VECTOR MECHANICS FOR ENGINEERS: STATICS

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "VECTOR MECHANICS FOR ENGINEERS: STATICS"

Transkript

1 Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinnd P. Beer E. Russell Johnston, Jr. Ders Notu: Hri ACAR İstnbul Teknik Üniveristesi Tel: / 116 E-mil: Web: 5. Yılı Kuvvetler: Sentroid ve Ağırlık Merkezi 00 The McGrw-Hill Compnies, Inc. All rights reserved.

2 Giriş Boutlu Cisimin Ağırlık Merkezi Aln ve Eğrilerin Sentroidi ve Birinci Momentleri Belirli Şekil Alnlrının Sentroidi Belirli Şekil Eğrilerinin Sentroidi Bileşik Levhlr ve Alnlrı İntegrl ile Sentroidin Belirlenmesi Pppus-Guldinus Teoremleri Kirişlerde Yılı Yükler Üç Boutlu Cisimlerin Ağırlık Merkezi: Hcimin Sentroidi Belirli Şekillerin Sentroidi Üç Boutlu Bileşik Cisimler

3 Giriş Dün, cisimi oluşturn her prçcığ erçekimi kuvveti ugulr. Bu kuvvetler tek bir bileşke kuvvete dönüştürülebilir. Bu kuvvet cisimin ğırlığıdır ve cisimin ğırlık merkezine etkir. Bir lnın sentroidi bir cisimin ğırlık merkezinin benzeridir. Sentroidin eri lnın birinci momenti kvrmı ile belirlenir. Üç boutlu dönel simetrik cisimlerin üze lnlrının ve hcimlerinin hesplnmsınd Pppus-Guldinus teoremi kullnılır.

4 İki Boutlu Cisimlerin Ağırlık Merkezi Bir levhnın ğırlık merkezi Bir telin ğırlık merkezi eksenine göre moment M ; W W dw eksenine göre moment M ; W W dw

5 Bir lnın sentroidi Alnlrın ve Eğrilerin Sentroidi ve Birinci Momentleri Yndn görünüş t: klınlık W γ (At) oğunluk hcim dw γ (tda) W ( γat) ( γt) A dw da da Q eksenine göre birinci W dw ( γat) ( γt) da A da Q moment eksenine göre birinci moment

6 Bir eğrinin sentroidi Telin kesit lnı W γ (L) oğunluk hcim dw γ (dl) W ( γ L) ( γ ) L dw dl dl W ( γ L) ( γ ) L dw dl dl

7 Alnlrın ve Eğrilerin Birinci Momenti Bir ln düşünelim ve bu ln için B B ekseni çizilsin. Eğer her P noktsı için bir P noktsı vrs ve B B ekseni P P doğrusunu dik olrk kesip iki eşit prç ırıors bu ln B B eksenine göre simetriktir denir Alnın bu simetri eksenine göre birinci momenti sıfırdır. Eğer bir ln simetri çizgisi içeriors, lnın sentroidi bu eksen üzerindedir. Eğer bir ln iki simetri çizgisi içeriors, lnın sentroidi bu çizgilerin kesişme noktsınddır. Aln içinde seçilen (,) koordintındki da elemnı için (-,-) koordintınd eş lnlı d A elemnı vrs bu ln eksen merkezine göre simetriktir denir. Bir lnın sentroidi ile simetri merkezi nıdır.

8 Belirli Şekil Alnlrının Sentroidi Şekil Aln Üçgen lnı Çerek dire lnı Yrım dire lnı Çerek elips lnı Yrım elips lnı Yrım prbol lnı Prbol lnı

9 Prbol prçsı Prbol prçsı (genel) Dire dilimi

10 Belirli Şekil Eğrilerinin Sentroidi Şekil Uzunluk Çerek dire ı Yrım dire ı Dire ı

11 Bileşik Plklr ve Alnlr Bileşik plklr X Y W W W W Bileşik lnlr X Y A A A A

12 Örnek 5.1 Çözüm: Alnı üçgen, dikdörtgen, rım dire ve diresel boşluk olmk üzere prçlr ırın. Belirlenen eksenlere göre lnlrın birinci momentlerini hesplın. Şekilde gösterilen düzlemsel lnın ve eksenlerine göre birinci momentlerini hesplınız. Sentroidinin erini bulunuz. Toplm lnı ve üçgen, dikdörtgen ve rım dire elemnlrın birinci momentlerini bulun. Diresel boşluğun lnını toplm lndn ve momentini toplm momentten çıkrın. Birinci momentleri toplm ln bölerek sentroidin koordintlrını hesplınız.

13 Elemn Dikdörtgen Üçgen Yrım dire Dire Toplm lnı ve üçgen, dikdörtgen ve rım dire elemnlrın birinci momentlerini bulun. Diresel boşluğun lnını toplm lndn ve momentini toplm momentten çıkrın. Q Q mm mm

14 Birinci momentleri toplm ln bölerek sentroidin koordintlrını hesplınız. X A A mm mm X 54.8 mm Y A A mm mm Y 6.6 mm

15 İntegrl ile Sentroidin Belirlenmesi A A da da dd dd el el da da da elemnı ince bir dikdörtgen ve şerit olrk kbul edilirse tek integrl ile çözüm pılbilir. A A el da ( d) el da ( d) A A + da el el da [( ) d] [( ) d] A A el el da r 1 cosθ da r 1 sinθ r r dθ dθ

16 Örnek 5.4 Çözüm: k sbitini belirleiniz. Toplm lnı bulunuz. Düşe ve t şeritleri kullnrk tek integrl ile birinci momentleri bulunuz. Şekildeki prbolic sentroidini direk integrl ile hesplınız. Sentroidin koordintlrını hesplınız.

