OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI"

Transkript

1 OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI A. Doğan 1 M. Alçı 2 Erciyes Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü 1 2 ABSTRACT Providing optimum power flow without exceeding power system operating conditions is an important issue in terms of supplying electricty in a safety way. Some classical optimization methods have been using to optimize power flow on transmissin lines. Besides classical methods, heuristics methods have also started to use in optimum power flow problems recently. In this paper, Artifical Bee Colony[1] which is the new algorithm proposed by D. Karaboga in 2005 is used to porvide optimal power flow in IEEE-30 bus test system. Keywords: Optimum power flow, Artifical Bee Colony, Power Systems ÖZET Güç sisteminin fiziki sınırlarını aşmadan optimum yük akışının sağlanması elektrik enerjisinin güvenli bir şekilde arz edilmesi açısından oldukça önemlidir. Güç sistemlerinde iletimin ve dağıtımın en uygun şekilde sağlanabilmesi için çeşitli optimizasyon metotlarından faydalanılmıştır. Önceden beri kullanılan klasik metotların dışında son yıllarda sezgisel optimizasyon metotları da kullanılmaktadır. Bu çalışmada 2005 yılında D. Karaboğa tarafından sunulan Yapay Arı Kolonisi Algoritması [1] kullanılarak IEEE-30 baralı test sisteminde optimum yük akışı sağlanmıştır. Anahtar Kelimeler: Optimum Yük Akışı, Yapay Arı Kolonisi, Güç Sistemleri 1. GİRİŞ Güç sistemlerinde kullanılan ekipmanların fiziksel sınırlarını ve işletme limitlerini aşmadan, sistemdeki jeneratörlere üretimin paylaştırılması ve baralar arasındaki en uygun güç alış verişinin sağlanması optimum güç akışı olarak tanımlanır. Enerji talebinin hızla artması, enerji üretim tesislerinin sayısının ve çeşidinin artmasını da beraberinde getirmektedir. Buna ek olarak elektrik sektöründeki serbestleşmeyle düşük güçlü üretim tesislerinin şebekeye bağlanması şebekeyi daha karmaşık hale getirmektedir. Bu karmaşık güç sistemlerinde üretilen gücün tüketicilere sürekli ve ucuz sunulabilmesi için güç akışın optimum şekilde sağlanması gerekmektedir. Optimum güç akşınının önemi her geçen gün artmakla beraber bunu gerçekleştirmek güçleşmektedir. Optimum güç akışı problemi önceden beri klasik optimizasyon metotlarıyla çözülmekteydi. Güç sistemlerinin büyümesi ve çok boyutluluğuna karşılık klasik yöntemlerin genelde küçük boyutlu problemlerde etkili olması, formüldeki değişikliklere uyarlanmalarının zor olması ve ulaştığı çözümün genelde lokal optimumda kalması gibi sebeplerden dolayı optimum güç akışı probleminin çözülmesinde yetersiz kalmaktadır [2]. Klasik Metotların yerine son yıllarda global optimumda çözüm sunan ve geniş boyutlu problemlerde daha etkili sezgisel optimizasyon metotları kullanılmaktadır. Gelişime dayalı ve sürü zekası temelli sezgisel optimizasyon metotlar optimum güç akışı problemlerine uygulanmaktadır. 2. OPTİMUM GÜÇ AKIŞI PROBLEMİNİN FORMÜLE EDİLMESİ Optimum güç akışı probleminin bir nevi kısıtlamalı bir minimizasyon problemidir ve bu şekilde formüle edilir. g x, u 0 eşitlik kısıtlamaları h x, u 0 eşitsizlik kısıtlamaları iken f xhedef fonksiyon (1.1) minimize etmek şeklindedir. Eşitlik kısıtlamaları tipik güç akışı eşitliklerini, eşitsizlik kısıtlamaları sistemin 56

2 Elektrik-Elektronik ve Bilgisayar Sempozyumu 2011 işletme şartlarını, hedef fonksiyon ise toplam yakıt maliyetini ifade etmektedir. Yakıt maliyet fonksiyonu Eşitlik 1.2 de verilmiştir. 1,2,3,. 1.2,,, nci jeneratörün birim maliyet katsayılarıdır. Maliyet fonksiyonu (ng) adet jeneratörün yakıt maliyetlerinin toplamıdır. Her bir jeneratörün yakıt maliyet fonksiyonu ikinci dereceden bir denklem şeklinde ifade edilir. Toplam maliyet her bir jeneratörün ürettiği güce ve birim maliyet katsayılarına göre değişir Eşitlik Kısıtlamaları Eşitlik 1.3 ve 1.4 de barasından sisteme en aktif ve reaktif reaktif güçler verilmiştir. sin cos Jeneratörlerde üretilen aktif ve reaktif yüklerin taleplerine ve iletim kayıplarını karşılamalıdır. (Eşitlik 1.5, 1.6) Eşitsizlik Kısıtlamaları Jeneratörler tarafından üretilen aktif güç jeneratörün belirtilen minimum ve maksimum üretim kapasite değerleri arasında olmalıdır. 1.7 Jeneratörler tarafından sisteme aktarılan reaktif güç jeneratörün belirtilen minimum ve maksimum üretim kapasite değerleri arasında olmalıdır. 1.8) barasındaki gerilim değeri o bara için belirtilen minimum ve maksimum gerilim değerleri arasında olmalıdır. 1.9 barasındaki gerilimin faz açısı her bara için belirtilen minimum ve maksimum değerleri arasında olmalıdır İletim hattında taşınan güç, iletim hattının maksimum güç taşıma kapasitesini geçmemelidir Transformatör kademe oranları her transformatör için belirtilen minimum ve maksimum değerleri arasında olmalıdır Devreye alınan şönt kapasitörler belirtilen sınır değerler arasında olmalıdır YAPAY ARI KOLONİSİ Yapay Arı Kolonisi Algoritması sürü zekası temelli algoritmalardan biridir. Arı Kolonisi diğer sürü zekası temelli algoritmalar da olduğu gibi iş bölümü yapabilme ve kendi kendine organize olabilme kabiliyetine sahiptir. Bu algoritma global ve lokal uzayı komşuluk prensibine göre araştırır. Kolonide arılar üç gruba ayrılır [2]: 1- İşçi Arılar: İşçi arılar komşuluk prensibine dayanarak daha fazla nektarın olduğu besin kaynaklarını araştırırlar. Her bir besin kaynağında bir işçi vardır. Dolayıyla işçi arı sayısı besin kaynağı sayısına eşittir. 2- Gözcü Arılar: Gözcü arılar kovanda bekler ve diğer arıların besin kaynakları ile bilgileri dansla kendileriyle paylaştıktan sonra nektarın fazla olduğu besin kaynağına yönelirler. 3- Kaşif Arılar: Yiyecek arama sürecinin başlangıcında kaşif arılar rastgele dağılarak yiyecek aramaya başlarlar. 57

