REGRESYON ANALĐZĐ. 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "REGRESYON ANALĐZĐ. www.fikretgultekin.com 1"

Transkript

1 REGRESYON ANALĐZĐ Regresyon analizi, aralarında sebep-sonuç ilişkisi bulunan iki veya daha fazla değişken arasındaki ilişkiyi belirlemek ve bu ilişkiyi kullanarak o konu ile ilgili tahminler (estimation) ya da kestirimler (prediction) yapabilmek amacıyla yapılır. Doğada birçok olayda sebep sonuç ilişkisine rastlamak mümkündür. Örnek: Sebep Sonuç Gelir Harcama Yaş Boy Gübre Verim Yem miktarı Süt miktarı Çalışma süresi Alınan not Bu analiz tekniğinde iki (basit regresyon) veya daha fazla değişken (çoklu regresyon) arasındaki ilişki açıklamak için matematiksel bir model kullanılır ve bu model regresyon modeli olarak adlandırılır.aşağıda basit regresyon analizi anlatılmıştır. Basit regresyon modeli Y=α+βX+ε şeklinde bir bağımlı ve bir de bağımsız değişken içeren bir modeldir. Burada Y; bağımlı (sonuç) değişken olup belli bir hataya sahip olduğu varsayılır. X; bağımsız (sebep) değişkeni olup hatasız ölçüldüğü varsayılır. α; sabit olup X=0 olduğunda Y nin aldığı değerdir. β ise regresyon katsayısı olup, X in kendi birimi cinsinden 1 birim değişmesine karşılık Y de kendi birimi cinsinden meydana gelecek değişme miktarını ifade eder. ε; tesadüfi hata terimi olup ortalaması sıfır varyansı σ2 olan normal dağılış gösterdiği varsayılır. Bu varsayım parametre tahminleri için değil katsayıların önem kontrolleri için gereklidir. Parametrelerin (Katsayıların) Tahmini Bir regresyon modeli oluşturulurken genelde en-küçük kareler ve en büyükolabilirlik ( maximum likelihood) teknikleri olarak bilinen iki yaklaşımdan birisi kullanılır. Eğer hata teriminin normal dağılım göstermesi şeklinde bir varsayım varsa en büyük olabilirlik, hata 1

2 teriminin dağılışı ile ilgili herhangi bir varsayım söz konusu değilse en-küçük kareler tekniği kullanılarak parametreler tahmin edilir. 1 En-küçük kareler tekniği kullanılarak parametrelerin nasıl tahmin edildiğini örnek bir veri grubu üzerinde kısaca özetleyelim. Boy(cm) (X) Çevre(cm) (Y) Tabloda verilen X ve Y değişkenlerine ait beş gözlem çifti, koordinat eksenlerine yerleştirildiğinde elde edilen serpme diyagramının Şekil (a) daki grafik elde edilir. (a) (b) Şekil (a) da verilen noktaları temsil eden regresyon doğrusu oluşturulursa Şekil (b) elde edilir. Uydurulan regresyon doğrusu ile gözlem noktaları arasındaki fark hata (ε) olarak isimlendirilir. Regresyon doğrusuna ait parametreler öyle tahmin edilmelidir ki; doğru ile gözlem noktaları arasındaki fark (hata) en az olsun. Bunu sağlayacak teknik ise en-küçük kareler tekniğidir. Regresyon Analizi Đki değişken arasındaki korelasyonun matematiksel ifadesini tespit etmek için yapılan analiz. Bu matematiksel ifadeye de regresyon denklemi diyoruz

3 Regresyon denklemi genel ifadesi: Y` = a + bx X: seçilen bağımsız değişkenin değeri y Y`: seçilmiş X değerine için tahmin edilen Y değeri a: dogrunun Y ekseni kestiği noktanın değeri b: doğrunun eğimi a a ve b: regresyon katsayıları x Regresyon analizi Bir kriter değişkeni ile bir veya daha fazla sayıda tahmin değişkenleri arasındaki ilgiyi sayısal hale dönüştürmede kullanılan istatistiksel analizdir. Regresyon analizi esas olarak değişkenler arasında ilişkinin niteliğini saptamayı amaçlar. Tahmin değişkeni olarak bir değişken kullanılırsa basit regresyon, tahmin değişkenleri olarak iki veya daha fazla değişken kullanılırsa çoklu regresyon analizinde söz etmek mümkündür. Amaç her tahmin değişkenininin kriter değişkenindeki toplam değişmeye olan katkısının saptanması ve dolayısıyla tahmin değişkenlerinin doğrusal kombinasyonunun değerinden hareketle kriter değerinin tahmin edilmesidir. 2 Örnek: Tüketicilerin gelir düzeyleri ile A malının satışları arasındaki ilişkinin doğrusal olduğu varsayılarak iki değişken arasındaki ilişki matematiksel olarak gösterilebilir. Đki ya da daha çok değişken arasında ilişki olup olmadığını, ilişki varsa yönünü ve gücünü inceleyen korelasyon analizi ile değişkenlerden birisi belirli bir birim değiştiğinde diğerinin nasıl bir değişim gösterdiğini inceleyen regresyon analizi sağlık bilimlerinde çok kullanılan istatistiksel yöntemlerdir. 3 Regresyon analizi, bilinen bulgulardan, bilinmeyen gelecekteki olaylarla ilgili tahminler yapılmasına izin verir.regresyon, bağımlı ve bağımsız değişken(ler) arasındaki ilişkiyi ve doğrusal eğri kavramını kullanarak, bir tahmin eşitliği geliştirir.değişkenler arasındaki ilişki belirlendikten sonra, bağımsız değişken(ler)in skoru bilindiğinde bağımlı değişkenin skoru tahmin edilebilir. Bağımlı Değişken (y) Bağımlı değişken, regresyon modelinde açıklanan ya da tahmin edilen değişkendir. Bu değişkenin bağımsız değişken ile ilişkili olduğu varsayılır. Bağımsız Değişken (x) Bağımsız değişken, regresyon modelinde açıklayıcı değişken olup; bağımlı değişkenin değerini tahmin etmek için kullanılır

