İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST ÇÖZÜMLÜ TEST MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1...

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1..."

Transkript

1 İÇİNDEKİLER TÜREVİN GEOMETRİK YORUMU Teğet ve Normal Doğruların Eğimi... Teğet Doğrusunun Eğim Açısı... Teğet ve Normal Denklemleri... Eğrinin Teğetine Paralel ve Dik Doğrular... Grafikte Teğet I... 5 Grafikte Teğet II... Fonksiona Üzerinde Olmaan Noktadan Teğet Atma.. 7 En Yakın Nokta / Teğetler Arası Açı... 8 Ugulama Zamanı... 9 Ugulama Zamanı... Tekrar Zamanı LÜ TEST... LÜ TEST... 5 Artan Azalan ve Sabit Fonksionlar... 9 Artan Azalanlığın Türevle İlişkisi... 0 Daima Artan ve Azalan Fonksion... Fonksion Üzerinden Artan Azalanlık... Grafik Yardımıla Artan Azalan... f() in Grafiğinden f'() i Yorumlama... f'() in Grafiğinden f() i Yorumlama... 5 Tahmini Grafik... Ugulama Zamanı... 7 Tekrar Zamanı LÜ TEST... 9 LÜ TEST... Yerel Ekstremum Kavramı...5 Yerel Ekstremumun Varlığı I... Yerel Ekstremumun Varlığı II... 7 f'() in Grafiğile Ekstremum... 8 Eğrilik Yönü:. Türevin Geometrik Anlamı... 9 Dönüm (Büküm) Noktası... 0 Dönüm Noktasının Varlığı / Simetri Merkezi... f() in Eğrilik Yönü ile f"() i Yorumlama... f''() Grafiği ile f() in Eğrilik Yönü... f'() in Grafiği ile f() in Eğrilik Yönünü Yorumlama... Grafikte Ardışık Türev...5 Türevin Türevleri.... Türev ile Ekstremum... 7 Ugulama Zamanı... 8 Ugulama Zamanı Tekrar Zamanı LÜ TEST... 5 LÜ TEST... 5 MAKS. - MİN. PROBLEMLERİ En Büük - En Küçük Değeri Bulma...58 Kenar - Çevre - Alan Geçişleri İç İçe Şekiller...0 Cisim İçinde Cisimler.... Derece Fonksion ve Denklem İfadeleri... Görüntü Kümesi... Fonksion Grafiği İçine Çizilen Şekiller... En Yakın Noktalar...5 Trigonometrik İfadeler... Ekonomik Ugulama...7 En Kısa Zaman / En İi Görüntü...8 Ugulama Zamanı... 9 Tekrar Zamanı LÜ TEST... 7 LÜ TEST... 7 GRAFİKLER Asimtot Kavramı...77 Düşe Asimptot...78 Yata Asimtot...79 Eğik vea Eğri Asimtot...80 Simetri Ekseni ve Merkezi...8 Grafik Çizimi...8 Polinom Fonksionların Grafiği...8 Polinom Fonksionunun Denklemini Yazma...8 Rasonel Fonksionların Grafiği...85 Köklerin Saısı...8 Ugulama Zamanı Tekrar Zamanı LÜ TEST LÜ TEST... 9 KONU TESTLERİ SİZİN İÇİN ÇÖZDÜKLERİMİZ...

2 Teğet ve Normal Doğruların Eğimi TÜREVİN GEOMETRİK YORUMU Bir fonksionun herhangi "bir noktasındaki türevi" fonksiona o noktadan çizilen teğetin eğimidir. Teğet değme noktasından teğet doğrusuna çizilen dik doğrua normal doğrusu denir. = f() Teğet (Teğetin Eğimi) f() = + fonksionunun üzerindeki A(, 0) noktasından çizilen teğetin eğimini bulunuz. f() in A(, 0) noktasından çizilen teğetinin eğimi m T olsun, f() = + f'() = tir. m T = f'() = = bulunur. f(a) P P, teğet değme noktası ise v v Teğetin eğimi: m T = f'(a) o a Normal v v Normalin eğimi: m T m N = Dik doğruların eğimleri çarpımı dir. Türev fonksionu teğet denklemi değildir, teğetin eğimini veren fonksiondur. (Normalin Eğimi) f() = e eğrisine üzerindeki = 0 apsisli noktasından çizilen normalin eğimini bulunuz. f() = e f'() = e dir. m T = f'(0) = e 0 = e 0 = = m T m N = m N = m N = - bulunur. Aşağıdaki ifadelerde istenilenleri bulunuz.. f() = 5 + parabolü üzerindeki (, ) noktasından çizilen teğetin ve normalin eğimi kaçtır?. = e fonksionunun = apsisli noktasındaki teğetinin ve normalinin eğimi kaçtır? 5. f() = sin π + 5 fonksionunun = noktasından çizilen teğetin ve normalin eğimi kaçtır?. f: R R, f() = + eğrisine = apsisli noktasından çizilen teğetin ve normalin eğimi kaçtır?. = sin t ve = cos t olmak üzere = f() eğrisine π t = noktasından çizilen teğetin ve normalin eğimi kaçtır?. f() = a fonksionunun = apsisli noktasındaki teğetin eğimi olduğuna göre a kaçtır? 7. = f() eğrisine (, 5) noktasından çizilen teğet (, ) noktasından geçtiğine göre f'() kaçtır? ) m T =, m N = ) m T = 8, m N = 8 ) ) m T = e, m N = - e 5) m T =, mn = - ) m T =, m N = 7)

3 TÜREVİN GEOMETRİK YORUMU Teğet Doğrusunun Eğim Açısı a eğim açısı ani doğrunun ekseni ile aptığı pozitif önlü açı olmak üzüre, f() in A( o, o ) noktasından çizilen teğet doğrusunun eğimi m T ise, m T = tan a = f'( o ) dır. f() in A( o, o ) noktasındaki teğeti eksenine paralel ( eksenine dik) ise m T = f'( o ) = 0 dır. ( Eksenine Paralel Teğet Noktaları) f() = m 5 + eğrisinin eksenine paralel teğetlerinin bu eğrie değdiği noktaların apsisleri toplamı olduğuna göre m i bulunuz. m T = 0 ise f'() = 0 olmalıdır, f'() = m 5 = 0 denkleminin kökleri ve dir. b ( ) + = - = - = & m = bulunur. a m (o Eksenine Paralel Teğet) f() = + parabolünün hangi noktasındaki teğeti eksenine paraleldir? f() in A( o, o ) noktasındaki teğeti eksenine paralel olsun, f() = + f'() = m T = 0 ise f'( o ) = o = 0 o = o = için f() = o = + = A(, ) bulunur. (Eğim Açısı) f: R R f() = 7 fonksionunun = apsisli noktasındaki teğetinin eğim açısını bulunuz. f'() = 0 olmalıdır, f'() = 7 ise m T = f'() olduğundan, m T = f'() = 7 = dir. Teğetin eğim açısı a ise tan a = m T tan a = a = 5 bulunur. Aşağıda verilen ifadelerde istenilenleri bulunuz.. f() = m + 5 parabolünün eksenine paralel teğetinin bu parabole değdiği noktanın apsisi ise m kaçtır?. f() = fonksionunun = apsisli noktasındaki teğetinin ekseni ile pozitif önde aptığı açı kaç derecedir?. f() = + + a eğrisinin eksenine paralel teğeti = 9 doğrusu olduğuna göre a kaçtır? 5. f() = + eğrisinin = apsisli noktasındaki teğetinin eğim açısı a ise sin a cos a çarpımı kaça eşittir?. f ( ) = eğrisinin eksenine paralel teğetlerinin bu eğrie değdiği noktaların apsisleri nelerdir?. f() = + + m + n fonksionunun grafiği = apsisli noktasında eksenine teğet olduğuna göre m + n toplamı kaçtır? ) ) 5 ), 0, ) 5 5) 0 )

4 Teğet ve Normal Denklemleri TÜREVİN GEOMETRİK YORUMU = f() fonksionuna P(a, f(a)) noktasından çizilen teğetin eğimi m T ve normalin eğimi m N olduğuna göre f() = + eğrisinin = apsisli noktasından çizilen, a) Teğet doğrusunun b) Normal doğrusunun denklemlerini bulalım. Teğet Denklemi: f(a) = m T ( a) dır. (m T = f'(a) dır.) Öncelikle noktanın ordinatını bulalım. = ise f() = + = dir. O halde teğet nokta P(, ) olur. Normalin Denklemi: f(a) = m N ( a) dır. (m T m N = dir.) Teğet ve normal doğruların denklemleri azılırken, bir noktası ve eğimi belli doğru denklemlerinden fadalanılır. A( o, o ) Eğim = m o = m( o ) olduğunu hatırlaınız. Eğimleri bulalım, f'() = + m T = f'() = + m T = tür. m N m T = m N = m N = = + Teğet, m T = - tür. P(, ) Normal, m N = a) Teğetin denklemi, = ( ) dir. b) Normalin denklemi, = - ( - ) dir. Aşağıdaki ifadelerde istenilenleri bulunuz.. f() = + eğrisine (, ) noktasından çizilen teğet doğrusunun denklemi nedir?. = t + ve = t parametrik denklemi ile verilen = f() eğrisine t = den çizilen, a) Teğetin denklemi nedir? b) Normalin denklemi nedir?. = + 5 eğrisine = apsisli noktasından çizilen normalin denklemi nedir? 5. = + m + n parabolü = apsisli noktada = doğrusuna teğet olduğuna göre m + n kaçtır?. + = 0 eğrisinin (, ) noktasındaki, a) Teğetinin denklemi nedir? b) Normalinin denklemi nedir?. f() = sin + cos fonksionunun = 0 apsisli noktasından çizilen teğet doğrusu, normal doğrusu ve ekseni arasında kalan üçgenin alanı kaç br dir? ) = ) = 0 ) a) = b) = ) a) = b) = + 5) )

5 TÜREVİN GEOMETRİK YORUMU Eğrinin Teğetine Paralel ve Dik Doğrular = f() eğrisinden = m + n doğrusuna çizilen, Paralel teğetin eğrie değme noktası T(a, f(a)), eğimi ise m T olsun, Dik teğet m T = = P (b, b ) T(a, a ) Palelel Teğet, m T = = 5 m T = f'(a) = m (paralel doğruların eğimleri eşittir) Dik teğetin eğrie değme noktası P(b, f(b)), eğimi ise m T olsun, m T = f'(b) ise f'(b) m = (dik doğruların eğimleri çarpımı dir) f() = eğrisinin = 5 doğrusuna, a) Paralel olan teğetinin b) Dik olan teğetinin eğrie değme noktalarını bulunuz. a) m T = dir. f() = f'() = = a için, m T = a = a = dir. O halde, T(, ) bulunur. b) m T = m T = - dir. f() = f'() = = b için, m T = b = - b = - tür. O halde, P, c- m bulunur. Aşağıdaki ifadelerde istenilenleri bulunuz.. f() = + parabolünün hangi noktasındaki teğeti = 5 doğrusuna paraleldir?. f() = eğrisinin + = 0 doğrusuna paralel olan teğetlerinin değme noktaları nelerdir?. =- + parabolünün = + doğrusuna paralel teğetinin denklemi nedir? 5. f() = a + g() = + + b eğrilerinin = noktasındaki teğetleri birbirine paralel olduğuna göre a kaçtır?. f() = + eğrisinin hangi noktasındaki teğeti = 0 doğrusuna diktir?. f() = + fonksionunun + 5 = 0 doğrusuna dik olan teğetinin denklemi nedir? ) (, ) ) + = 0 ) (, ) ) (, ) ve (, ) 5) a = 0 ) = 7

