖZ-DE-BÝR YAYINLARI MATEMATÝK DENEME SINAVI 1 MA = a 4, 3 b Bazý M pozitif gerçek sayýlarý için, 5M = M 5 ve. 6. LYS ÜNÝVERSÝTE HAZIRLIK ÖZ-DE-BÝR YAYINLARI MATEMATÝK DENEME SINAVI A Soru saýsý: 0 Yanýtlama süresi: dakika Bu testle ilgili anýtlarýnýzý optik formdaki Matematik bölümüne iþaretleiniz. Doðru anýtlarýnýzýn

Detaylı

Örnek...1 : f (x)=2x 2 5x+6 parabolü K(2,p) noktasından geçiyorsa p kaçtır? Örnek...2 : Aşağıda çeşitli parabol grafikleri verilmiştir incele yi niz.

Örnek...1 : f (x)=2x 2 5x+6 parabolü K(2,p) noktasından geçiyorsa p kaçtır? Örnek...2 : Aşağıda çeşitli parabol grafikleri verilmiştir incele yi niz. a, b,c R,a 0 olmak koşulula f ()=a 2 +b+c fonksionuna ikinci dereceden bir değişkenli fonksion ve bu fonksionun belirttiği eğrie de parabol denir. Uarı ir parabolün grafiği başkatsaı olan a saısına bağlı

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - I

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - I BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - I SAYI BASAMAKLARI - II MF TM YGS LYS1 05 Ders anlatým föyleri öðrenci tarafýndan dersten sonra

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak sayfası İÇİNDEKİLER 6. ÜNİTE İKİNCİ DERECEDEN DENKLEM VE FNKSİYNLAR İkinci Dereceden Bir Bilinmeyenli Denklemler... 4 a + b + c = 0 Denkleminin Genel Çözümü... 5 7 Karmaşık Sayılar... 8 4 Konu Testleri

Detaylı

DOÐRUNUN ANALÝTÝÐÝ - I

DOÐRUNUN ANALÝTÝÐÝ - I YGS-LYS GEOMETRÝ Konu Anlatýmý DOÐRUNUN ANALÝTÝÐÝ - I ANALÝTÝK DÜZLEM Baþlangýç noktasýnda birbirine dik olan iki sayý doðrusunun oluþturduðu sisteme dik koordinat sistemi, bu doðrularýn belirttiði düzleme

Detaylı

LYS - 1 GEOMETRÝ TESTÝ

LYS - 1 GEOMETRÝ TESTÝ LYS - 1 GMTRÝ TSTÝ ÝKKT : 1. u testte toplam 3 soru vardýr. 2. evaplamaa istediðiniz sorudan baþlaabilirsiniz. 3. evaplarýnýzý, cevap kaðýdýnýn Geometri Testi için arýlan kýsmýna iþaretleiniz.. Safalar

Detaylı

Polinomlar II. Dereceden Denklemler

Polinomlar II. Dereceden Denklemler Ödev Tarihi :... Ödev Kontrol Tarihi :... Kontrol Eden :... LYS MATEMATİK - II Ödev Kitapçığı 1 (MF-TM) Polinomlar II. Dereceden Denklemler Adý Soyadý :... BÝREY DERSHANELERÝ MATEMATÝK-II ÖDEV KÝTAPÇIÐI

Detaylı

DERSHANELERÝ MATEMATÝK - I

DERSHANELERÝ MATEMATÝK - I B Ý R E Y D E R S H A N E L E R Ý S I N I F Ý Ç Ý D E R S A N L A T I M F Ö Y Ü DERSHANELERÝ Konu Bölüm DAF No. FONKSÝYONLAR - I MF-TM 53 MATEMATÝK - I 53 Bu yayýnýn her hakký saklýdýr. Tüm haklarý bry

Detaylı

4. a ve b, 7 den küçük pozitif tam sayý olduðuna göre, 2 a a b. 5. 16 x+1 = 3

4. a ve b, 7 den küçük pozitif tam sayý olduðuna göre, 2 a a b. 5. 16 x+1 = 3 LYS ÜNÝVSÝT HAZILIK ÖZ-D-BÝ YAYINLAI MATMATÝK DNM SINAVI A Soru saýsý: 5 Yanýtlama süresi: 75 dakika Bu testle ilgili anýtlarýnýzý optik formdaki Matematik bölümüne iþaretleiniz. Doðru anýtlarýnýzýn saýsýndan

Detaylı

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir?