4 Değişkenler arasında doğrusal ilişki olabileceği gibi, doğrusal olmayan bir ilişki de olabilir. Bu nedenle, saçılım grafiği yapılmadan (ilişki yok/doğrusal ilişki var/doğrusal olmayan ilişki var) ve değişkenler arasında korelasyon varlığına rastlanmadan regresyon analizine karar verilmemesi gerekir. Bu bilgiler doğrultusunda, tek/çok değişkenli doğrusal regresyon analizlerinin yanı sıra, tek/çok değişkenli doğrusal olmayan regresyon analizleri de mevcuttur. (a) (+) yönlü Doğrusal ilişki (b) (-) yönlü Doğrusal ilişki (c) Doğrusal Olmayan ilişki (d) ilişki Yok Bağımlı değişken ile bağımsız değişken arasındaki doğrusal ilişkiyi açıklayan tek değişkenli regresyon modeli aşağıdaki gibidir: Y = a + bx Burada; y = Bağımlı değişkenin değeri a = Regresyon doğrusunun kesişim değeri (Sabit değer) b = Regresyon doğrusunun eğimi x = Bağımsız değişkenin değerini göstermektedir. 4

5 Örnek :Kardiyoloji kliniğine başvuran erkek hastalar üzerinde yapılan bir araştırmada, yas(x) ve kolesterol(y) değişkeni arasındaki korelasyondan yola çıkılarak kurulan regresyon modeli aşağıdaki gibi elde edilmiştir: Y=3,42+0,326x Bu modele göre, yastaki bir birimlik artısın, kolesterol değerinde birimlik bir artışa neden olacağı, yeni doğan bir erkeğin (X=0) kolesterol değerinin ise 3.42 olacağı söylenebilir.kurulan bu modele göre, 50 yasında bir erkeğin kolesterol değerinin ne kadar olacağını tahmin edebiliriz. X=50 için : Y=3,42+0,326*(50)=19,52 50 yasında bir erkeğin kolesterol değerinin olacağı söylenebilir. Tek Değişkenli Ve Çok Değişkenli Regresyon Analizi Regresyon analizi bağımlı değişken ile bir veya daha çok bağımsız değişken arasındaki ilişkiyi incelemek amacıyla kullanılan bir analiz yöntemidir. Bir tek bağımsız değişkenin kullanıldığı regresyon tek değişkenli regresyon analizi, birden fazla bağımsız değişkenin kullanıldığı regresyon analizi de çok değişkenli regresyon analizi olarak adlandırılır. Regresyon analizi ile ; bağımlı ve bağımsız değişkenler arasında bir ilişki var mıdır? Eğer bir ilişki varsa bu ilişkinin gücü nedir? Değişkenler arasında ne tür bir ilişki vardır? Bağımlı değişkene ait ileriye dönük değerleri tahmin etmek mümkün müdür ve nasıl tahmin edilmelidir? Belirli koşulların kontrol edilmesi durumunda özel bir değişken veya değişkenler grubunun diğer değişken veya değişkenler üzerindeki etkisi nedir ve nasıl değişir? gibi sorulara cevap aranmaya çalışılır. 4 Tek Değişkenli Regresyon Analizi Tek değişkenli regresyon analizi bir bağımlı değişken ve bir bağımsız değişken arasındaki ilişkiyi inceler. Tek değişkenli regresyon analizi ile bağımlı ve bağımsız değişkenler arasındaki doğrusal ilişkiyi temsil eden bir doğrunun denklemi formüle edilir. Çok Değişkenli Regresyon Analizi Đçinde bir adet bağımlı değişken ve birden fazla bağımsız değişkenin bulunduğu regresyon modelleri çok değişkenli regresyon analizi olarak bilinir. Regresyon analizi,birçok alanda veri analizi için başvurulan önemli bir istatistiksel teknik olup değişkenler arasındaki ilişkiyi açıklamak için kullanılır.kısaca regresyon analizi