17 kktsısının belirlenmesi: 1 1 b or b b k k b k Toplm lnın bulunmsı: 0 0 b b d b d da A

18 b b d b d da Q b b d b d da Q el el Düşe şerit kullnrk tek integrl ile birinci momentlerinin bulunmsı:

19 ( ) ( ) b d b d b d da Q b d b d d da Q b el b b el + Yt şerit kullnrk tek integrl ile birinci momentlerinin bulunmsı:

20 Sentroid koordintlrın belirlenmesi: A Q b b 4 4 A b Q b b

21 Pppus-Guldinus Teoremleri (Ι) Küre üzei Koni üzei Hlk üzei Düzlemsel bir eğrinin sbit bir eksen etrfınd döndürülmesi ile dönel üze elde edilir. da π dl A πdl π dl A πl Dönel üzein lnı, eğrinin uzunluğu ile döndürülme sırsınd eğrinin sentroidinin ktettiği mesfenin çrpımın eşittir.

22 (ΙΙ) Dolu küre Dolu koni Dolu hlk Düzlemsel bir lnın sbit bir eksen etrfınd döndürülmesi ile dönel hcim elde edilir. dv πda V πda V π A Dönel üzein hcmi, düzlemsel ln ile döndürülme sırsınd lnın sentroidinin ktettiği mesfenin çrpımın eşittir.

23 Örnek m m ρv W mg Çözüm: Ksnğın dış çpı 0.8 m dir ve kesit lnı şekildeki gibidir. Ksnk çelikten pılmıştır. Ksnğın kütlesini ve ğırlığını bulunuz. ρ çelik kg m Pppus-Guldinus teoremini ugulrk kesit lnındn hcim bulunur. Yoğunluk ve erçekimi ivmesi ile çrprk kütle ve ğırlık bulunur.

24 Pppus-Guldinus teoremini ugulrk kesit lnındn hcim bulunur. Yoğunluk ve erçekimi ivmesi ile çrprk kütle ve ğırlık bulunur. 400 mm 50 mm Aln, mm Sentroidin ktettiği mesfe, mm Hcim, mm Ksnk hcmi, mm ( )( 6 ) kg m mm 10 m mm m ρv m 60.0 kg W mg ( )( ) 60.0 kg 9.81m s W 589 N

25 Kirişlerde Yılı Yükler Yük 1000 N/m Yılı ük birim uzunluk bşın düşen ükün çizimi ile gösterilir, w (N/m).

26 dw wd da W L wd da A 0 Toplm ük, ük eğrisinin ltınd kln ln eşittir. ( ) OPW L dw ( OP) A da A 0 Yılı ük, şiddeti ükleme eğrisi ltınd kln ln eşit ve lnın sentroidine etkien bileşke kuvvet ile gösterilebilir.

27 Örnek 5.9 Çözüm: Bileşke kuvvetin şiddeti, ük eğrisinin ltınd kln ln eşittir. Bileşke kuvvetin tesir çizgisi ük eğrisi ltınd kln lnın sentroidinden geçer. Bir kiriş şekildeki gibi bir ılı ükün etkisi ltınddır. Eşdeğer bileşke kuvveti ve mesnet noktlrındki tepki kuvvetlerini bulunuz. Tepki kuvvetleri kenrlr göre moment dengesinden hesplnır.

28 Bileşke kuvvetin şiddeti, ük eğrisinin ltınd kln ln eşittir. F A X A A Elemn Üçgen I Üçgen II F 18.0 kn Bileşke kuvvetin tesir çizgisi ük eğrisi ltınd kln lnın sentroidinden geçer. X 6 kn m 18 kn X.5 m

29 Alterntif çözüm: B A w w A B A 1500 N/m 4500 N/m 1500 N/m 000 N/m m B ( 6 m) 4 m Elemn Aln(kN) (m) *Aln (kn-m) Dikdörtgen 9 7 Üçgen Toplm sentroid ().50 m

30 Tepki kuvvetleri kenrlr göre moment dengesinden hesplnır. ( 6 m) ( 18 kn)(.5 m) 0 M A 0 : B B 10.5 kn B 0 A B ( 6 m) + ( 18 kn)( 6 m.5 m) 0 M B 0 : A A 7.5 kn

31 Üç Boutlu Cisimlerin Ağırlık Merkezi: Hcimin Sentroidi Ağırlık merkezi: G r r W j W r G r W G ( j ) W dw r ( ) [ r r W j ( W j )] r r r ( j ) ( W ) ( j ) r W r G r dw Krtezen eksenlere göre momentler: W V dw W dw zw zdw Homojen cisimler için: W γ V ve dw γ dv dv V dv zv zdv