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir? MC www.matematikclub.com, 006 Cebir Notları Gökhan DEMĐR, gdemir3@ahoo.com.tr. Dereceden Denklem ve Eşitsizlikler- TEST I A) 1 B) C) 3 D) 4 E) 5 1. 1/ = 0 denkleminin köklerinin toplamı aşağıdakilerden

Detaylı

LYS MATEMATÝK II. Polinomlar. II. Dereceden Denklemler

LYS MATEMATÝK II. Polinomlar. II. Dereceden Denklemler LYS MATEMATÝK II Soru Çözüm Dersi Kitapçığı 1 (MF - TM) Polinomlar II. Dereceden Denklemler Bu yayýnýn her hakký saklýdýr. Tüm haklarý bry Birey Eðitim Yayýncýlýk Pazarlama Ltd. Þti. e aittir. Kýsmen de

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS UYGULAMA FÖYÜ (MF) LYS FÝZÝK - 13 KALDIRMA KUVVETÝ - I

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS UYGULAMA FÖYÜ (MF) LYS FÝZÝK - 13 KALDIRMA KUVVETÝ - I BÝRE DERSHANEERÝ SINIF ÝÇÝ DERS UUAMA FÖÜ (MF) DERSHANEERÝ S FÝÝ - 13 ADIRMA UVVETÝ - I Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. ADIRMA UVVETÝ - I Adý Soyadý :... Bu

Detaylı

6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x)

6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x) 6 II. DERECEDEN FNKSÝYNLR (Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MTEMTÝK 1. f(). f() 6 8 T Yukarıda grafiği verilen = f() parabolünün denklemi nedir?( = 6) Yukarıda grafiği verilen

Detaylı

EŞİTSİZLİK SİSTEMLERİ Test -1

EŞİTSİZLİK SİSTEMLERİ Test -1 EŞİTSİZLİK SİSTEMLERİ Test -1 1. 9 5. 69 A) (, ] B) (, ) C) (, ) D) [, ] E) [, ) A) B) {} C) {, } D) R E) R {}. 5 6. 1 A) (, 5) B) [, 5] C) (, 5) D) (5, ) E) (, ) A) (, 1] B) (, ) C) [1, ) D) (, ] [1,

Detaylı

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

LYS - 1 MATEMATÝK TESTÝ

LYS - 1 MATEMATÝK TESTÝ LYS - 1 MATEMATÝK TESTÝ DÝKKAT : 1. Bu ese oplam 50 soru vardýr.. Cevaplamaa isediðiniz sorudan baþlaabilirsiniz.. Cevaplarýnýzý, cevap kaðýdýnýn Maemaik Tesi için arýlan kýsmýna iþareleiniz.. Safalar

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabol Denkleminin Yazılması

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabol Denkleminin Yazılması www.mustafaagci.com.tr, 11 Cebir Notları Mustafa YAĞCI, agcimustafa@ahoo.com Parabol Denkleminin Yazılması B ir doğru kaç noktasıla bellidi? İki, değil mi Çünkü tek bir noktadan geçen istediğimiz kadar

Detaylı

ÇEMBERÝN ANALÝTÝÐÝ - I

ÇEMBERÝN ANALÝTÝÐÝ - I YGS-LYS GEOMETRÝ Konu Anlatýmý ÇEMBERÝN ANALÝTÝÐÝ - I 1. Çember Denklemi: Analitik düzlemde merkezi M(a, b) ve yarýçapý r birim olan çemberin denklemi, (x - a) 2 + (y - b) 2 = r 2 (x - a) 2 + y 2 = r 2

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II ÝREY ERSHNELERÝ SINIF ÝÇÝ ERS NLTIM FÖYÜ ERSHNELERÝ Konu ers dý lüm Sýnv F No. MTEMTÝK - II TRÝGNMETRÝ - V MF TM LYS1 ers nltým fleri ðrenci trfýndn dersten sonr tekrr çlýþýlmlýdýr. dý Sodý :... u kitpçýðýn

Detaylı

TÜREVİN GEOMETRİK YORUMU

TÜREVİN GEOMETRİK YORUMU TÜREVİN GEOMETRİK YORUMU f :R R, =f ( fonksionuna düzlemde A karşılık gelen f( +h eğri anda ki =f( P gibi olsun. f( Eğrinin P(,f( noktasındaki teğetlerini +h araştıralım. Bunun için P(,f( noktasının sağıda

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

Kareli kaðýda çizilmiþ olan. ABC üçgenin BC kenarýna ait yüksekliði kaç birimdir?