3 Yapay Arı Kolonisi Adımları: 1-Algoritmanın Başlatılması: Bu aşama çevrede rastgele besin kaynakları üretilmesi aşamasıdır. Algoritmada parametrenin alt ve üst sınırları arasında rastgele başlangıç değeri üretmesine karşılık gelir (Eşitlik 1.14). oranları, Tablo 3 de ise jeneratör üretim değerlerinin maksimum ve minimum oranları ile birlikte maliyet fonksiyonu katsayıları yer almaktadır. 0, Yeni Kaynakların Belirlenmesi: Yeni kaynakların belirlenmesi komşuluk prensibine göre gerçekleşmektedir. İşçi arı besin kaynağının komşuluğunda yeni bir besin kaynağı belirler Kaynağın Kalitesini Belirlenmesi: Yeni bir kaynağı temsil eden parametre vektörleri için bir uygunluk değeri atanır ve aç gözlü bir seçme işlemi uygulanır. i. çözüm tarafından üretilen hata değeridir. çözüme ait kalite değerine hesaplamak için kullanılır Yeni kaynak diğerinden kaliteliyse eski kaynak hafızadan silinir, yeni kaynak hafızaya alınır. 1/ Kaynağın Seçilmesi: İşçi arılar kovana döndüklerinde gözcü arılara kaynağın kalitesi ile ilgili dans yoluyla bilgi aktarırlar. Buna göre gözcü arılar kendine kaynak seçer. Nektar kalitesi (uygunluk değeri) yüksek olan kaynakların seçilme olasılığı daha yüksektir. Kaynakların seçilme olasılığı Eşitlik 1.17 de gösterilmiştir ve 5. Bölümde Yapay Arı Kolonisi Algoritması IEEE-30 baralı test sisteminde optimum yük akışı problemine uygulanmıştır. Sonuçlar Tablo-4 de GA, DGA ve PSO metotları ile elde edilen sonuçlarla karşılaştırılmıştır. 4. IEEE-30 BARALI TEST SİSTEMİ IEEE 30 baralı test sistemi Şekil-1 de görüldüğü gibi 41 hat, 6 jeneratör ve 7 kademe transformatöründen oluşmaktadır. Gerilimin baz değeri 100V ve tolerans oranı %10 olarak belirlenmiştir. Tablo1 de kontrollü baralara ait bilgiler, Tablo 2 de transformatör kademe Şekil-1. IEEE-30 Baralı Test Sistemi Tablo-1 Gerilim kont. baraların MVAR Kapasiteleri Bara No Min. MVAR Kapasitesi Maks. MVAR Kapasitesi Tablo-2. Kademe transformatörleri oranları Transformatör Bilgileri Transf.Yeri Kademe Oranı p.u

4 Elektrik-Elektronik ve Bilgisayar Sempozyumu 2011 Tablo-3. Jeneratörlerin sınır değerleri ve a,b, c katsayıları No P Gmin P Gmax Katsayılar a b c YAK İLE OPTİMUM YÜK AKIŞI Jeneratörleri sınırları dahilinde rastgele başlangıç değerleri atanarak algoritma başlatılır. Daha sonraki adımlarda komşuluk prensibine göre yeni jeneratörlere değişik değerler verilerek en düşük yakıt maliyeti bulunmaya çalışılır. Jeneratörün aktif güç üretim değeri aşıldığında ceza fonksiyonu uygulanarak, bu değer maliyet fonksiyonuna eklenir. Yapay Arı Kolonisi ile Optimum yük akışının adımları aşağıdaki gibidir: 1.Adım: n gözcü arının başlangıç popülasyonun rastgele üret. 2.Adım: Güç akışını gerçekleştir ve başlangıç popülasyonun uygun değerini belirle. 3. Adım: Komşuluk araştırması için m tane en iyi sonucu seç. 4.Adım: En iyi çözümler olan m leri gruplara ayır. 5.Adım: Ayrılan grupların en iyi çözümünün komşuluk araştırmasının boyutuna karar ver ve komşuluk sınırları içerisinde çözümler üret. 6. Adım: Elde edilen çözümlerin en iyisini seç. 7.Adım: Durdurma kriterlerini kontrol et. Optimum sonuca ya da maksimum iterasyon sayısına ulaşıldıysa iterasyonu durdur, aksi takdirde iterasyon sayısını artır. 6. SİMÜLASYON SONUÇLARI IEEE-30 baralı test sistemine optimum yük akışını sağlamak amacıyla Yapay Arı Kolonisi metodu uygulanmıştır. Popülasyon Büyüklüğü (NP)=20, limit=100, parametre değerleri kullanılarak simülasyon çalışması yapılmıştır. Aynı parametre değerleri ile YAK, GA, PSO ve DGA 30 ar defa koşturularak elde edilen sonuçların Yakıt Maliyeti ($/saat) Gerilim Değeri(p.u.) ortalamaları alınmıştır ve sonuçlar Tablo-4 de verilmiştir. YAK da bir çevrim ortalama sn. de tamamlanmış ve sistemdeki toplam iletim kaybı ortalama MW, yakıt maliyeti ise ($/saat) olarak hesaplanmıştır. Yapay Arı Kolonisi Algoritması çevrimini en kısa zamanda tamamlayan algoritma olmuştur. Hat kayıpları bakımından PSO ve DGA ya göre daha iyi sonuç verse de GA ya göre daha fazla hat kaybı yaşanmıştır. Hedef fonksiyon olan yakıt maliyeti konusunda GA dan daha iyi sonuç verirken diğer iki algoritmanın gerisinde kalmıştır. Şekil-2 de, yakıt maliyetinin iterasyon sayısına göre değişim grafiği, Şekil-3 de iterasyonlar sonucunda baralardaki gerilim değerleri verilmiştir. Grafikte görüldüğü gibi baralardaki gerilim değeri %10 tolerans değerini aşmamıştır İterasyon Sayısı Şekil-2. Yakıt maliyeti iterasyon sayısı grafiği Bara No Şekil-3Baralarda oluşan gerilim değerleri (p.u. 59

5 Tablo-4. Arı Kolonisi ile elde edilen sonuçların diğer sezgisel yöntemlerle karşılaştırılması Değişkenler GA PSO DGA YAK (MW) (MW) (MW) (MW) (MW) (MW) Toplam (MW) Hat Kaybı (MW) Yakıt Maliyeti($/saat) Çevrim zamanı(sn) SONUÇ Yapay Arı Kolonisi Algoritması parametre sayısını az olması sebebiyle basit ve esnek bir algoritmadır. Araştırma uzayını gruplara ayırarak araştırma yapabilmesi, düşük popülasyon değerlerinde, yani daha az çevrim zamanında optimum sonuca yakın bir yakıt maliyetini elde edilmesini sağlamaktadır. Yapay Arı Kolonisi diğer metotlara göre araştırma uzayını hızlı bir şekilde tarayabilmesi daha büyük güç sistemlerinde daha hızlı sonuçlar elde edilmesini sağlayacaktır. Bu çalışmada YAK, optimum yakıt maliyeti olarak DGA ve PSO' nun gerisinde kalsa da optimum yük akışının sağlanması için kullanılabilecek etkili metotlardan birisidir. KAYNAKLAR [1] D. Karaboga. An idea based on honey bee swarm for numerical optimization. Technical Report TR06,Erciyes University, Engineering Faculty, Computer Engineering Department, [2]Akay B.,Nümerik Optimizasyon Problemlerinde Yapay Arı Kolonisi(Artifical Bee Colony) Algoritmasının Performans Analizi,2009 [6]Karaboğa D., Yapay Zeka Optimizasyonu Algoritmaları, Atlas Yayın Dağıtım, 2004 [7]Somasundaram P. et al., Evolutionary programming based security constrained optimal power flow, Electric Power Syst. Research, 72, pp ,2004 [8] 30/pg_tca30bus.htm [3]Saadat H., Power System Analysis, Schaum's Outline Series in Electronics & Electrical Engineering, 1999 [4] P. Polratanasuk, S. Anatasate, Solving Optimal Power Flow Problem Using Parallel Bee Algorithm, Selected Topic in Power Systems and Remote Sensing,2010 [5] Sumpavakup C. et al., A solution to the optimal power flow using artifical bee colony alorithm, 2010 International Conference on Power System Technology,

BBO Algoritmasının Optimizasyon Başarımının İncelenmesi Optimization Performance Investigation of BBO Algorithm

BBO Algoritmasının Optimizasyon Başarımının İncelenmesi Optimization Performance Investigation of BBO Algorithm BBO Algoritmasının Optimizasyon Başarımının İncelenmesi Optimization Performance Investigation of BBO Algorithm Tufan İNAÇ 1, Cihan KARAKUZU 2 1 Bilgisayar Mühendisliği Anabilim Dalı Bilecik Şeyh Edebali

Detaylı

ANALYSİS OF THE EFFECTS OF DİFFERENT SLACK BUS SELECTİON ON THE OPTİMAL POWER FLOW

ANALYSİS OF THE EFFECTS OF DİFFERENT SLACK BUS SELECTİON ON THE OPTİMAL POWER FLOW FARKLI SALINIM BARASI SEÇİMLERİNİN OPTİMAL GÜÇ AKIŞI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ Serdar ÖZYÖN Celal YAŞAR ÖZET Günümüzde enerjiye olan ihtiyacın artmasına bağlı olarak enerji sistemlerinin büyümesi,

Detaylı

SEZGİSEL ALGORİTMA KULLANILARAK RÜZGÂR ÇİFTLİKLERİNİN GÜÇ SİSTEMİNE ETKİSİNİN İNCELENMESİ. Öğr. Gör. Mehmet Fatih Tefek Doç. Dr.