6 ,bağımlı bir değişken ile bağımlı değişken üzerinde etkisi olduğu varsayılan bağımsız değişken(ler) arasındaki ilişkinin matematiksel bir model ile açıklanmasıdır. Basit doğrusal regresyon analizinde bir bağımlı ve bir bağımsız değişken söz konusu iken,çoklu doğrusal regresyon analizinde ise bir bağımlı değişken varken iki ya da daha fazla bağımsız değişken vardır ve her iki analizde de değişkenler arsında doğrusal bir ilişki vardır.ayrıca bağımlı ve bağımsız iki değişken arasında eğrisel bir ilişki var ise değişkenler arasındaki ilişki eğrisel regresyon modeli ile açıklanır. Korelasyon analizinde,değişkenlerin bağımlı ve bağımsız değişken olarak belirlenmesi hesaplamaların sonucu açısından önemli değilken,regresyon analizinde ise değişkenlerin hangisinin bağımlı hangisinin bağımsız değişken olduğunu tespit etmek çok önemlidir. Örneğin,ithalat ve ihracat yapan bir işletmenin karlılık düzeyini işletmenin bulunduğu ülkedeki döviz kurları etkileyebilir.o halde,işletmenin karlılık düzeyi bağımlı(y),ülkedeki döviz kurları ise bağımsız(x) değişken olarak ele alınmalıdır. 5 Tek Değişkenli Regresyon Analizi Tek değişkenli regresyon analizi bir bağımlı değişken ve bir bağımsız değişken arasındaki ilişkiyi inceleyen analiz tekniğidir.bu analizle bağımlı ve bağımsız değişkenler arsındaki doğrusal (lineer) ilişkiyi temsil eden bir doğru denklemi formüle edilmektedir.korelasyon analizinde olduğu gibi,regresyon analizinde üzerinde durulan ilişki,değişkenler arasındaki doğrusal ilişkidir.bu doğrunun hesaplanması ise en küçük kareler metodu yardımıyla yapılmaktadır. Regresyon analizi sonuçlarının yorumlanmasında birçok araştırmacı ve öğrenci tarafından ciddi hatalar yapılmaktadır.en yaygın hata,regresyon analizi sonuçlarının yorumlanmasında,x bağımsız değişkeninin y bağımlı değişkenine sebep olduğu şeklindeki yorumdur.bağımsız değişkenlerin bağımlı değişkendeki değişimi açıklıyor olması sebepselliği gerekli kılmaz.başka bir ifade ile,bağımlı ve bağımsız değişkenler arasında (pozitif ve negatif) bir ilişkinin olması her zaman bağımsız değişken(lerin) bağımlı değişkenin sebebi olduğu sonucunu doğurmayacaktır. Đki değişken arasında bir ilişkinin olabilmesi için sebepsellik şart değildir.đlişkinin sebebi belki de iki değişkenin üçüncü bir değişkenle olan ilişkilerinden kaynaklanıyor olabileceği gibi,söz konusu ilişki tamamen tesadüfi olarak da ortaya çıkmış 5 Bilimsel Araştırma Süreci ve SPSS ile Veri Analizi, SPSS 12.0 for Windows, Ayhan URAL,

7 olabilir.sebepsellik ile ilişkiselliğin aynı şeyler olmadığı unutulmamalıdır.regresyon analizi değişkenler arasındaki ilişkinin yapısı ve derecesi ile ilgilenmektedir. Çok Değişkenli Regresyon Analizi Bir bağımlı değişken ve birden fazla bağımsız değişkenin yer aldığı regresyon modellerine çok değişkenli regresyon analizi denir.çok değişkenli regresyon analizinde bağımsız değişkenler eş zamanlı olarak (aynı anda) bağımlı değişkendeki değişimi açıklamaya çalışmaktadır.hesaplama ve yorum bakımından tek değişkenli regresyon analizine benzemektedir.çok değişkenli regresyon analizinin yorumu tek değişkenli regresyon analizine benzemektedir.ancak bazı farklılıklar vardır.örneğin,tek değişkenli regresyon analizindeki karşılığı çoklu regresyon katsayısı R (multiple R) olarak ifade edilmektedir.çoklu regresyon katsayısı R,bir bağımlı değişkendeki değişim ile eşzamanlı(aynı anda) ele alınan birden fazla bağımsız değişkendeki değişim arasındaki ilişkinin derecesini göstermektedir.daha basit bir ifade ile, bağımlı değişken ile birlikte ele alınan bir grup bağımsız değişkendeki değişimin ilişkisinin (korelasyonunun) bir göstergesidir. Çok değişkenli regresyon analizi sosyal bilimlerin birçok dalında kullanım alanı bulmaktadır.pazarlama,sosyoloji ve psikoloji gibi bilim dallarında davranışsal hareketlerin belirlenmesinde,ekonomide zaman serisi türü ekonomik değişkenleri etkileyen faktörlerin tespiti ve geleceğe yönelik projeksiyonlarında(tahmininde) kullanım alanı bulmaktadır. Çoklu Regresyon Analizi Modelleri Basit regresyon analizinde bağımlı ve bağımsız değişken arasındaki ilişkiler analiz ediliyordu.bazı durumlarda ise;incelenen bir bağımlı değişkeni birçok bağımsız değişken etkileyebilir.bir bağımlı değişkeni birçok bağımsız değişkenin etkileme durumlarına kısa örnekler verelim.okuldaki bir öğrencinin başarısını,zekası,çalışma üresi,çalışma ortamı,aile ortamı vs.gibi birçok faktörler etkiler.bir hastanın iyileşme süresini aldığı ilaçların dozu,yaşı,cinsiyeti,hastalığın ağırlık derecesi gibi birçok faktörler etkiler. Çoklu regresyon analizinden olumlu sonuç alınabilmesi için,bağımlı ve bağımsız değişkenlerin sayısal olarak ve aynı ölçüm birimiyle ölçülmesi iyi sonuçlar verebilir.sınıflandırma ve aralıklı ölçümlerle,ve hele ölçüm birimleri de değişik olursa,iyi yorumlanabilir sonuçlar alınamaz.çünkü niteliksel özellikler sayısal olarak gösterilse bile,mesela zengine 1 yoksula 0 kodu verildiğinde,1 ile 0 arasındaki farkın gerçekte zengin ile yoksul arasındaki farkı gösterip göstermediği tartışılabilir.zenginle yoksul arasındaki fark 0 7