Kareli kaðýda çizilmiþ olan. ABC üçgenin BC kenarýna ait yüksekliði kaç birimdir? 8. SINI ÜÇGN YRII NR TTi YÜSÝ üçgenin köþesinden kenarýna ait dikme inþa ediniz. yný iþlemi köþesinden kenarýna ve köþesinden kenarýna da uygulayýnýz. areli kaðýda çizilmiþ olan üçgenin kenarýna ait yüksekliði

Detaylı

Geometri Çalýþma Kitabý

Geometri Çalýþma Kitabý YGS GMTRÝ ÇLIÞM ÝTI YGS Geometri Çalýþma itabý opyright Sürat asým Reklamcýlýk ve ðitim raçlarý San. Tic. Þ u kitabýn tamamýnýn ya da bir kýsmýnýn, kitabý yayýmlayan þirketin önceden izni olmaksýzýn elektronik,

Detaylı

ege yayıncılık Parabolün Tan m ve Tepe Noktas TEST : 49 1. Afla daki fonksiyonlardan hangisinin grafi i bir parabol belirtir?

ege yayıncılık Parabolün Tan m ve Tepe Noktas TEST : 49 1. Afla daki fonksiyonlardan hangisinin grafi i bir parabol belirtir? Parabolün Tan m ve Tepe Noktas TEST : 9. Afla daki fonksionlardan hangisinin grafi i bir parabol belirtir? 5. Afla daki fonksionlardan hangisi A(,) noktas ndan geçer? A) f() = B) f() = f() = + f() =. f()

Detaylı

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56 , 006 MC Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Türev TEST I 7. f() = sin cos fonksionunun. f()= sin( + )cos( ) için f'() nin eşiti nedir? A) B) C) 0 D) E) için erel minimum değeri nedir? A) B)

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS MTEMTİK TESTİ. Bu testte soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. d + n - d + n d - + n- d + + n işleminin sonucu kaçtır?., R olmak üzere, + +

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS 1 GMTRİ TSTİ 1. u testte sırasıyla Geometri (1 ) nalitik Geometri (3 30) ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz. 1. bir üçgen =

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır.

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır. -A Adı Soadı kulu Sınıfı LYS- MATEMATİK TESTİ Bu Testte; Toplam Adet soru bulunmaktadır. Cevaplama Süresi 7 dakikadır. Süre bitiminde Matematik Testi sınav kitapçığınızı gözetmeninize verip Geometri Testi

Detaylı

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI YILLAR 966 967 968 969 97 97 97 975 976 977 978 980 98 98 98 98 985 986 987 988 989 990 99 99 99 99 995 996 997 998 006 007 ÖSS / ÖSS-I ÖYS / ÖSS-II 5 6 6 5

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı

DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ

DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ Örnek : Taksi ile yapılan yolculukların ücreti taksimetre ile belirlenir Bir taksimetrenin açılış ücreti 2 TL, sonraki her kilometre başına 1 TL ücret ödendiğine

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. Üç basamaklı doğal saılardan kaç tanesi, 8 ve ile tam bölünür? 8 9. ile in geometrik ortası z dir. ( z). ( z ). z aşağıdakilerden hangisidir?. 9 ifadesinin cinsinden değeri

Detaylı

1. BÖLÜM. 4. Bilgi: Bir üçgende, iki kenarýn uzunluklarý toplamý üçüncü kenardan büyük, farký ise üçüncü kenardan küçüktür.

1. BÖLÜM. 4. Bilgi: Bir üçgende, iki kenarýn uzunluklarý toplamý üçüncü kenardan büyük, farký ise üçüncü kenardan küçüktür. 8. SINIF COÞMY SORULRI 1. ÖLÜM DÝKKT! u bölümde 1 den 10 a kadar puan deðeri 1,25 olan sorular vardýr. 3. 1. 1 1 1 1 1 1 D E F 1 1 1 C 1 ir kenarý 1 birim olan 24 küçük kareden oluþan þekilde alaný 1 birimkareden

Detaylı

A A A A) 2159 B) 2519 C) 2520 D) 5039 E) 10!-1 A)4 B)5 C)6 D)7 E)8. 4. x 1. ,...,x 10. , x 2. , x 3. sýfýrdan farklý reel sayýlar olmak üzere,