SEZGİSEL ALGORİTMA KULLANILARAK RÜZGÂR ÇİFTLİKLERİNİN GÜÇ SİSTEMİNE ETKİSİNİN İNCELENMESİ. Öğr. Gör. Mehmet Fatih Tefek Doç. Dr. SEZGİSEL ALGORİTMA KULLANILARAK RÜZGÂR ÇİFTLİKLERİNİN GÜÇ SİSTEMİNE ETKİSİNİN İNCELENMESİ Öğr. Gör. Mehmet Fatih Tefek Doç. Dr. Harun Uğuz * Rüzgâr kaynaklı enerji üretimi, yenilenebilir enerji kaynakları

Detaylı

Deniz ERSOY Elektrik Yük. Müh.

Deniz ERSOY Elektrik Yük. Müh. Deniz ERSOY Elektrik Yük. Müh. AMACIMIZ Yenilenebilir enerji kaynaklarının tesis edilmesi ve enerji üretimi pek çok araştırmaya konu olmuştur. Fosil yakıtların giderek artan maliyeti ve giderek tükeniyor

Detaylı

Modifiye Yapay Arı Koloni Algoritması ile Nümerik Fonksiyon Optimizasyonu Modified Artificial Bee Colony Algorithm for Numerical Function Optimization

Modifiye Yapay Arı Koloni Algoritması ile Nümerik Fonksiyon Optimizasyonu Modified Artificial Bee Colony Algorithm for Numerical Function Optimization Modifiye Yapay Arı Koloni Algoritması ile Nümerik Fonksiyon Optimizasyonu Modified Artificial Bee Colony Algorithm for Numerical Function Optimization Bilal Babayiğit 1, Resul Özdemir 2 1 Bilgisayar Mühendisliği

Detaylı

PROCEEDING BOOK. DAĞITIM SİSTEMİNE YEREL ELEKTRİK SANTRALLERİNİN YERLEŞTİRİLMESİ ALLOCATION of DISTRIBUTED GENERATORS in DISTRIBUTION SYSTEM

PROCEEDING BOOK. DAĞITIM SİSTEMİNE YEREL ELEKTRİK SANTRALLERİNİN YERLEŞTİRİLMESİ ALLOCATION of DISTRIBUTED GENERATORS in DISTRIBUTION SYSTEM DAĞITIM SİSTEMİNE YEREL ELEKTRİK SANTRALLERİNİN YERLEŞTİRİLMESİ ALLOCATION of DISTRIBUTED GENERATORS in DISTRIBUTION SYSTEM Ayşe Aybike Şeker 1, Mehmet Hakan Hocaoğlu 2 1. Elektronik Mühendisliği Bölümü

Detaylı

UYDU GÖRÜNTÜLERİNİN YAPAY ARI KOLONİSİ (ABC) ALGORİTMASI İLE BÖLÜTLENMESİ

UYDU GÖRÜNTÜLERİNİN YAPAY ARI KOLONİSİ (ABC) ALGORİTMASI İLE BÖLÜTLENMESİ UYDU GÖRÜNTÜLERİNİN YAPAY ARI KOLONİSİ (ABC) ALGORİTMASI İLE BÖLÜTLENMESİ T. Kurban 1, E. Beşdok 2, A.E. Karkınlı 3 Erciyes Üniversitesi, Harita Mühendisliği Bölümü, 38039, Melikgazi, Kayseri. 1 tubac@erciyes.edu.tr,

Detaylı

Başlangıç Temel Programının Bilinmemesi Durumu

Başlangıç Temel Programının Bilinmemesi Durumu aşlangıç Temel Programının ilinmemesi Durumu İlgili kısıtlarda şartlar ( ) ise bunlara gevşek (slack) değişkenler eklenerek eşitliklere dönüştürülmektedir. Ancak sınırlayıcı şartlar ( ) veya ( = ) olduğu

Detaylı

Minumum Kayıplar İçin Güç Şebekelerinde Statcom Yerinin ve Değerinin Yer çekimsel Arama Algoritması Kullanılarak Belirlenmesi

Minumum Kayıplar İçin Güç Şebekelerinde Statcom Yerinin ve Değerinin Yer çekimsel Arama Algoritması Kullanılarak Belirlenmesi Minumum Kayıplar İçin Güç Şebekelerinde Statcom Yerinin ve Değerinin Yer çekimsel Arama Algoritması Kullanılarak Belirlenmesi *1 Yalçın Alcan, 2 Ali Öztürk, 3 Hasan Dirik, 4 Memnun Demir *1 Elektrik ve

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

EREĞLİ ELEKTRİK DAĞITIM ŞEBEKESİNDE GENETİK ALGORİTMA VE NEWTON RAPHSON YÖNTEMLERİYLE REAKTİF GÜÇ OPTİMİZASYONUNUN GERÇEKLEŞTİRİLMESİ

EREĞLİ ELEKTRİK DAĞITIM ŞEBEKESİNDE GENETİK ALGORİTMA VE NEWTON RAPHSON YÖNTEMLERİYLE REAKTİF GÜÇ OPTİMİZASYONUNUN GERÇEKLEŞTİRİLMESİ EREĞLİ ELEKTRİK DAĞITIM ŞEBEKESİNDE GENETİK ALGORİTMA VE NEWTON RAPHSON YÖNTEMLERİYLE REAKTİF GÜÇ OPTİMİZASYONUNUN GERÇEKLEŞTİRİLMESİ 1 Hamza YAPICI 2 Nurettin ÇETİNKAYA 1 Ereğli Kemal Akman Meslek Yüksek

Detaylı

VALF NOKTA ETKİLİ KONVEKS OLMAYAN EKONOMİK GÜÇ DAĞITIM PROBLEMLERİNİN HARMONİ ARAMA ALGORİTMASIYLA ÇÖZÜMÜ

VALF NOKTA ETKİLİ KONVEKS OLMAYAN EKONOMİK GÜÇ DAĞITIM PROBLEMLERİNİN HARMONİ ARAMA ALGORİTMASIYLA ÇÖZÜMÜ VALF NOKTA ETKİLİ KONVEKS OLMAYAN EKONOMİK GÜÇ DAĞITIM PROBLEMLERİNİN HARMONİ ARAMA ALGORİTMASIYLA ÇÖZÜMÜ Serdar ÖZYÖN 1,*, Celal YAŞAR 2, Hasan TEMURTAŞ 3 1 Dumlupınar Üniversitesi, Mühendislik Fakültesi,

Detaylı

OPTİMAL GÜÇ AKIŞI ÇÖZÜMLERİNDE LİNEER PROGRAMLAMA ve İÇ NOKTA ALGORİTMASI YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ

OPTİMAL GÜÇ AKIŞI ÇÖZÜMLERİNDE LİNEER PROGRAMLAMA ve İÇ NOKTA ALGORİTMASI YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ OPTİMAL GÜÇ AKIŞI ÇÖZÜMLERİNDE LİNEER PROGRAMLAMA ve İÇ NOKTA ALGORİTMASI YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ Rengin İdil CABADAĞ, Belgin Emre TÜRKAY, Abdullah TUNÇ İstanbul Teknik Üniversitesi, Elektrik-Elektronik

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

Sigma 2006/3 Araştırma Makalesi / Research Article A SOLUTION PROPOSAL FOR INTERVAL SOLID TRANSPORTATION PROBLEM