6 Grafikte Teğet I TÜREVİN GEOMETRİK YORUMU o α o = f() teğet A( o, o ) o Şekildeki d doğrusu f() fonksionuna = apsisli A noktasında teğettir. A f() Buna göre f'() i bulunuz. o d Sola atık eğimler negatiftir. = f() fonksionunun grafiğine apsisi o olan A noktasından çizilen teğetinin eğimi, bu fonksionun o apsisli noktasındaki türevi olduğunu hatırlaınız.yani, m T = tan a = f'( o ) dır. o A α f() β d f'() = m d m d = tan β = tan a m d = - =- O halde f'() = bulunur. Aşağıda verilen ifadelerde istenilenleri bulunuz.. f(). f() T d d o eksenine paralel d doğrusu = apsisli noktada f() fonksionuna teğettir. Buna göre f'() kaçtır? o Şekildeki d doğrusu T(, ) noktasında = f() fonksionuna teğettir. Buna göre f'() kaçtır?. f() d. Ç - = + A T d o o B Şekildeki d doğrusu = apsisli noktada f() e teğettir. Buna göre f'() kaçtır? Şekildeki = + parabolü d doğrusuna apsisi olan T noktasında teğettir. Buna göre A ve B noktalarının ordinatları toplamı kaçtır? ) 0 ) ) ) 5

7 TÜREVİN GEOMETRİK YORUMU Grafikte Teğet II Grafik üzerindeki noktanın denklemi sağlamasına göre ve türev - teğet eğimi ilişkilerile gerekli değerler tespit edilip istenilen bulunur. Örneklerle açıklaalım, 5 A o = g() 5 d c Şekildeki d doğrusu = g() fonksionunun grafiğine A noktasında teğet ve mabc ( ) = 5 % dir. f() = g() olduğuna göre f'() ün değerini bulunuz. Grafiği okuarak değer tespiti apalım, g() = 5 (Nokta denklemi sağlar) g'() = m d = tan 5 = (Teğetin eğimi o noktadaki türevdir) f() = g() f'() = g() + g'() = için f'() = g( ) + g'( ) = 5+ = 8 bulunur. : ; 5 Şekildeki t doğrusu = f() = f() A fonksionuna A noktasında teğettir. h() = f () fonksionu için verilenlere göre h() in noktasındaki o t teğetinin eğimini bulunuz. Grafiği okuarak değer tespiti apalım, f() = (Nokta denklemi sağlar) f'() = m T = 0 - h() = f () h'() = f()f'() = deki teğetin eğimi, h'() dir. = için h'() = f( ) f'( ) = ( - ) =- 9 : bulunur. - Aşağıdaki ifadelerden istenilenleri bulunuz.. f() d. A d f() 5 o o Şekildeki f() fonksionu A noktasında d doğrusuna teğettir. h ( ) = olduğuna göre h'() kaçtır? f ( ) Şekildeki d doğrusu f() fonksionuna ekseni üzerindeki ordinatı olan noktada teğettir. f() g() = olduğuna göre g'(0) kaçtır? +. = + f() o f() fonksionunun = apsisli noktasındaki teğeti = + doğrusudur. h() = + f () olduğuna göre h'() kaçtır?. A(, ) d f() o Şekildeki f() fonksionunun A(, ) noktasındaki teğeti eksenine paraleldir. h() = f() + olduğuna göre h() in = apsisli noktadaki teğetinin denklemi nedir? ) - ) 5 ) ) = 5

8 Fonksiona Üzerinde Olmaan Noktadan Teğet Atma TÜREVİN GEOMETRİK YORUMU A( o, o ) noktasından = f() fonksionuna çizilen teğet P(a, b) noktasında eğrie değiorsa, m T b- o = = f'( a) eşitliğinden fadalanılır. a - o > : iki nokta ile eğim türev ile eğim (Dışardan Atılan Teğet) f() = e eğrisine orjinden çizilen teğetin denklemini bulunuz. o(0, 0) = e A(a, e a ) f() = e f'() = e ise m T = f'(a) = e a a e - 0 a e a m = e T = e & = & a - 0 a > iki nokta ile eğim türev ile eğim a a & e = e a a = dir. O halde, m T = f'() = e = e ve O(0, 0) noktasından geçen doğru, 0 = e( 0) = e doğrusu bulunur. a (Dışardan Atılan Teğet Çifti) f() = parabolüne A(, 0) noktasından çizilen teğetlerin eğimlerini bulunuz. = f() = f'() = m T = f'(a) = a C(a, a ) B A(, 0) m T a - 0 = = a & a = a - a & 0 = a - a > a - iki nokta ile eğim türev ile eğim 0 = a(a ) a = 0 vea a = dir. O halde, m T = m AB = f'(0) = 0 = 0 ve m T = m AC = f'() = = tür. Aşağıdaki ifadelerde istenilenleri bulunuz.. = + parabolüne orjinden çizilen teğetlerin değme noktaları nedir?. f() = e eğrisinin hangi noktasından çizilen teğeti (, 0) noktasından geçer? Ç -. = + eğrisine A(, ) noktasından çizilen teğetlerin eğimleri nedir?. f() = ln fonksionuna orjinden çizilen teğetin denklemi nedir? ) (, ), (, ) ) 7 ve 0 ), e c m ) = e 7

9 TÜREVİN GEOMETRİK YORUMU En Yakın Nokta / Teğetler Arası Açı (Paralel Teğet Çizme) (Teğetler Arası Açı) teğet = f() P d = f() eğrisinin d doğrusuna en akın noktası d doğrusuna paralel olarak çizilen teğetin değme noktasıdır. Paralel doğruların eğimlerinin eşitliğinden fadalanılır. m T = m d = f() ve = g() kesişen iki eğri olmak üzere, m ve m kesişim noktasından çizilen teğetlerin eğimleri iken, m - m tan a = ifadesindeki α ise teğetler arasın- + m m daki açılardan birisidir. Kesişim noktası ortak çözüm (f() = g()) ile bulunur. (En Yakın Nokta) f() = + eğrisinin = doğrusuna en akın noktasını bulunuz. t d f() = + f() in d doğrusuna en akın noktası P P(a, a + ) noktasından çizilen "t" teğeti, "d" doğrusuna paraleldir. = f() = + f'() = ise m T = f'(a) = a = m d = dir. m t = m d O halde, a = a = ve P(, + ) P(, ) dir. f() = ve g() = eğrilerinin keşiştiği noktadan bu eğrilere çizilen teğetler arasındaki açının tanjantını bulunuz. Öncelikle ortak çözüm apılarak eğrilerin kesim noktası tespit edilir. I. adım: = = = O halde kesim noktası P(, ) dir. II. adım: f() = f'() = ise m = f'() = g() = g'() = - ise m = g'() = III. adım: Teğetler arası açı (eğriler arası açı) a olsun, m - m -( -) tan α = = =- bulunur. + m m + ( - ) Aşağıdaki ifadelerde istenilenleri bulunuz.. f() = parabolünün = + doğrusuna en akın noktasının koordinatlarını bulunuz.. f() = + fonksionunun = ve = apsisli noktalarındaki teğetleri arasındaki dar açının tanjantı nedir? Ç -. = + eğrisinin = doğrusuna en akın noktasının ordinatı kaçtır?. f() = + 8 fonksionuna eksenini kestiği noktalardan çizilen teğetler arasındaki dar açının kotanjantı kaçtır? 8 ) (, 0) ) ) )

10 Yerel Ekstremum Kavramı TÜREVİN GEOMETRİK YORUMU 5 f() fonksionunun artandan azalana geçtiği sürekli noktalar erel maksimum, azalandan artana geçtiği sürekli noktalar erel minimum noktalardır. Bilimsel tanım: f: A R, c (a, b) A olmak üzere (a, b) için f(c) f() ise f() in (c, f(c)) noktasında bir erel maksimumu vardır. (a, b) için f(c) f() ise f() in (c, f(c)) noktasında bir erel minimumu vardır. Mutlak ekstremumlar: f() fonksionunun erel maksimumlarından değeri en büük olanına mutlak maksimum, erel minimumlarından değeri en küçük olanına mutlak minimum denir. Fonksion sınır noktalarında tanımlı ise bu noktalar da erel ekstremum olarak değerlendirilir. = f() f: [, ) R de tanımlı f() fonksionunun grafiğine göre erel ekstremum noktalarını ve değerlerini tespit ederek mutlak maksimum ve mutlak minimum değerlerini bulunuz. Noktalar Değerler Mutlak Yerel Minimum: (, 0), (, ) 0 ve Yerel Maksimum: (, ), (, 5) ve 5 5 Dikkat edilirse (, 0) noktasında azalanlıktan artanlığa geçilmemesine rağmen erel minimum olarak alındı. Çünkü bu nokta tanımlı olan sınır noktasıdır. Ancak (, ) noktası tanımlı olmadığı için erel minimum olarak ALINAMAZ!. = f() fonksionunun, = f() 5 a) Yerel minimum noktalarını bulunuz. b) Yerel minimum değerlerini bulunuz. c) Mutlak minimum değerini bulunuz.. = f() fonksionunun, Şekilde = f() fonksionunun grafiği verilmiştir. Buna göre aşağıdaki soruları cevaplandırınız.. f() in artanlığını azalanlığını ve f'() in işaretlerini aşağıdaki tablonun aralıklarında belirtiniz. f() f'() 0 5 a) Yerel maksimum noktalarını bulunuz. b) Yerel maksimum değerlerini bulunuz. c) Mutlak maksimum değerini bulunuz.. = f() artandan azalana, azalandan artana geçmediği halde erel ekstremum olan nokta hangisidir? 5. Yerel ekstremum olduğu halde türevi sıfır olmaan noktalar hangileridir?. Yerel ekstremum olmadığı halde türevi sıfır olan nokta hangisidir? 0 5 f() f'() ) a) (, ), (, ), (, 0) b),, 0 c) ) a) (, ), (, ) b) (, ) c) ) (, 0) 5) (, ), (, ), (, 0) ) (,) 5

11 TÜREVİN GEOMETRİK YORUMU Yerel Ekstremumun Varlığı I f() fonksionu = c de sürekli iken, (c, f(c)) noktası YEREL EKSTREMUM ise, (Yerel Ekstremum Bulma) f() = fonksionunun erel ekstremumlarını belirleiniz. f() = f'() = = 0 = ata teğet noktası kırık nokta (i) f'(c) = 0 vea f'(c) oktur. (ii) f'(), = c de işaret değiştirir. Yata teğet noktası c c + f'() + f() f (c, f(c)) YEREL MİNİMUMDUR Kırık nokta c f c + f'() + f() (c, f(c)) YEREL MAKSİMUMDUR Sonuç: Sürekli olunan bir noktanın erel ekstremum olması için o noktada türev oktur a da sıfırdır şartı ile birlikte o noktada türev işaret değiştirmelidir. + = de f'() negatiften pozitife f'() + geçerken f() azalandan artana geçtiği için bu noktada f() erel f() minimuma sahiptir. Yerel minimum O halde, = için f() = = 9 ise (, 9) erel minimum noktasıdır. 9 ise erel minimum değeridir. (Yerel Ekstremum Belli İken) f() = k fonksionunun erel minimum değeri olduğuna göre k ı bulunuz. f ( ) = k ise f'() = f'() = 0 = 0 ( + )( ) = 0 = vea = tür. = de f'() negatiften pozitife + f'() + + geçerken f() azalandan artana geçtiği için bu noktada f() f() Yerel Yerel erel minimuma sahiptir. maks. min. O halde, = için f() = ise, f( ) = k = k = 0 bulunur.. Aşağıdaki fonksionların erel ekstremum noktalarını bulunuz. a) f() = 9 +. f: R R tanımlı ve türevli bir f ( ) = k fonksionunun erel minimum değeri olduğuna göre k kaçtır? b) f() = + 5 c) f() = -. f() = k + fonksionunun minumum noktasının ordinatı 5 olduğuna göre k nın pozitif değeri kaçtır? d) f ( ) = ln ) a) (, 9) erel ma, (, ) erel min b) (, ) erel ma, (, ) erel min c) (0, 0) erel maks., (, ) erel min. d) (e, e) erel min, ) )