8 ile 1 arasındaki fark gibi değil,0 ile 20,30,50 arasındaki fark gibidir.öte yandan meslek gruplarını,mezun olunan okulları,cinsiyeti kodlamanın hiçbir anlamı yoktur. Bağımsız değişkeni seçerken de,kendi aralarında yüksek korelasyona sahip bağımsız değişkenlerden sadece birisinin alınması yoluna gidilmelidir.mesela,kişinin yaşı,meslekteki kıdemi,aldığı ücret ayrı değişkenlermiş gibi görünmelerine rağmen,aslında her üçü de birbiriyle sıkı sıkıya bağlantılıdır.çoklu regresyon analizinde böyle değişkenlerden sadece biri seçilmelidir.bunun için de analize başlamadan bütün değişkenlerin korelasyon matrisine bakıp,aralarında yüksek korelasyon alanlardan biri seçilmelidir. Çoklu regresyonda bazen hangi bağımsız değişkenin daha önemli olduğunu ve bağımlı değişkeni daha çok etkilediğini bilmek gerekir.bunun için önce korelasyonlara bakarız.yüksek korelasyon,daha güçlü doğrusal ilişkiyi gösterir.đkinci yol,bağımsız değişkenin bağımlı değişkeni,bir kez ikili değişken formülünde bir kez de ikili,bir kez de çoklu regresyon içinde nasıl etkilediğine bakmaktır. Çoklu Regresyon Metodları Enter metodu :Bağımsız değişkenleri bir blok olarak tek adımda girilip değerlendirildiği metod. Đleri Doğru Seçim Metodu (Forward selection) :Bağımlı değişken ile en yüksek pozitif veya negatif korelasyonu olan bağımsız değişken ilkönce seçilir.daha sonra girilen değişkenin katsayısının 0 olduğu hipotezi F testi ile yoklanır.burada elde edilen F değeri,spss in öngörülen F değerleri ile karşılaştırılır.spss in iki F ölçütü vardır. 1. F değeri sizin belirleyeceğiniz minumum bir F değeri ile karşılaştırılır.( F-toenter,FIN ).Normal ayar 3,84 tür.(bunu ayar yeri Linear regression penceresinden options anahtarı ile geçilen pencerede Use F Value kısmındadır. 2. F istatistiği ile bağlantılı ihtimalin ayarlanması (Porbability of F-toenter,PIN).Bunun normal ayarı da 0,05 tir. Eğer elde edilen F değeri bu ölçütlere eşit veya küçükse,o bağımsız değişken regresyon değerlendirmesine alınır ve seçim ileri doğru devam eder;yoksa işlem orada durdurulur. Bir değişken seçilip işleme alındığında,geride kalan bağımsız değişkenlerle bağımlı değişken arasındaki korelasyonlara bakılır ve en yüksek korelasyona sahip bağımsız değişken bir sonraki aday olur.bu,aynı zamanda en geniş F değerine sahip değişkenin de seçimi olur. 8