Sigma 2006/3 Araştırma Makalesi / Research Article A SOLUTION PROPOSAL FOR INTERVAL SOLID TRANSPORTATION PROBLEM Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Sigma 6/ Araştırma Makalesi / Research Article A SOLUTION PROPOSAL FOR INTERVAL SOLID TRANSPORTATION PROBLEM Fügen TORUNBALCI

Detaylı

KARINCA KOLONİ ALGORİTMASI BMÜ-579 Meta Sezgisel Yöntemler. Yrd. Doç. Dr. İlhan AYDIN Fırat Üniversitesi, Bilgisayar Mühendisliği Bölümü

KARINCA KOLONİ ALGORİTMASI BMÜ-579 Meta Sezgisel Yöntemler. Yrd. Doç. Dr. İlhan AYDIN Fırat Üniversitesi, Bilgisayar Mühendisliği Bölümü KARINCA KOLONİ ALGORİTMASI BMÜ-579 Meta Sezgisel Yöntemler Yrd. Doç. Dr. İlhan AYDIN Fırat Üniversitesi, Bilgisayar Mühendisliği Bölümü Karınca Koloni Algoritması Bilim adamları, böcek davranışlarını inceleyerek

Detaylı

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI Hatice YANIKOĞLU a, Ezgi ÖZKARA a, Mehmet YÜCEER a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği

Detaylı

Diferansiyel Gelişim Algoritmasının Yasak İşletim Bölgeli Ekonomik Güç Dağıtım Problemine Uygulanması

Diferansiyel Gelişim Algoritmasının Yasak İşletim Bölgeli Ekonomik Güç Dağıtım Problemine Uygulanması 61 Diferansiyel Gelişim Algoritmasının Yasak İşletim Bölgeli Ekonomik Güç Dağıtım Problemine Uygulanması Serdar ÖZYÖN 1, Celal YAŞAR 2, Hasan TEMURTAŞ 3, Gıyasettin ÖZCAN 4 1,2 Dumlupınar Üniversitesi,

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme

Detaylı

GÜNEŞ ENERJİSİ VE RÜZGÂR ENERJİSİ DÂHİL OLAN HİBRİT GÜÇ SİSTEMİNDE FARKLI ALGORİTMALAR İLE EKONOMİK YÜK DAĞITIMININ İNCELENMESİ

GÜNEŞ ENERJİSİ VE RÜZGÂR ENERJİSİ DÂHİL OLAN HİBRİT GÜÇ SİSTEMİNDE FARKLI ALGORİTMALAR İLE EKONOMİK YÜK DAĞITIMININ İNCELENMESİ 3. İzmir Rüzgâr Sempozyumu // 8-10 Ekim 2015 // İzmir 29 GÜNEŞ ENERJİSİ VE RÜZGÂR ENERJİSİ DÂHİL OLAN HİBRİT GÜÇ SİSTEMİNDE FARKLI ALGORİTMALAR İLE EKONOMİK YÜK DAĞITIMININ İNCELENMESİ Gül Kurt 1, Deniz

Detaylı

BİRİNCİ BASIMA ÖN SÖZ

BİRİNCİ BASIMA ÖN SÖZ BİRİNCİ BASIMA ÖN SÖZ Varlıkların kendilerinde cereyan eden olayları ve varlıklar arasındaki ilişkileri inceleyerek anlamak ve bunları bilgi formuna dökmek kimya, biyoloji, fizik ve astronomi gibi temel

Detaylı

Plazma İletiminin Optimal Kontrolü Üzerine

Plazma İletiminin Optimal Kontrolü Üzerine Plazma İletiminin Optimal Kontrolü Üzerine 1 Yalçın Yılmaz, 2 İsmail Küçük ve 3 Faruk Uygul *1 Faculty of Arts and Sciences, Dept. of Mathematics, Sakaya University, Sakarya, Turkey 2 Faculty of Chemical

Detaylı

Bulanık Mantık Tabanlı Uçak Modeli Tespiti

Bulanık Mantık Tabanlı Uçak Modeli Tespiti Bulanık Mantık Tabanlı Uçak Modeli Tespiti Hüseyin Fidan, Vildan Çınarlı, Muhammed Uysal, Kadriye Filiz Balbal, Ali Özdemir 1, Ayşegül Alaybeyoğlu 2 1 Celal Bayar Üniversitesi, Matematik Bölümü, Manisa

Detaylı

YSA İLE OPTİMİZE EDİLMİŞ YAPAY ARI KOLONİ ALGORİTMASININ LANDSAT UYDU GÖRÜNTÜLERİNİN SINIFLANDIRILMASINDA KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI

YSA İLE OPTİMİZE EDİLMİŞ YAPAY ARI KOLONİ ALGORİTMASININ LANDSAT UYDU GÖRÜNTÜLERİNİN SINIFLANDIRILMASINDA KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI YSA İLE OPTİMİZE EDİLMİŞ YAPAY ARI KOLONİ ALGORİTMASININ LANDSAT UYDU GÖRÜNTÜLERİNİN SINIFLANDIRILMASINDA KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI *Torun A.T., Ekercin, S., Gezgin C. Aksaray Üniversitesi Harita

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Altın Oran (Golden Section Search) Arama Metodu Tek değişkenli bir f(x) fonksiyonunu ele alalım. [Bazı x ler için f

Detaylı

Doğrusal parametrik ve doğrusal olmayan gerçek sistemlerin yapay arı kolonisi algoritması kullanılarak modellenmesi

Doğrusal parametrik ve doğrusal olmayan gerçek sistemlerin yapay arı kolonisi algoritması kullanılarak modellenmesi mühendislikdergisi Dicle Üniversitesi Mühendislik Mühendislik Fakültesi Fakültesi mühendislik Cilt: 5, 2, dergisi 39 111118 Aralık 2014 Doğrusal parametrik ve doğrusal olmayan gerçek sistemlerin yapay

Detaylı

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

Eğitim ve Öğretim Araştırmaları Dergisi Journal of Research in Education and Teaching Mayıs 2017 Cilt: 6 Sayı: 2 Makale No: 33 ISSN:

Eğitim ve Öğretim Araştırmaları Dergisi Journal of Research in Education and Teaching Mayıs 2017 Cilt: 6 Sayı: 2 Makale No: 33 ISSN: KISA VE ORTA ENERJİ İLETİM HATLARININ SAYISAL ANALİZİ İÇİN BİR ARAYÜZ TASARIMI Öğr. Gör. Hakan Aydogan Uşak Üniversitesi, Uşak hakan.aydogan@usak.edu.tr Öğr. Gör. Mehmet Feyzi Özsoy Uşak Üniversitesi,

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I 1/19 İçerik Yöneylem Araştırmasının Dalları Kullanım Alanları Yöneylem Araştırmasında Bazı Yöntemler Doğrusal (Lineer) Programlama, Oyun Teorisi, Dinamik Programlama, Tam Sayılı

Detaylı

İLERİ ALGORİTMA ANALİZİ TABU ARAMA ALGORİTMASI (TABU SEARCH)

İLERİ ALGORİTMA ANALİZİ TABU ARAMA ALGORİTMASI (TABU SEARCH) İLERİ ALGORİTMA ANALİZİ TABU ARAMA ALGORİTMASI (TABU SEARCH) Tabu Arama Algoritması, optimizasyon problemlerinin çözümü için F.Glover tarafından geliştirilmiş iteratif bir araştırma algoritmasıdır. Temel

Detaylı

Problemlerine Geliştirilmiş Parçacık

Problemlerine Geliştirilmiş Parçacık Çankaya University Journal of Science and Engineering Volume 9 (2012), No. 2, 89 106 Yasak İşletim Bölgeli Ekonomik Güç Dağıtım Problemlerine Geliştirilmiş Parçacık Sürü Optimizasyonu Yaklaşımı Serdar

Detaylı

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTUSÜ BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİMDALI. I. GENEL BİLGİLER Ders Adı