12 Yerel Ekstremumun Varlığı II TÜREVİN GEOMETRİK YORUMU = f() fonksionunun = a apsisli noktasındaki erel ekstremum değeri b ise f'(a) = 0 ve f(a) = b eşitliklerile elde edilen denklem sistemi çözülür. (Yerel Ekstremum Belli İken) f: R R, f() = + m + n + 0 fonksionunun = apsisli noktasındaki erel minimum değeri olduğuna göre m ve n değerlerini bulunuz. Daima artan a da daima azalan fonksionlarda erel ekstremum bulunmaz. Bir fonksionunun kırık noktalarında türevi oktur; ancak sürekli ise erel ekstremum olabilir. DİKKAT EDİNİZ! f() in = de erel minimumu olduğu için f'() = 0 ve f() in = de erel minimum değeri olduğu için f() = dir. f'() = + m + n f'() = 9 + m + n = 0...(i) f() = + m + n + 0 f() = 9 + 9m + n + 0 =.(ii) (Kırık Noktada) (i) ve (ii) ortak çözülürse m = ve n = bulunur. f() = fonksionunun varsa erel ekstremumunu belirleiniz. f() fonksionunun grafiğini çizerek değerlendirelim. = 0 de f() in türevi oktur. (kırık nokta) Ancak = 0 da f() sürekli ve artıştan azalışa geçtiği için (0, ) noktası erel maksimum noktadır. Fonksionun maksimum değeri tür. (. Derece Fonksion) f ( ) = + + k + fonksionunun erel ektremumlarının olmaması için k nın aralığı ne olur? f ( ) = + + k + ise f'() = + + k Yerel ekstremumların olmaması için f'() = 0 ın reel kökü olmamalıdır a da reel kök varsa çift katlı olmalıdır. + + k = 0 için 0 ise k 0 O halde k [, 0) dır. k dır. Aşağıdaki ifadelerde istenilenleri bulunuz.. f() = + a + b fonksionunun erel minimum noktası (, ) olduğuna göre a + b kaçtır?. f() = + a + b fonksionunun erel minimum noktası (, ) olduğuna göre b kaçtır?. f() = + + k + fonksionu verilior. Buna göre k nın hangi aralıktaki değerleri için fonksionun erel ekstremumu oktur? 5. f: R R, f() = + m n + fonksionunun = apsisli noktada erel maksimum değeri 9 olduğuna göre m n farkı kaçtır?. f() = + ( m) fonksionunun ekstremum noktası olmadığına göre m kaç farklı tam saı değeri alır?. f: R R, f() = + m + n + fonksionu = apsisli noktadaki erel maksimum değeri 0 olduğuna göre m ve n değerleri kaça eşittir? ) ) k ) 7 ) 7 5) ) m =, n = 7

13 TÜREVİN GEOMETRİK YORUMU f'() in Grafiğile Ekstremum Tanımlı olduğu aralıkta f() sürekli bir fonksion olmak üzere, f'() in grafiği ardımıla işaret tablosu apılarak f() in ekstremum noktaları tespit edilebilir. f'() tanımsız olduğu nokta, f() in kırık (sivri) noktası olduğu için ekstremum olabilir. f'() in eksenine teğet olduğu nokta f'() in çift katlı kökü olduğu için f() in ekstremumu olamaz. = f I () Şekilde, R R e tanımlı f fonksionunun türevinin grafiği verilmiştir. Buna göre = f() in ekstremum noktalarının apsisleri toplamını bulunuz. f'() = 0 ın kökleri, ve tür. = te çift katlı kök olduğuna dikkat ediniz. Arıca = de f'() tanımsız olduğu için işaret tablosunda değerlendirilmelidir. tanımsız nokta çift katlı kök f'() f() erel erel erel min. maks. min. = ve = de f'() negatiften pozitife geçerken f() azalandan artana geçtiği için; (, f( )), (, f()) noktaları f() de erel minimum noktalardır. = de f'() pozitiften negatife geçerken f() artandan azalana geçtiği için, (, f()) noktası f() de erel maksimum noktadır. = de f'() işaret değiştirmediği için, f() de (, f()) ekstremum nokta olamaz. O halde, ekstremum noktaların apsisleri toplamı, + + = 0 bulunur.. f I () 5 o 7 Şekilde = f'() fonksionunun grafiği verilmiştir. Buna göre aşağıda verilen ifadeleri Doğru "D", Yanlış "Y" azarak cevaplaınız. a) = apsisli noktada f in erel maksimum noktası vardır o = f I () Şekilde = f'() fonksionunun grafiği verilmiştir. Buna göre aşağıda verilen ifadeleri Doğru "D", Yanlış "Y" azarak cevaplaınız. a) = 7 apsisli noktada f() in erel minimumu vardır. b) = 5 apsisli noktada f() in erel maksimumu vardır. b) f in erel maksimum noktaların apsisleri toplamı 0 dır. c) = apsisli noktada f in erel maksimumu vardır. d) = apsisli noktada f in erel maksimumu vardır. e) f in erel minimum noktalarının apsisleri toplamı dir. f) = apsisli nokta f'() in erel minimum noktasıdır. g) = apsisli nokta f'() in erel maksimum noktasıdır. c) = apsisli noktada f() in erel minimumu vardır. d) (, 5) aralığında f() in erel minimumu vardır. e) f() in ekstremum noktalarının apsisleri toplamı dir. f) f() in erel maksimum noktalarının apsisleri toplamı dır. g) f() in erel minimum noktalarının apsisleri toplamı 7 dir. 8 ) a) D b) D c) Y d) D e) Y f) D g) D ) a) D b) Y c) D d) Y e) D f) Y g) Y

14 Eğrilik Yönü:. Türevin Geometrik Anlamı TÜREVİN GEOMETRİK YORUMU f: [a, b] R fonksionu (a, b) aralığında I. ve II. türevli ve sürekli iken (a, b) için f() = + fonksionunun konveks ve konkav olduğu aralıkları bulunuz. f''() > 0 f in eğrilik önü ukarı doğrudur. f f dış bükedir, çukurdur, konveksdir. f eğrisi teğetlerinin üstündedir. f''() i bularak işaret tabolosunu apalım, f() = + f'() = f''() = f''() = = 0 = bulunur. f f''() < 0 f in eğrilik önü aşağı doğrudur. f iç bükedir, tümsektir, konkavdır f eğrisi teğetlerinin altındadır. f''() + f() + konkav konveks (tümsek) (çukur) (, ) aralığında f"() < 0 olduğu için f() konkavdır. (İç bükedir) (, + ) aralığında f"() > 0 olduğu için f() konveksdir. (Dış bükedir) Aşağıda verilen eğrilerin konveks (çukur) ve konkav (tümsek) oldukları aralıkları bulunuz.. f() = f() =. f() = f() = ( ) +. f() = 9. f ( ) = + e ) (, 0) konkav, (0, ) konveks ) (, ) konveks, (, ) konkav ) R için konkav ) (, ) ve (, ) konveks, (, ) konkav 5) (, ) konkav, (, ) konveks ) R için konvekstir 9

15 TÜREVİN GEOMETRİK YORUMU Dönüm (Büküm) Noktası f Bir fonksionunun eğriliğinin ön değiştirdiği (. türevin işaret değiştirdiği) sürekli noktası dönüm (büküm) noktasıdır. o apsisli noktası f() fonksionunun dönüm noktası ise (i) f II > 0 o f II () = 0 f II < 0 f II < 0 f f II > 0 o a da (ii) f II ( o ) oktur f f II > 0 o f II < 0 (Dönüm Noktası) f() = + fonksionunun dönüm noktasını işaret tablosu aparak bulunuz. f() = + f'() = + f''() = + + = 0 = + f''() + f() Dönüm noktası = apsisli noktada f" işaret değiştirirken f in eğrilik önü değiştiği için dönüm noktasının apsisidir. (, ) noktası f() in dönüm (büküm) noktasıdır. (Dönüm Noktası Olmaan) f() = + fonksionunun dönüm noktasını bulunuz. f''() = 0 denkleminin o çift katlı kökü ise f'' fonksionu işaret değiştirmeeceği için o apsisli nokta f in dönüm noktası olamaz. + + f'' + + f'' f o o f Dönüm noktası OLAMAZLAR f() = + f'() = + f''() = = 0 = = 0 (çift katlı köktür) 0 + f''() + + f() Dönüm noktası olamaz = 0 apsisli noktada f''() = 0 ın çift katlı kökünde f'' işaret değiştirmediği için f in eğrilik önü değişmez ve dönüm noktası olamaz. Fonksionun dönüm noktası YOKTUR! Aşağıda verilen eğrilerin dönüm noktalarının koordinatlarını bulunuz.. f() = + Aşağıdaki soruları cevaplaınız. 5. f"() = ( ) ( ) ( ) olduğuna göre f() in dönüm noktalarının apsisleri toplamı kaçtır?. f() = + 5. f() = e + eğrisinin dönüm noktasının koordinatları toplamı kaçtır?. f() = 5 +. f() = ( ) 7. = t t ve = t + iken = f() eğrisinin dönüm noktasının koordinatları çarpımı kaçtır? (t > 0) 0 ) (, ) ) (, ) ) (0, ), (, 5) ) Yoktur - 5) ) - 7) 5 e

16 Dönüm Noktasının Varlığı / Simetri Merkezi TÜREVİN GEOMETRİK YORUMU (Dönüm Noktasının Varlığı) (Simetri Merkezi) f(),. dereceden polinom fonksionun dönüm noktası (a, b) ise,. dereceden polinom fonksionların dönüm noktaları simetri merkezleridir. (ii) f(a) = b ve (ii) f''(a) = 0 dır. f() = + m + n + fonksionunun (, ) noktasında dönüm noktası var ise m ve n değerlerini bulunuz. f() = ve f''() = 0 dır. (i) f() = + m + n + f() = + m + n + = (ii) f'() = + m + n f''() = + m f''() = + m = 0 (i) ve (ii) ortak çözülürse m = ve n = bulunur. f() = + fonksionunun simetri merkezini bulunuz. f() = + f'() = + f''() = + + = 0 = + = apsisli nokta dönüm noktası f''() + olduğu için f() in simetri merkezidir. f() Dönüm noktası O halde, = için f( ) = ise (, ) simetri merkezidir. Aşağıdaki ifadelerde istenilenleri bulunuz. Aşağıdaki ifadelerde istenilenleri bulunuz.. f() = a + (a + ) + fonksionunun dönüm noktasının apsisi = olduğuna göre a kaçtır?. f() = fonksionunun simetri merkezininin koordinatları nedir?. f() = + m + ( m) fonksionunun dönüm noktasının apsisi olduğuna göre ordinatı kaçtır?. f() = + a fonksionunun simetri merkezinin koordinatları toplamı olduğuna göre a kaçtır?. f() = + m n fonksionunun = de erel ekstremumu, = de dönüm (büküm) noktası olduğuna göre m n farkı kaçtır? Ç -. f() = + a b + fonksionunun simetri merkezi (, 9) olduğuna göre a + b toplamı kaçtır? ) ) ) ) (, 0) ) )

17 TÜREVİN GEOMETRİK YORUMU f() in Eğrilik Yönü ile f"() i Yorumlama Bir f fonksionunun grafiğinde, eğriliğin ön değiştirdiği dönüm noktaları f''() = 0 ın kökleridir. f in grafiğindeki sürekli olan kırık noktalar, türevsiz olmasına rağmen eğrilik ön değiştiriorsa dönüm noktasıdır. f in eğrilik önü ile f' in artan azalanlığı da orumlanabilir. f çukur ( ) f'' > 0 f' artan ( ) f tümsek ( ) f'' < 0 f' azalan ( ) f doğrusal ( ) f'' = 0 f' sabit ( ) = f() A o B C Şekildeki A, B ve C noktaları = f() fonksionunun dönüm noktalarıdır. Buna göre; a) f"() fonksionunun işaretini orumlaınız. b) f'() fonksionunun artan azalanlığını orumlaınız. a) (, ) aralığında f() çukur olduğundan f"() > 0 dır. (, ) aralığında f() tümsek olduğundan f"() < 0 dır. (, ) aralığında f() çukur olduğundan f"() > 0 dır. (, ) aralığında f() tümsek olduğundan f"() < 0 dır. = ve = apsisli noktalarda f() in eğriliğinin önü değiştiği için f"() = f"() = 0 dır ve bu noktalar f() in dönüm noktalarıdır. = apsisli noktada f() eğrisi ön değiştirmesine rağmen kırık nokta olduğu için f"() oktur; ancak bu nokta ine de f() in dönüm noktasıdır. b) f" fonksionu f' in türevi olduğu için, (, ) ve (, ) aralıklarında f"() > 0 olduğundan f'() artandır. (, ) ve (, ) aralıklarında f"() < 0 olduğundan f'() azalandır... D E C A 9 o 5 7 B = f() Şekilde f() fonksionunun grafiği verilmiştir. A, B, C, D ve E noktaları f() in dönüm noktaları olduğuna göre aşağıda verilenleri Doğru "D", Yanlış "Y" azarak cevaplaınız. 7 A B o 5 f() Şekilde = f() fonksionunun grafiği verilmiştir. A ve B noktaları dönüm (büküm) noktaları olduğuna göre aşağıdaki verileri Doğru "D", Yanlış "Y" azarak cevaplaınız. a) f"( ) > 0 g) f'() = 0 a) f"( 5) = 0 f) f'() f''() < 0 b) f"( ) > 0 h) f"() < 0 c) f'( ) = 0 k) f'(5) = f"(7) = 0 d) f'() < 0 l) f" c m f"( ) < 0 e) f"(0) = 0 m) (, ) aralığında f'() artandır. f) f"() = 0 n) (, 0) aralığında f'() artandır. b) f"( ) < 0 g) f'(5) f"(5) > 0 c) f"( ) f"() > 0 h) f(7) f"() > 0 d) f"( ) > 0 k) (, 5) aralığında f'() artandır. e) f"(0) < 0 l) (, ) aralığında f'() azalandır. ) a) D b) Y c) Y d) D e) Y f) D g) D h) D k) D l) D m) D n) Y ) a) Y b) D c) D d) D e) Y f) D g) D h) D k) Y l) D