A A A A) 2159 B) 2519 C) 2520 D) 5039 E) 10!-1 A)4 B)5 C)6 D)7 E)8. 4. x 1. ,...,x 10. , x 2. , x 3. sýfýrdan farklý reel sayýlar olmak üzere, ., 3, 4, 5, 6, 7, 8, 9 ve 0 sayýlarý ile bölündüðünde sýrasýyla,, 3, 4, 5, 6, 7, 8, ve 9 kalanlarýný veren en küçük tamsayý aþaðýdakilerden hangisidir? A) 59 B) 59 C) 50 D) 5039 E) 0!- 3. Yasin, annesinin

Detaylı

EKSTREMUM PROBLEMLERİ. Örnek: Çözüm: Örnek: Çözüm:

EKSTREMUM PROBLEMLERİ. Örnek: Çözüm: Örnek: Çözüm: EKSTREMUM PROBLEMLERİ Ekstremum Problemleri Bu tür problemlerde bir büyüklüğün (çokluğun alabileceği en büyük (maksimum değer ya da en küçük (minimum değer bulunmak istenir. İstenen çokluk bir değişkenin

Detaylı

Geometri Çalýþma Kitabý

Geometri Çalýþma Kitabý LYS GMTRÝ ÇLIÞM ÝTI LYS Geometri Çalýþma itabý opyright Sürat asým Reklamcýlýk ve ðitim raçlarý San. Tic. Þ u kitabýn tamamýnýn ya da bir kýsmýnýn, kitabý yayýmlayan þirketin önceden izni olmaksýzýn elektronik,

Detaylı

DENEME Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir.

DENEME Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir. 1. Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir. 1. a, b, c birbirinden farklý rakamlardýr. 2a + 3b - 4c ifadesinin alabileceði

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - II II. DERECEDEN DENKLEMLER - I MF TM LYS 05 Ders anlatým föyleri öðrenci tarafýndan dersten sonra

Detaylı

DENEME Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir.

DENEME Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir. 1. Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir. 1. 3 2x +1 = 27 olduðuna göre, x kaçtýr? A) 0 B) 1 C) 2 D) 3 E) 4 4. Yukarýda

Detaylı

Örnek...17 : 1) EKSENLERİ KESTİĞİ NOKTALAR BİLİNEN DOĞRUNUN DENKLEMİ

Örnek...17 : 1) EKSENLERİ KESTİĞİ NOKTALAR BİLİNEN DOĞRUNUN DENKLEMİ C) ÖZEL DOĞRU DENKLEMLERİ Örnek...17 : A ( 3, 6 ) n ok t a s ı n a n v e o r i j i n e n g e ç e n o ğ r u n u n e n k l em i n e i r? 1) EKSENLERİ KESTİĞİ NOKTALAR BİLİNEN DOĞRUNUN DENKLEMİ eksenini A(a,0)

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

f : R + R, f(x) = log a 0 < a < 1 için f(x) = log a a. f : ;, 4m R, f(x) = log2 x b. f : R + R, f(x) = log 1, f(2) = 2 2

f : R + R, f(x) = log a 0 < a < 1 için f(x) = log a a. f : ;, 4m R, f(x) = log2 x b. f : R + R, f(x) = log 1, f(2) = 2 2 Fonksionlar f : R R, f() = a Fonksionunun Grafi i f : R R, f() = log a Fonksionunun Grafi i a > için f() = a üstel fonksionunun grafi i andaki gibidir. = a a > için f() = log a fonksionunun grafi i andaki

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

LYS MATEMATİK-2 SORU BANKASI LYS. M. Ali BARS. çözümlü sorular. yıldızlı testler. Sınavlara en yakın özgün sorular

LYS MATEMATİK-2 SORU BANKASI LYS. M. Ali BARS. çözümlü sorular. yıldızlı testler. Sınavlara en yakın özgün sorular LYS LYS 6 Sınavlara en akın özgün sorular MATEMATİK- SORU BANKASI çözümlü sorular ıldızlı testler M. Ali BARS M. Ali Bars LYS Matematik Soru Bankası ISBN 978-65-8-7-9 Kitapta er alan bölümlerin tüm sorumluluğu