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTUSÜ BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİMDALI. I. GENEL BİLGİLER Ders Adı BİM618 Evrimsel Algoritmalar Öğretim Üyesi Prof. Dr. Derviş Karaboğa Görüşme Saatleri 8.00-17.00 E posta: karaboga@erciyes.edu.tr http://abis.erciyes.edu.tr/sorgu.aspx?sorgu=236 Erciyes Üniversitesi, Mühendislik

Detaylı

Küçük ve Mikro Ölçekli Enerji Yatırımları için Hibrit Enerji Modeli

Küçük ve Mikro Ölçekli Enerji Yatırımları için Hibrit Enerji Modeli Küçük ve Mikro Ölçekli Enerji Yatırımları için Hibrit Enerji Modeli Mustafa Yıldız Enerji Mühendisliği Yüksek Lisans Programı Bitirme Tezi Danışman: Yard. Doç. Dr. Ferhat Bingöl 4. İzmir Rüzgar Sempozyumu

Detaylı

KAOTİK ATEŞBÖCEĞİ OPTİMİZASYON ALGORİTMASI KULLANILARAK TERMİK GÜÇ SANTRALLERİ ETKİSİNDEKİ EKONOMİK YÜK DAĞITIM PROBLEMLERİNİN ÇÖZÜMÜ

KAOTİK ATEŞBÖCEĞİ OPTİMİZASYON ALGORİTMASI KULLANILARAK TERMİK GÜÇ SANTRALLERİ ETKİSİNDEKİ EKONOMİK YÜK DAĞITIM PROBLEMLERİNİN ÇÖZÜMÜ KAOTİK ATEŞBÖCEĞİ OPTİMİZASYON ALGORİTMASI KULLANILARAK TERMİK GÜÇ SANTRALLERİ ETKİSİNDEKİ EKONOMİK YÜK DAĞITIM PROBLEMLERİNİN ÇÖZÜMÜ Nihat PAMUK TEİAŞ 5. İletim Tesis ve İşletme Grup Müdürlüğü, Test Grup

Detaylı

Geliştirilmiş Yerçekimsel Arama Algoritması: MSS-GSA

Geliştirilmiş Yerçekimsel Arama Algoritması: MSS-GSA Geliştirilmiş Yerçekimsel Arama Algoritması: MSS-GSA * 1 Nihan Kazak ve 2 Alpaslan Duysak * 1 Mühendislik Fakültesi, Bilgisayar Mühendisliği, Bilecik Şeyh Edebali Üniversitesi, Türkiye 2 Mühendislik Fakültesi,

Detaylı

Self Organising Migrating Algorithm

Self Organising Migrating Algorithm OPTİMİZASYON TEKNİKLERİ Self Organising Migrating Algorithm Kendini Organize Eden Göç/Geçiş Algoritması MELİH HİLMİ ULUDAĞ Fırat Üniversitesi Teknoloji Fakültesi Yazılım Mühendisliği Bölümü İletişim: www.melihhilmiuludag.com

Detaylı

Fonksiyon Optimizasyonunda Genetik Algoritmalar

Fonksiyon Optimizasyonunda Genetik Algoritmalar 01-12-06 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu

Detaylı

DİREK LİNEER TRASFORMASYON YÖNTEMİNDE YAPAY ZEKA TEKNİKLERİNİN UYGULANMASI

DİREK LİNEER TRASFORMASYON YÖNTEMİNDE YAPAY ZEKA TEKNİKLERİNİN UYGULANMASI 575 İREK LİNEER TRASFORMASYON YÖNTEMİNE YAPAY ZEKA TEKNİKLERİNİN UYGULANMASI Emre Bendeş 1, Coşkun Özkan 2 1 Erciyes Üniversitesi, Bilgisayar Mühendisliği Bölümü, ebendes@erciyes.edu.tr 2 Erciyes Üniversitesi,

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

Hülya Özdağ (YTÜ Matematik Bölümü Ö.Ü.) Nilgün Aygör (YTÜ Matematik Bölümü Ö.Ü.) Aykut Parlak (YTÜ Matematik Mühendisliği)

Hülya Özdağ (YTÜ Matematik Bölümü Ö.Ü.) Nilgün Aygör (YTÜ Matematik Bölümü Ö.Ü.) Aykut Parlak (YTÜ Matematik Mühendisliği) Karınca Kolonisi Algoritmasının Zaman Çizelgelemesi Üzerine: Bir Modellemesi ve Uygulaması Hülya Özdağ (YTÜ Matematik Bölümü Ö.Ü.) Nilgün Aygör (YTÜ Matematik Bölümü Ö.Ü.) Aykut Parlak (YTÜ Matematik Mühendisliği)

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTıRMA MODELININ TANıMı Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

Örneğin bir önceki soruda verilen rüzgâr santralinin kapasite faktörünü bulmak istersek

Örneğin bir önceki soruda verilen rüzgâr santralinin kapasite faktörünü bulmak istersek KAPASİTE FAKTÖRÜ VE ENERJİ TAHMİNİ Kapasite faktörü (KF) bir santralin ne kadar verimli kullanıldığını gösteren bir parametredir. Santralin nominal gücü ile yıllık sağladığı enerji miktarı arasında ilişki

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK DAĞITIM HATLARINDA GÜÇ OPTİMİZASYONUNUN GERÇEKLEŞTİRİLMESİ VE BİR ELEKTRİK DAĞITIM BÖLGESİNE UYGULANMASI Hamza YAPICI YÜKSEK LİSANS TEZİ Elektrik

Detaylı

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL)

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL) DOĞRUSAL PROGRAMLAMA (GENEL) Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik biçiminde verilmesi durumunda amaca

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ EĞİTİM ÖĞRETİM YILI DERS KATALOĞU

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ EĞİTİM ÖĞRETİM YILI DERS KATALOĞU T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ - EĞİTİM ÖĞRETİM YILI DERS KATALOĞU Ders Kodu Bim Kodu Ders Adı Türkçe Ders Adı İngilizce Dersin Dönemi T Snf Açıl.Dönem P

Detaylı

Ahmet Aydın a, Mustafa Şeker b,arif Memmedov c

Ahmet Aydın a, Mustafa Şeker b,arif Memmedov c MAKALE HAKKINDA Geliş : Kasım 2016 Kabul: Mart 2017 BİNGÖL ORTA GERİLİM ŞEBEKESİNİN TEKNİK KAYIPLARIN ANALİZİ İÇİN DİGSLİENT POWER FACTORY YAZILIMI İLE BİLGİSAYAR DESTEKLİ ŞEBEKE MODELİ COMPUTER ADDED

Detaylı

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2 OPTIMIZASYON.... Bir Değişkenli Fonksiyonların Maksimizasyonu.... Türev...3.. Bir noktadaki türevin değeri...4.. Maksimum için Birinci Derece Koşulu...4.3. İkinci Derece Koşulu...5.4. Türev Kuralları...5

Detaylı

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY)

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) 1 DOĞRUSAL PROGRAMLAMADA İKİLİK (DUALİTE-DUALITY) Doğrusal programlama modelleri olarak adlandırılır. Aynı modelin değişik bir düzende oluşturulmasıyla Dual (İkilik)

Detaylı

Kaotik Tabanlı Diferansiyel (Farksal) Gelişim Algoritması

Kaotik Tabanlı Diferansiyel (Farksal) Gelişim Algoritması Kaotik Tabanlı Diferansiyel (Farksal) Gelişim Algoritması 1 Mehmet Eser * 1 Uğur Yüzgeç 1 Bilecik Şeyh Edebali Üniversitesi, Bilgisayar Mühendisliği Bölümü, 111, Gülümbe, Bilecik 1. Giriş Abstract Differential

Detaylı

Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu

Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu th International Adanced Technologies Symposium (IATS ), -8 May 20, Elazığ, Turkey Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu Ö. Soykasap e K. B. Sugözü Afyon