18 f''() Grafiği ile f() in Eğrilik Yönü TÜREVİN GEOMETRİK YORUMU f''() = 0 ın tek katlı kökleri ve, çift katlı kökü dir. Yani f"( ) = f"( ) = f"() = 0 dır. Bir f'' fonksionunun grafiğinde f''() = 0 ın tek katlı kökleri f() in dönüm noktalarıdır. f'' > 0 olduğu aralıkta f çukurdur. ( ) f'' < 0 olduğu aralıkta f tümsektir. ( ) f''() f() + Çukur Tümsek Çukur Çukur f" = 0 olduğu aralıkta f doğrusaldır. ( ) f'' in grafiğinin eksenine teğet olduğu çift katlı köklerinde f'' işaret değiştirmeeceği için f in eğrilik önü değişmez, dönüm noktası OLAMAZ! (, ) aralığında f"() > 0 olduğundan f() çukurdur. (, ) aralığında f"() < 0 olduğundan f() tümsektir. (, ) aralığında f"() > 0 olduğundan f() çukurdur. f in eğrilik önünün değiştiği ve apsisli noktaları dönüm noktasıdır; ancak apsisli noktada f in eğrilik = f II () Şekildeki ikinci türevinin grafiği verilen = f() fonksionunun eğrilik önünü tespit ederek dönüm noktalarını bulunuz. önü değişmediği için, dönüm noktası olamaz. O halde, (, f( )) ve (, f( )) noktaları f() fonksionunun dönüm noktalarıdır o f II () Şekilde f"() fonksionunun grafiği verilmiştir. Buna göre aşağıdaki soruları Doğru "D", Yanlış "Y" azarak cevaplaınız. 5 o 8 f II () Şekilde f: R R e sürekli f() fonksionunun ikinci türevinin grafiği verilmiştir. Buna göre aşağıdaki soruları Doğru "D", Yanlış "Y" azarak cevaplaınız. a) (, 9) aralığında f() çukurdur. a) R de f() tümsektir. b) ( 9, 5) aralığında f() dış bükedir. b) (0, ) aralığında f() iç bükedir. c) ( 5, ) aralığında f() konvekstir. c) f() in tane dönüm noktası vardır. d) = 7 apsisli nokta f() in dönüm noktasıdır. d) = 0 apsisli noktada f'() erel minimuma sahiptir. e) = apsisli noktada f() in eğrilik önü değişmediğinden dönüm noktası değildir. e) (, f()) noktası f() in kırık görünümdeki dönüm noktasıdır. f) f() in dönüm noktalarının apsisleri toplamı 9 dur. f) ( 5, 0) aralığında f"() tümsektir. g) = apsisli noktada f'() erel minimuma sahiptir. g) f() in çukur olduğu aralıktaki tam saılarının toplamı dır. ) a) D b) Y c) D d) Y e) D f) Y g) Y ) a) D b) Y c) Y d) D e) D f) Y g) D

19 TÜREVİN GEOMETRİK YORUMU f'() in Grafiği ile f() in Eğrilik Yönünü Yorumlama Grafikle açıklaalım; f II (d) = 0 = f I () Şekilde türevinin grafiği verilen = f() fonksionunun eğrilik önünü ve dönüm noktalarını inceleiniz. a b c f II (b) = 0 o d e f I () = b ve = d apsisli noktalarda f''(b) = f"(d) = 0 dır. (, b) ve (d, ) aralığında f'() azalan olduğundan f"() < 0 dır. O halde, f() tümsektir. (b, d) aralığında f'() artan olduğundan f''() > 0 dır. O halde, f() çukurdur. Sonuç: f' fonksionunun. türevi f" fonksionu olduğu için, f' artan ( ) ise f'' > 0 f çukurdur. ( ) f' azalan ( ) ise f'' < 0 f tümsektir. ( ) (, ) aralığında; f'() azalan ise f''() < 0 f() tümsektir. ( ) (, ) aralığında; f'() artan ise f"() > 0 f() çukurdur. ( ) (, ) aralığında; f'() azalan ise f"() < 0 f() tümsektir. ( ) (, ) aralığında; f'() artan ise f"() > 0 f() çukurdur. ( ) =, = ve = apsisli noktalarda; f"( ) = f"() = f"() = 0 dır ve bu noktalarda f() in eğrilik önü değiştiği için ((, f( )), (, f()) ve (, f()) noktaları f() in dönüm (büküm) noktalarıdır o f I () Şekilde f'() fonksionunun grafiği verilmiştir. Buna göre aşağıda verilenleri Doğru "D", Yanlış "Y" azarak cevaplaınız. a) f"( 5) = f"() = f"() = f"() = 0 b) (, 5) aralığında f() tümsektir. c) ( 5, ) aralığında f() konkavdır. d) (, ) aralığında f() iç bükedir. e) (, ) aralığında f() çukurdur. f) ( 5, ) aralığında f eğrisi teğetlerinin üstündedir. g) = apsisli noktada f() in erel maksimumu vardır o 5 f I () Şekilde f'() fonksionunun grafiği verilmiştir. Buna göre aşağıdaki verilenleri Doğru "D", Yanlış "Y" azarak cevaplaınız. a) 8,, 0, 5, 8 ve 0 apsisli noktalar f() in dönüm noktalarıdır. b) (, 8) aralığında f" > 0 olduğundan f çukurdur. c) ( 8, ) aralığında f" < 0 dır. d) (, ) aralığında f tümsektir. e) (, f( )) noktası f() in dönüm noktası olmasına rağmen f"( ) oktur. f) f''() = 0 in kökler toplamı dir. g) (0, ) aralığında f() in bütün teğetleri f() eğrisinin üstündedir. ) a) D b) D c) Y d) D e) D f) D g) Y ) a) D b) Y c) Y d) D e) D f) Y g) D

20 Grafikte Ardışık Türev TÜREVİN GEOMETRİK YORUMU f grafiğinden f' ve f" nasıl orumlanıorsa, f' grafiğinden f'' ve f"' f" grafiğinden f"' ve f (ıv) (n + ) anı şekilde orumlanır. f (n) grafiğinden f (n + ) ve f Bunların tersindeki orumlarda anı şekilde apılır. Yani, f f' f" f"'... Artan + Azalan Artan + Azalan... f f' f" f"' (i) f() in artan - azalan olduğu aralık hakkında orumu apabiliriz o f I () f'() + + f() azalan artan azalan = 5 ve = de f() in erel minimumu, = de f() in erel maksimumu vardır. (ii) f"() in işareti hakkında orum apabiliriz. (f() den f'() e geçişin anısı) (, ) aralığında f'() artan olduğundan f"() > 0 dır. (, ) aralığında f'() azalan olduğundan f"() < 0 dır. (, ) aralığında f'() artan olduğundan f''() > 0 dır. f"( ) = f"() = 0 dır. artan 5 o f I () Şekilde verilen f'() in grafiğine göre f(), f"() ve f"'() i orumlaınız. (iii) f"'() in işareti hakkında orum apabiliriz. = apsisli nokta tümsekte olduğu için f"'( ) < 0 dır. = apsisli nokta çukurda olduğu için f"'() > 0 dır.. 5 o f I () Şekilde f'() in grafiği verilmiştir. Buna göre aşağıda verilenleri Doğru "D", Yanlış "Y" azarak cevaplaınız.. o f II () Şekilde f"() in grafiği verilmiştir. Buna göre aşağıda verilenleri Doğru "D", Yanlış (Y) azarak cevaplaınız. a) f"(0) > 0 d) f'( ) f"() > 0 b) f'( ) f"( ) < 0 e) f"'( ) > 0 c) f"( ) = f"() = 0 f) f"'() f"'() > 0 g) (, 5) ve (, ) aralığında f() azalandır. h) (, 5) aralığında f() tümsektir. k) (, ) aralığında f() çukurdur. a) (, ) ve (, ) aralığında f'() azalandır. b) = apsisli noktada f'() in erel minimumu vardır. c) = 0 apsisli nokta f'() in erel maksimumudur. d) f IV () fonksionu R den R e tanımlıdır. e) f(0) = 0 dır. f) f"'() daima azalandır. ) a) D b) Y c) D d) Y e) D f) D g) Y h) D k) D ) a) D b) D c) Y d) D e) Y f) D 5

21 TÜREVİN GEOMETRİK YORUMU Türevin Türevleri Türevin türevleri orumlanırken daha önce öğrendiğimiz. türev ve. türev geçişleri anen ugulanır. Bir fonksionun. türevinin o fonksionun teğetinin eğimini verdiğini hatırlaınız. (. Türevin Teğet Denklemi) f() = + + olmak üzere f'() fonksionunun = apsisli noktasından çizilen teğetin denklemini bulunuz. Teğet f'() e çizileceği için; f'() = + + f'( ) = ise (, ) teğet noktası, f''() = + f'( ) = ise m T = teğetin eğimidir. Fonksion. Türev Artan + Azalan Fonksionun ekstremum noktalarının tespiti Fonksion. Türev + Fonksionun dönüm noktalarının tespiti O halde, = ( + ), f'() fonksionuna, = apsisli noktasından çizilen teğet denklemidir. (Dönüm Noktasından Çizilen Teğet) f() = + fonksionunun dönüm noktasından çizilen teğetinin eğimini bulunuz. f() = + f'() = + f''() = + f"() = 0 + = 0 = dönüm noktasının apsisidir. m T = f'( ) = ( ) + ( ) =, = apsisli noktasından f() e çizilen teğetin eğimidir. Aşağdaki ifadelerde istenilenleri bulunuz.. f() = fonksionu verilior. Buna göre f'() fonksionunun = apsisli noktadaki teğetinin eğimi kaçtır?. f() = + fonksionu verilior. Buna göre f'() fonksionunun azalan olduğu aralık nedir?. f() = + + fonksionu verilior. f"() fonksionunun = apsisli noktasındaki teğetinin eğimi kaçtır? 5. f ( ) = + + fonksionuna dönüm noktasından çizilen teğetin eğimi kaçtır?. f ( ) = fonksionu verilior. f'() fonksionuna üzerindeki hangi noktadan çizilen normalin eğimi - tür?. f ( ) = - + fonksionunun dönüm noktasından çizilen teğetinin o ve o ekseni ile oluşturduğu üçgenin alanı kaç birim karedir? ) ) ) (, 0) ) (0, ) 5) )