32 Belirli Üç Boutlu Şekillerin Sentroidi Şekil Hcim Yrım küre Koni Dönel rım elipsoid Pirmit Dönel prboloid

33 Üç Boutlu Bileşik Cisimler 4.5 cm.5 cm cm 0.5 cm Ağırlık merkezine etkien bileşke ğırlık kuvvetinin eksenlere göre momenti, her elemnın ğırlığının eksenlere göre momentlerinin toplmın eşittir. X W W 1 cm Y W W 0.5 cm 1 cm cm 1 cm Z W zw 4.5 cm cm Homojen cisimler için, W γ V ve dw γ dv X V V cm 1 cm çplı Y Z V V V zv

34 Örnek 5.1 Çözüm: 4.5 cm.5 cm cm 0.5 cm Mkine elemnını, bir dikdörtgen, bir çerek dire ve 1 cm çplı iki delik olrk oluşturbiliriz. 1 cm cm 1 cm 4.5 cm cm 0.5 cm 1 cm 1 cm çplı Çelik mkine elemnının ğırlık merkezini belirleiniz. Her deliğin çpı 1 cm dir. cm

35 ΙΙΙ Ι 4.5 cm ΙV.5 cm cm ΙΙ 0.5 cm X V Y V Z V V V zv 1 cm cm 0.5 cm 1 cm cm 1 cm 0.5 cm cm.5 cm 0.5 cm 1 cm 1 cm cm 0.5 cm 0.5 cm cm 1.5 cm cm cm cm cm cm 4 cm 4 cm 4

36 cm cm cm cm cm 4 cm 4 cm 4 ΙΙΙ Ι 4.5 cm ΙV.5 cm cm ΙΙ 0.5 cm X Y V V V V 4 (.08 cm ) ( 5.86 cm ) X cm. 4 ( cm ) ( 5.86 cm ) 1 cm Y cm. 1 cm 0.5 cm 1 cm cm Z zv V ( 4 ) ( cm 5.86 cm ) Z cm.

37 Sıvı Altındki Yüzelere Gelen Kuvvetler Durğn bir sıvı içinde er ln bir cisim üzerinde sıvının ğırlığı nedenile bsınç oluşur. Bu bsınç hidrosttik bsınç olrk tnımlnır. P A Bsınç derinliğin bir fonksionudur ve derinlikle lineer olrk değişir. Kuvvet hesplnırken dikdörtgen ln için düşünülür. Bileşke kuvvet: N P0 + ( γ. h) m F ( ) P. A [ N] R 1 [( γ. h). w]h. Genişlik için kuvvet P A : mutlk bsınç P 0 : referns bsınç γ : sıvının özgül ğırlığı h : sıvı içindeki derinlik w P 0 γ.h γd R

38 Örnek m d5 m m4m en ve boundki kpk şekildeki gibi su duvrının ltın erleştirilmiştir. Su trfındn kpğ ugulnn kuvvetin şiddetini ve ugulm noktsını bulunuz. (γ 1000 kg/m )

39 4 m Su trfındn duvr ugulnn kuvvet Su trfındn kpğ ugulnn kuvvet d5 m m d5 m m d5 m m m P m ( m γd 1000kg / m )(m) 000kg / m 0.9N / F m Pw (0.9N / m )(4m) 815.6N / m P m ( m 5 γd 1000kg / m )(5m) 509.7N / 5 Pw (509.7N / m )(4m) F m 08.8N / m

40 Bileşke kuvvet m N/m N/m X F F d5 m F (815.6N / m)(m) N (m) 1. 5m 1 F ([ ] N 184.8N 1 (m) 1m / m)(m) ALAN KUVVET.KUVVET Dikdörtgen Üçgen Toplm sentroid () 1.9 m Toplm kuvvet N dur ve tbndn 1.9 m ukrıddır.

41 Yüze belirli bir çı shipse kuvvetin bulunmsı: SCD Bsıncın oluşturduğu kuvvete ilve olrk üstte kln sıvı ğırlığı d düşünülmelidir.

42 Sıvı ğırlığı dışındki kuvvet dğılımı şu şekildedir: Su kütlesi için SCD Kullnıln üze lineer olmn bir üzese:

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan KAT CİSİMLERİN HACİMLERİ Örnek...2 : =2, =4, =2, = 5 doğrulrı rsınd kln ölgenin O ekseni etrfınd 360 o döndürülm esi le oluşck ktı cism in hcm ini ulunuz İNTEGRAL İLE HACİM HESAB 1. X EKSENİNDE DÖNDÜRMELER

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise; 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise;

Detaylı

1.Hafta. Statik ve temel prensipler. Kuvvet. Moment. Statik-Mukavemet MEKANİK

1.Hafta. Statik ve temel prensipler. Kuvvet. Moment. Statik-Mukavemet MEKANİK Ders Notlrı 1.hft 1.Hft Sttik ve temel prensipler Kuvvet Moment MEKNİK Kuvvetlerin etkisi ltınd kln cisimlerin denge ve hreket şrtlrını nltn ve inceleyen bilim dlıdır. Meknikte incelenen cisimler Rijit

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

Örnek...1 : İNTEGRAL İNTEGRAL İLE ALAN HESABI UYARI 2 UYARI 3 ALAN HESABI UYARI 1 A 2 A 1. f (x )dx. = a. w w w. m a t b a z.