Detaylı

SEZGİSEL YÖNTEMLER KULLANARAK OPTİMAL GÜÇ AKIŞI PROBLEMİ ÇÖZÜMÜ YÜKSEK LİSANS TEZİ. Rengin İdil CABADAĞ. Enerji Bilim ve Teknoloji Anabilim Dalı

SEZGİSEL YÖNTEMLER KULLANARAK OPTİMAL GÜÇ AKIŞI PROBLEMİ ÇÖZÜMÜ YÜKSEK LİSANS TEZİ. Rengin İdil CABADAĞ. Enerji Bilim ve Teknoloji Anabilim Dalı İSTANBUL TEKNİK ÜNİVERSİTESİ ENERJİ ENSTİTÜSÜ SEZGİSEL YÖNTEMLER KULLANARAK OPTİMAL GÜÇ AKIŞI PROBLEMİ ÇÖZÜMÜ YÜKSEK LİSANS TEZİ Rengin İdil CABADAĞ Enerji Bilim ve Teknoloji Anabilim Dalı Enerji Bilim

Detaylı

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı Mehmet Ali Çavuşlu Özet Yapay sinir ağlarının eğitiminde genellikle geriye

Detaylı

RAYLI SİSTEMLERDE ENERJİ OTOMASYONU İLE HAT KAYIPLARININ AZALTILMASI Taciddin AKÇAY 1 Y.Doç.Dr. Aysel ERSOY 2

RAYLI SİSTEMLERDE ENERJİ OTOMASYONU İLE HAT KAYIPLARININ AZALTILMASI Taciddin AKÇAY 1 Y.Doç.Dr. Aysel ERSOY 2 RAYLI SİSTEMLERDE ENERJİ OTOMASYONU İLE HAT KAYIPLARININ AZALTILMASI Taciddin AKÇAY 1 Y.Doç.Dr. Aysel ERSOY 2 1 İstanbul Büyükşehir Belediyesi Avrupa Yakası Raylı Sistem Müdürlüğü 34010 Merter İstanbul

Detaylı

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTIRMA MODELİNİN TANIMI Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

EKSPONANSİYEL AĞIRLIKLI PARÇACIK SÜRÜ ALGORİTMASI İLE TORNALAMA İŞLEMLERİNDE KESME KOŞULLARININ OPTİMİZASYONU

EKSPONANSİYEL AĞIRLIKLI PARÇACIK SÜRÜ ALGORİTMASI İLE TORNALAMA İŞLEMLERİNDE KESME KOŞULLARININ OPTİMİZASYONU EKSPONANSİYEL AĞIRLIKLI PARÇACIK SÜRÜ ALGORİTMASI İLE TORNALAMA İŞLEMLERİNDE KESME KOŞULLARININ OPTİMİZASYONU *Yasin CANTAŞ 1, Burhanettin DURMUŞ 2 1 Sakarya Üniversitesi, Teknoloji Fakültesi, Elektrik-Elektronik

Detaylı

4.4. Gerilim Kararlılığının Temel Geçici Hal Durumu

4.4. Gerilim Kararlılığının Temel Geçici Hal Durumu 49 4.4. Gerilim Kararlılığının Temel Geçici Hal Durumu Đletim sistemine bağlı bir asenkron motorun şekil (4.3.b) ' deki P-V eğrileriyle, iletim sisteminin P-V eğrilerini biraraya getirerek, sürekli hal

Detaylı

DOĞRUSAL ANTEN DİZİLERİNDE OPTİMUM DEMET ŞEKİLLENDİRME AMACIYLA KARINCA KOLONİ OPTİMİZASYON ALGORİTMASININ KULLANILMASI ÖZET

DOĞRUSAL ANTEN DİZİLERİNDE OPTİMUM DEMET ŞEKİLLENDİRME AMACIYLA KARINCA KOLONİ OPTİMİZASYON ALGORİTMASININ KULLANILMASI ÖZET Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22(1-2) 66-74 (26) http://fbe.erciyes.edu.tr/ ISSN 112-2354 DOĞRUSAL ANTEN DİZİLERİNDE OPTİMUM DEMET ŞEKİLLENDİRME AMACIYLA KARINCA KOLONİ OPTİMİZASYON

Detaylı

İnsansız Hava Araçları İçin Yapay Arı Kolonisi Algoritması Kullanarak Rota Planlama

İnsansız Hava Araçları İçin Yapay Arı Kolonisi Algoritması Kullanarak Rota Planlama Karaelmas Fen ve Müh. Derg. 7(1):59-65, 017 Karaelmas Fen ve Mühendislik Dergisi Dergi web sayfası: http://fbd.beun.edu.tr Araştırma Makalesi İnsansız Hava Araçları İçin Yapay Arı Kolonisi Algoritması

Detaylı

RÜZGÂR ENERJİ SANTRALLERİNİN EKONOMİK YÜK DAĞITIMI ÜZERİNE ETKİSİ. Tankut Yalçınöz 1, Serkan Bahçeci 2, Seyfullah Fedakar 1,Emrah Çetin 2

RÜZGÂR ENERJİ SANTRALLERİNİN EKONOMİK YÜK DAĞITIMI ÜZERİNE ETKİSİ. Tankut Yalçınöz 1, Serkan Bahçeci 2, Seyfullah Fedakar 1,Emrah Çetin 2 RÜZGÂR ENERJİ SANTRALLERİNİN EKONOMİK YÜK DAĞITIMI ÜZERİNE ETKİSİ Tankut Yalçınöz 1, Serkan Bahçeci 2, Seyfullah Fedakar 1,Emrah Çetin 2 1 Elektrik-Elektronik Mühendisliği Bölümü Melikşah Üniversitesi

Detaylı

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Genetik algoritmalar, Darwin in doğal seçim ve evrim teorisi ilkelerine dayanan bir arama ve optimizasyon yöntemidir.

Detaylı

DENGESİZ GÜÇ AKIŞI ANALİZLERİ İÇİN SABİT HIZLI ASENKRON GENERATÖRLÜ RÜZGAR TÜRBİNİ MODELİ BÖLÜM 1: GENERATÖR MODELİ BÖLÜM 2: YÜK AKIŞI UYGULAMALARI

DENGESİZ GÜÇ AKIŞI ANALİZLERİ İÇİN SABİT HIZLI ASENKRON GENERATÖRLÜ RÜZGAR TÜRBİNİ MODELİ BÖLÜM 1: GENERATÖR MODELİ BÖLÜM 2: YÜK AKIŞI UYGULAMALARI DENGESİZ GÜÇ AKIŞI ANALİZLERİ İÇİN SABİT HIZLI ASENKRON GENERATÖRLÜ RÜZGAR TÜRBİNİ MODELİ BÖLÜM 1: GENERATÖR MODELİ BÖLÜM 2: YÜK AKIŞI UYGULAMALARI Ahmet KÖKSOY Gebze Teknik Üniversitesi Elektronik Mühendisliği

Detaylı

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik

Detaylı

GENİŞ SPEKTRUMLU HARMONİK FİLTRE PERFORMANSI DEĞERLENDİRMESİ

GENİŞ SPEKTRUMLU HARMONİK FİLTRE PERFORMANSI DEĞERLENDİRMESİ GENİŞ SPEKTRUMLU HARMONİK FİLTRE PERFORMANSI DEĞERLENDİRMESİ Didem ERGUN SEZER Ergun Elektrik Ltd Şti, İzmir didem@ergunelektrik.com ÖZET Bu bildiride hız kontrol cihazının giriş katı yapısının enerji

Detaylı

YAPAY ARI KOLONĠ ALGORĠTMASININ TARIM ALANLARININ SINIFLANDIRILMASINDA KULLANILABĠLĠRLĠĞĠNĠN ĠRDELENMESĠ

YAPAY ARI KOLONĠ ALGORĠTMASININ TARIM ALANLARININ SINIFLANDIRILMASINDA KULLANILABĠLĠRLĠĞĠNĠN ĠRDELENMESĠ YAPAY ARI KOLONĠ ALGORĠTMASININ TARIM ALANLARININ SINIFLANDIRILMASINDA KULLANILABĠLĠRLĠĞĠNĠN ĠRDELENMESĠ S.Reis, A.T.Torun Aksaray Üniversitesi, Harita Mühendisliği Bölümü, Aksaray, Türkiye - (sreis,ahmettarik.torun)@aksaray.edu.tr