22 . Türev ile Ekstremum TÜREVİN GEOMETRİK YORUMU Yerel ekstremum için. türev testi: ( = 0 civarında f türevlenebiliorsa) f( 0 ) o f( 0 ) o 0 0 f'( 0 ) = 0 ise, f in = 0 da f'' ( f 0 ) < 0 erel maksimumu vardır. f f'( 0 ) = 0 ise, f in = 0 da f'' ( 0 ) > 0 erel minimumu vardır. f() = 8 + nin erel ekstremumlarını işaret tablosu apmadan eğrilik önü ile belirleiniz. f() = 8 + f'() = f''() = ı. Adım: f'() = 0 ın köklerini bulalım, = 0 ( ) ( + ) = 0 = 0, =, = dir. II. Adım: f'() = 0 ın kökleri f''() de erine azalım, f''(0) = < 0 ise = 0 da erel maksimum vardır. (0, ) f f''( ) = > 0 ise = de erel minimum vardır. (, ) f''() = > 0 ise = de erel minimum vardır. (, ) (Trigonometrik Fonksiondaki Ekstremum) f() = 8 + nin erel ekstremumlarını işaret tablosu apmadan belirleiniz. f: (0, π) R, f() = sin + cos fonksionunun erel ekstremum değerlerini bulunuz. f() = 8 + f'() = f''() = I. (i) Adım: f'() = f'() 0 ın = köklerini 0 ın köklerini bulalım, bulalım, f() = sin = 0 + cos ( ) f'() ( = + cos ) sin = 0, =, = dir. f'() (ii) f'() = 0 = 0 sin ın kökleri cos f''() = de 0 erine azalım, (0, ) f''(0) = < 0 ise sin = 0 sin = cos da = erel & tan maksimum = vardır. f cos f''( ) = π > 0 ise 5π= de erel minimum vardır. (0, ) & =, = f''() = > 0 ise = de erel minimum vardır. (0, ) II. Adım: f'() = 0 ın köklerini f"() de erine azalım, f''() = sin cos olduğuna göre, π π π (i) f'' c m=-sin - cos =- < 0 π O halde, = de f() in erel maksimumuna sahip π π π değeri, fc m = sin + cos = 5π 5π 5π (ii) f'' c m= sin - cos = π c, m > 0 5π O halde, = de f() in erel minimuma sahip değeri, 5π 5π 5π fc m = sin + cos =- 5π f, - p f Aşağıdaki ifadelerde istenilenleri bulunuz.. f() = + 5 fonksionunun ekstremum noktalarındaki eğrilik önünü belirtiniz. Ç - 7. f() = + a + b + c fonksionunun = de erel minimumu olduğuna göre a ve b nin aralıkları nelerdir?. f() = + fonksionunun erel minimum ve erel maksimum noktaları nelerdir? 5. f: [0, π] R olmak üzere, f() = sin fonksionun erel minimum noktasının apsisi kaçtır?. f() = a + b + fonksionunun = de erel maksimumunun olması için a nın aralığı ne olmalıdır? ) (, ) de tümsek, erel maks. (, ) da çukur, erel min. ) (, 0) erel maks. (, 7) erel min. ) a > ) a > ve b > 5) π 7

23 Ekonomik Ugulama MAKS. - MİN. PROBLEMLERİ (Ekonomik Ugulama) ürün adeti iken, İstenilen ifade tek değişkenli fonksion olarak azılıp. türev ile ekstremumları incelenerek en az en çok değeri tespit edilir. Örnekle açıklaalım. Maliet: M() = 0 Ciro: C() = ( 0) + 50 = Kâr: K() = = Bir firma, bir dükkana tane ürünün her birini 0 den verip, mağazanın ürünlerin her birini ( 0) den satması koşulula 50 pirim ödeeceğini sölüor. Buna göre dükkan bu işten, a) Kaç ürün sattığında en az cirou elde eder? a) C() = C'() = 0 = 0 = 0 adet üründe en az ciro elde edilir. b) K() = K'() = 0 = 0 = 5 adet üründe en az kâr elde edilir. K(5) = = 5 bulunur. b) En az kaç kâr elde edebilir?. Bir otomobil firması ılda adet otomobil üreterek bir otomobilden (0000 ) lira kâr elde edior. Bir ılda maksimum kâr elde etmesi için kaç otomobil üretmelidir?. Bir atölede ada tane aakkabı apılmaktadır. Her aakkabı c0 - m liraa malolmaktadır. Aakkabıların tanesi c50 + m liraa satıldığına göre maksimum 0 0 kârın elde edildiği ada kaç tane aakkabı satılmıştır?. 0 liraa alınan bir ürün (0 ) liraa satılmaktadır. a) Satıştan en çok hasılatın elde edilmesi için ürün kaç liraa alınmalıdır? b) Kârın en çok olması için ürün kaç liraa alınmalıdır? Ç -. Bir sinemada bir bilet 0 liradan satıldığında 00 kişi film izlemee gelmektedir. Sinema biletine apılan her liralık indirimde sinemaa gelen müşteri saısı 0 kişi artmaktadır. Sinemanın kasasına en fazla paranın girdiği gün bir bilet kaç liradır? ) 5000 ) a) 50 b) 00 ) 00 ) 5 7

24 MAKS. - MİN. PROBLEMLERİ En Kısa Zaman / En İi Görüntü (En Kısa Zaman) (En İi Görüntü) İstenen zaman ifadesi tek değişkenli fonsion olarak azılıp. türev ile ekstremum ifadeleri incelenerek en az en çok değeri tespit edilir. Örnekle inceleelim. ol = hız zaman olduğunu hatırlaınız. İstenen ifade trigonometrik açılımla tek bilinmeenli fonksion olarak azılıp. türev ile ekstremum ifadeleri incelenerek en az en çok değeri tespit edilir. tana! tan b tan (a ± b) = olduğunu hatırlaınız. " tana tan b C Şirin Nehir Ferhat A B A C D 0 B 0 Pisagor teoreminden; Yüzülen Yol = AD AB = 0 m ve BC = 0 m dir. Ferhat'ın üzme hızı m/dk ve ürüme hızı 0 m/dk dır. A noktasından sua giren Ferhat en kısa sürede Şirin'e kavuşmak için B den kaç m uzaklıkta sudan çıkmalıdır? 0 A dan sua giren Ferhat en kısa sürede D noktasına kadar üzererek, C ve D arasını ürüerek Şirin'e kavuşur. = 0 + dir. 0 + Yol = Hız Zaman 0 + = t & t = üzülen için 0 - Yol = Hız Zaman 0 = 0 t t = 0 ürünen için Buna göre zamanlar toplamı; T() = t + t = 0 + T'() = = 0 & = 80 m dir. 0 D Perde C A noktasında bulunan bir projeksion cihazı [CD] de bulunan perdee ansıtılıor. CD = 8m, BC = m A B olduğuna göre projeksionun en büük açıla perdee ansıtılması için AB kaç m olmalıdır? D Projeksion cihazının en büük açı a θ 8 ile ansıtılması için C mbad ( t ) = α ve m( BAC t ) = i ise a θ mcad ( ) = α -i A B tan (a θ) en büük olmalıdır. tan tan α ve i = = dir. tanα - tan i T ( ) = tan( α - i) = + tanα tani - 8 & T ( ) = = ( + 8) T'( ) = = ( + 8) T'( ) = 0 & ( + 8) = 0 & = m dir.. km 7 A B Toprak zemin Asfalt C AB = 7km ve BC = 0km dir. Bir bisikletli toprak zeminde km/sa ve asfalt olda km/sa hızla ilerlemektedir. A dan toprak zemine giren bu bisikletli en kısa sürede C e gitmek için B den kaç km uzakta asfalt ola çıkmalıdır?. A D Perde C B CD = m BC = m dir. A noktasında bulunan bir kişinin perdei en büük açı ile görmesi için AB kaç m olmalıdır? (Kişinin bou önemsizdir) 8 ) ) 5

25 GRAFİKLER Köklerin Saısı Verilen fonksiondaki kök saısının belirlenmesi için I. Adım: ekstremum noktaları bulunur. II. Adım: Ekstremumlardan erel minimum ve erel maksimumum işaretlerine göre kök saısı belirlenir. Örnekle açıklaalım. (Fonksionun Kök Saısı) f() = + + fonksionunun kök saısını tespit ediniz. f() = + + f'() = + f'() = 0 + = 0 ( ) = 0 = 0 ve = 0 f'()= + + f() min. maks. f(0) = f(0) = f() = + + f() = 8 Fonksionun minimum ve maksimum değerlerine göre grafiği belirlendiğinde eksenini kestiği noktalar kökleridir. 8 o f() Fonksionunun eksenini kestiği bir noktası ani bir tane kökü vardır. (Fonsionun Kök Saısı) f() = + a fonksionunun üç tane kökünün olması için a nın aralığı ne olmalıdır? f() = + a f'() = f'() = 0 = 0 = ± f'()= + + f() o maks. min. Fonksionunun maksimum değeri pozitif, minimum değeri negatif olduğunda üç kökü bulunur. f( ) = ( ) ( ) + a = a O halde f( ) = a + > 0 a > dır. f() = + a = 8 + a O halde f() = a < 0 a < dır. Buna göre a (, ) dır. (Fonsionun Tersinin Varlığı) f() = + a fonksionunun tersinin var olmasını sağlaan a nın aralığını bulunuz. Fonksionunun tersinin olması için fonksion birebir ve örten olmalıdır.. dereceden bir fonksionun birebir ve örten olması için bir kökü olmalı ve daima artan vea daima azalan olmalıdır. f() o f() = + a f'() = + a + Daima artan olması için f' 0 Δ 0 Δ = (a) 0 a 0 a a,. f() = 5 + fonksionunun kaç tane kökü vardır?. f() = + + a + fonksionunun tersinin olması için a nın aralağı ne olmalıdır? 8 ) ) c, E

26 Teğet ve Normal Doğruların Eğimi ve Denklemi KONU TESTİ. f() = fonksionunun = 0 apsisli noktasındaki teğetin eğimi kaçtır?. f() = ln (cos ) eğrisinin apsisi π olan noktasındaki normalinin eğimi kaçtır? A) B) C) D) E) 5 A) - B) - C) 0 D) E). f() = a + fonksionunun = noktasındaki teğetinin eğimi 8 olduğuna göre a kaçtır? A) B) C) D) E) 5 π 7. f() = sin (cos ) in = noktasındaki normalin eğimi kaçtır? A) B) C) 0 D) E). f() = + fonksionuna = apsisli noktasından çizilen teğetin denklemi = m + n olduğuna göre m + n toplamı kaçtır? 8. = a + 5 fonksionunun = apsisli noktasındaki teğeti ekseni ile 5 lik açı apıorsa a kaçtır? A) B) 0 C) 9 D) 8 E) 7 A) B) C) 5 D) E) = 0 eğrisinin P(, ) noktasındaki teğetinin eğimi kaçtır? 9. f() = + 5 fonksionunun hangi noktasındaki teğeti ekseni ile 5 lik açı apar? A) B) C) - D) E) A) (, ) B) (, ) C) (, ) D) (, ) E) (, ) 5. f() = + fonksionu üzerindeki = apsisli noktadan çizilen normalin denklemi aşağıdakilerden hangisidir? A) + = 0 B) = 0 Ç R R tanımlı f ve g fonksionları f() = + ve g() = + kuralı ile tanımlanıor. h() = (fog)() ile tanımlı h fonksionunun hangi noktasındaki teğetinin eğimi dır? C) + + = 0 D) + = 0 A) (0, 5) B) (, ) C) (, ) E) + 0 = 0 D) (, 5) E) (, 5) 95

27 f'() ve f''() Grafikleri ile Yorum KONU TESTİ -.. O f'() Şekilde = f'() fonksionunun grafiği verilmiştir. Buna göre aşağıdakilerden hangisi anlıştır? 5 O = f'() Şekilde f() fonksionunun türevinin grafiği verilmiştir. f() in = a için maksimum, = b için minimum ve A) f''() = 0 B) f''(0) = 0 C) f''( ) > 0 = c için dönüm noktası var ise a + b + c toplamı kaçtır? (a > 0, c < 0) D) f''() < 0 E) f'''( ) > 0 A) B) C) D) E) 5.. O f'() 7 O 8 = f'() Şekilde = f'() fonksionunun grafiği verilmiştir. Buna göre = f() in dönüm noktalarının apsisleri toplamı kaçtır? A) B) C) 0 D) E) Şekilde = f'() fonksionunun grafiği verilmiştir. Buna göre f() için aşağıdakilerden hangisi anlıştır? A) < için artandır. B) = apsisli noktada erel maksimumu vardır. C) = dönüm noktasıdır. D) (, ) için f''() > 0 dır. E) = apsisli noktada erel maksimumu vardır... = f'() O O Şekilde f'() fonksionunun grafiği verilmiştir. Buna göre aşağıdakilerden hangisi doğrudur? A) f''(0) < 0 B) f''() > 0 C) f'''() < 0 D) f''() > 0 E) f'''( 5) < 0 f() Şekilde = f() fonksionunun grafiği verilmiştir. Buna göre; I. (, ) aralığında f'() > 0 dır. II: = apsisli noktada türev olmadığı için f() in erel ekstremumu oktur. III. f'( ) = 0 dır. IV. (, ) aralığında f'() < 0 dır. Yukarıda verilenlerin hangileri doğrudur? A) I, II ve IV B) I ve III C) II ve IV D) I ve IV E) II, III ve IV 5