Örnek...1 : İNTEGRAL İNTEGRAL İLE ALAN HESABI UYARI 2 UYARI 3 ALAN HESABI UYARI 1 A 2 A 1. f (x )dx. = a. w w w. m a t b a z. İNTEGRAL İLE ALAN HESABI UYARI =f() =f() =f() [,] rlığınd f() işret değiştiriors, f onksi on prçlr rılır =f() Şekilde =f() eğrisile ekseni ltınd kln lnı ulmk için eğrinin ltınd kln ölgei dikdörtgenlere

Detaylı

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi 4. 4. Cismin ğırlığı Düzlemsel landa ğırlık erkezi - İntegrasyon Yöntemi Düzlemsel Eğride ğırlık erkezi - İntegrasyon Yöntemi 4.3 Bileşik Plak ve Teller 4.4 Pappus Guldinus Teoremleri 4.5 Üç Boyutlu Cisimlerde

Detaylı

MATERIALS. Basit Eğilme. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University

MATERIALS. Basit Eğilme. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University CHAPTER BÖLÜM MECHANICS MUKAVEMET OF I MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Basit Eğilme Lecture Notes: J. Walt Oler Teas Tech Universit Düzenleen: Era Arslan 2002 The McGraw-Hill

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 kışkan Statiğine Giriş kışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı 1 STATİK AĞIRLIK MERKEZİ 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler 3.4 Integrasyon ile ağırlık merkezi hesabı 3.5 Pappus-Guldinus Teoremi 3.6 Yayılı Yüke Eşdeğer Tekil Yük 3.7 Sıvı

Detaylı

Doç.Dr. Cesim ATAŞ MEKANİK ŞEKİL DEĞİŞTİREN CİSİMLER MEKANİĞİ DİNAMİK

Doç.Dr. Cesim ATAŞ MEKANİK ŞEKİL DEĞİŞTİREN CİSİMLER MEKANİĞİ DİNAMİK STATİK (Ders Notları) Kaynak: Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige, Wiley Yardımcı Kaynak: Mühendislik Mekaniği: Statik, R.C Hibbeler & S.C. Fan, Literatür

Detaylı

2005/2006 ÖĞRETİM YILI GÜZ YARIYILI MUKAVEMET 1 DERSİ FİNAL SORU VE CEVAPLARI

2005/2006 ÖĞRETİM YILI GÜZ YARIYILI MUKAVEMET 1 DERSİ FİNAL SORU VE CEVAPLARI 5/6 ÖĞRETİ GÜZ R UKVEET 1 ERSİ FİN SORU VE EVPR SORU 1 8 P Şekildeki gerilme durumund; ) sl gerilmeleri ve düzlemlerini ulrk elemn üzerinde gösteriniz. ) ksimum km gerilmesi ve düzlemini ulrk elemn üzerinde

Detaylı

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN Mukavemet-II PROF. DR. MURAT DEMİR AYDIN KAYNAK KİTAPLAR Cisimlerin Mukavemeti F.P. BEER, E.R. JOHNSTON Mukavemet-2 Prof.Dr. Onur SAYMAN, Prof.Dr. Ramazan Karakuzu Mukavemet Mehmet H. OMURTAG 1 SİMETRİK

Detaylı

Kesit Tesirleri Tekil Kuvvetler

Kesit Tesirleri Tekil Kuvvetler Statik ve Mukavemet Kesit Tesirleri Tekil Kuvvetler B ÖĞR.GÖR.GÜLTEKİN BÜYÜKŞENGÜR Çevre Mühendisliği Mukavemet Şekil Değiştirebilen Cisimler Mekaniği Kesit Tesiri ve İşaret Kabulleri Kesit Tesiri Diyagramları

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 5 Ağırlık merkezi STATİK Bir cisim moleküllerden meydana gelir. Bu moleküllerin her birine yer çekimi kuvveti etki eder. Bu yer çekimi kuvvetlerinin cismi meydana getiren

Detaylı

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 7 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 7. HAFTA Kapsam: Parçacık Kinetiği, Kuvvet İvme Yöntemi Newton hareket

Detaylı

YILDIZ TEKNİK ÜNİVERSİTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ HİDROLİK ANABİLİM DALI AKIŞKANLAR MEKANİĞİ DERSİ (PROBLEMLER 4)

YILDIZ TEKNİK ÜNİVERSİTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ HİDROLİK ANABİLİM DALI AKIŞKANLAR MEKANİĞİ DERSİ (PROBLEMLER 4) YLDZ TEKNİK ÜNİVERSİTESİ İNŞT MÜHENDİSLİĞİ BÖLÜMÜ HİDROLİK NBİLİM DL KŞKNLR MEKNİĞİ DERSİ (PROBLEMLER ).1) Şekilde görülen ve noktasından mafsallı dikdörtgen kaağın uzunluğu.5 m, şekle dik derinliği 1.

Detaylı

Kirişlerde Kesme (Transverse Shear)

Kirişlerde Kesme (Transverse Shear) Kirişlerde Kesme (Transverse Shear) Bu bölümde, doğrusal, prizmatik, homojen ve lineer elastik davranan bir elemanın eksenine dik doğrultuda yüklerin etkimesi durumunda en kesitinde oluşan kesme gerilmeleri

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 5 Eğilmede Kirişlerin Analizi ve Tasarımı Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır.