Detaylı

YAZILIYA HAZIRLIK TESTLERÝ TEST / 1

YAZILIYA HAZIRLIK TESTLERÝ TEST / 1 YAZILIYA HAZIRLIK TESTLERÝ TEST / 1 1. x +6x+5=0 5. x +5x+m=0 denkleminin reel kökü olmadýðýna göre, m nin alabileceði en küçük tam sayý deðeri kaçtýr? A) {1,5} B) {,3} C) { 5, 1} D) { 5,1} E) {,3} A)

Detaylı

Ö.Y.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 996 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Bir sınıftaki örencilerin nin fazlası kız örencidir. Sınıfta erkek öğrenci olduğuna göre, kız öğrencilerin sayısı kaçtır? A) B) 8 C) 6 D) E) Çözüm Toplam öğrenci

Detaylı

YARDIRMALI MATEMATİK TÜREV FASİKÜLÜ

YARDIRMALI MATEMATİK TÜREV FASİKÜLÜ YRIRMLI MTEMTİK TÜREV FSİKÜLÜ Maksimum-Minimum Problemleri MESUT ERİYES MKSİMUM - MİNİMUM PROLEMLERİ Maksimum ve minimum problemlerini çözmek için şu kurallar ugulanır; 1) Maksimum a da minimum olması

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak safası İÇİNDEKİLER. ÜNİTE FNKSİYNLARDA İŞLEMLER VE UYGULAMALARI Fonksionların Simetrileri ve Cebirsel Özellikleri... 4 Tek ve Çift Fonksionlar... 4 Fonksionlarda İşlemler... 6 Konu Testleri -...

Detaylı

Fonksiyonlar ve Grafikleri

Fonksiyonlar ve Grafikleri Fonksionlar ve Grafikleri Isınma Hareketleri Aşağıda verilenleri inceleiniz. A f f(a) 7 çocuk baan f: Çocukları annelerine götürüor. Fonksion olma şartı: Her çocuğun annesi olmalı ve bir tane olmalı. (

Detaylı

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır?

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır? . f: R { 4} R, > ise ( ) 4 f =, ise 6 8. ( ) f = 6 + m + 4 eğrisinin dönüm noktasının ordinatı olduğuna göre, m kaçtır? ) 7 ) 8 ) 9 ) E) fonksiyonu aşağıdaki değerlerinin hangisinde süreksizdir? ) ) )

Detaylı

9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K

9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K M A T E M A T İ K www.akademitemellisesi.com ÇİFT VE TEK FONKSİYONLAR: f:ar (A R) fonksionu için, 9. BÖLÜM ) Her A için f( ) = f() ise f e çift fonksion denir. olduğundan ne tek nede çifttir. MUTL AK DEĞER

Detaylı

BAĞINTI - FONKSİYON Test -1

BAĞINTI - FONKSİYON Test -1 BAĞINTI - FONKSİYON Test -. A,,,4,5 B,, olduğuna göre, AB kümesinin eleman saısı A) 8 B) C) D) 4 E) 5 5. A ve B herhangi iki küme AB,a,,a,,a,,b,,b,,b olduğuna göre, s(a) + s(b) toplamı A) B) 4 C) 5 D)

Detaylı

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır?

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? 014 LYS GOMTRİ 1. y 1 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? parabolü ile. O merkezli çeyrek çemberde O deltoid olduğuna göre, taralı alan kaç birim karedir? O. d:y a b doğrusu -ekseni

Detaylı

5. 2x 2 4x + 16 ifadesinde kaç terim vardýr? 6. 4y 3 16y + 18 ifadesinin terimlerin katsayýlarý

5. 2x 2 4x + 16 ifadesinde kaç terim vardýr? 6. 4y 3 16y + 18 ifadesinin terimlerin katsayýlarý CEBÝRSEL ÝFADELER ve DENKLEM ÇÖZME Test -. x 4 için x 7 ifadesinin deðeri kaçtýr? A) B) C) 9 D). x 4x ifadesinde kaç terim vardýr? A) B) C) D) 4. 4y y 8 ifadesinin terimlerin katsayýlarý toplamý kaçtýr?.

Detaylı

EÞÝTSÝZLÝKLER. I. ve II. Dereceden Bir Bilinmeyenli Eþitsizlik. Polinomlarýn Çarpýmý ve Bölümü Bulunan Eþitsizlik

EÞÝTSÝZLÝKLER. I. ve II. Dereceden Bir Bilinmeyenli Eþitsizlik. Polinomlarýn Çarpýmý ve Bölümü Bulunan Eþitsizlik l l l EÞÝTSÝZLÝKLER I. ve II. Dereceden Bir Bilinmeyenli Eþitsizlik Polinomlarýn Çarpýmý ve Bölümü Bulunan Eþitsizlik Çift ve Tek Katlý Kök, Üslü ve Mutlak Deðerlik Eþitsizlik l Alýþtýrma 1 l Eþitsizlik

Detaylı

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır?