28 Sizin İçin Çözdüklerimiz Ç - A noktası = + parabolünün eksenini kestiği nokta olduğu için = + de = 0 için = 0 + = bulunur. Yani A(0, ) dir. T noktası = + parabolünün üzerinde olduğu için T noktasını = + de sağlatabiliriz. O halde T nin ordinatı = için = + = 5 dir. Yani T(, 5) dir. B(0, k) olsun, d doğrusunun (teğet) eğimi parabolün türevinin = apsisli noktadaki değeridir. = + ' = '() = m d = m d = = k - 5 (T ve B noktalarından eğim) k = tür. 0- O halde A nın ordinatı, B nin ordinatı ise ordinatlar toplamı + = bulunur. Ç - 5 f() = e f'() = e e f'() = e ( ) = 0 = + f'() + Artan Azalan Ç - f() in (, 9) simetri merkezi ise f''( ) = 0 ve f( ) = 9 dur. f'() = + a b f"() = + a f"( ) = + a = 0 a = f() = + b + f( ) = + + b + = 9 b = tür. Buradan a + b = bulunur. Ç - T(a, ln a) Teğet f() Teğetin eğimi: m T = f'(a) dır. f'( ) = & m = f'( a) = T a O ve T noktalarından geçen teğetin eğimi 0(0, 0) ise ln a 0 ln a mt = = a -- 0 a O halde bu eğimleri eşitlersek ln a = & a = e dir. T(e, ) olur. a a O halde eğimi e ve 0(0, 0) noktasından geçen doğru denkleminden ( ) e - 0 = - 0 & = bulunur. e Ç - = f() = + 8 parabolünün eksenini kestiği noktalar = 0 için + 8 = 0 ( ) ( ) = 0 = ve = ani (, 0) ve (, 0) dır. d (, 0) = f() (, 0) d f'() = m = f'() = = m = f'() = = İki doğru arasındaki açı a ise, m - m -- tan α = = = tür. cot α = + m m + ( - ) A(, ) Ç - = + Teğet ' = m T = '() = Eğimi olan A(, ) noktasından geçen doğrunun denklemi ( ) = = + = + ile = + ortak çözülürse + = + + = 0 = ve = dir. O halde B(, 5) bulunur. Ç - 7 f() in = de erel minimumu varsa f'( ) = 0 ve f"( ) > 0 olmalıdır. f'() = + a + b f'( ) = a + b = 0 f"() = + a f"( ) = + a > 0 a > tür. b a + b = 0 a = + eşitliğini a > eşitsizliğinde erine azılır- sa b + > b > bululur. Ç - 8 Bu sorua çok dikkat etmelisiniz. Soruda f'() in azalan olduğu aralık soruluor. Yani f"() < 0 olduğu aralığı bulmalıız. f'() = + 8 f''() = + 8 = 0 = + f''() + f'() Artan f'() Azalan D N A Ç - 9 Ç - 0 M f'() (, ) aralığında azalandır. C B - A() = ( ) A() = 7 A'() = 7 = 0 = dır O halde A() = ( 8) = m bulunur. K L (- ) A() = - & A'( ) = = 0 & = dir O halde, A ( ) = - 8 = cm bulunur.

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56 , 006 MC Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Türev TEST I 7. f() = sin cos fonksionunun. f()= sin( + )cos( ) için f'() nin eşiti nedir? A) B) C) 0 D) E) için erel minimum değeri nedir? A) B)

Detaylı

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır?

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır? . SINIF M Fonksionlar. f ( + a ) + vef( ) 7 olduğuna göre a kaçtır? E) TEST. f ( ) k + 6 fonksionu sabit fonksion olduğuna f ( ) göre aşağıdakilerden k E). f( ) 6 k ve f ( ) olduğuna göre k kaçtır? E)

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI YILLAR 966 967 968 969 97 97 97 975 976 977 978 980 98 98 98 98 985 986 987 988 989 990 99 99 99 99 995 996 997 998 006 007 ÖSS / ÖSS-I ÖYS / ÖSS-II 5 6 6 5

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

Çözüm: Örnek: 3. BÖLÜM TEST - 1. 4x 3 +3y 2 2x 4y=9 eğrisinin (1, 1) noktasındaki teğetinin denklemi nedir?

Çözüm: Örnek: 3. BÖLÜM TEST - 1. 4x 3 +3y 2 2x 4y=9 eğrisinin (1, 1) noktasındaki teğetinin denklemi nedir? . BÖLÜM TÜREVİN GEOMETRİK YORUMU TEST TEST - 4 + 4=9 eğrisinin (, ) noktasındaki teğetinin denklemi nedir?. f()=( ). ( 5) fonksionun =4 noktasındaki teğetinin eğimi kaçtır? A) 4 B) C) D) E) 6. fonksionun.

Detaylı

ÖZEL TANIMLI FONKSİYONLAR

ÖZEL TANIMLI FONKSİYONLAR ÖZEL TANIMLI FONKSİYONLAR Fonksionlar ve Özel Tanımlı Fonksionlar Özel tanımlı fonksionlar konusu fonksionların alt bir dalıdır. Bu konuu daha ii anlaabilmemiz için fonksionlar ile ilgili bilgilerimizi

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

Fonksiyonlar ve Grafikleri

Fonksiyonlar ve Grafikleri Fonksionlar ve Grafikleri Isınma Hareketleri Aşağıda verilenleri inceleiniz. A f f(a) 7 çocuk baan f: Çocukları annelerine götürüor. Fonksion olma şartı: Her çocuğun annesi olmalı ve bir tane olmalı. (

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir?

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir? MC www.matematikclub.com, 006 Cebir Notları Gökhan DEMĐR, gdemir3@ahoo.com.tr. Dereceden Denklem ve Eşitsizlikler- TEST I A) 1 B) C) 3 D) 4 E) 5 1. 1/ = 0 denkleminin köklerinin toplamı aşağıdakilerden

Detaylı

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır.

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır. -A Adı Soadı kulu Sınıfı LYS- MATEMATİK TESTİ Bu Testte; Toplam Adet soru bulunmaktadır. Cevaplama Süresi 7 dakikadır. Süre bitiminde Matematik Testi sınav kitapçığınızı gözetmeninize verip Geometri Testi

Detaylı

TÜREVİN GEOMETRİK YORUMU

TÜREVİN GEOMETRİK YORUMU TÜREVİN GEOMETRİK YORUMU f :R R, =f ( fonksionuna düzlemde A karşılık gelen f( +h eğri anda ki =f( P gibi olsun. f( Eğrinin P(,f( noktasındaki teğetlerini +h araştıralım. Bunun için P(,f( noktasının sağıda

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS MATEMATİK TESTİ. Bu testte 5 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. - - ^- h + c- m - (-5 )-(- ) işleminin sonucu kaçtır? A) B) C) D) 5 E).

Detaylı

Fonksiyonlar ve Grafikleri

Fonksiyonlar ve Grafikleri Fonksionlar ve Grafikleri Isınma Hareketleri Aşağıda verilenleri inceleiniz. A f f(a) 7 f: Çocukları annelerine götürüor. Fonksion olma şartı: Her çocuğun annesi olmalı ve bir tane olmalı. ( çocuk annenin

Detaylı

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012 Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi e Ku ru lu Baş kan lı ğı nın.8. ta rih ve sa ı lı ka ra rı ile ka bul edi len ve - Öğ re tim Yı lın dan iti ba ren u gu lana cak olan prog ra ma gö re ha zır

Detaylı

Örnek...1 : f (x)=2x 2 5x+6 parabolü K(2,p) noktasından geçiyorsa p kaçtır? Örnek...2 : Aşağıda çeşitli parabol grafikleri verilmiştir incele yi niz.

Örnek...1 : f (x)=2x 2 5x+6 parabolü K(2,p) noktasından geçiyorsa p kaçtır? Örnek...2 : Aşağıda çeşitli parabol grafikleri verilmiştir incele yi niz. a, b,c R,a 0 olmak koşulula f ()=a 2 +b+c fonksionuna ikinci dereceden bir değişkenli fonksion ve bu fonksionun belirttiği eğrie de parabol denir. Uarı ir parabolün grafiği başkatsaı olan a saısına bağlı

Detaylı

9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K

9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K M A T E M A T İ K www.akademitemellisesi.com ÇİFT VE TEK FONKSİYONLAR: f:ar (A R) fonksionu için, 9. BÖLÜM ) Her A için f( ) = f() ise f e çift fonksion denir. olduğundan ne tek nede çifttir. MUTL AK DEĞER

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS MTEMTİK TESTİ. Bu testte soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. d + n - d + n d - + n- d + + n işleminin sonucu kaçtır?., R olmak üzere, + +

Detaylı

6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x)

6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x) 6 II. DERECEDEN FNKSÝYNLR (Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MTEMTÝK 1. f(). f() 6 8 T Yukarıda grafiği verilen = f() parabolünün denklemi nedir?( = 6) Yukarıda grafiği verilen

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

Sevgili Öğrenciler ve Değerli Öğretmenler, Yeni sisteme uygun ve çalışmalarınızda ışık tutacak MATEMATİK SORU BANKASI hazırladık.

Sevgili Öğrenciler ve Değerli Öğretmenler, Yeni sisteme uygun ve çalışmalarınızda ışık tutacak MATEMATİK SORU BANKASI hazırladık. Sevgili Öğrenciler ve Değerli Öğretmenler, Yeni sisteme ugun ve çalışmalarınızda ışık tutacak MATEMATİK SORU BANKASI hazırladık. MATEMATİK SORU BANKASI tamamıla Milli Eğitim Bakanlığı Talim ve Terbie Kurulu

Detaylı

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir? PROL est -. m parabolü eksenini kesmiorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?. f a b c (, ) ) (, ) (, ) (, ) ( 6, ). m parabolü eksenini iki farklı noktada kesmektedir. una göre,

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. A.. n saısının tamsaı bölenlerinin saısı olduğuna göre, n 0. R de tanımlı " " işlemi; ο ο işleminin sonucu 0. (6) 6 (6) ifadesinin eşiti aşağıdakilerden hangisidir? 6 6 (6)

Detaylı

1998 ÖYS. 1. Üç basamaklı bir x doğal sayısının 7. iki basamaklı bir y doğal sayısına eşittir. Buna göre, y doğal sayısı en az kaç olabilir?

1998 ÖYS. 1. Üç basamaklı bir x doğal sayısının 7. iki basamaklı bir y doğal sayısına eşittir. Buna göre, y doğal sayısı en az kaç olabilir? 99 ÖYS. Üç basamaklı bir doğal saısının 7 katı, iki basamaklı bir doğal saısına eşittir. Buna göre, doğal saısı en az kaç olabilir? A) B) C) 6. Bugünkü aşları 6 ve ile orantılı olan iki kardeşin 6 ıl sonraki

Detaylı

İçindekiler 3. Türev... 3.1 Türev kavramı.. 001 3.2 Bir fonksiyonun bir noktadaki türevi. 003. Alıştırmalar 3 1...

