ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ"

Transkript

1 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ FOSFİN TÜREVİ LİGAND VE METAL KOMPLEKSLERİNİN HAZIRLANIŞI, STİREN HİDROJENASYONUNDA MİKROEMÜLSİYON TEKNİĞİ KULLANILARAK KATALİTİK ETKİNLİĞİNİN İNCELENMESİ KİMYA ANABİLİM DALI ADANA, 2012

2 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FOSFİN TÜREVİ LİGAND VE METAL KOMPLEKSLERİNİN HAZIRLANIŞI, STİREN HİDROJENASYONUNDA SCCO 2 ORTAMINDA MİKROEMÜLSİYON TEKNİĞİ KULLANILARAK KATALİTİK ETKİNLİĞİNİN İNCELENMESİ YÜKSEK LİSANS TEZİ KİMYA ANABİLİM DALI Bu Tez 13/08/2011 Tarihinde Aşağıdaki Jüri Üyeleri Tarafından Oybirliği/Oyçokluğu ile Kabul Edilmiştir Prof.Dr.Bilgehan GÜZEL Prof.Dr. Selahattin SERİN Prof.Dr. Ramazan ESEN DANIŞMAN ÜYE ÜYE Bu Tez Enstitümüz Kimya Anabilim Dalında hazırlanmıştır. Kod No: Prof. Dr. M. Rifat ULUSOY Enstitü Müdürü Bu Çalışma Ç. Ü. Araştırma Projeleri Birimi Tarafından Desteklenmiştir. Proje No: FEF2010YL50 Not: Bu tezde kullanılan özgün ve başka kaynaktan yapılan bildirişlerin, çizelge ve fotoğrafların kaynak gösterilmeden kullanımı, 5846 sayılı Fikir ve Sanat Eserleri Kanunundaki hükümlere tabidir.

3 ÖZ YÜKSEK LİSANS TEZİ FOSFİN TÜREVİ LİGAND VE METAL KOMPLEKSLERİNİN HAZIRLANIŞI, MİKROEMÜLSİYON TEKNİĞİ KULLANILARAK STİREN HİDROJENASYONUNDA KATALİTİK ETKİNLİĞİNİN İNCELENMESİ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI Danışman Jüri : Prof. Dr. Bilgehan GÜZEL Yıl: 2012, Sayfa:77 : Prof. Dr. Bilgehan Güzel : Prof. Dr. Selahattin Serin : Prof. Dr. Ramazan ESEN Bu tez kapsamında, scco 2 ortamında çözünmediği bilinen fosfin türevi ligandlar sülfolanarak suda çözünür hale getirildi ve rodyumlu metal kompleksleri sentezlendi. Sentezlenen ligand ve katalizörlerin yapıları FT-IR, 1 H, ve 31 P NMR gibi spektroskopik yöntemler ile karakterize edildi. Katalizörlerin çözünürlükleri 70 o C sıcaklık ve 2700 psi CO 2 basıncında incelendi. Katalizörlerin süperkritik karbondioksit çözücü ortamında katalitik etkinlikleri model bileşik olarak seçilen stirenin hidrojenasyonu üzerinden mikroemülsiyon tekniği kullanılarak incelendi. Hidrojenasyon reaksiyonları farklı sıcaklık ve farklı basınç değerlerinde incelendi ve en iyi dönüşümün 80 o C ve 150 psi H 2 ve 4000 psi (PCO 2 +PH 2 ) toplam basıncında olduğu gözlemlenmiştir. Anahtar Kelimeler: Hidrojenasyon,Mikroemülsiyon, Süperkritik Karbondioksit, Sülfolama, metal-katalizör I

4 ABSTRACT MSc THESIS PREPATION OF PHOSPHİIE DERIVATIVES LIGAND AND THEIR METAL COMPLEXES, INVESTIGATION OF THEIR CATALYTIC ACTIVITY IN STYRENE HYDROGENATION BY USING MICROEMULSION TECHNIQUE ÇUKUROVA UNIVERSITY INSTITUTE OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF CHEMISTRY Supervisor :Prof. Dr. Bilgehan GÜZEL Year: 2012, Pages:77 Jury :Prof. Dr. Bilgehan GÜZEL :Prof. Dr. Selahattin SERİN :Prof. Dr. Ramazan ESEN In this thesis,phosphine derivatives ligands which is known that not soluble in scco 2, was sulfonated to make them water soluble and Rhodium metal complexes were synthesized.structure of synthesized ligands and catalysts were characterized by spectroscopic methods such as FT-IR, 1 H, and 31 P NMR.Solubility measurements of catalysts were performed at the conditions of 70 o C temperature and 2700 psi CO 2 pressure.catalytic activity of catalysts in supercritical carbondioxide media were examined by using microemulsion technique on hydrogenation of styrene which was selected as a model compound styrene. Hydrogenation reactions of catalysts were performed at the different temperature and pressure and we found that the best conversion was determined under 80 o C ve 150 psi H 2 ve 4000 psi (PCO 2 +PH 2 ) total pressure values. Key Words: Hydrogenation,Microemulsion, Supercritical Carbondioxide, Sulfonation, metal catalyst II

5 TEŞEKKÜR Yüksek lisans tez çalışmalarımda maddi ve manevi her konuda desteğini, fikirlerini, deneyimlerini esirgemeden paylaşan ve bize sunduğu tüm laboratuar imkânları ile bu tezin gerçekleşmesinde en büyük pay sahibi olan danışmanım Prof. Dr. Bilgehan GÜZEL e teşekkürlerimi sunarım. Yüksek lisansım sırasında ERASMUS öğrenci değişim programı ile gittiğim İngilterenin Nottingham şehrinde ordaki danışmanım Prof. Dr. Martyn POLİAKOFF a, ordaki bulunduğum sürece, benden yardımlarını esirgemeyen Dr. Eduardo Perez VELİELA a ve Gürbüz ÇOMAK a teşekkür ederim. Çalışmalarımda deneyimlerinden ve bilgilerinden faydalandığım Prof. Dr. Selahettin SERİN e ve yüksek lisans çalışmalarım boyunca bütün imkânlarından faydalandığım Kimya bölümüne teşekkür ederim. Laboratuar çalışmalarım sırasında yardımcı olan laboratuoar arkadaşlarıma teşekkür ederim. Maddi ve manevi fedakârlıkları ile bugünlere gelmemde en büyük pay sahibi Olan ve akademik çalışmalarım süresince her konuda destek olan annem Sercan EĞİTMEN e ve babam Turgut EĞİTMEN e, sonsuz teşekkürlerimi sunarım. III