9 Geriye Doğru Eleme ( Backward Elimination ) Metodu :Đleri doğru seçimin tersine,burada önce bütün bağımsız değişkenler seçilir;sonra sıra ile belli ölçütlere göre eleme yapılır.spss ; eleme için iki ölçüt koymaktadır. 1. Değişkenin formülde kalabilmesi için en küçük kareler F değeri ( F-toremove,FOUT ).Normal ayar 2,71 dir. 2. En büyük F ihtimali (Probabability of F-to-remove,POUT).Bunun normal ayarı da 0,10 dur. Đlk önce en küçük kısmi korelasyon katsayısına sahip değişken incelenir.öngörülen değerlerden,büyük değere sahip değişken elenir. Adım Adım Seçme (Stepwise Selection) Metodu :Đlk olarak bağımsız değişken seçilir;eğer bu ileri doğru seçmedeki- FIN veya PIN gereklerini yerine getirirse ikinci değişken seçilir;yoksa işlem orada biter.đkinci değişken olarak en yüksek kısmi korelasyona sahip değişken alınır.seçimler yüksek korelasyondan düşüğe doğru yapılır.bağımsız değişkenler ölçütlere uyarsa regresyon analizine başlanır.đlk değişken seçildikten sonra Adım Adım seçme,ileri doğru seçmeden farklılaşır.đlk değişkenin,geriye doğru elemedeki gibi FOUT veya POUT ölçütlerine uyup uymadığı kontrol edilir.yani adım adım seçmede,hem ileri doğru seçme hem e geriye doğru eleme işlemleri yapılır. 6 Çoklu Doğrusal Bağlantı Basit regresyon analizindeki tüm varsayımlar çoklu regresyon analizinde de geçerlidir.bu varsayımları hatırlarsak bağımlı değişken x1 tesadüfi bir değişkendir ve normal dağılım göstermektedir.tahmin hataları tesadüfidir ve normal dağılım gösterirler.hatalar birbirinden bağımsızdır.(otokorelasyon yoktur.).her bağımsız değişkenin değerlerine ait olan bağımlı değişken değerlerinin alt setleri varyansları birbirine eşittir.(eşit varyanslılıkhomoscedasticity).çoklu regresyon analizinde bu varsayımlara bir dördüncüsü eklenmektedir.bu varsayım bağımsız değişkenler arasında basit doğrusal ilişkilerin olmaması şeklinde ifade edilebilir.bağımsız değişkenler arasındaki basit doğrusal korelasyon katsayılarının 0 veya 0 a çok yakın olması şartı şeklinde de açıklanabilen bu varsayıma,istatistikte Çoklu Doğrusal Bağlantı (Multicollinearity) olmama durumu adı verilmektedir. 7 6 Bilimsel Araştırmalarda Bilgisayarlarla Đstatistik Uygulamaları,SPSS for Windows,Prof.Dr.Mustafa ERGÜN 7 Uygulamalı Regresyon Ve Korelasyon Analizi,Doç.Dr.Neyran ORHUNBĐLGE, Đ.Ü Đşletme Fakültesi 9

Korelasyon, Korelasyon Türleri ve Regresyon

Korelasyon, Korelasyon Türleri ve Regresyon Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı REGRESYON ANALİZİ VE UYGULAMA Yrd. Doç. Dr. Hidayet Takcı htakci@cumhuriyet.edu.tr Sunum içeriği Bu sunumda; Lojistik regresyon konu anlatımı Basit doğrusal regresyon problem çözümleme Excel yardımıyla

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

ZAMAN SERİLERİNDE REGRESYON ANALİZİ

ZAMAN SERİLERİNDE REGRESYON ANALİZİ ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI ANADOLU ÜNİVERSİTESİ Deney Tasarımı ve Regresyon Analizi Regresyonda Güven Aralıkları ve Hipotez Testleri Doç. Dr. Nihal ERGİNEL-2015 REGRESYON KATSAYILARININ GÜVEN ARALIĞI + in güven aralığı : i-) n 30

Detaylı

www.fikretgultekin.com 1

www.fikretgultekin.com 1 KORELASYON ANALĐZĐ (Correlation Analysis ) Basit Korelasyon Analizi Basit korelasyon analizinde iki değişken söz konusudur ve bu değişkenlerin bağımlıbağımsız değişken olarak tanımlanması/belirlenmesi

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

İÇİNDEKİLER 1. GİRİŞ...

İÇİNDEKİLER 1. GİRİŞ... İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon Korelasyon- (lineer korelasyon) Açıklayıcı (Bağımsız) Değişken x çalışma zamanı ayakkabı numarası İki değişken arasındaki ilişkidir. Günlük sigara sayısı SAT puanı boy Yanıt (Bağımlı)

Detaylı

2. BASİT DOĞRUSAL REGRESYON 12

2. BASİT DOĞRUSAL REGRESYON 12 1. GİRİŞ 1 1.1 Regresyon ve Model Kurma / 1 1.2 Veri Toplama / 5 1.3 Regresyonun Kullanım Alanları / 9 1.4 Bilgisayarın Rolü / 10 2. BASİT DOĞRUSAL REGRESYON 12 2.1 Basit Doğrusal Regresyon Modeli / 12

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

İSTATİSTİK-II. Korelasyon ve Regresyon

İSTATİSTİK-II. Korelasyon ve Regresyon İSTATİSTİK-II Korelasyon ve Regresyon 1 Korelasyon ve Regresyon Genel Bakış Korelasyon Regresyon Belirleme katsayısı Varyans analizi Kestirimler için aralık tahminlemesi 2 Genel Bakış İkili veriler aralarında

Detaylı

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma...