İçindekiler 3. Türev... 3.1 Türev kavramı.. 001 3.2 Bir fonksiyonun bir noktadaki türevi. 003. Alıştırmalar 3 1... İçindekiler. Türev......... Türev kavramı.. 00. Bir fonksiyonun bir noktadaki türevi. 00. Alıştırmalar.... 005. Bir fonksiyonun bir noktadaki soldan ve sağdan türevi..... 006.4 Bir fonksiyonun bir noktadaki

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08 LİSNS YRLŞTİRM SINVI- MTMTİK-GMTRİ SINVI MTMTİK TSTİ SRU KİTPÇIĞI 08 U SRU KİTPÇIĞI LYS- MTMTİK TSTİ SRULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik Testi

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. n olmak üzere; n n toplamı ten büük n nin alabileceği tamsaı değerleri kaç tanedir? 9 B) 8 7.,, z reel saılar olmak üzere; ( 8) l 8 l z z aşağıdakilerden hangisidir? B) 8. tabanındaki

Detaylı

LYS MATEMATİK KONU ANLATIM FASİKÜLÜ

LYS MATEMATİK KONU ANLATIM FASİKÜLÜ Ders Adı.ınıf Mezun LY MATEMATİK KONU ANLATIM FAİKÜLÜ TÜREV KAF 0 Konu Bir doğrunun eğimi dik koordinat sisteminde X ekseni ile aptığı pozitif önlü açının tanjantıdır. Örneğin, şekilde verilen d doğrusunun

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak safası İÇİNDEKİLER. ÜNİTE FNKSİYNLARDA İŞLEMLER VE UYGULAMALARI Fonksionların Simetrileri ve Cebirsel Özellikleri... 4 Tek ve Çift Fonksionlar... 4 Fonksionlarda İşlemler... 6 Konu Testleri -...

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR İÇİNDEKİLER HEDEFLER GRAFİK ÇİZİMİ. Simetri ve Asimtot Bir Fonksiyonun Grafiği

ÜNİTE. MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR İÇİNDEKİLER HEDEFLER GRAFİK ÇİZİMİ. Simetri ve Asimtot Bir Fonksiyonun Grafiği HEDEFLER İÇİNDEKİLER GRAFİK ÇİZİMİ Simetri ve Asimtot Bir Fonksionun Grafiği MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR Bu ünitei çalıştıktan sonra; Fonksionun simetrik olup olmadığını belirleebilecek, Fonksionun

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

TÜRKİYE GENELİ DENEME SINAVI LYS - 1 MATEMATİK

TÜRKİYE GENELİ DENEME SINAVI LYS - 1 MATEMATİK TÜRKİY GNLİ SINVI LYS - 1 7 MYIS 017 LYS 1 - TSTİ 1. u testte 80 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz. + k+ n 15 + 10 1. : = + 6 16 + 8 0 + 8 olduğuna

Detaylı

YARDIRMALI MATEMATİK TÜREV FASİKÜLÜ

YARDIRMALI MATEMATİK TÜREV FASİKÜLÜ YRIRMLI MTEMTİK TÜREV FSİKÜLÜ Maksimum-Minimum Problemleri MESUT ERİYES MKSİMUM - MİNİMUM PROLEMLERİ Maksimum ve minimum problemlerini çözmek için şu kurallar ugulanır; 1) Maksimum a da minimum olması

Detaylı

EŞİTSİZLİK SİSTEMLERİ Test -1

EŞİTSİZLİK SİSTEMLERİ Test -1 EŞİTSİZLİK SİSTEMLERİ Test -1 1. 9 5. 69 A) (, ] B) (, ) C) (, ) D) [, ] E) [, ) A) B) {} C) {, } D) R E) R {}. 5 6. 1 A) (, 5) B) [, 5] C) (, 5) D) (5, ) E) (, ) A) (, 1] B) (, ) C) [1, ) D) (, ] [1,

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. abba dört basamaklı, ab iki basamaklı doğal saıları için, abba ab. a b eşitliğini sağlaan kaç farklı (a, b) doğal saı ikilisi vardır? 7 olduğuna göre, a b toplamı kaçtır? 9.,,

Detaylı

1977 ÜSS. 2 y ifadesi aşağıdakilerden hangisine eşittir? 1 x. 2 y. 1 y. 1 y. 1 x. 2 x. 2 x. 1 x. 1 y. 1 x. 1 y. 1 x. 1 y 2 C) 4 E)

1977 ÜSS. 2 y ifadesi aşağıdakilerden hangisine eşittir? 1 x. 2 y. 1 y. 1 y. 1 x. 2 x. 2 x. 1 x. 1 y. 1 x. 1 y. 1 x. 1 y 2 C) 4 E) 77 ÜSS. ifadesi aşağıdakilerden hangisine eşittir?. C) 4 E). Şekilde a+b+c+d açılarının toplamı kaç dik açıdır? (açılar pozitif önlüdür.) 4 C) 6 7 E) 8 Verilen şekilde açıların ölçüleri verilmiştir. En

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. Üç basamaklı doğal saılardan kaç tanesi, 8 ve ile tam bölünür? 8 9. ile in geometrik ortası z dir. ( z). ( z ). z aşağıdakilerden hangisidir?. 9 ifadesinin cinsinden değeri

Detaylı

C E V A P L I T E S T ~ 1

C E V A P L I T E S T ~ 1 C E V A P L I T E S T ~. 5. () 7 ( ).( ) A) B) C) 0 D) E) A) B) C) 0 D) E). 6. 5 A) 0 B) C) D) E) A) B) C) D) E) 5. b b ab a a A) B) a C) b D) b E) 7. ( 5 ) A) B) C) 0 D) E). 9 8. 5 8 A) B) 0 C) D) E)

Detaylı

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x.

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x. - TÜREV KAVRAMI - TÜREV KAVRAMI 7 iadesinin türevini alınız. Çözüm lim lim 7 7 lim 7 7 lim lim onksionunun türevini alınız. Tanım onksionunda değişkeni artımını alırken de kadar artsın. oranının giderken

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI fonksionunun ekseninin kestiği k noktaların m apsisleri b, c, e dir. u noktalar a b c f()= denkleminin n kök leridir p in eksenini kestiği nokta ise (,p)

Detaylı

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ 1 E) x x. x x = x

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ 1 E) x x. x x = x Ö.S.S. MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ. olduğuna göre, kaçtır? A B C D E Çözüm. -. : ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? A B C D E Çözüm :... :....... . olduğuna göre, - ifadesinin

Detaylı

Artan-Azalan Fonksiyonlar Ekstremumlar. Yard. Doç. Dr. Mustafa Akkol

Artan-Azalan Fonksiyonlar Ekstremumlar. Yard. Doç. Dr. Mustafa Akkol Artan-Azalan Fonksiyonlar Ekstremumlar Yard. Doç. Dr. Mustaa Akkol Artan ve Azalan Fonksiyonlar Tanım: a,b aralığında tanımlı bir onksiyonu verilsin., a,b ve için, ise onksiyonu a,b aralığında artan, ise

Detaylı

FONKSİYONLAR ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

FONKSİYONLAR ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT FONKSİYONLAR ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT Fonksionlar. Kazanım : Fonksion kavramı, fonksion çeşitleri ve ters fonksion kavramlarını açıklar.. Kazanım : Verilen bir fonksionun artan, azalan ve sabit

Detaylı

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları...

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları... ÜNİTE Safa No............................................................ 79 98 Fonksionlar Konu Özeti...................................................... 79 Konu Testleri ( 8)...........................................................

Detaylı

DERS 8. Artan ve Azalan Fonksiyonlar, Konkavlık, Maksimum ve Minimum

DERS 8. Artan ve Azalan Fonksiyonlar, Konkavlık, Maksimum ve Minimum DERS 8 Artan ve Azalan Fonksionlar, Konkavlık, Maksimum ve Minimum 8.. Artan ve Azalan Fonksionlar. Bir fonksionun vea onun grafiğinin belli bir aralık üzerinde artan vea azalan olmasının ne anlama geldiği

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

LYS MATEMATİK-2 SORU BANKASI LYS. M. Ali BARS. çözümlü sorular. yıldızlı testler. Sınavlara en yakın özgün sorular

LYS MATEMATİK-2 SORU BANKASI LYS. M. Ali BARS. çözümlü sorular. yıldızlı testler. Sınavlara en yakın özgün sorular LYS LYS 6 Sınavlara en akın özgün sorular MATEMATİK- SORU BANKASI çözümlü sorular ıldızlı testler M. Ali BARS M. Ali Bars LYS Matematik Soru Bankası ISBN 978-65-8-7-9 Kitapta er alan bölümlerin tüm sorumluluğu

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

NLİTİK EMETRİ lan ve ğırlık Merkezi 5. ölüm Örnek 0 nalitik düzlemde üçgen [] açıorta [] // [] (6 0 (6 (6 (6 0 [H] [] [K] [] H = K = br K ile H üçgenl

NLİTİK EMETRİ lan ve ğırlık Merkezi 5. ölüm Örnek 0 nalitik düzlemde üçgen [] açıorta [] // [] (6 0 (6 (6 (6 0 [H] [] [K] [] H = K = br K ile H üçgenl NLİTİK EMETRİ lan ve ğırlık Merkezi 5. ölüm lan Örnek 0 nalitik düzlemde ( 0 c h b h a h c b ( 0 ( 0 a a h b h a b c h lan( = = = c Yukarıdaki verilenlere göre lan( kaç birimkaredir? 6 8 9 E c b Taban:

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI =f() fonksio - nunun ekseninin kestiği noktaların m apsisleri b, c, e dir. u noktalar a b f()= denkleminin kökleridir n =f() in p eksenini kestiği nokta

Detaylı

EĞİM, BİR DOĞRUNUN DENKLEMİ VE EĞİMİ ARASINDAKİ İLİŞKİ

EĞİM, BİR DOĞRUNUN DENKLEMİ VE EĞİMİ ARASINDAKİ İLİŞKİ Özgür EKER EĞİM, BİR DOĞRUNUN DENKLEMİ VE EĞİMİ ARASINDAKİ İLİŞKİ Eğim: ETKİNLİK : Bir bisiklet arışındaki iki farklı parkur aşağıdaki gibidir. I. parkurda KL 00 metre ve II. parkurda AB 00 metre olduğuna

Detaylı

Mustafa YAĞCI, Parabol ile Eğrilerin Kesişimi

Mustafa YAĞCI, Parabol ile Eğrilerin Kesişimi www.mustafaagci.com.tr, 11 Ceir Notları Mustafa YAĞCI, agcimustafa@ahoo.com Paraol ile Eğrilerin Kesişimi P araol İle Doğrunun Birirlerine Göre Durumları. Aslında sadece paraol ve doğru çifti için değil,

Detaylı

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2 1. 1 =? Lys 1 7. x + y = (6k) (x k) + y = (k 5) olduğuna göre x y =?. 6 a.b = ise a + 1 b. b 1 a =? 1k 8. x ve y birbirinden farklı pozitif gerçel sayılar olmak üzere, x y y x. x.y = (x y) ise x y =?.

Detaylı

1995 ÖYS. a+ =3a a= Cevap:D. Çözüm: Çözüm: Çözüm:

1995 ÖYS. a+ =3a a= Cevap:D. Çözüm: Çözüm: Çözüm: 99 ÖYS. a b c d ve a, b, c, d tek sayılar olmak üzere, abcd dört basamaklı en büyük sayıdır? Bu sayı aşağıdakilerden hangisine kalansız bölünebilir? A) B) 6 C) 9 D) E) a, b, c, d rakamları birbirinden

Detaylı

ÖRNEK LİSANS YERLEŞTİRME SINAVI - 1 GEOMETRİ TESTİ. Ad Soyad : T.C. Kimlik No:

ÖRNEK LİSANS YERLEŞTİRME SINAVI - 1 GEOMETRİ TESTİ. Ad Soyad : T.C. Kimlik No: LİSANS YERLEŞTİRME SINAVI - GEOMETRİ TESTİ ÖRNEK Ad Soyad : T.C. Kimlik No: Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının Metin Yayınları nın yazılı

Detaylı

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir.