6 İÇİNDEKİLER SAYFA ÖZ... I ABSTRACT... II TEŞEKKÜR... III İÇİNDEKİLER....IV ÇİZELGELER DİZİNİ... VI ŞEKİLLER DİZİNİ... VII SİMGELER VE KISALTMALAR... IX 1. GİRİŞ Katalizörler Homojen Ve Heterojen Katalizör Sistemleri Rodyum-Fosfin Katalizör Sistemleri Süperkritik Akışkanlar Ve Özellikleri Süperkritik Akışkanların Kullanım Alanları Süperkritik Karbondioksit de Çözünebilen Ligand Türleri Sürfektanlar Karbondioksit İçerisinde Çözünebilen Sürfektanlar Emülsiyon Ve Mikroemülsiyon Sistemleri Misel Sistemleri Mikroemülsiyon Sistemleri Karbondioksit İçerisinde Sürekli Mikroemülsiyon Hidrojenasyon ÖNCEKİ ÇALIŞMALAR MATERYAL VE METOD Materyal Kullanılan Kimyasallar Kullanılan Cihaz Ve Malzemler Metod Ligandların Sülfolanması ,2-(bis[di m-sodyumsülfanato]fenil(fosfino) etan Sentezi V

7 ,3-(bis[di m-sodyumsülfanato]fenil(fosfino) propan Sentezi Trifenilfosfin-3,3,3 -trisülfonik asit trisodyum tuzu Sentezi Metal Komplekslerinin Sentezi [Rh(COD)(DPPETS)][Cl] Sentezi [Rh(COD)(DPPPTS)][Cl] Sentezi [Rh(COD)(TPPETS)][Cl] Sentezi Sentezlenen Komplekslerin scco 2 Ortamında Çözünürlüklerinin Belirlenmesi Komplekslerin Katalitik Etkinliklerinin Belirlenmesi BULGULAR VE TARTIŞMA Sentezlenen Bileşiklerin Karakterizasyonu DPPE nin Karakterizasyonu DPPP nin Karakterizasyonu TPPETS nin Karakterizasyonu [Rh(COD)(DPPETS)][Cl] Karakterizasyonu [Rh(COD)(DPPPTS)][Cl] Karakterizasyonu [Rh(COD)(TPPETS)][Cl] Karakterizasyonu Sentezlenen Komplekslerin scco 2 ortamında Çözünürlükleri K1 Katalizörünün scco 2 deki çözünürlüğü K2 Katalizörünün scco 2 deki çözünürlüğü K3 Katalizörünün scco 2 deki çözünürlüğü Komplekslerin Katalitik Etkinliklerinin İncelenmesi SONUÇLAR VE ÖNERİLER KAYNAKLAR ÖZGEÇMİŞ EKLER V

8 ÇİZELGELER DİZİNİ SAYFA Çizelge 1.1. Homojen ve heterojen katalizörlerin karşılaştırılması... 4 Çizelge 1.2. Bazı süperkritik akışkanların kritik değerleri ve özellikler... 9 VI

9 ŞEKİLLER DİZİNİ SAYFA Şekil 1.1. Bir reaksiyonun katalizlenmiş ve katalizlenmemiş durumlarda potansiyel enerji değişimi... 2 Şekil 1.2. Rodyum-fosfin katalizör sisteminde kullanılan fosfin ligandları... 6 Şekil 1.3. CO 2 nin P,T-diyagramı... 7 Şekil 1.4. CO 2 in süperkritik akışkan hale geçişinin şematik gösterim... 8 Şekil 1.5. Sürfektan molekülünün şematik gösterimi Şekil 1.6. AOT un açık yapısı Şekil 1.7. ScCO 2 de çözünebilen sürfektan molekülünün şematik gösterimi Şekil 1.8. CO 2 -filik özellik gösteren florlu ve silikonlu yapılar Şekil 1.9. Klasik emülsiyonların şematik görünüşü Şekil normal misel oluşumu Şekil Ters misel oluşumu Şekil ScCO 2 de AOT un yardımcı sürfektan f-pentanol ile yapısı Şekil Olefin hidrojenasyonun şematik gösterimi Şekil ScCO 2 ortamında hidrojenasyon reaksiyon sistemi Şekil 2.1. Baldwin ve ark. larının sentezledikleri dppe ligandı Şekil 2.2. Güzel ve ark. Sentezlediği [(COD) 2 Rh] + BArF - kompleksi Şekil 2.3. Ji Young ve ark.larının sentezlemiş oldukları AOT un florlu türevi Şekil ,2-(bis[di m-sodyumsülfanato]fenil(fosfino) etan Sentezi Şekil ,3-(bis[di m-sodyumsülfanato]fenil(fosfino) propan Sentezi Şekil 3.3. Trifenilfosfin-3,3,3 -trisülfonik asit trisodyum tuzu Sentezi Şekil 3.4. [Rh(COD)(DPPETS)][Cl] Sentezi Şekil 3.5. [Rh(COD)(DPPPTS)][Cl] Sentezi Şekil 3.6. [Rh(COD)(TPPETS)][Cl] Sentezi Şekil 3.7. Çözünürlük çalışmalarının gerçekleştirildiği sistemin şematik gösterimi Şekil 3.8. Stiren in hidrojenasyonu Şekil 4.1. Dppets Ligandı(L1) Şekil 4.2. Dpppts Ligandı(L2) VII

10 Şekil 4.3. Tppets Ligandı(L3) Şekil 4.4. [Rh(COD)(DPPETS)][Cl] Şekil 4.5. [Rh(COD)(DPPPTS)][Cl] Şekil 4.6. [Rh(COD)(TPPETS)][Cl] Şekil 4.7. Stiren in hidrojenasyon reaksiyonu Şekil 4.7. Katalizörlerin Stiren in hidrojenasyonundaki % dönüşümleri VIII

11 SİMGELER VE KISALTMALAR 1 H NMR :Proton nükleer magnetik rezonans spektroskopisi 31 P NMR : fosfor-31 nükleer magnetik rezonans spektroskopisi FT-IR : Fourier Transform İnfrares Spektroskopisi GC :Gaz kromatografisi H 2 SO 4 :sülfürik asit HCl : Hidroklorik asit CH 2 Cl 2 : Diklorometan THF : Tetrahidrofuran S/C : substrat/katalizör C : Santigrat derece mmol : Milimol mg : mili Gram ml : Mililitre ScCO 2 : Süperkritik karbondioksit Ar : aril δ : Kimyasal kayma s : singlet d : doublet t : triplet m : multiplet cm -1 F-Pentanol Dppets Tppets Dpppts AOT : Dalga sayısı : 2,2,3,3,4,4,5,5-oktafloro-1-pentanol : 1,2 bis(difenilfosfino)etan : m- (sodyum sulfonato)trifenilfosfin : 1,3 bis(difenilfosfino)propan : (Aerosol-OT, bis(2-ethyl-1-hexyl) sodium sulfosuccinate IX