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma... İçindekiler İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii BÖLÜM 1 Ölçme, İstatistik ve Araştırma...1 Ölçme Nedir?... 3 Ölçme Süreci... 3 Değişkenler

Detaylı

KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ

KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ 1 KORELASYON ANALİZİ İki değişken arasındaki doğrusal ilişkinin gücünü(derecesini) ve yönünü belirlemek için hesaplanan bir sayıdır. Belirli

Detaylı

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Bir değişkenin değerinin,

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

ÜSTEL DÜZLEŞTİRME YÖNTEMİ

ÜSTEL DÜZLEŞTİRME YÖNTEMİ ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: TAHMİN Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 17 Ekim 2012 Ekonometri

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

KORELASYON VE REGRESYON ANALİZİ

KORELASYON VE REGRESYON ANALİZİ KORELASON VE REGRESON ANALİZİ rd. Doç. Dr. S. Kenan KÖSE İki ya da daha çok değişken arasında ilişki olup olmadığını, ilişki varsa yönünü ve gücünü inceleyen korelasyon analizi ile değişkenlerden birisi

Detaylı

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi Parametrik Olmayan Testler İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Rank Korelasyon Parametrik

Detaylı

ÖRNEK BULGULAR. Tablo 1: Tanımlayıcı özelliklerin dağılımı

ÖRNEK BULGULAR. Tablo 1: Tanımlayıcı özelliklerin dağılımı BULGULAR Çalışma tarihleri arasında Hastanesi Kliniği nde toplam 512 olgu ile gerçekleştirilmiştir. Olguların yaşları 18 ile 28 arasında değişmekte olup ortalama 21,10±1,61 yıldır. Olguların %66,4 ü (n=340)

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

Nitel Tepki Bağlanım Modelleri

Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Ekonometri 2 Konu 18 Sürüm 2,0 (Ekim 2011) Doğrusal-Dışı Yaklaşım ve UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons

Detaylı

Tekrarlı Ölçümler ANOVA

Tekrarlı Ölçümler ANOVA Tekrarlı Ölçümler ANOVA Repeated Measures ANOVA Aynı veya ilişkili örneklemlerin tekrarlı ölçümlerinin ortalamalarının aynı olup olmadığını test eder. Farklı zamanlardaki ölçümlerde aynı (ilişkili) kişiler

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

Bir Normal Dağılım Ortalaması İçin Testler

Bir Normal Dağılım Ortalaması İçin Testler Bir Normal Dağılım Ortalaması İçin Testler İÇERİK o Giriş ovaryansı Bilinen Bir Normal Dağılım Ortalaması İçin Hipotez Testler P-değerleri: II. Çeşit hata ve Örnekleme Büyüklüğü Seçimi Örnekleme Büyüklüğü

Detaylı

Nedensel Modeller Y X X X

Nedensel Modeller Y X X X Tahmin Yöntemleri Nedensel Modeller X 1, X 2,...,X n şeklinde tanımlanan n değişkenin Y ile ilgili olmakta; Y=f(X 1, X 2,...,X n ) şeklinde bir Y fonksiyonu tanımlanmaktadır. Fonksiyon genellikle aşağıdaki

Detaylı

İÇİNDEKİLER. Birinci Bölüm UYGULAMA VERİLERİ

İÇİNDEKİLER. Birinci Bölüm UYGULAMA VERİLERİ İÇİNDEKİLER Birinci Bölüm UYGULAMA VERİLERİ VERİ GRUBU 1. Yüzücü ve Atlet Verileri... 1 VERİ GRUBU 2. Sutopu, Basketbol ve Voleybol Oyuncuları Verileri... 4 VERİ 3. Solunum Yolları Verisi... 7 VERİ 4.

Detaylı

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın.

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın. KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1 SPSS UYGULAMALARI-II 27.12.2016 Dr. Seher Yalçın 1 Normal Dağılım Varsayımının İncelenmesi Çarpıklık ve Basıklık Katsayısının İncelenmesi Analyze Descriptive Statistics Descriptives tıklanır. Açılan pencerede,

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

İLERİ BİYOİSTATİSTİK KURSU

İLERİ BİYOİSTATİSTİK KURSU 1.GÜN (14 Eylül 2017) 08:30-09:00 Kurs Kayıt Açılış Konuşması 09:00-10:00 Tanışma -Katılımcıların Temel İstatistik Bilgisinin Değerlendirilmesio Çok Değişkenli İstatistiksel Yöntemlere Giriş o Basit Doğrusal

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Marmara Üniversitesi U.B.F. Dergisi YIL 2005, CİLT XX, SAyı 1 YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Yrd. Doç. Dr. Ebru ÇACLAYAN' Arş. Gör. Burak GÜRİş" Büyüme modelleri,

Detaylı

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA

Detaylı

KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOKLU REGRESYON ANALİZİNDE EK KONULAR Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI Öğrenci Bilgileri Ad Soyad: İmza: MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI 26 Mayıs, 2014 Numara: Grup: Soru Bölüm 1 10 11 12 TOPLAM Numarası (1-9) Ağırlık 45 15 30 20 110 Alınan Puan Yönerge 1. Bu sınavda

Detaylı

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2 Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi Cilt 5, Sayı:2, 2003 YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI Sibel SELİM 1 Efe SARIBAY

Detaylı

3. BÖLÜM: EN KÜÇÜK KARELER

3. BÖLÜM: EN KÜÇÜK KARELER 3. BÖLÜM: EN KÜÇÜK KARELER Bu bölümde; Kilo/Boy Örneği için Basit bir Regresyon EViews Denklem Penceresinin İçeriği Biftek Talebi Örneği için Çalışma Dosyası Oluşturma Beef 2.xls İsimli Çalışma Sayfasından

Detaylı

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel

Detaylı

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz.

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. PARAMETRİK TESTLER Tek Örneklem t-testi 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. H0 (boş hipotez): 200 öğrencinin matematik dersinden aldıkları

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

Eşanlı Denklem Modelleri

Eşanlı Denklem Modelleri Eşanlı Denklem Modelleri Eşanlı Denklem Yöntemleri Ekonometri 2 Konu 23 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported (CC

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT352 Ekonometri II, Dönem Sonu Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT352 Ekonometri II, Dönem Sonu Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sınav toplam 100 puan değerinde 5 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm soruların

Detaylı

BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 1. Pearson Korelasyon Katsayısı

Detaylı

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 KİTABIN İÇİNDEKİLER BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 BÖLÜM-2.BİLİMSEL ARAŞTIRMA Belgesel Araştırmalar...7 Görgül Araştırmalar Tarama Tipi Araştırma...8

Detaylı

ĐSTATĐSTĐK. Okan ERYĐĞĐT

ĐSTATĐSTĐK. Okan ERYĐĞĐT ĐSTATĐSTĐK Okan ERYĐĞĐT Araştırmacı, istatistik yöntemlere daha işin başında başvurmalıdır, sonunda değil..! A. Bradford Hill, 1930 ĐSTATĐSTĐĞĐN AMAÇLARI Bilimsel araştırmalarda, araştırmacıya kullanılabilir

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla.

7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. 7.Ders Bazı Ekonometrik Modeller Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. Kaynak: TÜĐK dönemler gayri safi yurt içi hasıla düzeyi 1987-1 8680793 1987-2 9929354 1987-3 13560135 1987-4

Detaylı

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler 1 SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

FAKTÖR ANALİZİ VAHİDE NİLAY KIRTAK

FAKTÖR ANALİZİ VAHİDE NİLAY KIRTAK FAKTÖR ANALİZİ VAHİDE NİLAY KIRTAK Çok Değişkenli İstatistikler Faktör Analizi Faktör Analizinin Amacı: Birbirleriyle ilişkili p tane değişkeni bir araya getirerek az sayıda ilişkisiz ve kavramsal olarak

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004

ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004 ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004 1 Laboratuvarlarda yararlanılan analiz yöntemleri performans kalitelerine göre üç sınıfta toplanabilir: -Kesin yöntemler

Detaylı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı ARAŞTIRMA MODELLİLERİNDE KULLANILACAK İSTATİSTİKLERİ BELİRLEME ÖLÇÜTLERİ Parametrik mi Parametrik Olmayan mı? Kullanılacak İstatistikleri Belirleme Ölçütleri Değişken Sayısı Tek değişkenli (X) İki değişkenli

Detaylı

DİNAMİK PANEL VERİ MODELLERİ. FYT Panel Veri Ekonometrisi 1

DİNAMİK PANEL VERİ MODELLERİ. FYT Panel Veri Ekonometrisi 1 DİNAMİK PANEL VERİ MODELLERİ FYT Panel Veri Ekonometrisi 1 Dinamik panel veri modeli (tek gecikme için) aşağıdaki gibi gösterilebilir; y it y it 1 x v it ' it i Gecikmeli bağımlı değişkenden başka açıklayıcı

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ DOYMA BASINCI DENEY FÖYÜ 3

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ DOYMA BASINCI DENEY FÖYÜ 3 BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ DOYMA BASINCI DENEY FÖYÜ 3 Hazırlayan: Arş. Gör. Gülcan ÖZEL 1. Deney Adı: Doyma çizgisi kavramı 2. Deney Amacı:

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 12 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır.

Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır. Hipotez testleri-oran testi Oran Testi Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır Örnek: Yüz defa atılan bir para 34 defa yazı gelmiştir Paranın yazı gelme olasılığının

Detaylı

9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir?

9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? 9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? Ardışık bağımlılık sorunu, hata terimleri arasında ilişki olmadığı (E(u i,u j ) = 0, i j) varsayımının geçerli olmamasıdır.

Detaylı

altında ilerde ele alınacaktır.

altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini

Detaylı

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ DÖNEM I-I. DERS KURULU Konu: Bilimsel yöntem ve istatistik Amaç: Biyoistatistiğin tıptaki önemini kavrar ve sonraki dersler için gerekli terminolojiye hakim olur.

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ 1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ Örneklem verileri kullanılan her çalışmada bir örneklem hatası çıkma riski her zaman söz konusudur. Dolayısıyla istatistikte bu örneklem hatasının meydana

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

GRAFİK ÇİZİMİNDE ÖNEMLİ NOKTALAR

GRAFİK ÇİZİMİNDE ÖNEMLİ NOKTALAR Koyu uçlu bir kurşun kalem kullanın ve lütfen okunaklı yazın Bir hata yaptığınızda, lütfen yumuşak silgi kullanın ve hatanızı güzelce silin Değişkenlerin Belirlenmesi Bağımsız değişkenleri x eksenine,

Detaylı

15.433 YATIRIM. Ders 7: CAPM ve APT. Bölüm 2: Uygulamalar ve Sınamalar

15.433 YATIRIM. Ders 7: CAPM ve APT. Bölüm 2: Uygulamalar ve Sınamalar 15.433 YATIRIM Ders 7: CAPM ve APT Bölüm 2: Uygulamalar ve Sınamalar Bahar 2003 Öngörüler ve Uygulamalar Öngörüler: - CAPM: Piyasa dengesinde yatırımcılar sadece piyasa riski taşıdıklarında ödüllendirilir.

Detaylı

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS DİSKRİMİNANT ANALİZİ (AYIRIM) Emre KUZUGÜDENL DENLİ Doç.Dr.Serdar CARUS Bu analiz ile; Bir bireyin hangi gruptan geldiği (p değişkeni kullanarak, bireyi uygun bir gruba atar ) Her bir değişkenin atama

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık - I Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kes1rim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmak7r. ü Bu anlamda, anakütleden çekilen

Detaylı

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER A) Normal Dağılım ile İlgili Sorular Sayfa /4 Hamileler ile ilgili bir araştırmada, bu grubun hemoglobin değerlerinin normal dağılım gösterdiği

Detaylı

İLERİ ARAŞTIRMA SORU HAVUZU

İLERİ ARAŞTIRMA SORU HAVUZU 1 ) Bir ölçümde bağımlı değişkenlerdeki farklılıkların bağımsız değişkenlerdeki farklılıkları nasıl etkilediğini aşağıdakilerden hangisi ölçer? A) Bağımlı Değişken B) Bağımsız Değişken C) Boş Değişken

Detaylı

1.1.1. Açıklayıcı faktör analizi (EFA, Exploratory Factor Analysis)

1.1.1. Açıklayıcı faktör analizi (EFA, Exploratory Factor Analysis) 1. FAKTÖR ANALİZİ Faktör analizi (Factor Analysis) başta sosyal bilimler olmak üzere pek çok alanda sıkça kullanılan çok değişkenli analiz tekniklerinden biridir. Faktör analizi p değişkenli bir olayda

Detaylı

REPEATED MEASURES ANOVA (Tekrarlı Ölçümler ANOVA )

REPEATED MEASURES ANOVA (Tekrarlı Ölçümler ANOVA ) REPEATED MEASURES ANOVA (Tekrarlı Ölçümler ANOVA ) 6.SUNUM 1 Tekrarlı Ölçümler ANOVA Repeated Measures Design: Yinelenmis Ölçüler Tasarımı ya da tekrarlanmış ölçüler tasarımı olarak adlandırılabilir. Repeated

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

BASİT REGRESYON MODELİ

BASİT REGRESYON MODELİ BASİT REGRESYON MODELİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri I: Basit Regresyon

Detaylı

BÖLÜNMÜŞ FARKLAR (DİVİDED DİFFERENCES)

BÖLÜNMÜŞ FARKLAR (DİVİDED DİFFERENCES) BÖLÜNMÜŞ FARKLAR (DİVİDED DİFFERENCES) Lagrange ve Neville yöntemlerinin bazı olumsuz yanları vardır: İşlem sayısı çok fazladır (bazı başka yöntemlere kıyasla) Data setinde bir nokta ilavesi veya çıkartılması

Detaylı

UYGULAMALAR. Normal Dağılımlılık

UYGULAMALAR. Normal Dağılımlılık UYGULAMALAR EKONOMETRİYE GİRİŞ 0.01.008 1 Normal Dağılımlılık Amerika da 195-1941 yılları arasında sığır eti fiyatı ile kişi başı sığır eti tüketimi arasındaki ilişki incelenmiş ve aşağıdaki sonuç bulunmuştur.

Detaylı

Üniversite Öğrencilerinin Akademik Başarılarını Etkileyen Faktörler Bahman Alp RENÇBER 1

Üniversite Öğrencilerinin Akademik Başarılarını Etkileyen Faktörler Bahman Alp RENÇBER 1 Çankırı Karatekin Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 3(1): 191-198 Üniversite Öğrencilerinin Akademik Başarılarını Etkileyen Faktörler Bahman Alp RENÇBER 1 Özet Bu çalışmanın amacı, üniversite

Detaylı

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1 İÇİNDEKİLER ÖNSÖZ... v 1. BÖLÜM Örneklem Genişliğinin Elde edilmesi... 1 1.1. Kitle ve Parametre... 1 1.2. Örneklem ve Tahmin Edici... 2 1.3. Basit Rastgele Örnekleme... 3 1.4. Tabakalı Rastgele Örnekleme...

Detaylı