Detaylı

Bekleme Hattı Teorisi

Bekleme Hattı Teorisi Bekleme Hattı Teorisi Sürekli Parametreli Markov Zincirleri Tanım 1. * +, durum uzayı * +olan sürekli parametreli bir süreç olsun. Aşağıdaki özellik geçerli olduğunda bu sürece sürekli parametreli Markov

Detaylı

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA i GENETİK ALGORİTMA YAKLAŞIMIYLA ATÖLYE ÇİZELGELEME Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ OCAK 2005 ANKARA ii Serdar BİROĞUL tarafından hazırlanan

Detaylı

OPTİMİZASYON TEKNİKLERİ-2. Hafta

OPTİMİZASYON TEKNİKLERİ-2. Hafta GİRİŞ OPTİMİZASYON TEKNİKLERİ-2. Hafta Mühendislik açısından bir işin tasarlanıp, gerçekleştirilmesi yeterli değildir. İşin en iyi çözüm yöntemiyle en verimli bir şekilde yapılması bir anlam ifade eder.

Detaylı

Selçuk Üniversitesi ISSN 1302/6178 Journal of Technical-Online ARI KOLONİSİ OPTİMİZASYON ALGORİTMASI KULLANARAK ŞOFÖR- HAT-ZAMAN ÇİZELGELEME

Selçuk Üniversitesi ISSN 1302/6178 Journal of Technical-Online ARI KOLONİSİ OPTİMİZASYON ALGORİTMASI KULLANARAK ŞOFÖR- HAT-ZAMAN ÇİZELGELEME ARI KOLONİSİ OPTİMİZASYON ALGORİTMASI KULLANARAK ŞOFÖR- HAT-ZAMAN ÇİZELGELEME Mustafa Servet KIRAN 1, Mesut GÜNDÜZ 1 1 Bilgisayar Mühendisliği Bölümü, Mühendislik-Mimarlık Fakültesi, Selçuk Üniversitesi,

Detaylı

T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YAPAY ARI KOLONİSİ ALGORİTMASI İLE DERS ÇİZELGELEME PROBLEMİNİN ÇÖZÜMÜ Mahmut TOKMAK Danışman: Yrd. Doç. Dr. Ecir Uğur KÜÇÜKSİLLE YÜKSEK LİSANS

Detaylı

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008 Kablosuz Sensör Ağlar ve Eniyileme Tahir Emre KALAYCI 21 Mart 2008 Gündem Genel Bilgi Alınan Dersler Üretilen Yayınlar Yapılması Planlanan Doktora Çalışması Kablosuz Sensör Ağlar Yapay Zeka Teknikleri

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Elektrik Enerjisinin Kullanımı EEE317 5 3+0 3 3

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Elektrik Enerjisinin Kullanımı EEE317 5 3+0 3 3 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Elektrik Enerjisinin Kullanımı EEE317 5 3+0 3 3 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu /

Detaylı

Üstel Öğrenme ve Genel Bozulma Etkili Akış Tipi Çizelgeleme Problemi: Maksimum Tamamlanma Zamanı Minimizasyonu

Üstel Öğrenme ve Genel Bozulma Etkili Akış Tipi Çizelgeleme Problemi: Maksimum Tamamlanma Zamanı Minimizasyonu Üstel Öğrenme ve Genel Bozulma Etkili Akış Tipi Çizelgeleme Problemi: Maksimum Tamamlanma Zamanı Minimizasyonu Tamer Eren Kırıkkale Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü, 71451,

Detaylı

Yapay Arı Koloni Algoritması Kullanılarak Görüntü İyileştirme Yönteminin Geliştirilmesi

Yapay Arı Koloni Algoritması Kullanılarak Görüntü İyileştirme Yönteminin Geliştirilmesi Gazi Üniversitesi Fen Bilimleri Dergisi Part:C, Tasarım Ve Teknoloji GU J Sci Part:C 4(4):173-183 (2016) Yapay Arı Koloni Algoritması Kullanılarak Görüntü İyileştirme Yönteminin Geliştirilmesi Serkan ÖZTÜRK

Detaylı

MÜFREDAT DERS LİSTESİ

MÜFREDAT DERS LİSTESİ MÜFREDAT DERS LİSTESİ MÜHENDİSLİK FAK. / BİLGİSAYAR MÜHENDİSL / 2010 BİLGİSAYAR MÜHENDİSLİĞİ Müfredatı 0504101 Matematik I Calculus I 1 GÜZ 4 5 Z 0504102 Genel Fizik I General Physics I 1 GÜZ 4 4 Z 0504103

Detaylı

Zeki Optimizasyon Teknikleri. Karınca Algoritması (Ant Algorithm)

Zeki Optimizasyon Teknikleri. Karınca Algoritması (Ant Algorithm) Zeki Optimizasyon Teknikleri Karınca Algoritması (Ant Algorithm) Karınca Algoritması 1996 yılında Marco Dorigo tarafından ortaya atılmıştır. Temel olarak karıncaların yiyecek madde ile yuvaları arasındaki

Detaylı

Temelleri. Doç.Dr.Ali Argun Karacabey

Temelleri. Doç.Dr.Ali Argun Karacabey Doğrusal Programlamanın Temelleri Doç.Dr.Ali Argun Karacabey Doğrusal Programlama Nedir? Bir Doğrusal Programlama Modeli doğrusal kısıtlar altında bir doğrusal ğ fonksiyonun değerini ğ maksimize yada minimize

Detaylı

Yenilenebilir Kaynakları İçeren Güç Sistemlerinin PowerWorld Programı ile Analizi

Yenilenebilir Kaynakları İçeren Güç Sistemlerinin PowerWorld Programı ile Analizi Yenilenebilir Kaynakları İçeren Güç Sistemlerinin PowerWorld Programı ile Analizi Yasin İçel 1, Burhan Baran 2, Asım Kaygusuz 2, Ömer Bektaş 3 1 Meslek Yüksekokulu, Elektrik ve Enerji Bölümü Adıyaman Üniversitesi,

Detaylı

Facts cihazlarının gerilim kararlılığına etkisinin incelenmesi. Effects of facts devices voltage stability

Facts cihazlarının gerilim kararlılığına etkisinin incelenmesi. Effects of facts devices voltage stability SAÜ. Fen Bil. Der. 7. Cilt, 2. Sayı, s. 6-66, 23 SAU J. Sci. Vol 7, No 2, p. 6-66, 23 Facts cihazlarının gerilim kararlılığına etkisinin incelenmesi Talha Enes Gümüş *, Mehmet Ali Yalçın * Sakarya Üniversitesi,

Detaylı

Doç.Dr.Erkan ÜLKER, Selçuk Üniversitesi Mühendislik F, Bilgisayar Mühendisliği Bölümü

Doç.Dr.Erkan ÜLKER, Selçuk Üniversitesi Mühendislik F, Bilgisayar Mühendisliği Bölümü 17.05.2014 Sayfa 1 ÖZET Bu eser veri noktalarının bir yüzeyinin generasyonu olan yüzey rekonstrüksiyonu konusu ile ilgilenir. Yaklaşımımız metaheurestic algoritmaya dayalıdır. (Particle Swarm Optimization)

Detaylı

Yapay Arı Koloni Algoritması İle Uzay Çelik Yapıların Optimum Tasarımı

Yapay Arı Koloni Algoritması İle Uzay Çelik Yapıların Optimum Tasarımı Yapay Arı Koloni Algoritması İle Uzay Çelik Yapıların Optimum Tasarımı *1 Özer Sevim, 2 Mustafa Sönmez, 3 Rıfat Sezer *1 İnşaat Mühendisliği Bölümü, Mühendislik Fakültesi, Kırıkkale Üniversitesi, Türkiye.