12 1.GİRİŞ 1. GİRİŞ Fosfin türevi ligand içeren metal katalizörler kullanılarak homojen fazda yapılan hidrojenasyon ve hidroformilasyon reaksiyonlarında yaygın olarak organik çözücüler kullanılmaktadır. Bu alanda kullanılan organik çözücülerin toksik etkileri, yanıcı ve patlayıcı olmaları, atıkların yarattığı çevre kirliliği gibi etkenler üreticileri çevresel baskılarla karşı karşıya bırakmakta olup,organik çözücüler kullanılarak yapılan işlemlerde karşılaşılan temel sorunlardan birisi de ürünlerin reaksiyon ortamından ayrılması ve saflaştırma işlemlerinin maliyetinin yüksek olması, kullanılan katalizörlerin pahalı olması ve ayırma işlemleri sırasında özelliklerini yitirmesi üretim maliyetini arttırmasi gibi nedenlerden dolayi, üreticileri alternatif yöntem arayışına itmekte ve süperkritik karbondioksit reaksiyon ortamı araştırmacıların ilgi odağı olmaktadır (Haji ve Erkey, 2002; Francio ve ark., 2001). Süperkritik karbon dioksit (scco 2 ) çevresel olarak kabul edilir olması ve ekonomik uygulanabilirliği, alışılagelmiş toksik ve yanıcı organik çözücüler yerine kullanılabilmesi nedeniyle, yeni nesil reaksiyon ortamı olarak büyük ilgi kazanmaktadır. ScCO 2 i avantajlı kılan özellikler; yoğunluğu, polaritesi ve viskozitesi olarak verilebilir. Diğer yandan scco 2 in reaksiyon ortamı olarak kullanımı, çözücünün seçicilik üzerine etkisini optimize ve kontrol fırsatı sağlar. Bunlara ek olarak birçok reaksiyonda inert olması, ucuz ve kolay temini ve yanıcı olmaması avantaj kazandıran diğer özellikleridir (Skoog, west ve Holler,1996) Katalizörler Termodinamik olarak istemli olan bir kimyasal tepkimenin hızlandırılması işlemine kataliz, bu işlemde kullanılan maddelere ise katalizör adı verilmektedir. Katalizörler, kimyasal tepkimelerin aktivasyon enerjisi daha düşük olan bir başka mekanizma üzerinden yürümesini sağlayarak tepkimenin daha kısa sürede gerçekleşmesine neden olmaktadırlar. 1

13 1.GİRİŞ Enerji Ea 1 Ea 2 Ea 1 : katalizlenmemiş reaksiyonun aktivasyon enerjisi Ea 2 : katalizlenmiş reaksiyonun aktivasyon enerjisi Reaksiyon koordinatı Şekil 1.1. Bir reaksiyon katalizlenmiş ve katalizlenmemiş durumlarda potansiyel enerji değişimi 1835 yılında Thiluck Bob bazı kimyasalların reaksiyonların hızlarını arttırdığını ileri sürmüştür. Katalizör kavramı ise aynı yıl içerisinde ilk olarak İsveçli kimyacı Jöns Jakob Berzelius tarafından kullanılmıştır. İlk zamanlarda katalizörlerin katıldıkları reaksiyon sırasında değişikliğe uğramadıkları düşünülüyordu, daha sonraki yıllarda yapılan çalışmalar neticesinde ise katalizörlerin reaksiyon sırasında tepkimeye katılarak değişikliğe uğradığı ve reaksiyon sonunda ilk hallerine geri döndükleri belirlenmiştir. Bir katalizör kendi miktarının binlerce kat fazla ağırlığındaki maddelerin reaksiyonlarında oldukça yüksek katalitik etki gösterebilir. Tersinir bir reaksiyonda katalizör dengeye etki etmez, fakat, tepkimenin başlaması için gerekli olan aktivasyon enerjisini düşürerek reaksiyonun daha kısa zamanda gerçekleşmesini sağlar. Katalizör dengeye gelmiş bir tepkimede, tepkimeye giren maddelerin bağıl konsantrasyonlarını değiştirmez. Katalizörlü veya katalizörsüz bir reaksiyonun serbest enerji değişimi sabittir. Her katalizör her tepkimeyi katalizleyemez. Bir tepkime için en uygun katalizör ancak denel yoldan bulunur. Katalizörler, aynı maddelerden yola çıkıldığında, termodinamik olarak yürümesi olası olan iki tepkimeden yalnızca birini katalizleyebilmektedir. Katalizörlerin olası tepkimelerden yalnızca birini katalizlemesi olgusuna katalizör seçiciliği, bir tepkimeyi hızlandırma ölçüsüne ise katalizör aktifliği denir. Bir katalizörün aktifliği ve seçiciliği denel yoldan 2

14 1.GİRİŞ belirlenmektedir. Bir katalizörün verimliliğini anlatabilmek için genellikle çevrim sayısı (TON) ve çevrim frekansı (TOF) tanımları kullanılır. TON bir katalizörün ürün moleküllerine dönüştürdüğü substrat moleküllerinin toplam sayısını, TOF ise birim zamandaki çevrim sayısını ifade eder (Van Leeuwen, 2004). Bir katalizörün aktifliğinin derecesi TON (turnover number) ile katalitik etkinliğinin derecesi ise TOF (turnover frequency) ile ölçülmektedir. TON= Oluşan ürünün mol sayısı/ Katalizörün mol sayısı TOF= Oluşan ürünün mol sayısı/ (Katalizörün mol sayısı x Zaman) Homojen ve Heterojen Katalizör Sistemleri Endüstrideki kullanımına göre ana hatlarıyla katalizörler, homojen ve heterojen olmak üzere ikiye ayrılır. Heterojen katalizör olayında, katalizör reaksiyon ortamı içinde ayrı bir faz olarak görünür, yani tepkimeye giren sıvı veya gaz tepkenlerin yanında katı bir faz olarak bulunur. Heterojen katalizörlerin aktif bölgeleri, moleküler yapısının kesikli ya da parçalı olmamasından dolayı da çözümlenmesi kolay değildir ve reaksiyon mekanizmasının belirlenmesi çok zordur (Spessard and Miessler, 1997). Heterojen katalizlenmiş birçok tepkime, uygun bir katı yüzeyinde gerçekleştirilerek katalizlenebilir. Bu tür tepkimelerde ara ürünler katalizör yüzeyinde oluşurlar ve katalizör, tepken ve ürünlerden farklı bir fazdadır. Heterojen katalizin mekanizması tam olarak bilinmemekle birlikte, katıdaki yüzey atomlarının d orbitalleri ve d elektronlarının önemli işlevlerinin olduğu sanılmaktadır. Heterojen katalizin en önemli yanı gaz ya da çözelti fazında bulunan tepkenlerin katalizör yüzeyine tutunmalarıdır. Ancak yüzeydeki atomların hepsi katalizör görevi göremezler. Bu görevi yapan bölgelere etkin bölgeler denir. Temelde heterojen kataliz; - Reaktiflerin katalizörün yüzeyindeki aktif bölgelere tutunması, - Katalizör yüzeyi ile reaktif moleküllerin arasında birçok küçük etkileşimler meydana gelerek reaktiflerin daha aktif hale gelmesi 3