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır? . SINIF M Fonksionlar. f ( + a ) + vef( ) 7 olduğuna göre a kaçtır? E) TEST. f ( ) k + 6 fonksionu sabit fonksion olduğuna f ( ) göre aşağıdakilerden k E). f( ) 6 k ve f ( ) olduğuna göre k kaçtır? E)

Detaylı

Fonksiyonlar ve Grafikleri

Fonksiyonlar ve Grafikleri Fonksionlar ve Grafikleri Isınma Hareketleri Aşağıda verilenleri inceleiniz. A f f(a) 7 f: Çocukları annelerine götürüor. Fonksion olma şartı: Her çocuğun annesi olmalı ve bir tane olmalı. ( çocuk annenin

Detaylı

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere, Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli

Detaylı

DOĞRUNUN ANALİTİK İNCELEMESİ

DOĞRUNUN ANALİTİK İNCELEMESİ Koordinatlar DOĞRUNUN ANALİTİK İNCELEMESİ Bilindiği gibi, düzlemdeki her bir noktaya bir (a,b) sıralı ikilisi, her bir (a,b) sıralı ikilisine bir nokta karşılık gelir. Eğer bir A noktasına karşılık gelen

Detaylı

Doğrusal Fonksiyonlar, Karesel Fonksiyonlar, Polinomlar ve Rasyonel Fonksiyonlar, Fonksiyon Çizimleri

Doğrusal Fonksiyonlar, Karesel Fonksiyonlar, Polinomlar ve Rasyonel Fonksiyonlar, Fonksiyon Çizimleri Doğrusal Fonksionlar, Karesel Fonksionlar, Polinomlar ve Rasonel Fonksionlar, Fonksion Çizimleri Bir Fonksionun Koordinat Kesişimleri(Intercepts). Bir fonksionun grafiğinin koordinat eksenlerini kestiği

Detaylı

Geometriye Y olculuk. E Kare, Dikdörtgen ve Üçgen E Açýlar E Açýlarý Ölçme E E E E E. Çevremizdeki Geometri. Geometrik Þekilleri Ýnceleyelim

Geometriye Y olculuk. E Kare, Dikdörtgen ve Üçgen E Açýlar E Açýlarý Ölçme E E E E E. Çevremizdeki Geometri. Geometrik Þekilleri Ýnceleyelim Matematik 1. Fasikül ÜNÝTE 1 Geometriye Yolculuk ... ÜNÝTE 1 Geometriye Y olculuk Çevremizdeki Geometri E Kare, Dikdörtgen ve Üçgen E Açýlar E Açýlarý Ölçme Geometrik Þekilleri Ýnceleyelim E E E E E Üçgenler

Detaylı

1995 ÖYS. a+ =3a a= Cevap:D. Çözüm: Çözüm: Çözüm:

1995 ÖYS. a+ =3a a= Cevap:D. Çözüm: Çözüm: Çözüm: 99 ÖYS. a b c d ve a, b, c, d tek sayılar olmak üzere, abcd dört basamaklı en büyük sayıdır? Bu sayı aşağıdakilerden hangisine kalansız bölünebilir? A) B) 6 C) 9 D) E) a, b, c, d rakamları birbirinden

Detaylı

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ 1

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS MATEMATİK TESTİ. Bu testte 5 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. - - ^- h + c- m - (-5 )-(- ) işleminin sonucu kaçtır? A) B) C) D) 5 E).

Detaylı

MATEMAT K TEST. 3. a ve b reel say lar olmak üzere, 3 a = 4 ve 3 2a b 3 = 8 oldu una göre,

MATEMAT K TEST. 3. a ve b reel say lar olmak üzere, 3 a = 4 ve 3 2a b 3 = 8 oldu una göre, MTMT K TST KKT! + u testte 80 soru vard r. + u test için ar lan cevaplama süresi 5 dakikad r. + evaplar n z, cevap ka d n n Matematik Testi için ar lan k sma iflaretleiniz.. a, b, c pozitif reel sa lard

Detaylı

DERSHANELERÝ MATEMATÝK - II

DERSHANELERÝ MATEMATÝK - II B Ý R E Y D E R S H A N E L E R Ý S I N I F Ý Ç Ý D E R S A N L A T I M F Ö Y Ü DERSHANELERÝ Konu Bölüm DAF No. TOPLAM - ÇARPIM SEMBOLÜ - II MF-TM 50 MATEMATÝK - II 50 Bu yayýnýn her hakký saklýdýr. Tüm

Detaylı

3. Çarpýmlarý 24 olan iki sayýnýn toplamý 10 ise, oranlarý kaçtýr? AA 2 1 1 2 1. BÖLÜM

3. Çarpýmlarý 24 olan iki sayýnýn toplamý 10 ise, oranlarý kaçtýr? AA 2 1 1 2 1. BÖLÜM 7. SINIF COÞMAYA SORULARI 1. BÖLÜM DÝKKAT! Bu bölümde 1 den 10 a kadar puan deðeri 1,25 olan sorular vardýr. 3. Çarpýmlarý 24 olan iki sayýnýn toplamý 10 ise, oranlarý kaçtýr? 2 1 1 2 A) B) C) D) 3 2 3

Detaylı

TÜRKİYE GENELİ DENEME SINAVI LYS - 1 MATEMATİK

TÜRKİYE GENELİ DENEME SINAVI LYS - 1 MATEMATİK TÜRKİY GNLİ SINVI LYS - 1 7 MYIS 017 LYS 1 - TSTİ 1. u testte 80 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz. + k+ n 15 + 10 1. : = + 6 16 + 8 0 + 8 olduğuna

Detaylı

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM UD VEKTÖRLER ve DĞRU DÜLEM. ir küpün ayrıtlarını taşıyan doğrular kaç farklı doğrultu oluşturur? ) ) ) D) 7 E) 8. ir düzgün altıgenin en uzun köşegeni ile aynı doğrultuda kaç farklı kenar vardır?. şağıdaki

Detaylı

ÖZEL TANIMLI FONKSİYONLAR

ÖZEL TANIMLI FONKSİYONLAR ÖZEL TANIMLI FONKSİYONLAR Fonksionlar ve Özel Tanımlı Fonksionlar Özel tanımlı fonksionlar konusu fonksionların alt bir dalıdır. Bu konuu daha ii anlaabilmemiz için fonksionlar ile ilgili bilgilerimizi

Detaylı

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir.

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir. Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri Düzlemin noktalarını, düzlemin noktalarına eşleyen bire bir ve örten bir fonksiyona düzlemin bir dönüşümü denir. Öteleme: a =(a 1,a ) ve u =(u 1,u ) olmak

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10 LİSNS YRLŞTİRM SINVI- MTMTİK-GOMTRİ SINVI MTMTİK TSTİ SORU KİTPÇIĞI 0 U SORU KİTPÇIĞI LYS- MTMTİK TSTİ SORULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08 LİSNS YRLŞTİRM SINVI- MTMTİK-GMTRİ SINVI MTMTİK TSTİ SRU KİTPÇIĞI 08 U SRU KİTPÇIĞI LYS- MTMTİK TSTİ SRULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik Testi

Detaylı

Örnek...1 : Örnek...2 : Örnek...3 : A={0,1,2} kümesinden reel sayılara tanımlı f(x)=x² x fonksiyonu bire bir midir? Örnek...4 :

Örnek...1 : Örnek...2 : Örnek...3 : A={0,1,2} kümesinden reel sayılara tanımlı f(x)=x² x fonksiyonu bire bir midir? Örnek...4 : FONKSİYONLAR BÖLÜM 4 FONKSİYON TÜRLERİ: BİRE BİR FONKSİYON Bir fonksionun grafiğinden bire bir olup olmadığını anlamak için verilen tanım aralığında çizilen ata doğruların sadece bir defa grafiği kesmesini

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. abba dört basamaklı, ab iki basamaklı doğal saıları için, abba ab. a b eşitliğini sağlaan kaç farklı (a, b) doğal saı ikilisi vardır? 7 olduğuna göre, a b toplamı kaçtır? 9.,,

Detaylı

ANALİZ ÇÖZÜMLÜ SORU BANKASI

ANALİZ ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİZ ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİZ ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı a da bir kısmı, azarın izni olmaksızın, elektronik, mekanik, fotokopi a da herhangi bir

Detaylı