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır. PO.D. MUAT DEMİ AYDIN ***Bu ders notları bir sonraki slatta verilen kanak kitaplardan alıntılar apılarak hazırlanmıştır. Mühendisler için Vektör Mekaniği: STATİK.P. Beer, E.. Johnston Çeviri Editörü: Ömer

Detaylı

Çevre ve Alan. İlköğretim 6. Sınıf

Çevre ve Alan. İlköğretim 6. Sınıf Çevre ve Aln İlköğretim 6. Sınıf Çevre Merhb,ilk olrk seninle birlikte evin çevresini bulmy çlışlım Kırmızı çizgiler evin çevre uzunluğunu verir. Çevre Şimdi sır futbol shsınd Çevre Şimdi,Keloğlnın Pmuk

Detaylı

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ Bu konular denge problemelerinden tamamen bağımsızdır. Alanların ağırlık merkezi ve atalet momenti ismi verilen geometrik

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLE 1. GİİŞ - Skalerler ve ektörler - Newton Kanunları 2. KUET SİSTEMLEİ - İki Boyutlu

Detaylı

TEST SORULARI Adı /Soyadı : No : İmza: STATİK FİNAL SINAVI. Öğrenci No

TEST SORULARI Adı /Soyadı : No : İmza: STATİK FİNAL SINAVI. Öğrenci No -0-00 dı /Sodı : No : İmz: STTİK FİN SINVI Öğrenci No 00000 z m Şekildeki kirişinde bğ kuvvetlerin bulunuz. =(+e)n/m, =5(+e)N m m Şekildeki ğırlıksız blok det pndül k ve noktsınd küresel mfsl ile dengededir.

Detaylı

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi İÇ KUVVELER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı,

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi İÇ KUVVETLER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı,

Detaylı

KOÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) Bölümleri MÜH 110 Statik Dersi - 1. Çalışma Soruları 03 Mart 2017

KOÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) Bölümleri MÜH 110 Statik Dersi - 1. Çalışma Soruları 03 Mart 2017 KÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) ölümleri SRU-1) Mühendislik apılarında kullanılan elemanlar için KSN (Tarafsız eksen) kavramını tanımlaınız ve bir kroki şekil çizerek

Detaylı

3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması. 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile Çarpımı RİJİT CİSİMLER MEKANİĞİ

3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması. 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile Çarpımı RİJİT CİSİMLER MEKANİĞİ 1-STATİĞİN TEMEL İLKELERİ 1- BİRİMLER 2-TRİGONOMETRİ 3-VEKTÖRLER 3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması 3.3 Vektörlerin uç-uca eklenerek toplanması 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile

Detaylı

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK STATİK Ders Notları Kaynaklar: 1.Engineering Mechanics: Statics, 9e, Hibbeler, Prentice Hall 2.Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige 1. STATİĞE GİRİŞ 1.1 TANIMLAR

Detaylı

Aşağıdaki Web sitesinden dersle ilgili bilgi alınabilir. Ders, uygulama ve ödevlerle ilgili bilgiler yeri geldiğinde yayınlanacaktır.

Aşağıdaki Web sitesinden dersle ilgili bilgi alınabilir. Ders, uygulama ve ödevlerle ilgili bilgiler yeri geldiğinde yayınlanacaktır. MK 04: MUKVEMET Öğr.Gör.Dr. hmet Taşkesen MUKVEMET GİRİŞ DERS STLERİ Öğr.Gör.Dr. hmet Taşkesen, Makina Bölümü, Tel: 1680/1844, e-posta: taskesen@gazi.edu.tr Teorik Ders (3 saat) + Ödevler + Quizler Uygulama

Detaylı

AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI ( )

AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI ( ) 1 3 4 5 6 T AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI (13.11.008) Ad-Soad: No: Grup: 1) a) İdeal ve gerçek akışkan nedir? Hız dağılımlarını çiziniz. Pratikte ideal akışkan var mıdır? Açıklaınız. İdeal Akışkan;

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi 8. Sürtünme Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr

Detaylı

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 00 The McGraw-Hill Companies, Inc. All rights reserved. T E CHAPTER 7 Gerilme MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Dönüşümleri Fatih Alibeoğlu 00 The McGraw-Hill

Detaylı

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ):

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ): Tanışma ve İletişim... Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta (e-mail): mcerit@sakarya.edu.tr Öğrenci Başarısı Değerlendirme... Öğrencinin

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz.

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz. BTMIŞ YÜZEYLERE ELEN HİDROSTTİK KUVVETLER DÜZLEM YÜZEYLER Yata Yüeler Sıvı üei Yata bir dülem üee gelen idrostatik kuvvetin büüklüğünü ve etkime noktasını bulmak istioru. d d Kuvvetin Büüklüğü :Şekil deki

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI

GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumund, ir Q noktsını üç outlu olrk temsil eden küik gerilme elemnı üzerinde 6 ileşeni gösterileilir: σ, σ, σ z, τ, τ z, τ z. Söz konusu

Detaylı

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 5-BÖÜM -UYGUAMA SORU VE ÇÖZÜMERİ 1. Aşğıd erilen dimi, iki otl ız lnını dikkte lınız: V (, ) (.66.1) i (.7.1) j B kış lnınd ir drm noktsı r mıdır? Vrs nerededir? Kller: 1. Akış dimidir.. Akış -otldr.

Detaylı

Saf Eğilme(Pure Bending)

Saf Eğilme(Pure Bending) Saf Eğilme(Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki şekil değiştirmesini/ deformasyonları incelenecek. Burada çıkarılacak formüller

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS OR ENGINEERS: STATICS edinand P. Bee E. Russell Johnston, J. Des Notu: Hai ACAR İstanbul Teknik Üniveistesi Tel: 285 31 46 / 116 E-mail: acah@itu.edu.t Web: http://atlas.cc.itu.edu.t/~acah

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DĞHN MÜHENDİSLİK MEKNİĞİ STTİK MÜHENDİSLİK MEKNİĞİ STTİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLERİ - İki outlu Kuvvet

Detaylı

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q Elektrosttik(Özet) Coulomb Yssı Noktsl bir q yükünün kendisinden r kdr uzktki bir Q yüküne uyguldığı kuvvet, şğıdki Coulomb yssı ile ifde edilir: F = 1 qq ˆr (1) r2 burd boşluğun elektriksel geçirgenlik

Detaylı

2 olur. ADI: SOYADI: DERS: MATEMATĐK KONU: KESĐK PĐRAMĐT KONU ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN

2 olur. ADI: SOYADI: DERS: MATEMATĐK KONU: KESĐK PĐRAMĐT KONU ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN 1)KESĐK PĐRAMĐT: Bir pirmit, tbn prlel bir düzlem ile kesildiğinde, tbn düzlemi ile kesit üzei rsınd kln kısım kesik pirmit denir. KESĐK PĐRAMĐDĐN YANAL YÜZ ALANI: Bir düzgün kesik pirmidin nl lnı, lt

Detaylı

Saf Eğilme (Pure Bending)

Saf Eğilme (Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde, doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki deformasonları incelenecek. Burada çıkarılacak formüller, en kesiti an az bir eksene göre simetrik

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS OR ENGINEERS: STATICS erdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 285 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki cisimlerle uğraşır. Statik, kuvvet etkisi altında cisimlerin

Detaylı

TEMEL MEKANİK 6. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 6. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 6 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

Ağırlık - kütle merkezi hesaplamaları. Konular: Kütle/Ağırlık merkezleri Merkez kavramı Merkez hesabına yönelik yöntemler

Ağırlık - kütle merkezi hesaplamaları. Konular: Kütle/Ağırlık merkezleri Merkez kavramı Merkez hesabına yönelik yöntemler ğırlık - kütle merkez hesplmlrı Konulr: Kütle/ğırlık merkezler Merkez kvrmı Merkez hesın önelk öntemler ğırlık merkez ve ln merkez kvrmlrı Düzlem ln üzerndek sonsuz det elemndn r oln 'nc elemnın ğırlık

Detaylı

STATİK VE MUKAVEMET AĞIRLIK MERKEZİ. Öğr.Gör. Gültekin BÜYÜKŞENGÜR. Çevre Mühendisliği

STATİK VE MUKAVEMET AĞIRLIK MERKEZİ. Öğr.Gör. Gültekin BÜYÜKŞENGÜR. Çevre Mühendisliği STATİK VE MUKAVEMET AĞIRLIK MERKEZİ Öğr.Gör. Gültekin BÜYÜKŞENGÜR Çevre Mühendisliği STATİK Ağırlık Merkezi Örnek Sorular 2 Değişmeyen madde miktarına kütle denir. Diğer bir anlamda cismin hacmini dolduran

Detaylı

TEMEL MEKANİK 4. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 4. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 4 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Fedinand P. Bee E. Russell Johnston, J. Des Notu: Hayi ACAR İstanbul Teknik Üniveistesi Tel: 285 31 46 / 116 E-mail: acah@itu.edu.t Web: http://atlas.cc.itu.edu.t/~acah

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ

TEKNOLOJİNİN BİLİMSEL İLKELERİ TEKNOLOJİNİN BİLİMSEL İLKELERİ Öğr. Gör. Fatih KURTULUŞ 4.BÖLÜM: STATİK MOMENT - MOMENT (TORK) Moment (Tork): Kuvvetin döndürücü etkisidir. F 3 M ile gösterilir. Vektörel büyüklüktür. F 4 F 3. O. O F 4

Detaylı

İntegralin Uygulamaları

İntegralin Uygulamaları Bölüm İntegrlin Uygulmlrı. Aln f ve g, [, b] rlığındki her x için f(x) g(x) eşitsizliğini sğlyn sürekli fonksiyonlr olmk üzere y = f(x), y = g(x) eğrileri, x = ve x = b düşey doğrulrı rsındki S bölgesini

Detaylı

ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN

ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN ÖZEL EGE ORTAOKULU ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN HAZIRLAYAN ÖĞRENCĠLER: Olçr ÇOBAN Sevinç SAYAR DANIġMAN ÖĞRETMEN: Gizem GÜNEL AÇIKSÖZ ĠZMĠR 2014 ĠÇĠNDEKĠLER 1. PROJENĠN AMACI... 2 2. GĠRĠġ... 2 3.

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Yrd. Doç. Dr. Beytullah EREN Çevre Mühendisliği Bölümü BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Atatürk Barajı (Şanlıurfa) BATMIŞ YÜZEYLERE ETKİYEN KUVVETLER

Detaylı

TEMEL MEKANİK 10. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 10. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 10 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi 1 Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

Mekanik, Statik Denge

Mekanik, Statik Denge Mekanik, Statik Denge Mardin Artuklu Üniversitesi 2. Hafta-01.03.2012 İdris Bedirhanoğlu url : www.dicle.edu.tr/a/idrisb e-mail : idrisbed@gmail.com 0532 657 14 31 Statik **Statik; uzayda kuvvetler etkisi

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET A BASINÇ VE BASINÇ BİRİMLERİ (5 SAAT) Madde ve Özellikleri 2 Kütle 3 Eylemsizlik 4 Tanecikli Yapı 5 Hacim 6 Öz Kütle (Yoğunluk) 7 Ağırlık 8

Detaylı

Proje ile ilgili açıklamalar: Döşeme türleri belirlenir. Döşeme kalınlıkları belirlenir. Çatı döşemesi ve 1. kat normal döşemesinde döşeme yükleri

Proje ile ilgili açıklamalar: Döşeme türleri belirlenir. Döşeme kalınlıkları belirlenir. Çatı döşemesi ve 1. kat normal döşemesinde döşeme yükleri Proje ile ilgili açıklamalar: Döşeme türleri belirlenir. Döşeme kalınlıkları belirlenir. Çatı döşemesi ve 1. kat normal döşemesinde döşeme yükleri belirlenmesi 1. katta döşemelerin çözümü ve çizimi Döşeme

Detaylı

Ox ekseni ile sınırlanan bölge, Ox ekseni

Ox ekseni ile sınırlanan bölge, Ox ekseni DERSİN ADI: MATEMATİK II MAT II (06) ÜNİTE: BELİRLİ İNTEGRALLERİN UYGULAMALARI. HACİM HESABI GEREKLİ ÖN BİLGİLER 1. Eğri Çizimleri. İntegrl formülleri KONU ANLATIMI. HACİM HESABI ) Disk Yöntemi = f ()

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 5 Rijit Cisim Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 5. Rijit Cisim Dengesi Denge,

Detaylı

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır.

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır. LİNEER CEBİR MTRİSLER: i,,,...,m ve j,,,..., n için ij sılrının. m m...... n n mn şeklindeki tblosun mn tipinde bir mtris denir. [ ij ] mn şeklinde gösterilir. m stır, n sütun sısıdır. 5 mtrisi için ;

Detaylı

STATİĞİN TEMEL PRENSİPLERİ

STATİĞİN TEMEL PRENSİPLERİ 1.1. Temel Kavramlar ve Tanımlar Mühendislik mekaniği: Kuvvet etkisi altındaki cisimlerin denge veya hareket koşullarını inceleyen bilim dalı Genel olarak mühendislik mekaniği Sert (rijit) katı cisimlerin

Detaylı

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır. LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden

Detaylı

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK G O M T R İ www.kdemivizyon.com.tr. ÖÜM Prlelkenr ve şkenr örtgen. PRNR rşılıklı kenrlrı prlel oln dörtgenlere prlelkenr denir. [] // [] [] // [] = =. PRNRIN ÖZ İRİ. rşılıklı çılr eş ve rdışık çılr ütünlerdir.

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

Karadeniz Teknik Üniversitesi

Karadeniz Teknik Üniversitesi Karadeniz Teknik Üniversitesi MHN 243 Sürmene Deniz Bilimleri Fakültesi Gemi İnşaatı ve Gemi Makineleri Mühendisliği Bölümü, Dinamik Dersi 2013-2014 Güz Yarıyılı Dersi Veren: Ömer Necati Cora (Yrd.Doç.Dr.)

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

Çatı katında tüm çevrede 1m saçak olduğu kabul edilebilir.

Çatı katında tüm çevrede 1m saçak olduğu kabul edilebilir. Proje ile ilgili açıklamalar: Döşeme türleri belirlenir. Döşeme kalınlıkları belirlenir. Çatı döşemesi ve 1. kat normal döşemesinde döşeme yükleri belirlenmesi 1. katta döşemelerin çözümü ve çizimi Döşeme

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

TAŞIMA GÜCÜ. n = 17 kn/m3 YASD

TAŞIMA GÜCÜ. n = 17 kn/m3 YASD TAŞIMA GÜCÜ PROBLEM 1: Diğer bilgilerin şekilde verildiği durumda, a) Genişliği 1.9 m, uzunluğu 15 m şerit temel; b) Bir kenarı 1.9 m olan kare tekil temel; c) Çapı 1.9 m olan dairesel tekil temel; d)

Detaylı

STATİK DOÇ.DR. KAMİLE TOSUN FELEKOĞLU. Ders notları için: GÜZ JEOLOJİ MÜH.

STATİK DOÇ.DR. KAMİLE TOSUN FELEKOĞLU. Ders notları için: GÜZ JEOLOJİ MÜH. STATİK STATİK DOÇ.DR. KAMİLE TOSUN FELEKOĞLU Ders notları için: http://kisi.deu.edu.tr/kamile.tosun/ 2014-2015 GÜZ JEOLOJİ MÜH. ÖÖ/İÖ 54-58 2 Değerlendirme 1. Ara sınav (%25) 2. Ara sınav (%25) Final (%50)

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Final Sınavı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Final Sınavı KOCEİ ÜNİVERSİTESİ Mühendislik akültesi Makina Mühendisliği ölümü Mukavemet I inal Sınavı dı Soadı : 9 Ocak 0 Sınıfı : h No : SORU : Şekildeki ucundan ankastre, ucundan serbest olan kirişinin uzunluğu

Detaylı

KAYMA GERİLMESİ (ENİNE KESME)

KAYMA GERİLMESİ (ENİNE KESME) KAYMA GERİLMESİ (ENİNE KESME) Demir yolu traversleri çok büyük kesme yüklerini taşıyan kiriş olarak davranır. Bu durumda, eğer traversler ahşap malzemedense kesme kuvvetinin en büyük olduğu uçlarından

Detaylı

Elemanlardaki İç Kuvvetler

Elemanlardaki İç Kuvvetler Elemanlardaki İç Kuvvetler Bölüm Öğrenme Çıktıları Yapı elemanlarında oluşan iç kuvvetler. Eksenel kuvvet, Kesme kuvvet ve Eğilme Momenti Denklemleri ve Diyagramları. Bölüm Öğrenme Çıktıları Elemanlarda

Detaylı

2. BÖLÜM AKIŞKANLARIN STATİĞİ

2. BÖLÜM AKIŞKANLARIN STATİĞİ . BÖLÜM AKIŞKANLARIN STATİĞİ Akışknlr mekniğinin birçok probleminde reket yoktur. Bu tip problemlerde durn bir kışkn içinde bsınç dğılımı ve bu bsınç dğılımının ktı yüzeylere ve yüzen vey dlmış cisimlere

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 4 Kuvvet Sistemi Bileşkeleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 4. Kuvvet Sitemi Bileşkeleri

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta) TAŞIYICI SİSTEMLER VE MESNET TEPKİLERİ STATİK (3. Hafta) Taşıyıcı Sistemler Bir yapıya etki eden çeşitli kuvvetleri güvenlik sınırları içinde taşıyan ve bu kuvvetleri zemine aktaran sistemlere taşıyıcı

Detaylı

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi MKM 308 Eşdeğer Noktasal Kütleler Teorisi Eşdeğer Noktasal Kütleler Teorisi Maddesel Nokta (Noktasal Kütleler) : Mekanikte her cisim zihnen maddesel noktalara ayrılabilir yani noktasal kütlelerden meydana

Detaylı

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz.

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz. ÇALIŞMA SORULARI Üniform yoğunluğa sahip plaka 270 N ağırlığındadır ve A noktasından küresel mafsal ile duvara bağlanmıştır. Ayrıca duvara C ve D noktasından bağlanmış halatlarla desteklenmektedir. Serbest

Detaylı

STATİK YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

STATİK YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU STATİK YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU http://kisi.deu.edu.tr/kamile.tosun/ 2011-2012 BAHAR - ÇEVRE KT 1 KİTAPLAR Mühendislik Mekaniği - Statik, R.C. Hibbeler, S.C. Fan, Literatür Yayıncılık, ISBN:

Detaylı

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3-

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3- 1 STATİK Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3- Moment KUVVET SİSTEMLERİ 2 Moment, bir kuvvetin bir nokta veya bir eksen etrafında oluşturduğu döndürme etkisinin ölçüsüdür. Momentin büyüklüğü

Detaylı

ATALET MOMENTİ. Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması.

ATALET MOMENTİ. Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması. ATALET MOMENTİ Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması. UYGULAMALAR Şekilde gösterilen çark büyük bir kesiciye bağlıdır. Çarkın kütlesi, kesici bıçağa

Detaylı

KANAT PROFİLİ ETRAFINDAKİ SIKIŞTIRILAMAZ AKIŞ

KANAT PROFİLİ ETRAFINDAKİ SIKIŞTIRILAMAZ AKIŞ KANAT PROFİLİ ETRAFINDAKİ SIKIŞTIRILAMAZ AKIŞ Uçağı havada tutan kanadın oluşturduğu taşıma kuvvetidir. Taşıma kuvvetinin hesaplanması, hangi parametrelere bağlı olarak değiştiğinin belirlenmesi önemlidir.

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Akışkan Statiğine Giriş Akışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

BÖLÜM 2 AKIŞKANLARIN STATİĞİ (HİDROSTATİK)

BÖLÜM 2 AKIŞKANLARIN STATİĞİ (HİDROSTATİK) BÖLÜM AKIŞKANLARIN STATİĞİ (HİDROSTATİK) Hidrostatik duran akışkanlar ile üniform olarak hareket eden ( akışkanın hızının her erde anı olduğu ) akışkanların durumunu inceler. 1 BİR NOKTADAKİ BASINÇ Hidrostatik

Detaylı

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90 G O M T R İ. ÖLÜM Üçgende çılr. ÜÇGN oğrusl olmyn üç noktyı birleştiren doğru prçlrının birleşim kümesine üçgen denir. ış çı ış çı ış çı. ÇILRIN GÖR ÜÇG N ÇŞİTLR İ r çılı Üçgen Üç çının ölçüsü de 90 den

Detaylı