Detaylı

İNSANSIZ HAVA ARACI PERVANELERİNİN TASARIM, ANALİZ VE TEST YETENEKLERİNİN GELİŞTİRİLMESİ

İNSANSIZ HAVA ARACI PERVANELERİNİN TASARIM, ANALİZ VE TEST YETENEKLERİNİN GELİŞTİRİLMESİ IV. ULUSAL HAVACILIK VE UZAY KONFERANSI 12-14 Eylül 212, Hava Harp Okulu, İstanbul İNSANSIZ HAVA ARACI PERVANELERİNİN TASARIM, ANALİZ VE TEST YETENEKLERİNİN GELİŞTİRİLMESİ Oğuz Kaan ONAY *, Javid KHALILOV,

Detaylı

DENGESİZ GÜÇ AKIŞI ANALİZLERİ İÇİN SABİT HIZLI ASENKRON GENERATÖRLÜ RÜZGAR TÜRBİNİ MODELİ BÖLÜM 1: GENERATÖR MODELİ

DENGESİZ GÜÇ AKIŞI ANALİZLERİ İÇİN SABİT HIZLI ASENKRON GENERATÖRLÜ RÜZGAR TÜRBİNİ MODELİ BÖLÜM 1: GENERATÖR MODELİ DENGESİZ GÜÇ AKIŞI ANALİZLERİ İÇİN SABİT HIZLI ASENKRON GENERATÖRLÜ RÜZGAR TÜRBİNİ MODELİ BÖLÜM 1: GENERATÖR MODELİ Ahmet KÖKSOY 1 Onur ÖZTÜRK 1 1 Gebze Teknik Üniversitesi Elektronik Müh. Böl. 41400 Gebze

Detaylı

BLM-431 YAPAY ZEKA. Ders-5 Bilgili Arama Yöntemleri. Yrd. Doç. Dr. Ümit ATİLA

BLM-431 YAPAY ZEKA. Ders-5 Bilgili Arama Yöntemleri. Yrd. Doç. Dr. Ümit ATİLA BLM-431 YAPAY ZEKA Ders-5 Bilgili Arama Yöntemleri Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/ Arama Grafları Eğer arama uzayı ağaç yapısından değil de graf

Detaylı

YÖNETİM BİLİŞİM SİSTEMLERİ BÖLÜMÜ YENİ DERS MÜFREDATI (1) FAKÜLTESİ: İŞLETME FAKÜLTESİ / BUSINESS SCHOOL

YÖNETİM BİLİŞİM SİSTEMLERİ BÖLÜMÜ YENİ DERS MÜFREDATI (1) FAKÜLTESİ: İŞLETME FAKÜLTESİ / BUSINESS SCHOOL (3) SINIFI: 1. Yıl Güz Dönemi MIS101 BİLGİSAYAR PROGRAMLAMA 1 COMPUTER PROGRAMMING 1 Z 3-0 4 BUS101 BİLİM VE TEKNOLOJİ TARİHİ HISTORY OF SCIENCE AND TECHNOLOGY Z 3-0 4 BUS103 İŞLETMECİLER İÇİN MATEMATİK

Detaylı

ÖZGEÇMİŞ 2003 MÜHENDİSLİĞİ İSTANBUL ÜNİVERSİTESİ ÜNİVERSİTESİ

ÖZGEÇMİŞ 2003 MÜHENDİSLİĞİ İSTANBUL ÜNİVERSİTESİ ÜNİVERSİTESİ ÖZGEÇMİŞ 1. Adı Soyadı: İPEK EKER 2. Doğum Tarihi: 31.01.1980 3. Ünvanı: ÖĞRETİM GÖREVLİSİ 4. Öğrenim Durumu: Derece Alan Üniversite Yıl Lisans ENDÜSTRİ İSTANBUL KÜLTÜR 2003 MÜHENDİSLİĞİ ÜNİVERSİTESİ Y.Lisans

Detaylı

ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU

ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU Tek değişkenli bir f(x) fonksiyonunu ele alalım. [Bazı x ler için f (x) bulunamayabilir.] Aşağıdaki DOP modelini çözmek istediğimizi var sayalım. Max f(x)

Detaylı

GRİD ALTYAPISI ÜZERİNDE

GRİD ALTYAPISI ÜZERİNDE GRİD ALTYAPISI ÜZERİNDE BİR FÜZENİN PARALEL ŞEKİL OPTİMİZA ZASYONU Erdal Oktay EDA Tasarım Analiz Mühendislik Ltd. ODTÜ Teknokent, Ankara mail@eda-ltd.com.tr Osman Merttopcuoglu ROKETSAN Roket Sanayi ve

Detaylı

KOMBİNATORYAL OPTİMİZASYON

KOMBİNATORYAL OPTİMİZASYON KOMBİNATORYAL OPTİMİZASYON İnsanların, daha iyi nasıl olabilir ya da nasıl elde edilebilir?, sorusuna cevap aramaları, teknolojinin gelişmesini sağlayan en önemli etken olmuştur. Gerçek hayatı daha kolay

Detaylı

Fonksiyon Minimizasyonunda Simulated Annealing Yöntemi

Fonksiyon Minimizasyonunda Simulated Annealing Yöntemi 07-04-006 Ümit Akıncı Fonksiyon Minimizasyonunda Simulated Annealing Yöntemi İçindekiler Fonksiyon Minimizasyonu Metropolis Algoritması. Algoritma.......................................... Bir boyutlu

Detaylı

ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ SANAL ARTIRILMIŞ VE AKILLI TEKNOLOJİLER (SAAT) LABORATUVARI SAAT Laboratuvarı Koordinatör: Yrd. Doç. Dr. Gazi Erkan BOSTANCI SAAT

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

ELEKTRİK PİYASASI ŞEBEKE YÖNETMELİĞİNDE DEĞİŞİKLİK YAPILMASINA İLİŞKİN YÖNETMELİK MADDE

ELEKTRİK PİYASASI ŞEBEKE YÖNETMELİĞİNDE DEĞİŞİKLİK YAPILMASINA İLİŞKİN YÖNETMELİK MADDE 3 Ocak 2013 PERŞEMBE Resmî Gazete Sayı : 28517 YÖNETMELİK Enerji Piyasası Düzenleme Kurumundan: ELEKTRİK PİYASASI ŞEBEKE YÖNETMELİĞİNDE DEĞİŞİKLİK YAPILMASINA İLİŞKİN YÖNETMELİK MADDE 1 22/1/2003 tarihli

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Hessien Matris-Quadratik Form Mutlak ve Bölgesel Maksimum-Minimum Noktalar Giriş Kısıtlı ve kısıtsız fonksiyonlar için

Detaylı

FAZ KAYDIRICI TRANSFORMATÖRLERİN STATİK GERİLİM KARARLILIĞI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ

FAZ KAYDIRICI TRANSFORMATÖRLERİN STATİK GERİLİM KARARLILIĞI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ İleri Teknoloji Bilimleri Dergisi Cilt 2, Sayı 3, 43-52, 203 Journal of Advanced Technology Sciences Vol 2, No 3, 43-52, 203 FAZ KAYDIRICI TRANSFORMATÖRLERİN STATİK GERİLİM KARARLILIĞI ÜZERİNDEKİ ETKİLERİNİN

Detaylı

Bilgisayar Mühendisliği. Bilgisayar Mühendisliğine Giriş 1

Bilgisayar Mühendisliği. Bilgisayar Mühendisliğine Giriş 1 Bilgisayar Mühendisliği Bilgisayar Mühendisliğine Giriş 1 Mühendislik Nedir? Mühendislik, bilim ve matematiğin yararlı cihaz ve sistemlerin üretimine uygulanmasıdır. Örn: Elektrik mühendisleri, elektronik

Detaylı

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak TP Çözümü TP problemlerinin çözümü için başlıca iki yaklaşım vardır kesme düzlemleri (cutting planes) dal sınır (branch and bound) tüm yaklaşımlar tekrarlı

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı