DEVLET VEYA ÖZEL OKUL SEÇİMİNDE KARAR VERME SÜRECİ VE MATEMATİKSEL KARAR YÖNETİMİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DEVLET VEYA ÖZEL OKUL SEÇİMİNDE KARAR VERME SÜRECİ VE MATEMATİKSEL KARAR YÖNETİMİ"

Transkript

1 DARÜŞŞAFAKA LİSESİ SALİH ZEKİ MATEMATİK YARIŞMASI DEVLET VEYA ÖZEL OKUL SEÇİMİNDE KARAR VERME SÜRECİ VE MATEMATİKSEL KARAR YÖNETİMİ ÖĞRENCİLER: CİHAN ATLİNAR KAAN YURTTAŞ DANIŞMAN: SERHAT GÖKALP MEV KOLEJİ ÖZEL BÜYÜKÇEKMECE ANADOLU LİSESİ İSTANBUL-2014

2 İçindekiler AMAÇ:... 2 GİRİŞ... 2 YÖNTEM... 2 SONUÇ KAYNAKÇA: TEŞEKKÜR

3 AMAÇ: Okul seçimi karar verme işlemi oldukça önemlidir.bulanık mantık bu özellikleri modelleyebilebilir. Bu projenin amacı, velilerin kararını belirleyen başlıca etkenleri değerlendirmek ve bu değerler sonucu yaptıkları seçimleri bulanık kümeler tekniğiyle bilimsel olarak modellemektir. GİRİŞ Okul seçimi kararı alırken alıcı bazı karar alma hatalarına açıktır. Bunlar; 1.Okul seçerken diğer insanların etkisinin psikolojik olarak fazla olması 2.Değerlendirme kriterlerinin tespitinin yeterli olmaması 3.Değerlendirme kriterlerinin puanlamasının eksik veya fazla yapılması 4.Karar verilecek okulun özelliklerinin bilinememesi Projemizde bulanık kümeleri okul seçimi sürecine aşağıdaki gibi uygulayacağız. 1. Bu karar alma hatalarının yapılmaması veya en aza indirilmesi için matematiksel bir model geliştirdik. 2. Öncelikle hata yapılabilecek alanları yukarıdaki maddelerden esinlenerek tespit ettik. 3. Karar alırken önemli olan kriterleri ve önemlerini oy kullanabilecek uzman olan 50 kişiye sorarak tespit ettik. 4. Bu kriterlerin katsayılarını ankete göre belirledik. 5. Uzmanların verdiği puanlara göre tablo oluşturduk. 6. Katsayı ve kriterlere göre toplam puan fonksiyonu oluşturduk. 7. Alıcıların değerlendirme sonucu verdiği puanları yüzdeye çevirdik. 2

4 8. Velilerin işini kolaylaştırmak için bu işlemler için bir tablo yaptık. Bu şekilde alıcılar sadece ilgili bölümleri doldurarak her bir araba için tavsiye edilen tavsiye kararını öğrenebileceklerdir. 9. Alınan sonuçlar tabloya işlendi. 10. Son olarak temsili bir veli-okul seçimi uygulaması yapılarak velilerin kanaatleri alındı. YÖNTEM BULANIK SİSTEMLER Kompleks sistemleri basitleştirmenin bir yolu belli oranda hassassızlığa, belirsizliğe ve kesinsizliğe tahammül etmektir. Tabi ki ortaya çıkan sonuçlar mükemmel değildir ama çoğu kez modelleme problemini çözerler. Belirsizliği ifade etmek için şu örneği verebiliriz: Mehmet yaşlıdır. Bu cümlenin anlamı bize Mehmet in yaşını tam olarak ifade etmez. Bir belirsizlik söz konusudur. Mehmet yaşlarındadır cümlesinde ise bir hassassızlık durumu vardır. Kesinsizlik ise olasılık kavramının bir getirisidir. Şans oyunlarında kesinsizlik söz konusudur. 3

5 BULANIK MANTIK TEORİSİNİN UYGULAMALARI VE KULLANIM ALANLARI Bulanık Mantığın en yaygın kullanım alanlarının başında şu konular gelmektedir: Yapay zeka, sistem analizi, karar analizi, nümerik analiz, veri işleme, mühendislik, Genetik algoritmalar, ekonomi, robotik. Bulanık mantık ilk kez 1973 yılında, Londra'ki Queen Mary College'da profesör olan Ebrahim H. Mamdani tarafından bir buhar makinesinde uygulandı. Ticari olarak ise ilk defa, 1980 yılında, Danimarka'daki bir çimento fabrikasının fırınını kontrol etmede kullanıldı. Bulanık mantık ile hazırlanan bir sistem, bilgisayar desteğinde, sensörlerden ısı ve maddelere ait bilgileri alarak ve "feed-back" (geri besleme) metoduyla değişkenleri kontrol ederek, bu ayarlama işini çok hassas ölçümlerle gerçekleştirmiş ve büyük oranda enerji tasarrufu sağlamıştır. Bulanık Küme Teorisi ve Maddeleri İki değerli mantıkla iki mutlak sonucu 0 ve 1 olarak, sonsuz değerli mantıkta sonuçları [0.0, 1.0] aralığında tanımlayabileceğimizi belirtmiştik. Bu değerlere üyelik derecesi denir. 0 mutlak yanlışlığı, 1 ise mutlak doğruluğu gösterir. Bu üyelik derecesi daha önce bahsettiğimiz belirsizliği tanımlamaya çalışan bir fonksiyonla ölçülebilir. Bu fonksiyon bir A Bulanık Kümesinin elamanlarını [0,1] aralığındaki reel bir değere dönüştürür. Aşağıdaki şekilde gösterilir. 4

6 µ A (x) [0,1] Tanım 1: X boş olmayan bir küme olsun. X deki bir Bulanık A kümesi üyelik fonksiyonu A: X [0,1] ile özelleştirilmiştir. x X için; x in üyelik derecesi A(x) olarak yorumlanmıştır. (µ A olarak da gösterilebilir) Çalışılan X evreni kesin ve sınırlı olduğu zaman A kümesi sembolik olarak aşağıdaki gibi gösterilir: A = { µ A (x 1 ) + µ A (x 2 )+...}= { µ A (x i )} i= (1,..) Bu gösterimdeki cebirsel semboller cebirsel anlamlarıyla kullanılmazlar. Örneğin + toplam anlamında değil teorik olarak birleşme anlamındadır. Konuya aşağıdaki örneklerle yaklaşalım: Örnek. Çoğu zaman farklı olarak sınırları kesin olarak belirleyemediğimiz durumlar ortaya çıkabilir. 1 e yaklaşan reel sayıların bulanık kümesinin üyelik fonksiyonunu aşağıdaki gibi tanımlanabilir: 5

7 Şekil. 1!e yaklaşan sayıların üyelik fonksiyonu Yukarıdaki önerme için uygun fonksiyonlardan biri Gaussian eğrisidir (çan eğrisi): µ a,m (x) = e a(x-m)² a>0, m R. Bu örnekte m=1 dir. Eğer özel olarak 1 yaklaşan doğal sayılar için bir küme tanımlamak istersek, bunu aşağıdaki şekilde ifade edebiliriz A= { } Not : Real sayıların kümesi sürekli iken doğal sayıların kümesinin kesikli olduğuna dikkat ediniz. Not : Bu örnekte Gaussian eğrisi keyfi olarak seçilmiştir. Örneğe uygun başka bir fonksiyonda seçilebilirdi. Fonksiyon şu koşulları sağlamalıdır: fonksiyon x=1 ye göre simetrik olmalıdır. A(1)=1 ve diğer tüm x X için A(x)< 1 A(x) 1 den 0 a x-1 artan farkı ile monoton olarak azalmalıdır. 6

8 Açıkça görülmektedir ki bulanık kümelerin kullanışlılığı büyük oranda bizim, farklı kavramlara uygun üyelik derecesi fonksiyonlarını oluşturabilme becerimize dayanmaktadır. Bu beceri, bulanık kümeler teorisinin ilk zamanlarında zayıf olsa da, günümüzde birçok alanda gelişmiştir. En sık kullanılan fonksiyonlar kolaylık açısından üçgen ve yamuktur. NOT: Bulanık kümeler için konveksliğin tanımının üyelik fonksiyonlarının konveks olması anlamına gelmediğine dikkat ediniz. Aslında çoğu zaman kullanılan üyelik fonksiyonları ne konvekstir ne de konkavdır. -kesitleri birer keskin kümedir ve keskin kümelerde konvekslik şu şekilde tanımlanır: n de tanımlı bir kümenin herhangi iki elamanını birleştiren doğru parçasının herbir noktası kümenin içinde kalıyorsa bu kümeye konveks denir 7

9 Bulanık Sayılar Çoğu durumda insanlar sayısal bilgileri hassas bir şekilde tanımlayamazlar. Örneğin yaklaşık 55, 0 a yakın, 6000 den büyük gibi ifadeler kullanırlar.bunlar bulanık sayılara birer örnektir. Bulanık alt- kümeler Teorisini kullanarak bu bulanık sayıları reel sayılar kümesinin bir bulanık alt-kümesi olarak tanımlayabiliriz. Bulanık bir A sayısı en azından aşağıdaki 3 koşulu sağlamalıdır: (i) (ii) (iii) (iv) A normal bir bulanık küme olmalıdır; A konveks bir bulanık küme olmalıdır A nın desteği, 0+ A, sınırlı olmalıdır. 1 a- a a+ Şekil. Üçgen bulanık sayı a merkezli üçgen bulanık sayı şu şekilde yorumlanabilir x yaklaşık olarak a ya eşittir. 8

10 1 a- a b b+ Şekil. Yamuk bulanık sayı Yamuk bir bulanık sayı şu şekilde yorumlanabilir: x yaklaşık olarak [a,b] aralığındadır. BASİT (STANDART) BULANIK KÜME İŞLEMLERİ Boş olmayan bir X evreninde A ve B bulanık kümeleri tanımlanmış olsun. A ve B kümeleri için birleşme, arakesit ve tümleyen teorik küme işlemleri sırasıyla aşağıdaki gibi verilmiştir: (i) (ii) (iii) (A B)(t) = max[a(t), B(t)] = A(t) B(t) (A B)(t) = min[a(t), B(t)] = A(t) B(t) A(t) = 1 A(t) 9

11 Örnek: X = { -2, -1, 0, 1, 2, 3, 4} A = {0.6/ / / / / / /4} B = {0.1/ / / / / / /4} A B = 0.6/ / / / / / /4 } Şekil. A ve B üçgen bulanık sayılarının kesişimi Örnek : X = { -2, -1, 0, 1, 2, 3, 4} A = {0.6/ / / / / / /4} B = {0.1/ / / / / / /4} A = {0.4/ / / / / / /4} B = { / / / / / /4} A 10

12 A Şekil. A bulanık kümesinin tümleyeni DEVLET VE ÖZEL OKUL SEÇME KRİTERLERİ AŞAĞIDA VERİLMİŞTİR. 1) Okul binası ve fiziksel imkanların zenginliği 2) Yakınlık-ulaşım kolaylığı 3)Eğitim ciddiyetinin seviyesi 4)Ücretin azlığı veya çokluğu 5) Öğretmen sürekliliği 6) Öğretmenlerin tecrübeli ve kaliteli 7)Okul disiplini 8)Okul içi aktiviteler 9)Okul dışı aktiviteler 10)Yabancı dil eğitimi 11)İkinci yabancı dil eğitimi 12)Yurt dışı bağlantıları 13)Rehberlik sistemi 14)Velilerin kültür düzeyi 15)Bilimsel projelere verilen önem 11

13 Tabloda puanlar doldurulduktan sonra; 1-) k 1, k 2, k 3 k 15 kriterlerin önem katsayılarıdır. P 1, P 2, P 3 P 15 Velilerin puanlarıdır. ort.p 1, ort.p 2, ort.p 3 ort.p 15 her kriter için toplam puanın 15 e bölünerek aritmetik ortalamalarıdır. 2-) f(x i ) toplam fonksiyonu için; f(x i ) = k 1.ort.P 1 + k 2.ort.P 2 k 15.ort.P 15 3-) k. p k. p... k. p % Tavsiye Puanı 4-) Toplam fonksiyonunda çıkan sonuç; yüzde olarak verilecek kararın geçerliliği ve kişiye uygunluğu açısından velilerin karar alma sürecini kolaylaştıracaktır. %0 - %45 KAYIT OLUNMASIN %45 - %60 TEKRAR DÜŞÜNÜLMELİ %60 - %80 KAYIT OLUNMASI TAVSİYE EDİLİR %80 - %100 SİZE EN UYGUN OKUL 12

14 ÖRNEK UYGULAMA 1) Kriterler ve Katsayıları (Anket ile belirlenmiştir.) Velilerin puanları P 1, P 2.. P 15 dir. KRİTERLER 1) Okul binası ve fiziksel imkanların zenginliği 60 2) Yakınlık-ulaşım kolaylığı DEVLET OKULU 70 VELİ PUANI ÖZEL OKUL P 1 90 P )Eğitim ciddiyetinin seviyesi 50 4)Ücretin azlığı veya çokluğu 5) Öğretmen sürekliliği 100 6)Öğretmenlerin tecrübeli ve kaliteli olması 70 7)Okul disiplini 8)Okul içi aktiviteler 9)Okul dışı aktiviteler 10)Yabancı dil eğitimi 11)İkinci yabancı dil eğitimi 12)Yurt dışı bağlantıları 13)Rehberlik sistemi 14)Velilerin kültür düzeyi 15)Bilimsel projelere verilen önem P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 10 P 11 P 12 P 13 P 14 P Topla devlet 850,özel 1160 dır.850/15=57 ve 1160/15=77 13

15 2) f(x i ) toplam fonksiyonu için; f(x devlet ) = k 1.ortP 1 + k 2.ortP 2 k 15.ortP 15 f (x özel ) = k 1.ortP 1 + k 2.ortP 2 k 15.ortP 15 3) k, devlet için maksimum 86 puan üzerinden,özel okul için maksimum 117 puan üzerinden alınır; P ise, 100 üzerinden verildiği için 15 kriterin yüzde olarak tavsiye puanı çıkarılır. k. p k. p... k. p % DEVLET Tavsiye Puanı k. p k. p... k. p % OZELOKUL Tavsiye Puanı ÖRNEK 1 VELİ - DEVLET OKUL PUANLARI : 14

16 DEVLET OKUL TAHMİN PUANI : (YAKLAŞIK) VELİ - ÖZEL OKUL PUANLARI : (YAKLAŞIK) 15

17 ÖRNEK -2 VELİ - DEVLET OKUL PUANLARI : DEVLET TAHMİN PUANI : 39 (YAKLAŞIK) 16

18 ÖZEL OKUL TAVSİYE PUANI: VELİ ÖZEL OKUL PUANLARI (YAKLAŞIK) 17

19 4) Tavsiye puanı devlet ve özel okul için şu şekilde değerlendirilir. %0 - %45 KAYIT OLMAYIN %45 - %60 TEKRAR DÜŞÜNÜLMELİ %60 - %80 KAYIT OLUNMASI TAVSİYE EDİLİR %80 - %100 KAYIT OLUNMASI GEREKİR. SONUÇ 1. Bulanık bir karar verme sürecini net bir şekilde sonuçlandırarak zaman kaybını önledik. 2. Hata paylarını en aza indirmiş olduk. 3. Her okul seçiminde kullanılabildiği için dinamik bir modeldir. 4. Çok kapsamlı bir olayda kriterler artırılarak uygulanabilirlik devam ettirilir. 5. Her ülkede kullanılabileceği için evrenseldir. 18

20 KAYNAKÇA: Kaynakça: 1. J.KLIR, George ; YUAN, Bo. ; FUZZY SETS AND FUZZY LOGIC-Theory and Applications 2. KRUSE, R ; Gebhart, J ; Klawon, F. ; Foundations of Fuzzy Systems 3. AKGÜL G., 1998.; Keskin Kümelerle Bulanık Kümelerin Karşılaştırılması 4. BRULE, James F.; Fuzzy Systems- A Tutoriol 5. McNeil, D.; Paul Freiberger. ; Fuzzy Logic. 6. Kosko, Bart; Satoru, Isaka. ;"Fuzzy logic" 7. FULLER, R. ; Neural Fuzzy Systems Çağman, N., Bulanık mantık, Bilim ve Teknik, Sayı:463, Sayfa:50-51, Haziran ysets.html 19

21 TEŞEKKÜR Projemize desteklerinden dolayı değerli öğretmenimiz Serhat GÖKALP hocamıza Okul Yöneticilerimize ve İdarecilerimize, teşekkür ederiz. 20

1. GİRİŞ. Bu sistemin temelinde Bulanık Mantık ( Fuzzy logic) yatmaktadır.

1. GİRİŞ. Bu sistemin temelinde Bulanık Mantık ( Fuzzy logic) yatmaktadır. . GİRİŞ Japonya daki Senday Metrosu dünyanın en gelişmiş metrosu olarak kabul edilmektedir. Yaklaşık 4 KM boyunca 6 istasyonda duran tren o kadar yumuşak hareket etmektedir ki ayaktaki yolcular bile hareketten

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİMATEMATİK PROJELERİ YARIŞMASI BULANIK KÜMELER YARDIMI İLE KARAR VERMEDE OKUL DİSİPLİN KURULU ÖRNEĞİ ÖĞRENCİLER:

DARÜŞŞAFAKA LİSESİ SALİH ZEKİMATEMATİK PROJELERİ YARIŞMASI BULANIK KÜMELER YARDIMI İLE KARAR VERMEDE OKUL DİSİPLİN KURULU ÖRNEĞİ ÖĞRENCİLER: DARÜŞŞAFAKA LİSESİ SALİH ZEKİMATEMATİK PROJELERİ YARIŞMASI BULANIK KÜMELER YARDIMI İLE KARAR VERMEDE OKUL DİSİPLİN KURULU ÖRNEĞİ ÖĞRENCİLER: ELÇİN KÜÇÜKTANIŞMAN KÜRŞAT SOYBAY DANIŞMAN:CANSEL YETİM MEV

Detaylı

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE ÖZEL EGE LİSESİ GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE HAZIRLAYAN ÖĞRENCİ: Berk KORKUT DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI 3.33 2. GİRİŞ... 3 3. YÖNTEM 3 4.

Detaylı

Bulanık Mantık. Bulanık Mantık (Fuzzy Logic)

Bulanık Mantık. Bulanık Mantık (Fuzzy Logic) Bulanık Mantık (Fuzzy Logic) Bulanık mantık, insan düşünmesini ve mantık yürütmesini modellemeye ve karşılaşılan problemlerde ihtiyaç doğrultusunda kullanmayı amaçlar. Bilgisayarlara, insanların özel verileri

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ MATEMATİK PROJE YARIŞMASI MAHKEMELERDE KARAR ALMA SÜREÇLERİNİN MATEMATİKSEL METOTLARLA DESTEKLENMESİ ÖĞRENCİLER:

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ MATEMATİK PROJE YARIŞMASI MAHKEMELERDE KARAR ALMA SÜREÇLERİNİN MATEMATİKSEL METOTLARLA DESTEKLENMESİ ÖĞRENCİLER: DARÜŞŞAFAKA LİSESİ SALİH ZEKİ MATEMATİK PROJE YARIŞMASI MAHKEMELERDE KARAR ALMA SÜREÇLERİNİN MATEMATİKSEL METOTLARLA DESTEKLENMESİ ÖĞRENCİLER: NEHİR DEMİR-MİRAY ARIKAN DANIŞMAN:AHMET ÇOKAKLI MEV KOLEJİ

Detaylı

DERS 2 : BULANIK KÜMELER

DERS 2 : BULANIK KÜMELER DERS 2 : BULNIK KÜMELER 2.1 Gİriş Klasik bir küme, kesin sınırlamalarla verilen bir kümedir. Örneğin, klasik bir küme aşağıdaki gibi belirtilebilir: = { x x > 6 }, Kapalı sınır noktası burada 6 dır.burada

Detaylı

Bölüm 3. Klasik Mantık ve Bulanık Mantık. Serhat YILMAZ 1

Bölüm 3. Klasik Mantık ve Bulanık Mantık. Serhat YILMAZ 1 Bölüm 3. Klasik Mantık ve Bulanık Mantık Serhat YILMAZ serhaty@kocaeli.edu.tr 1 Klasik Mantık ve Bulanık Mantık Bulanık kümeler, bulanık mantığa bulanıklık kazandırır. Bulanık kümelerde yürütme işini işleçler

Detaylı

Bulanık Küme Kavramı BULANIK KÜME. Sonlu ve Sonsuz Bulanık Kümeler. Sonlu ve Sonsuz Bulanık Kümeler

Bulanık Küme Kavramı BULANIK KÜME. Sonlu ve Sonsuz Bulanık Kümeler. Sonlu ve Sonsuz Bulanık Kümeler ULNIK KÜME ulanık Küme Kavramı Elemanları x olan bir X evrensel (universal küme düșünelim. u elemanların ÌX alt kümesine aitliği, yani bu altkümelerin elemanı olup olmadığı X in {0,1} de olan karakteristik

Detaylı

MANTIK. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ BULANIK MANTIK

MANTIK. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ BULANIK MANTIK MANTIK Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ BULANIK MANTIK İÇERİK Temel Kavramlar Bulanık Mantık Bulanık Mantık & Klasik Mantık Bulanık Küme & Klasik Küme Bulanık Sistem Yapısı Öğeleri Uygulama

Detaylı

Gevşek Hesaplama (COMPE 474) Ders Detayları

Gevşek Hesaplama (COMPE 474) Ders Detayları Gevşek Hesaplama (COMPE 474) Ders Detayları Ders Adı Gevşek Hesaplama Ders Kodu COMPE 474 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin Dili Dersin

Detaylı

Akıllı Mekatronik Sistemler (MECE 404) Ders Detayları

Akıllı Mekatronik Sistemler (MECE 404) Ders Detayları Akıllı Mekatronik Sistemler (MECE 404) Ders Detayları Ders Adı Akıllı Mekatronik Sistemler Ders Kodu MECE 404 Dönemi Ders Uygulama Saati Saati Laboratuar Saati Kredi AKTS Bahar 2 0 2 3 5 Ön Koşul Ders(ler)i

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

Esnek Hesaplamaya Giriş

Esnek Hesaplamaya Giriş Esnek Hesaplamaya Giriş J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Esnek Hesaplama Nedir? Esnek hesaplamanın temelinde yatan

Detaylı

IV.Ünite: SEMBOLİK MANTIK: D - Çok Değerli Mantık Özet

IV.Ünite: SEMBOLİK MANTIK: D - Çok Değerli Mantık Özet ÇOK DEĞERLİ MANTIK Klasik mantık sistemleri, sadece belirli koşullarda oluşan, kesin doğruluk değerleri doğru ya da yanlış olan önermelerle ilgilenirler. Belirsizlikle ilgilenmezler. İki değerlikli bu

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.

Detaylı

Veri Madenciliği Yaklaşımı ile Mesleki Yönlendirme Sistemi

Veri Madenciliği Yaklaşımı ile Mesleki Yönlendirme Sistemi Veri Madenciliği Yaklaşımı ile Mesleki Yönlendirme Sistemi YRD. DOÇ. DR. HÜSEYİN GÜRÜLER MUĞLA SITKI KOÇMAN ÜNİVERSİTESİ, TEKNOLOJİ FAKÜLTESİ, BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ Meslek Seçimi Meslek Seçimi

Detaylı

Bulanık Mantığa Giriş

Bulanık Mantığa Giriş Bulanık Mantığa Giriş J E O L O J Ġ M Ü H E N D Ġ S L Ġ Ğ Ġ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R Ġ - I D E R S Ġ DOÇ. DR. ERSAN KABALCI BULANIK MANTIK Klasik mantık sistemleri, sadece

Detaylı

ÇOKLU KOMPRESÖR SİSTEMİNİN BULANIK MANTIK İLE KONTROLÜ

ÇOKLU KOMPRESÖR SİSTEMİNİN BULANIK MANTIK İLE KONTROLÜ ÇOKLU KOMPRESÖR SİSTEMİNİN BULANIK MANTIK İLE KONTROLÜ Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi Elektrik Elektronik Mühendisliği Anabilim Dalı Serdar KARADENİZ Danışman: Yrd. Doç.

Detaylı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1 Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı Mart 2015 0 SORU 1) Bulanık Küme nedir? Bulanık Kümenin (fuzzy

Detaylı

Milli Eğitim Bakanlığı Orta Öğretim Kurumları Sınıf Geçme ve Sınav Yönetmeliği. Psikolojik Danışma ve Rehberlik Servisi

Milli Eğitim Bakanlığı Orta Öğretim Kurumları Sınıf Geçme ve Sınav Yönetmeliği. Psikolojik Danışma ve Rehberlik Servisi Milli Eğitim Bakanlığı Orta Öğretim Kurumları Sınıf Geçme ve Sınav Yönetmeliği Psikolojik Danışma ve Rehberlik Servisi Puan, Notla Değerlendirme MADDE 16 Öğrenci başarısını ölçme ve değerlendirmede beşli

Detaylı

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Kümeler Kümeler ve küme işlemleri olasılığın temellerini oluşturmak için çok önemlidir Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Sonlu sayıda, sonsuz sayıda, kesikli

Detaylı

X ve Y boş olmayan iki küme olsun. İki küme arasında tanımlanmış olan bir bulanık ilişki R, X x Y nin bir bulanık alt kümesidir.

X ve Y boş olmayan iki küme olsun. İki küme arasında tanımlanmış olan bir bulanık ilişki R, X x Y nin bir bulanık alt kümesidir. Bulanık İlişkiler X ve Y boş olmayan iki küme olsun. İki küme arasında tanımlanmış olan bir bulanık ilişki R, X x Y nin bir bulanık alt kümesidir. R F(X x Y) Eğer X = Y ise R bir ikilik (binary) bulanık

Detaylı

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics 2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics Özet: Bulanık bir denetleyici tasarlanırken karşılaşılan en önemli sıkıntı, bulanık giriş çıkış üyelik fonksiyonlarının

Detaylı

Reel Analiz I (MATH 244) Ders Detayları

Reel Analiz I (MATH 244) Ders Detayları Reel Analiz I (MATH 244) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Reel Analiz I MATH 244 Bahar 4 0 0 4 7 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

Okut. Yüksel YURTAY. İletişim : (264) Sayısal Analiz. Giriş.

Okut. Yüksel YURTAY. İletişim :  (264) Sayısal Analiz. Giriş. Okut. Yüksel YURTAY İletişim : Sayısal Analiz yyurtay@sakarya.edu.tr www.cs.sakarya.edu.tr/yyurtay (264) 295 58 99 Giriş 1 Amaç : Mühendislik problemlerinin bilgisayar ortamında çözümünü mümkün kılacak

Detaylı

Yaklaşık Düşünme Teorisi

Yaklaşık Düşünme Teorisi Yaklaşık Düşünme Teorisi Zadeh tarafından 1979 yılında öne sürülmüştür. Kesin bilinmeyen veya belirsiz bilgiye dayalı işlemlerde etkili sonuçlar vermektedir. Genellikle bir f fonksiyonu ile x ve y değişkeni

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI PROJE ADI: TÜRKİYE DEKİ GELECEKTEKİ DOKTOR İHTİYACINI YÖNEYLEM ARASTIRMASI İLE BELİRLEMEK MEV KOLEJİ BASINKÖY OKULLARI

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

Çözümlü Yüksek Matematik Problemleri. Yrd. Doç. Dr. Erhan Pişkin

Çözümlü Yüksek Matematik Problemleri. Yrd. Doç. Dr. Erhan Pişkin Çözümlü Yüksek Matematik Problemleri Yrd. Doç. Dr. Erhan Pişkin 1 Yrd. Doç. Dr. Erhan PİŞKİN ÇÖZÜMLÜ YÜKSEK MATEMATİK PROBLEMLERİ 1 ISBN 978-605-318-249-8 Kitap içeriğinin tüm sorumluluğu yazarına aittir.

Detaylı

Rastgele değişken nedir?

Rastgele değişken nedir? Rastgele değişken nedir? Şİmdiye kadar hep, kümelerden ve bu kümelerin alt kümelerinden (yani olaylar)dan bahsettik Bu kümelerin elemanları sayısal olmak zorunda değildi. Örneğin, yazı tura, kız erkek

Detaylı

HESAP. (kesiklik var; süreklilik örnekleniyor) Hesap sürecinin zaman ekseninde geçtiği durumlar

HESAP. (kesiklik var; süreklilik örnekleniyor) Hesap sürecinin zaman ekseninde geçtiği durumlar HESAP Hesap soyut bir süreçtir. Bu çarpıcı ifade üzerine bazıları, hesaplayıcı dediğimiz somut makinelerde cereyan eden somut süreçlerin nasıl olup da hesap sayılmayacağını sorgulayabilirler. Bunun basit

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 3

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 3 1.3. Kompleks Düzlemin Topolojisi Tanım 1. D ε (z 0 ) = {z C : z z 0 < ε} kümesine z 0 ın bir ε komşuluğu denir. Tanım 2. Bir A C kümesi verilsin. z 0 ın sadece A nın elemanlarından oluşan bir komşuluğu

Detaylı

Küme Temel Kavramları

Küme Temel Kavramları Kümeler Kümeler Küme, matematiksel anlamda tanımsız bir kavramdır. Bu kavram "nesneler topluluğu veya yığını" olarak yorumlanabilir. Bu tanımdaki "nesne" soyut ya da somut bir şeydir; fakat her ne olursa

Detaylı

Ders 5: ÖLÇME VE DEĞERLENDİRME. Prof. Dr. Tevhide Kargın

Ders 5: ÖLÇME VE DEĞERLENDİRME. Prof. Dr. Tevhide Kargın Ders 5: ÖLÇME VE DEĞERLENDİRME Prof. Dr. Tevhide Kargın Ölçme ve Değerlendirme Ölçme (measurement), bireylerin ya da nesnelerin belirli özelliklere sahip olup olmadığının, sahip ise, sahip oluş derecesinin

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

Modelleme bir sanattan çok bir Bilim olarak tanımlanabilir. Bir model kurucu için en önemli karar model seçiminde ilişkileri belirlemektir.

Modelleme bir sanattan çok bir Bilim olarak tanımlanabilir. Bir model kurucu için en önemli karar model seçiminde ilişkileri belirlemektir. MODELLEME MODELLEME Matematik modelleme yaklaşımı sistemlerin daha iyi anlaşılması, analiz edilmesi ve tasarımının etkin ve ekonomik bir yoludur. Modelleme karmaşık parametrelerin belirlenmesi için iyi

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR ÖZEL BÜYÜKÇEKMECE ÇINAR KOLEJİ 19 Mayıs Mah. Bülent Ecevit Cad. Tüyap Yokuşu

Detaylı

ÖZEL EGE İLKÖĞRETİM OKULU

ÖZEL EGE İLKÖĞRETİM OKULU ÖZEL EGE İLKÖĞRETİM OKULU 4.SINIF MATEMATİK DERSİ PROJESİ PROJE KONUSU : GRAFİKLER, KULLANIM ALANLARI VE GRAFİK UYGULAMALARI HAZIRLAYANLAR : Egem ERASLAN F.Sarper TEK Göktürk ERBAYSAL Mert KAHVECİ ÖNSÖZ

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Hessien Matris-Quadratik Form Mutlak ve Bölgesel Maksimum-Minimum Noktalar Giriş Kısıtlı ve kısıtsız fonksiyonlar için

Detaylı

Hatalar ve Bilgisayar Aritmetiği

Hatalar ve Bilgisayar Aritmetiği Hatalar ve Bilgisayar Aritmetiği Analitik yollardan çözemediğimiz birçok matematiksel problemi sayısal yöntemlerle bilgisayarlar aracılığı ile çözmeye çalışırız. Bu şekilde Sayısal yöntemler kullanarak

Detaylı

BULANIK MANTIK (FUZZY LOGIC)

BULANIK MANTIK (FUZZY LOGIC) BULANIK MANTIK (FUZZY LOGIC) 1. GİRİŞ Fiziksel sistemleri matematiksel olarak modellerken, transfer fonksiyonlarını çıkarırken, sistemlerin doğrusal ve zamanla değişmeyen sistemler olduğunu kabul ederiz.

Detaylı

Nesbitt Eşitsizliğine Farklı Bir Bakış

Nesbitt Eşitsizliğine Farklı Bir Bakış ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI Nesbitt Eşitsizliğine Farklı Bir Bakış Muhammed Osman Çorbalı Danışman Öğretmen: Yüksel Demir PROJE RAPORU 2014 PROJENİN AMACI:

Detaylı

Üyelik derecesi. Klasik küme YAKIN = Bulanık küme. Nesne Mesafe Yakınlık derecesi, µ( mesafe) ,5 0,8

Üyelik derecesi. Klasik küme YAKIN = Bulanık küme. Nesne Mesafe Yakınlık derecesi, µ( mesafe) ,5 0,8 ulanık Mantığın Temel Kavramları Kısa ir Tarihçe - 920 : Jan Lukasiewicz in çok değerli mantık üzerine çalışmaları - 937 : Ma lack ın Muğlak Küme (Vague Set) ile ilgili makaleleri. Sadece üyelik fonksiyonu

Detaylı

İÇİNDEKİLER. Mantık Kurallarının Elektrik Devrelerine Uygulanması... 14

İÇİNDEKİLER. Mantık Kurallarının Elektrik Devrelerine Uygulanması... 14 İÇİNDEKİLER 1. BÖLÜM MANTIK Giriş... 1 Genel Olarak Mantık... 1 Mantığın Tarihçesi ve Modern Mantığın Doğuşu... 1 Mantık Öğretimin Önemi ve Amacı... 2 Önerme... 3 VE İşlemi (Birlikte Evetleme, Mantıksal

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR Kısıtlı ve kısıtsız fonksiyonlar için maksimum veya minimum (ekstremum) noktalarının belirlenmesinde diferansiyel hesabı kullanarak çeşitli

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

Genel Matematik (MATH 103) Ders Detayları

Genel Matematik (MATH 103) Ders Detayları Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Genel Matematik MATH 103 Güz 3 2 0 4 6 Ön Koşul Ders(ler)i - Dersin Dili Dersin

Detaylı

Temel Mantık ve Cebir (MATH 111) Ders Detayları

Temel Mantık ve Cebir (MATH 111) Ders Detayları Temel Mantık ve Cebir (MATH 111) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Temel Mantık ve Cebir MATH 111 Güz 3 0 0 3 6.5 Ön Koşul Ders(ler)i Yok Dersin

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9 OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 015 01 1 Eylül 18 Eylül Kümelerde Temel Kavramlar 1. Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler.

Detaylı

MATEMATİK VE FEN BİLİMLERİ EĞTİMİ ANABİLİM DALI MATEMATİK EĞİTİMİ BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI

MATEMATİK VE FEN BİLİMLERİ EĞTİMİ ANABİLİM DALI MATEMATİK EĞİTİMİ BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI I.YARIYIL MATEMATİK VE FEN BİLİMLERİ EĞTİMİ ANABİLİM DALI MATEMATİK EĞİTİMİ BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI 3715055832012 Z Uzmanlık Alan Dersi 3715055702017 Z Bilimsel Araştırma Yöntemleri ve

Detaylı

Diferansiyel Denklemler (MATH 276) Ders Detayları

Diferansiyel Denklemler (MATH 276) Ders Detayları Diferansiyel Denklemler (MATH 276) Ders Detayları Ders Adı Diferansiyel Denklemler Ders Kodu MATH 276 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 4 0 0 4 6 Ön Koşul Ders(ler)i Math

Detaylı

Ölçme ve Değerlendirmenin. Eğitim Sistemi Açısından. Ölçme ve Değerlendirme. TESOY-Hafta Yrd. Doç. Dr.

Ölçme ve Değerlendirmenin. Eğitim Sistemi Açısından. Ölçme ve Değerlendirme. TESOY-Hafta Yrd. Doç. Dr. TESOY-Hafta-1 ve Değerlendirme BÖLÜM 1-2 ve Değerlendirmenin Önemi ve Temel Kavramları Yrd. Doç. Dr. Çetin ERDOĞAN cetinerdogan@gmail.com Eğitimde ölçme ve değerlendirme neden önemlidir? Eğitim politikalarına

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

Matematik Ders Notları. Doç. Dr. Murat Donduran

Matematik Ders Notları. Doç. Dr. Murat Donduran Matematik Ders Notları Doç. Dr. Murat Donduran Mart 18, 28 2 İçindekiler 1 Tanımlı Integral Uygulamaları 5 1.1 Olasılık.............................. 5 3 4 İÇINDEKILER Bölüm 1 Tanımlı Integral Uygulamaları

Detaylı

DEPREM KONUMLARININ BELİRLENMESİNDE BULANIK MANTIK YAKLAŞIMI

DEPREM KONUMLARININ BELİRLENMESİNDE BULANIK MANTIK YAKLAŞIMI DEPREM KONUMLRININ BELİRLENMESİNDE BULNIK MNTIK YKLŞIMI Koray BODUR 1 ve Hüseyin GÖKLP 2 ÖZET: 1 Yüksek lisans öğrencisi, Jeofizik Müh. Bölümü, Karadeniz Teknik Üniversitesi, Trabzon 2 Yrd. Doç. Dr., Jeofizik

Detaylı

DERS 5 : BULANIK MODELLER

DERS 5 : BULANIK MODELLER DERS 5 : BULANIK MODELLER Bulanık girişimli sistem, bulanık küme teorisi, bulanık if-then kuralları ve bulanık mantığına dayalı popüler bir hesaplama yapısıdır. Otomatik kontrol, veri sınıflandırılması,

Detaylı

Örüntü Tanıma (EE 448) Ders Detayları

Örüntü Tanıma (EE 448) Ders Detayları Örüntü Tanıma (EE 448) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Örüntü Tanıma EE 448 Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü Dersin

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II)

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II) 7.2 Fonksiyon ve Fonksiyon Tanımları (I) Tanım kümesindeki her elemanın değer kümesinde bir ve yalnız bir görüntüsü varsa, tanım kümesinden değer kümesine olan bağıntıya fonksiyon denir. Fonksiyonu f ile

Detaylı

Robot Bilimi. Robot Kontrol Sistemleri

Robot Bilimi. Robot Kontrol Sistemleri Robot Bilimi Robot Kontrol Sistemleri Öğr. Gör. M. Ozan AKI r1.0 Robot Kontrol Yapısı Robotlar (Aynı zamanda insanlarda); Çevrelerini Algılarlar Karar verirler (Amaçları, Görevleri v.s.) Çevrelerine Tepki

Detaylı

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 206 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 1 Kümeler Yük. Müh. Köksal GÜNDOĞDU 2 Kümeler Kümeler Ayrık Matematiğin en temel konularından biridir Sayma problemleri için önemli Programlama dillerinin

Detaylı

Bulanık Mantık ile Coğrafi Bilgi Teknolojilerini Kullanarak Taşınmaz Değerlemesi

Bulanık Mantık ile Coğrafi Bilgi Teknolojilerini Kullanarak Taşınmaz Değerlemesi TMMOB Harita ve Kadastro Mühendisleri Odası, 15. Türkiye Harita Bilimsel ve Teknik Kurultayı, 5 8 Mart 015, Ankara. Bulanık Mantık ile Coğrafi Bilgi Teknolojilerini Kullanarak Taşınmaz Değerlemesi Mustafa

Detaylı

Bulanık Mantık ve DURTES Yönteminde Uygulanması İçin Bir Öneri

Bulanık Mantık ve DURTES Yönteminde Uygulanması İçin Bir Öneri Bulanık Mantık ve DURTES Yönteminde Uygulanması İçin Bir Öneri Rasim TEMUR İstanbul Üniversitesi İnşaat Mühendisliği Bölümü Sunum Programı 1. Giriş 2. Bulanık mantık 3. DURTES yöntemi 4. Uygulama önerileri

Detaylı

Genelleştirilmiş bulanık esnek cebirsel yapılar. Generalized fuzzy soft algebraic structures

Genelleştirilmiş bulanık esnek cebirsel yapılar. Generalized fuzzy soft algebraic structures SAÜ. Fen Bil. Der. 17. Cilt, 3. Sayı, s. 301-306, 2013 SAU J. Sci. Vol 17, No 3, p. 301-306, 2013 Genelleştirilmiş bulanık esnek cebirsel yapılar Hacı Aktaş 1*, Özlem Bulut 1 1* Erciyes Üniversitesi Fen

Detaylı

Robot Görme (MECE 445) Ders Detayları

Robot Görme (MECE 445) Ders Detayları Robot Görme (MECE 445) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Robot Görme MECE 445 Bahar 2 0 2 3 4 Ön Koşul Ders(ler)i Yok Dersin Dili Dersin Türü

Detaylı

Yapay Zeka (MECE 441) Ders Detayları

Yapay Zeka (MECE 441) Ders Detayları Yapay Zeka (MECE 441) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Yapay Zeka MECE 441 Bahar 3 0 0 3 4 Ön Koşul Ders(ler)i Yok Dersin Dili Dersin Türü

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir.

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir. TÜREV y= f(x) fonksiyonu [a,b] aralığında tanımlı olsun. Bu aralıktaki bağımsız x değişkenini h kadar arttırdığımızda fonksiyon değeri de buna bağlı olarak değişecektir. Fonksiyondaki artma miktarını değişkendeki

Detaylı

BULANIK MANTIK DENETLEYİCİLERİ. Bölüm-4 Bulanık Çıkarım

BULANIK MANTIK DENETLEYİCİLERİ. Bölüm-4 Bulanık Çıkarım BULANIK MANTIK DENETLEYİCİLERİ Bölüm-4 Bulanık Çıkarım 1 Bulanık Çıkarım Bölüm 4 : Hedefleri Bulanık kuralların ve bulanık bilgi tabanlarının nasıl oluşturulacağını anlamak. Gerçekte bulanık muhakeme olan

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI PROJENİN ADI: OYUN TEORİSİ İLE İSTANBUL TRAFİĞİNİN İNCELENMESİ HAZIRLAYANLAR: ECE TUNÇKOL-BERKE OĞUZ AKIN MEV KOLEJİ ÖZEL

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

Kuantum Fiziği (PHYS 201) Ders Detayları

Kuantum Fiziği (PHYS 201) Ders Detayları Kuantum Fiziği (PHYS 201) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kuantum Fiziği PHYS 201 Her İkisi 3 0 0 3 5 Ön Koşul Ders(ler)i PHYS 102, MATH 158

Detaylı

T.V. ÖZEL ŞİŞLİ TERAKKİ LİSESİ

T.V. ÖZEL ŞİŞLİ TERAKKİ LİSESİ TERAKKİ VAKFI OKULLARI T.V. ÖZEL ŞİŞLİ TERAKKİ LİSESİ Milli Eğitim Bakanlığı Orta Öğretim Kurumları Sınıf Geçme ve Sınav Yönetmeliği 9. SINIFLAR EYLÜL, 2010 TVO Psikolojik Danışma ve Rehberlik Servisi

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

Kalkülüs I (MATH 151) Ders Detayları

Kalkülüs I (MATH 151) Ders Detayları Kalkülüs I (MATH 151) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kalkülüs I MATH 151 Güz 4 2 0 5 7.5 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü Dersin

Detaylı

BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA. Ayşe KURUÜZÜM (*)

BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA. Ayşe KURUÜZÜM (*) D.E.Ü.İ.İ.B.F. Dergisi Cilt:14, Sayı:1, Yıl:1999, ss:27-36 BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA Ayşe KURUÜZÜM (*) ÖZET Çalışmada bulanık ( fuzzy ) katsayılı amaç fonksiyonuna sahip doğrusal programlama

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

2009 2010 EĞİTİM ÖĞRETİM YILI İSTEK ÖZEL KAŞGARLI MAHMUT FEN LİSESİ PSİKOLOJİK DANIŞMA VE REHBERLİK BÖLÜMÜ

2009 2010 EĞİTİM ÖĞRETİM YILI İSTEK ÖZEL KAŞGARLI MAHMUT FEN LİSESİ PSİKOLOJİK DANIŞMA VE REHBERLİK BÖLÜMÜ 2009 2010 EĞİTİM ÖĞRETİM YILI İSTEK ÖZEL KAŞGARLI MAHMUT FEN LİSESİ PSİKOLOJİK DANIŞMA VE REHBERLİK BÖLÜMÜ SINIF GEÇME VE SINAV YÖNETMELİĞİ İLE İLGİLİ AÇIKLAMALAR 2009 2010 EĞİTİM-ÖĞRETİM YILI İSTEK ÖZEL

Detaylı

Bulanık Mantık Denetleyicileri

Bulanık Mantık Denetleyicileri Bulanık Mantık Denetleyicileri Bulanık Çıkarım BULANIK ÇIKARIM İki-değerli mantık Çok-değerli mantık Bulanık mantık Bulanık kurallar Bulanık çıkarım Bulanık anlamlandırma Bulanık Çıkarım İki-değerli mantık

Detaylı

Örnek...2 : Örnek...3 : Örnek...1 : MANTIK 1. p: Bir yıl 265 gün 6 saattir. w w w. m a t b a z. c o m ÖNERMELER- BİLEŞİK ÖNERMELER

Örnek...2 : Örnek...3 : Örnek...1 : MANTIK 1. p: Bir yıl 265 gün 6 saattir. w w w. m a t b a z. c o m ÖNERMELER- BİLEŞİK ÖNERMELER Terim: Bir bilim dalı içerisinde konuşma dilinden farklı anlamı olan sözcüklerden her birine o bilim dalının bir terimi denir. Önermeler belirtilirler. p,q,r,s gibi harflerle Örneğin açı bir geometri terimi,

Detaylı

Sunum ve Sistematik 1. BÖLÜM: ÖNERMELER

Sunum ve Sistematik 1. BÖLÜM: ÖNERMELER Sunum ve Sistematik. ÜNİTE: MANTIK KONU ÖZETİ Bu başlık altında, ünitenin en can alıcı bilgileri, kazanım sırasına göre en alt başlıklara ayrılarak hap bilgi niteliğinde konu özeti olarak sunulmuştur..

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

AMASYA ÜNİVERSİTESİ TEKNİK BİLİMLER MESLEK YÜKSEKOKULU 2014 DİKEY GEÇİŞ SINAVI TANITIMI VE İSTATİSTİKLERİ

AMASYA ÜNİVERSİTESİ TEKNİK BİLİMLER MESLEK YÜKSEKOKULU 2014 DİKEY GEÇİŞ SINAVI TANITIMI VE İSTATİSTİKLERİ AMASYA ÜNİVERSİTESİ TEKNİK BİLİMLER MESLEK YÜKSEKOKULU 2014 DİKEY GEÇİŞ SINAVI TANITIMI VE İSTATİSTİKLERİ EKİM 2014 İÇİNDEKİLER Dikey Geçiş Sınavı Nedir?... 1 Dikey Geçiş Sınavının İçeriği Nedir?... 1

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Yapay Zeka Sistemleri BIL308 6 3+0 3 4

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Yapay Zeka Sistemleri BIL308 6 3+0 3 4 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Yapay Zeka Sistemleri BIL308 6 3+0 3 4 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Zorunlu / Yüz Yüze Dersin

Detaylı

BİR SOĞUTMA GRUBUNDA KOMPRESÖR HIZININ BULANIK MANTIK ALGORİTMA İLE KONTROLÜ

BİR SOĞUTMA GRUBUNDA KOMPRESÖR HIZININ BULANIK MANTIK ALGORİTMA İLE KONTROLÜ BİR SOĞUTMA GRUBUNDA KOMPRESÖR HIZININ BULANIK MANTIK ALGORİTMA İLE KONTROLÜ Öğr. Gör. Orhan EKREN Ege Üniversitesi Doç. Dr. Serhan KÜÇÜKA Dokuz Eylül Üniversitesi SUNUM İÇERİĞİ ÇALIŞMANIN AMACI DENEY

Detaylı

CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR

CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR Çalışmanın amacı. SUNUM PLANI Çalışmanın önemi. Deney numunelerinin üretimi ve özellikleri.

Detaylı

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

KLİMA SİSTEM KONTROLÜNÜN BULANIK MANTIK İLE MODELLEMESİ

KLİMA SİSTEM KONTROLÜNÜN BULANIK MANTIK İLE MODELLEMESİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 2004 : 10 : 3 : 353-358

Detaylı

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48 İÇİNDEKİLER Önsöz...2 Önermeler ve İspat Yöntemleri...3 Küme Teorisi...16 Bağıntı...26 Fonksiyon...38 İşlem...48 Sayılabilir - Sonlu ve Sonsuz Kümeler...56 Genel Tarama Sınavı...58 Önermeler ve İspat Yöntemleri

Detaylı

9.SINIFLAR YIL SONU BİLGİLENDİRME TOPLANTISI

9.SINIFLAR YIL SONU BİLGİLENDİRME TOPLANTISI 9.SINIFLAR YIL SONU BİLGİLENDİRME TOPLANTISI SINIF GEÇME YÖNETMELİĞİ 10.SINIF DERS PROGRAMLARI SEÇMELİ DERSLER YÜKSEKÖĞRENİME GEÇİŞ SINAVI SINIF GEÇME YÖNETMELİĞİ SINIF GEÇME A-DOĞRUDAN Tüm derslerden

Detaylı

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ 015-016 EĞİTİM-ÖĞRETİM YILI 1. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI AY HAFTA SAAT KAZANIMLAR BÖLÜMLER (ALT ÖĞRENME ALANLARI) ÖĞRENME

Detaylı