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir. TÜREV y= f(x) fonksiyonu [a,b] aralığında tanımlı olsun. Bu aralıktaki bağımsız x değişkenini h kadar arttırdığımızda fonksiyon değeri de buna bağlı olarak değişecektir. Fonksiyondaki artma miktarını değişkendeki

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabol Denkleminin Yazılması

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabol Denkleminin Yazılması www.mustafaagci.com.tr, 11 Cebir Notları Mustafa YAĞCI, agcimustafa@ahoo.com Parabol Denkleminin Yazılması B ir doğru kaç noktasıla bellidi? İki, değil mi Çünkü tek bir noktadan geçen istediğimiz kadar

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-I

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-I HEDEFLER İÇİNDEKİLER TÜREV UYGULAMALARI-I Artan ve Azalan Fonksiyonlar Fonksiyonların Maksimum ve Minimumu Birinci Türev Testi İkinci Türev Testi Türevin Geometrik Yorumu Türevin Fiziksel Yorumu MATEMATİK-1

Detaylı

BAĞINTI - FONKSİYON Test -1

BAĞINTI - FONKSİYON Test -1 BAĞINTI - FONKSİYON Test -. A,,,4,5 B,, olduğuna göre, AB kümesinin eleman saısı A) 8 B) C) D) 4 E) 5 5. A ve B herhangi iki küme AB,a,,a,,a,,b,,b,,b olduğuna göre, s(a) + s(b) toplamı A) B) 4 C) 5 D)

Detaylı

ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI

ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı a da bir kısmı, azarın izni olmaksızın, elektronik, mekanik,

Detaylı

EKSTREMUM PROBLEMLERİ. Örnek: Çözüm: Örnek: Çözüm:

EKSTREMUM PROBLEMLERİ. Örnek: Çözüm: Örnek: Çözüm: EKSTREMUM PROBLEMLERİ Ekstremum Problemleri Bu tür problemlerde bir büyüklüğün (çokluğun alabileceği en büyük (maksimum değer ya da en küçük (minimum değer bulunmak istenir. İstenen çokluk bir değişkenin

Detaylı

FONKSİYONLAR BÖLÜM 8. Örnek...3 : Örnek...1 : f(x)=2x+5 fonksiyonu artan mıdır? Örnek...4 :

FONKSİYONLAR BÖLÜM 8. Örnek...3 : Örnek...1 : f(x)=2x+5 fonksiyonu artan mıdır? Örnek...4 : FONKSİYONLAR BÖLÜM 8 Örnek...3 : ARTAN AZALAN FONKSİYONLAR ARTAN FONKSİYON f : A R R fonksionu verilsin. Her i B A için 1 < 2 f ( 1 )

Detaylı

MATEMATÝK GEOMETRÝ DENEMELERÝ

MATEMATÝK GEOMETRÝ DENEMELERÝ NM 1 MTMTÝK OMTRÝ NMLRÝ 1. o o = 75 ve y = 5 olduğuna göre,. 3 + 8 = 0 sin( y)cos( + y) + sin( + y)cos( y) sin( y)sin( + y) cos( + y)cos( y) denkleminin kaç tane farklı reel kökü vardır? ifadesinin eşiti

Detaylı

Doğrusal Fonksiyonlar, Karesel Fonksiyonlar, Polinomlar ve Rasyonel Fonksiyonlar, Fonksiyon Çizimleri

Doğrusal Fonksiyonlar, Karesel Fonksiyonlar, Polinomlar ve Rasyonel Fonksiyonlar, Fonksiyon Çizimleri Doğrusal Fonksionlar, Karesel Fonksionlar, Polinomlar ve Rasonel Fonksionlar, Fonksion Çizimleri Bir Fonksionun Koordinat Kesişimleri(Intercepts). Bir fonksionun grafiğinin koordinat eksenlerini kestiği

Detaylı

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır?

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır? . f: R { 4} R, > ise ( ) 4 f =, ise 6 8. ( ) f = 6 + m + 4 eğrisinin dönüm noktasının ordinatı olduğuna göre, m kaçtır? ) 7 ) 8 ) 9 ) E) fonksiyonu aşağıdaki değerlerinin hangisinde süreksizdir? ) ) )

Detaylı

1997 ÖSS Soruları. 5. Rakamları birbirinden farklı olan üç basamaklı en büyük doğal sayı aşağıdakilerden hangisi ile kalansız bölünebilir?

1997 ÖSS Soruları. 5. Rakamları birbirinden farklı olan üç basamaklı en büyük doğal sayı aşağıdakilerden hangisi ile kalansız bölünebilir? 997 ÖSS Soruları. ( ) + ( ).( ) işleminin sonucu kaçtır? ) ) ) ) 8 6 ) 6. Rakamları birbirinden farklı olan üç basamaklı en büük doğal saı aşağıdakilerden hangisi ile kalansız bölünebilir? ) ) 9 ) 6 )

Detaylı

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ 1

Detaylı

MATEMAT K TEST. 3. a ve b reel say lar olmak üzere, 3 a = 4 ve 3 2a b 3 = 8 oldu una göre,

MATEMAT K TEST. 3. a ve b reel say lar olmak üzere, 3 a = 4 ve 3 2a b 3 = 8 oldu una göre, MTMT K TST KKT! + u testte 80 soru vard r. + u test için ar lan cevaplama süresi 5 dakikad r. + evaplar n z, cevap ka d n n Matematik Testi için ar lan k sma iflaretleiniz.. a, b, c pozitif reel sa lard

Detaylı

ÖSS MATEMATİK TÜREV FASİKÜLÜ

ÖSS MATEMATİK TÜREV FASİKÜLÜ ÖSS MATEMATİK TÜREV FASİKÜLÜ GRAFİK ÇİZİMİ Bir fonksiyonun denklemi verilip grafiği istendiğinde aşağıdaki yolu izlemeliyiz. ) Fonksiyonun en geniş tanım kümesi bulunur. ) ± için fonksiyonun limiti bulunur.

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI fonksionunun ek seninin k estiği k nok taların m apsisleri b, c, e dir. u noktalar a b c f()= denk leminin n kök leridir p in eksenini kestiği nokta ise

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

4. f(x) = x 3 3ax 2 + 2x 1 fonksiyonunda f ý (x) in < x < için f(x) azalan bir fonksiyon olduðuna

4. f(x) = x 3 3ax 2 + 2x 1 fonksiyonunda f ý (x) in < x < için f(x) azalan bir fonksiyon olduðuna Artan - Azalan Fonksionlar Ma. Min. ve Dönüm Noktalarý ÖSYM SORULARI. Aþaðýdaki fonksionlardan hangisi daima artandýr? A) + = B) = C) = ( ) + D) = E) = + (97). f() = a + fonksionunda f ý () in erel (baðýl)

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında ılmaarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören çocuklarımızın ana ve babalarına da avrularının öğreniminin tamamlanması

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10 LİSNS YRLŞTİRM SINVI- MTMTİK-GOMTRİ SINVI MTMTİK TSTİ SORU KİTPÇIĞI 0 U SORU KİTPÇIĞI LYS- MTMTİK TSTİ SORULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik

Detaylı

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ Ö.S.S. 7 MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ. Karmaşık sayılar kümesi üzerinde * işlemi, Z * Z Z + Z + Z Z biçiminde tanımlanıyor. Buna göre, ( i) * (+i) işleminin sonucu nedir? A) + 8i B) - 8i C) 8 + i

Detaylı

ANALİZ ÇÖZÜMLÜ SORU BANKASI

ANALİZ ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİZ ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİZ ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı a da bir kısmı, azarın izni olmaksızın, elektronik, mekanik, fotokopi a da herhangi bir

Detaylı

www.mehmetsahinkitaplari.org

www.mehmetsahinkitaplari.org MATEMA www.mehmetsahinkitaplari.org T T r. P ALME YA YINCILIK Ankara I PALME YAYINLARI: 76 Sinif Matematik Konu Anlatım / Mehmet Şahin Yaına Hazırlama : PALME Dizgi-Grafik Tasarım Birimi Yaın Editörü :

Detaylı

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI LYS- MATEMATİK (MF-TM). Bu testte Matematik ile ilgili soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz..

Detaylı

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin

Detaylı

ege yayıncılık Parabolün Tan m ve Tepe Noktas TEST : 49 1. Afla daki fonksiyonlardan hangisinin grafi i bir parabol belirtir?

ege yayıncılık Parabolün Tan m ve Tepe Noktas TEST : 49 1. Afla daki fonksiyonlardan hangisinin grafi i bir parabol belirtir? Parabolün Tan m ve Tepe Noktas TEST : 9. Afla daki fonksionlardan hangisinin grafi i bir parabol belirtir? 5. Afla daki fonksionlardan hangisi A(,) noktas ndan geçer? A) f() = B) f() = f() = + f() =. f()

Detaylı

MAT MATEMATİK I DERSİ

MAT MATEMATİK I DERSİ MATEMATİK BÖLÜMÜ MAT 0 - MATEMATİK I DERSİ ÇALIŞMA SORULARI Bölüm : Fonksiyonlar. Tanım Kümesi ) f() = ln fonksiyonu verilsin. Tanım kümesini bulunuz. ((0, )\{}) Bölüm : Limit ve Süreklilik.. Limit L Hospital

Detaylı

f : R + R, f(x) = log a 0 < a < 1 için f(x) = log a a. f : ;, 4m R, f(x) = log2 x b. f : R + R, f(x) = log 1, f(2) = 2 2

f : R + R, f(x) = log a 0 < a < 1 için f(x) = log a a. f : ;, 4m R, f(x) = log2 x b. f : R + R, f(x) = log 1, f(2) = 2 2 Fonksionlar f : R R, f() = a Fonksionunun Grafi i f : R R, f() = log a Fonksionunun Grafi i a > için f() = a üstel fonksionunun grafi i andaki gibidir. = a a > için f() = log a fonksionunun grafi i andaki

Detaylı

DOĞRUNUN ANALİTİK İNCELEMESİ

DOĞRUNUN ANALİTİK İNCELEMESİ Koordinatlar DOĞRUNUN ANALİTİK İNCELEMESİ Bilindiği gibi, düzlemdeki her bir noktaya bir (a,b) sıralı ikilisi, her bir (a,b) sıralı ikilisine bir nokta karşılık gelir. Eğer bir A noktasına karşılık gelen

Detaylı

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y ARABL Tanım: Düzlemde verilen sabit bir noktası ile bir d doğrusuna uzaklıkları eşit olan noktaların geometrik erine arabol denir. Sabit noktaa arabolün odağı; doğrua ise doğrultmanı denir. Merkezil arabol

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

DERS 2. Fonksiyonlar

DERS 2. Fonksiyonlar DERS Fonksionlar.1. Fonksion Kavramı. Her bilim dalının önemli bir işlevi, çeşitli nesneler vea büüklükler arasında eşlemeler kurmaktır. Böle bir eşleme kurulması tahmin ürütme olanağı verir. Örneğin,

Detaylı

Örnek...1 : Örnek...2 : Örnek...3 : A={0,1,2} kümesinden reel sayılara tanımlı f(x)=x² x fonksiyonu bire bir midir? Örnek...4 :

Örnek...1 : Örnek...2 : Örnek...3 : A={0,1,2} kümesinden reel sayılara tanımlı f(x)=x² x fonksiyonu bire bir midir? Örnek...4 : FONKSİYONLAR BÖLÜM 4 FONKSİYON TÜRLERİ: BİRE BİR FONKSİYON Bir fonksionun grafiğinden bire bir olup olmadığını anlamak için verilen tanım aralığında çizilen ata doğruların sadece bir defa grafiği kesmesini

Detaylı

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır? 017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin

Detaylı

Cebir Notları. Parabol Mustafa YAĞCI,

Cebir Notları. Parabol Mustafa YAĞCI, www.mustaaagci.com, 005 ebir Notları Mustaa YĞI, agcimustaa@ahoo.com Notlara çemberin tanımıla gireim de siz de Ne alaka! dein Nedir çemberin tanımı? Yuvarlak geometrik şekil değil elbet. Düna uvarlak

Detaylı

1998 ÖYS. orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı kaçtır? 1. Üç basamaklı bir x doğal sayısının 7

1998 ÖYS. orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı kaçtır? 1. Üç basamaklı bir x doğal sayısının 7 998 ÖYS. Üç basamaklı bir doğal sayısının 7 katı, iki basamaklı bir y doğal sayısına eşittir. Buna göre, y doğal sayısı en az kaç olabilir? orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07 UZY GEMETRİ İÇİNDEKİLER Safa No Test No UZY KSİYMLRI... 001-00... 01-0 UZYD DGRU VE DÜZLEMLER... 007-010... 0-05 DİK İZDÜŞÜM... 011-01... 0-07 PRİZMLR... 015-0... 08-1 KÜP... 05-00... 1-15 SİLİNDİR...

Detaylı

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu .SORU 8 sayı tabanında verilen (5) 8 sayısının sayı tabanında yazılışı nedir?.soru 6 3 3 3 3 4 6 8? 3.SORU 3 ise 5? 5 4.SORU 4 5 olduğuna göre, ( )? 5.SORU (y z) z(y ) y z yz bulunuz. ifadesinin en sade

Detaylı