15 1.GİRİŞ - Reaksiyonun gerçekleşmesi - Ürün moleküllerinin yüzeyden ayrılması basamaklarından oluşur (Petruccı, ve Harwood, 1995). Homojen katalizörlerde ise, girenlerle birlikte reaksiyon ortamında çözünebilen katalizörlerdir. Bu katalizörler, tepkimede tepkenler ve ürünler ile beraber çözücü içinde homojen olarak çözünürler. Geçiş metal kompleksi olan homojen katalizörlerin önemi, heterojen katalizörlerin baskın bir şekilde kullanıldığı kimya endüstrisinde hızla artmıştır (Spessard and Miessler, 1997; Crabtree, 1990). Homojen katalizörlerin aktif bölgeleri, parçalı moleküllerden yani metal ve buna bağlı ligandlardan oluşmuş olması yapılarının aydınlatılmasında ve reaksiyon kinetiğinin takibinde spektroskopik olarak çözümlenmesi için kolaylık sağlar. Ayrıca reaksiyon mekanizması nispeten standart teknikler kullanarak da belirlenebilir. Homojen katalizörler, heterojen katalizörlere göre çok daha fazla seçici ve düşük ısı kararlılığının yanında substratla değişiminin çok kolay olması, bilinen avantajları, üründen ayrılmasının zor olması ise dezavantajıdır (Spessard and Miessler, 1997; Crabtree, 1990). Çizelge 1.1. Homojen ve heterojen katalizörlerin karşılaştırılması HOMOJEN KATALİZ HETEROJEN KATALİZ Aktivite( metal içeriğine Yüksek Değişken göre) Seçicilik Yüksek Değişken Reaksiyon Koşulları Ilımlı Ağır Katalizör Ömrü Değişken Uzun ömürlü Difüzyon(yayılma) Yok Önemli olabilir problemi Geri Dönüştürebilirlik Çok pahalı Yüksek oranda Kullanım Şekli Reaksiyon ortamında çözünerek Bulamaç halinde 4

16 1.GİRİŞ Rodyum-Fosfin katalizör sistemleri Fosfin ligandlar içerisinde tersiyer fosfinler (PR 3 ) önemli bir yer teşkil eder. Fosfinler de NH 3 le benzer şekilde, merkez atomu üzerinde metale bağlanabileceği bir çift elektron içerir. NH 3 ün aksine alkil fosfinler, Π bağı içeren zayıf asitlerdir. PF 3 ün asitliği ise, CO ile hemen hemen aynı büyüklükte olup bu gruplar içerisinde en fazladır. Tersiyer fosfinlerin artan asitlik derecesi; PF 3 CO > PCl 3 > P(NR 2 ) 3 > P(OAr) 3 > P(OMe) 3 > PAr 3 > PMe 3 şeklindedir. P-R bağının σ* orbitalleri fosfin ligandının metal kompleksi içinde elektron alıcı rolü oynar. Bu yüzden daha elektronegatif olan atom, fosfora bağlanmıştır ve P-X bağının boş σ*orbitali de daha düşük enerjili olana ve daha erişilebilir olana hareket eder. Buna göre PF 3, florların yüksek elektronegatifliği sonucu, en zayıf σ verici ve en kuvvetli Π alıcıdır. Buna karşılık PMe 3 en kuvvetli verici, en zayıf alıcıdır. (Crabtree ve ark.1990). Fosforun bu bilinen orbital ve bağ özelliklerinin dikkate alınarak bir çok fosfin ligandları sentezlenmiştir. Bu ligandların rodyum metaliyle etkileşmesi sonucu rodyum-fosfin katalizörünün ilkini [Rh(Ph 3 P) 3 Cl] şeklinde Wilkinson gerçekleştirmiştir. Wilkinson katalizöründen sonrada benzer rodyum fosfin katalizörleri sentezlenmiştir (Nogradi ve ark. 1997). 5

17 1.GİRİŞ Şekil 1.2. Rodyum-fosfin katalizör sisteminde kullanılan fosfin ligandları (spessard ve miessler, 1997) 6

18 1.GİRİŞ 1.2. Süper kritik Akışkanlar ve Özellikleri Maddelerin fiziksel hali, basınç ve sıcaklığa bağlıdır. Basınç ve sıcaklığa bağlı olarak bir maddenin değişik fazları Şekil 1.3 de verilmiş olan karbondioksitin basınçsıcaklık diyagramında gösterilmiştir. diyagramda gösterilen, üçlü nokta (T P ) diye adlandırılan bölgede, madde katı, sıvı ve gaz halindedir. Üçlü nokta ile kritik nokta arasında kalan eğri, buhar basıncı eğrisi olup, bu eğri üzerinde madde sıvı ve gaz halinde bulunur. Buhar basıncı eğrisi, kritik basınç ve kritik sıcaklıklarla belirlenmiş kritik bölgede sona erer (Satıcı ve ark., 1996). Doygun sıvı ile doygun buharın tüm fiziksel özelliklerinin aynı olduğu bu konuma kritik nokta adı verilir. Kritik noktadaki sıcaklığa kritik sıcaklık (T C ),bu sıcaklığa karşılık gelen basınç değerine kritik basınç (P C ), molar hacmine kritik hacim (M C ) ve yoğunluğuna da kritik yoğunluk (δ C ) adı verilir. Şekil 1.3. CO 2 nin P,T-diyagramı (Sears ve ark. 1991; Saus ve ark. 1993) Kritik noktada tümüyle ortadan kalkan sıvı fazdan sonra madde, yalnızca üçlü nokta ile kritik nokta sıcaklıkları arasında bulunur (Montero, ve ark. 1996). Böylece kritik sıcaklıkta bir madde basınç uygulaması ile sıvı haline hiçbir şekilde dönüştürülemez. Örneğin CO 2 molekülleri kritik noktada, gaz halinde olduğu gibi birbirinden bağımsız olarak davranırlar (Skoog, West ve Holler, 1996). 7

19 1.GİRİŞ Kritik sıcaklık: bir madde için basınç ne olursa olsun, o sıcaklığın yukarısında maddenin sıvı bir faz olarak bulunamayacağı bir sıcaklıktır (Skoog, Holler ve Nieman, 1998). Bu nedenle kritik sıcaklık noktasının üzerinde ayırma yüzeysiz tek akışkan bir faz olarak ortaya çıkar (Montero, ve ark. 1996). Yani sıcaklığın yükselmesi ve kritik sıcaklığa yaklaşılması ile birlikte, sıvı yüzey eğrisinde yayılma ve dağılma olmakta, böylece tek bir akışkan fazı oluşmaktadır. Bu bölgede ortaya çıkan bu akışkan faz, sıvı ve gaz özelliklerinin ikisini birden taşır. Dolayısıyla kritik noktanın üzerinde basit bir kimyasal madde ya da bileşik, ne sıvı ne de gaz olarak kabul edilmeyip, yalnızca akışkan olarak kabul edilir (Clifford ve Bartle, 1996). Süper kritik akışkan ise, bir maddenin kritik sıcaklığının üzerine ısıtıldığı zaman elde edilen fiziksel hal olduğu için, hem sıcaklığı hem de basıncı kritik noktanın üzerinde olan maddeler için kullanılan bir terimdir. Bir süper kritik akışkanın yoğunluğu gaz halinin yoğunluğundan 200 ile 400 kat daha fazladır ve hemen hemen sıvı halinin yoğunluğu ile aynıdır. Bu nedenle de süperkritik akışkanlar daha çok, büyük ve uçucu olmayan molekülleri çözmeye elverişlidir (Skoog, West ve Holler, 1996). Süper kritik akışkanların yoğunlukları, viskoziteleri ve diğer özellikleri genelde maddenin gaz ve sıvı hallerindeki özellikleri arasında yer alır. Şekil 1.4. Artan sıcaklık ve basınç ile CO 2 in süperkritik akışkan hale geçişinin şematik gösterimi 8

20 1.GİRİŞ Çizelge 1.2. Bazı süperkritik akışkanların kritik değerleri ve özellikler (Skoog, Holler ve miessler) AKIŞKAN KRİTİK KRİTİK KRİTİK 400 atm deki KAYNAMA SICAKLIK BASINÇ YOĞUNLUK YOĞUNLUK SICAKLIĞI T C ( O C) P C (atm) δ C (g/cm 3 ) δ(g/cm 3 ) T K ( O C), (1 atm) CO N 2 O NH H 2 O n-butan Ethane Ethanol n-propan Süperkritik Akışkanların Kullanım Alanları Süper kritik akışkan olarak karbondioksitin gerek kolay ve ucuz temin edilmesi bakımından gerekse uygulamadaki kritik koşullara uygunluğu ve pratikliği bakımından, bu alanda yapılan çalışmaların birçoğununda karbondioksitin üzerine yoğunlaşmasını sağlamıştır. Süper kritik akışkanlarla ilgili yapılan çalışmalarda, üzerinde çalışmaların hala devam ettiği teknik ve yöntemler aşağıda sıralandırılmıştır. - Partikül dizayn, mikronizasyon ve yeniden kristallendirme - Süperkritik akışkanlar içinde sentez - Hidrojenasyon ve hidroformülasyon - Süperkritik akışkan ekstraksiyonu - Süperkritik akışkan kromatogrofisi Bu teknik ve yöntemlerle üzerinde çalışmaların yapıldığı genel olarak araştırma konuları ise; 9

21 1.GİRİŞ -Farmakoloji ve ilaçlar (Reverchon ve Perrut, 2000; Knez, 2000; Mandel ve Wang, 2000) -Polimerler ve polimer katkı maddeleri (Liu ve ark, 2000; Shim ve ark, 2000; Crette ve DeSimone, 2000) - Tekstil boyaları (Bach, ve ark, 2000; Shim ve ark, 2000) - Doğal ürünler (yağ, tütün, kahve, süt vb.) ve gıdalar (King ve ark; 2000) -Yüzey aktif ve temizlik maddeleri (Dahmen ve ark, 2000; Novak ve Knez, 2000) -Aerojeller, köpükler ve kozmetik ürünleri (Placın ve ark, 2000; Beckman, 2000) - Yağlar, lipitler, enzimler ve çeşitli katalizörler (Güzel ve ark, 2000; Deschamps ve ark, 2000; Lozano ve ark, 2000; Catchpole ve Proells, 2000; Owen ve Katrin 2000) Süperkritik karbondioksit de Çözünebilen Ligand Türleri ScCO 2 homojen katalizde reaksiyon ortamı olarak oldukça çekici özelliklere sahip olmasına karşın aril sübstitüe ligandlar içeren polar komplekslerin, yüklü komplekslerin ve apolar komplekslerin scco 2 ortamında çözünürlükleri katalizör olarak kullanılmaları için yeterli değildir. Kantitatif testler sonucunda fosfin, porfirin, taç eter, asetilasetonat, ditiyokarbamat, siklopentadienil ve karbonil gibi ligandlar içeren metal komplekslerinin scco 2 de çözünürlüğünün çok düşük olduğu bulunmuştur. Örneğin diklorobis(trifenilfosfin)nikel(ii) kompleksinin scco 2 deki çözünürlüğü yalnızca 0,01 mm (T=328 K, P=300 atm, ρ=0,83 g/ml) olarak bulunmuştur. Benzer şekilde scco 2 de RhCl(PPh3)3 (Wilkinson katalizörü) çözünürlüğü (T= 318 K, P=300 atm, ρ=0,88 g/ml) 0,02 mm olarak tespit edilmiştir. (Palo, D.R. ve Erkey, C., 1998a). Bu nedenle geçiş metal komplekslerinin scco 2 ortamında çözünürlüğünü arttırmak için çeşitli yöntemler geliştirilmiştir. Uygulanan bu yöntemler genel olarak dört sınıfa ayrılmıştır: i-aril grupları içeren ligandların alkil veya alkoksi gruplarıyla yerdeğiştirilmesi yöntemi: Aril grupları içeren polar, iyonik ve hatta apolar kompleksler scco 2 de çözünmemektedir. Bu nedenle aril grupları, alkil grupları ile yerdeğiştirilmektedir. PMe 3 ve PEt 3 gibi düşük molekül ağırlığına sahip alkil fosfinler scco 2 de çözünebilmekte ve hidroformilasyonda aktif katalizörler olarak kullanılmaktadır 10

22 1.GİRİŞ (Jessop ve ark., 1996). Fakat literatürde bu tür ligandlarla yapılan çalışmalar kısıtlıdır. Cole-Hamilton ve ark. PEt 3 gibi trialkilfosfin ligandlarının scco 2 de çözünen, kolay temin edilen ve ucuz ligandlar olduğunu ve bunların rodyum komplekslerinin 1-hekzen hidroformilasyonunda (rodyum katalizli) etkin olduğunu rapor etmişlerdir (Bach ve Cole-Hamilton, 1998; Sellin ve ark., 2002). ii-ikincil çözücü (metanol, aseton v.b. ) veya yüzey aktif madde (sürfektan) katılması yöntemi:scco 2 de katalizörlerin çözünürlüğünü arttırmak için ortama ikincil çözücüler ilave edilir. Polar çözücülerin eklenmesi ile polar bileşiklerin scco 2 deki çözünürlükleri artar. Örneğin scco 2 de çözünmesi güç olan geçiş metal komplekslerini çözünürlüğü %5-10 metanol ilavesi ile arttırılabilmektedir (Xiao ve ark., 1996; Komoto ve Kobayashi, 2001).Misel oluşturan yüzey aktif maddelerin ve hidrofilik bileşiklerin kullanılması scco 2 de katalizörlerin çözünürlüklerini arttırmaktadır (Komoto ve Kobayashi, 2004). Yüzey aktif maddeler farklı karakterde iki parça içeren moleküllerdir. Bir parçaları hidrofilik, diğeri ise hidrofobiktir. Yüzey aktif maddelerin hem hidrofilik hem de hidrofobik grupları çeşitli gruplardan oluşabilnekte olup, Hidrokarbon, florokarbon ve silikon zincirleri yaygın olan hidrofobik gruplardır. iii-karşıt iyon ilavesi yöntemi: Geçiş metal komplekslerine BARF (tetrakis(3,5- bis(triflorometil))fenil borat) veya CF 3 SO 3 gibi karşıt iyonların eklenmesiyle scco 2 deki çözünürlükleri arttırılmaktadır. Erkey ve ark. Yapmış oldukları çalışmalar sonucunda, scco 2 de BARF karşıt iyonu içeren katyonik rodyum komplekslerinin çözünürlüğünün 350 atm basınçda ve 313 K sıcaklıkta 0,03 mm olduğunu belirtmişlerdir (Palo, D.R. ve Erkey, C. 1998). Burk ve ark. BARF ve CF 3 SO 3 karşıt iyonlarını içeren katyonik rodyum komplekslerini α-enamitlerin asimetrik hidrojenasyonunda katalizör olarak kullanmışlardır. Çalışmada karşıt iyon içeren katalizörün scco 2 de çözündüğü ve geleneksel organik çözücülerde elde edilen sonuçlara benzer enantiyo-seçicilik olduğu bildirilmiştir( Burk, M.J., Feng, S., Gross, M. ve Tumas, W.,1995.) iv- Ligandların perflorlu zincirlerle modifiye edilmesi yöntemi: CO 2 -seven perflorlu alkil, floroeter gibi perflorlu grupların,[(ch 2 ) x (CF 2 ) y CF 3 ], ligandlara eklenmesi ile metal komplekslerinin scco 2 deki çözünürlükleri arttırılır. scco 2 de en iyi 11

23 1.GİRİŞ çözünürlüğün bu tür ligandlar varlığında gerçekleştiği tespit edilmiştir. ( Laintz ve ark. 1991).Daha sonraki yıllarda Jessop ve ark., aril halkalarına tutturulmuş florlueter ve silikon gruplarının süperkritik ortamda çözünürlüğü arttırdığını göstermiştir. Süperkritik sıvılar(scfs) son 20 yıl içerisinde biomolekül ve metal iyonlarının ayrılması, kimyasal reaksiyonları ve nanoparçacık oluşturulması gibi birçok alanda çözücü veya reaksiyon ortamı olarak kullanılmıştır. - yoğunluk, - viskozite, - diffüzlenme - sıvılara yakın çözme gücü - kritik basınç ve sıcaklığının düşük olması Gibi özelliklerinden dolayı süperkritik akışkanlara olan ilgi artmıştır. Süperkiritik akışkanlar içerisinde en fazla kullanılanı scco 2 dir. scco 2 i avantajlı kılan özellikleri ise; -inert, - toksik etki göstermemesi, -sudan sonraki en ucuz çözücü olması, - kolay temin edilebilir olması, - çevresel olarak kabul edilebilir özelliğe sahip olması, -yanıcı olmamasıdır. Bu kadar avantajı olmasına rağmen ScCO 2 iyonik, polar moleküllerin veya proteinler,polimerler gibi yüksek molekül ağırlığına sahip moleküller için ve de metal iyonları için çok düşük dielektirk sabitine sahip olması ve çok güçlü Van der Waals etkileşimlerine sahip olmamasından dolayı bu tip moleküller için düşük çözücü gücüne sahiptir. Bu sorunun üstesinden gelebilmek için,termodinamik acıdan kararlı ve su-co 2 ters mikroemülsiyon sistemleri gibi nano boyutta mikro-su bölgeleri oluşturarak,bu moleküllerin çözünürlüğüne etki edebilecek özel sürfektanlar oluşturulmalıdır. scco 2 içerisindeki mikroemülsiyonlar üzerine yapılan 12

24 1.GİRİŞ ön çalışmalarda hidrokarbon çözücüler kullanıldığı zaman genellikle surfektanların birçoğunun çözülmediği ve çözülebilmesi için CO 2 -filik özel sürfektanlara ihtiyaç olduğu belirtilmiştir. Çoğunlukla florokarbon ve silikon sürfektanları CO 2 -filik olarak bilinmektedir. ScCO 2 deki çözünürlüğü arttırmak için kullanılan yüzey aktif maddeler, polar hidrofilik baş ve siloksan veya florlanmış gruplar gibi CO 2 -seven zincirler içerirler. Sodyum bis-2-etil-1-hekzil sülfosüksinatdan (AOT) türeyen yüzey aktif maddelere dallanmış bu zincirlerin eklenmesiyle scco 2 deki çözünürlükleri arttırılmaktadır. Geçmiş yıllarda polar moleküllerin scco 2 içerisindeki çözünürlüğünü artırıcı şekilde çalışmalar yapılmıştır. Buna örnek vermek gerekirse; alkol veya aseton gibi yardımcı çözücülerin eklenilmesi scco 2 in polaritesini artırıcı yönde bir etki gostererek çözünürlüğünün artmasına yardımcı olmuştur. scco 2 içerisinde polar moleküllerin çözünebilmesini sağlamanın bir diğer yolu, uygun sürfektanlar (yüzey aktif madde) ve yardımcı sürfektanlar eşliğinde misel veya mikroemulsiyonlar olusturmaktır. Bu kapsamda ise Karbondioksitde çözünür sürfektanlarla yapılan calışmalar büyük önem taşımaktadır.consani ve smith, 50 o C sıcaklık ve Mpa basınç değerlerinde 100 un üzerinde sürfektanin scco 2 içerisindeki çözünürlüklerini incelemişler ve hemen hemen tümünün çözünmediğini veya cok az miktarlarda çözündüğünü belirtmişlerdir. Hoefling ve ark., bu problemi çözmek için CO 2 de çözünebilen sürfektanlar sentezlemişlerdir. Bu amaç için ise dimetil silokzan, hekzafloropropilen oksitler ve floroalkil gibi gruplar seçmişler ve bu grupları kullanarak modifiye ettikleri surfektanlarin yüksek basınç gerekmeksizin CO 2 içerisinde yüksek çözünürlük gösterdiğini gözlemlemişlerdir.( Juncheng Liu, 2001) 1.3. Sürfektanlar Sürfektanlar, hem hidrofilik bir baş gruba hem de lipofilik(hidrofobik) kuyruk kısmına sahip, amfifilik moleküllerdir. Genellikle hidrofilik kısmı sülfonat, sülfat ve fosfonat gibi gruplar içerirken, hidrofobik kısımları ise hidrokarbon zincirlerinden oluşmaktadır.aşağıda görülen şekil tipik bir sürfektan molekülünün,hidrofobik ve hidrofilik kısımlarını göstermektedir. 13

25 1.GİRİŞ Şekil 1.5. Sürfektan molekülünün şematik gösterimi Polar veya iyonik kısmı, güçlü dipol-dipol veya iyon-dipol etkileşimlerine sahip su molekülleri tarafından çevrelenmiştir. Bu durumdan dolayı da buna hidrofilik baş kısım denmektedir. Hidrokarbon kısmı, sulu çözelti içerisndeki su molekülleri ile minimum seviyede bir etkileşime sahip olduğundan dolayı, sürfektan moleküllerinin hidrokarbon kısmı hidrofobik kuyruk kısmı olarak nitelendirilmektedir. Ayrıca, dispersiyon kuvvetleri ve hidrojen bağından dolayı kaynaklanan su molekülleri arasındaki güçlü etkileşimler, hidrokarbon kısım su molekülünden uzaklaştırmaya çalışmaktadır. Sürfektanlar; Yüzey aktif maddeler molekülün hidrofobik bölümü içerisindeki etkileşime göre aşağıdaki gibi sınıflandırılmaktadır; I-anyonik II-katyonik III-Non-iyonik IV-amfoterik Genellikle sürfektanların bu dört türünde de uzun hidrokarbon ziniciri gibi birbirine benzer hidrofobik kuyruk kısmı bulunurken, hidrofilik kısımları birbirinden farklılık göstermektedir.aot (Aerosol-OT,bis(2-ethyl-1-hexyl)sodiumsulfosucinate) anyonik bir yüzey aktif madde olup, ters misel oluşumunda kullanımı yaygın olarak araştırılmaktadır.aot un açık yapısı aşağıdaki şekilde verilmiştir. 14

26 1.GİRİŞ Şekil 1.6. AOT un (Aerosol-OT, bis(2-ethyl-1-hexyl) sodiumsulfosuccinate) Açık yapısı ScCO 2, 10 MPa'nın altındaki basınçlarda düşük molekül ağırlıklı, uçucu birleşikleri kolaylıkla çözebilmesine rağmen, genellikle yüksek molekül ağırlıklı birleşikleri çözmede zayıf kalmaktadır. Karbondioksitin kullanım alanlarını genişletmek için, surfektantlar, dispersantlar, şelatlaştırıcı ajanlar ve polimerler gibi katkı maddelerinin karbondioksit ile etkileşimlerini göstermek için tasarlandıkları söylenmektedir. Yüzey aktif maddelerden, hidrokarbon temelli iyonik sürfektanlar genellikle scco 2 içerisinde çözünmezler ve scco 2 içerisinde ters mikroemülsiyon oluşturmazlar, bunun nedeni de iyonik baş kısımlarının CO 2 -fobik oluşu ve hidrokarbon sürfektanın kuyruk kısmının Karbondioksitle olumlu etkileşimler içerisine girebilecek şekilde tasarlanmamasıdır.bir sürfektanın CO 2 içerisinde çözünebilmesi için amfifilik olması gerekmektedir,yani hem CO 2 -filik hem de CO 2 - fobik kısım içermelidir.co 2 -filik kısım belirlendikten sonra, CO 2 -fobik kısım ya hidrofilik ya da hidrofobik gruplardan seçilebilir.karbondioksit içerisinde çözünebilen sürfektanın genel yapısı aşağıdaki şekilde gösterilmektedir. 15

27 1.GİRİŞ CO 2 -filik CO 2 -fobik kısım kısım Şekil 1.7. Karbondioksit içerisinde çözünebilen sürfektan molekülünün Şematik gösterimi Karbondioksit içerisinde çözünebilen sürfektanlar Çalışmalarında Consani ve smith, 130 un üzerinde sürfektan denemelerine rağmen sadece bazı noniyonik sürfektanın ScCO 2 içerisinde çözündüğünü gözlemlemiştir.daha sonraki yıllarda ise CO 2 -filik ajanlar olan florlu ve silikonlu bileşikler üzerine odaklanılmıştır.lezzi ve arkadaşlarının florokarbonların CO 2 ile uyumlu olduğunu gözlemlemesini takiben, Beckman ve Desimone, alkil fonksiyonel gruplu polimerler ve oligomerler hemen hemen ScCO 2 'de hiç çözünmezken, floroalkiller,floroeterler,floroakrilatlar ve silikonların uygun basınç ve sıcaklık değerleri altında scco 2 de çözündüklerini deneysel olarak göstermişlerdir.florlu ve silikonlu zincirler, karbondioksitin özelliklerinden daha karakteristik olan düşük çözünürlük ve düşük kutuplanabilirliğe teşvik etmesinden dolayı düşük enerji yoğunluğuna sahip grupları temsil ederler. 16

28 1.GİRİŞ Şekil 1.8. CO 2 -filik özellik gösteren florlu ve silikonlu yapılar 1.3. Emülsiyon ve Mikroemülsiyon Sistemleri Birbiri ile karışmayan en az iki sıvının birbirleri içerisinde surfektantlar(yüzey aktif madde) yardımıyla damlacıklar halinde dağıldığı homojen görünümlü sistemlerdir. Bu sistemler bir hidrofilik bir de lipofilik iki fazdan oluşurlar. Bu iki faz, emülsiyonun iç ve dış fazı olarak adlandırılmaktadır. Dış faz sürekli faz olarak da tanımlanır ve iç fazı damlacıklar halinde taşır. Bir sıvının diğer bir sıvı içerisinde süspansiyon halinde dağılmasıyla elde edilen sisteminin, emülsiyon olarak nitelendirilebilmesi için sistemi kararlı kılacak üçüncü bir bileşene gereksinim vardır. Bu üçüncü bileşen emülsiyonlaştırıcılardır ve genellikle yüzey aktif maddelerdir. Basit veya klasik emülsiyonlarda en az iki faz bulunur;eğer yağlı fazın damlacıkları su içinde dağılırsa, bu emülsiyona su içinde yağ (Y/S) emülsiyonu;sulu fazın damlacıkları yağlı faz içinde dağılırsa bu emülsiyona da yağ içinde su emülsiyonu (S/Y) denir.(şekil 1.9).Emülsiyon tipinin hangisi olacağına sistemdeki maddelerin konsantrasyonu, yüzey etkin maddenin yapısı ve üretim işlemleri etki eder. 17

29 1.GİRİŞ Şekil 1.9. Klasik emülsiyonların şematik görünüşü Misel ve mikroemülsiyon sistemleri makroskobik homojen ortam olarak görülen sistemler olsa da katalitik reaksiyonlar için yüksek vermililikli mikroskobik heterojen ortamlardır. sürfektan sistemleri, reaktantların çözünmesini sağlamak için yüksek kapasiteye sahiptirler. bu özelliği ile birlikte geniş sıvı-sıvı ara yüzeyi birleşince fazlar arasında hızlı bir difüzyonun olmasını sağlar.son zamanlarda, termodinamik olarak kararlı bifazik sistemleri gibi misel sistemleri ve mikroemülsiyonların uygulamaları, katalitik reaksiyonlar sonucunda çeşitli kimyasalların sentezlenebileceğini gösterdi.su ve karbondioksit, kimyasal reaksiyonlarda toksik özelliğinin bulunmaması, çevre ve kullanıcı dostu olması gibi sebeplerden dolayı yeşil kimyacıların (green chemistry) son yıllarda ilgi odağı olmuşturlar yılına kadar olan yayınlarda, suyun reaksiyon ortamı olarak kullanıldğı yaklaşık olarak 180 makaleye rastlamak mümkündür. (Juan S. Milano- Brusco,2009) Misel Sistemleri Miseller basit küresel supramoleküler tanecikler olup, amfiller tarafından su veya su benzeri ortamlarda kritik misel konsantrasyonun(cmc) hemen üzerindeki konsantrsayonda oluşan yapılardır. CMC, misel moleküllerin oluştuğu en düşük konsantrasyon olarak tanımlanmaktadır. Amfilerrin CMC konsantrasyonuna ulaştığı zamanki sıcaklık ise kraff noktası veya sıcaklığı olarak tanımlanır ve genellikle çözünürlükte ciddi bir artış sağlar.tipik bir misel, sürfektan molekülünü çevreleyen çözücü ile etkişim 18

30 1.GİRİŞ içerisinde olan hidrofilik baş grubu ve misel sisteminin göbeğinde bulunan hidrofobik bir kuyruk kısmından oluşmaktadır. Bu tip misellere Normal Misel denir ve tanecikler kolloidal boyutta olduğu zaman homojenmiş gibi görünür. Miseller sulu ortam içerisindeki reaksiyona eşdeğer bir kimyasal reaksiyonda hızlanmaya veya inhibisyona neden olabilirler. Genel olarak, misel etkisi, bir reaksiyonu hızlandırdığında " misel kataliz" olarak adlandırılır,fakat bu sadece bir yaklaşımdır.reaksiyon ortamı olarak misel sistemlerinin kullanılmasının en büyük avantajı, katalizör komplekslerinin reaksiyon ortamında, dahabirçok işleme gerek kalmadan suda kolay çözünürlük sağlamalarıdır. Misel sistemleri bazı substratlar için sadece düşük miktarlarda çözünür olması ve katalizörün geri kazanımı için uzun zaman gerektirmesi dezavantajlarındandır. Bir misel, koloidal çözeltide dağılmış yüzey-aktif(surfaktan) moleküllerin kümelenmiş halidir. Polar gruplarının su içinde çözünmesi ve hidrokarbon kısımların su tarafından itilerek bir arada kümeleşmesi sonucu ortaya çıkan yapıya misel adı verilir. İki tür misel oluşabilir; a) Normal misel: Hidrofilik gruplar miselin dış sınırına toplanır, hidrofobik kısımlar ise miselin iç kısmını doldurulur. Şekil Normal misel oluşumu b) Ters misel: Hidrofilik gruplar miselin içinde hapsedildikleri su çevresinde toplanır. Hidrofobik kısımlar ise dışa doğru yönelir. 19

31 1.GİRİŞ Şekil Ters misel oluşumu Normal misel oluşumunda hidrofilik baş kısım sulu fazla etkileşime girerken, hidrofobik kısım organik fazla etkileşim içerisindedir. Ters misel oluşumunda ise, hidrofobik kısımlar organik faz ile etkileşim içerisndeyken, hidrofilik baş kısımları misel kümesinin içerisine doğru yönelip sulu faz ile etkileşime girmektedir Mikroemülsiyon sistemleri Bir sıvının, başka bir sıvı içerisinde dispersiyonu olan misel içeren sistemler emülsiyon olarak anılır.emülsiyonların özel bir türü olan mikroemülsiyon, termodinamik açıdan kararlı olup, sistem içerisindeki dağılmış sıvı damlacıklarının çapı 100 nm den küçük ve de görsel olarak homojen görünümlü sistemlerdir. Hidrofilik-hidrofobik dengesi,kolloidal dispersiyonların ve kendiliğinden oluşan bir yapının oluşmasında ve oluşan bu yapının kararlılığında önemli rol oynamaktadır. ScCO 2 içerisinde su mikroemülsiyonlarını oluşturmada sürfektanların vermliliğini artıran en önemli faktör, su molekülünün sürfektan molekülüne molar oranı olarak tanımlanan su tutma(alma)(w) kapasitesi olup, çoğunlukla sürfektan türüne, CO 2 - filik zincirin çevresine,co 2 basıncı ve de sıcaklığına bağlı olarak farklılık göstermektedir.verimliliği belirlemenin bir başka ölçütü ise, dispersiyonu(dağılmış fazı) kararlı tek saydam bir faz olarak tutabilmek için gerekli minumum basınçı belirlemektir.bu basıncın üzerinde sürfektan molekülü su/scco 2 mikroemülsiyon sistemini kararlı hale getirebilme yeteneğine sahipken, bu basınç değerinin altında olduğu zaman fazla ayrılması meydana gelir. ScF içerisinde mikroemülsiyon oluşumu, ilk olarak Smith ve arkadaşları tarafından, Sub-kritik ve superkritik alkanlar içerisinde AOT sürfektanı kullanılarak 20

32 1.GİRİŞ yapılmış ve genellikle kullanmış oldukları alkanlar ise etan ve propandı.daha sonraki yıllarda, kimyasal reaksiyonlarda daha çevreci çözücülerin kullanılmaya başlanması ile, onlar da mikroemülsiyon oluşumu için sürekli faz olarak alkanlar yerine scco 2 kullanmaya başlamışlardır.scco 2 içerisinde su mikroemülisyonlarının ilginç bir özelliği, karbon dioksit fazı içersinde nano boyutta su havuzunun oluşturulmasıdır.co 2 içerisinde dağılmşı nano boyuttaki su havuzunun, kimyasal uygulamalar için muazzam bir potensiyele sahip olduğu ve reaksiyon kimyası ve sentez çalışmalarında geniş uygulama alanlarına sahip olduğu bildirilmiştir.(yusuke Shimoyama,2008).Bu uygulamaların yürütülmesinde scco 2 kullanımının avantajı, faz ayrılmasında ve/veya ayarlanabilir çözücü özelliği vasıtası ile reaktivitede daha fazla özellikli veya seçicilik kontrolü sağlanabilmesidir Karbon dioksit içerisinde sürekli mikroemülsiyon Uçucu olmayan çözücülerin birçoğu zayıf van der Waals kuvvetlerinden ve dipole moment yetersizliğinden dolayı CO 2 içerisinde çözünmezler. Bu nedenden ötürü, süperkiritik akışkanlar ile yapılan son yıllardaki çalışmalarda karbondioksitin sınırlı çözme gücü olduğu ortamlarda, dağılmış ve sürekli faz ile beraber polar,iyonik ve apolar moleküllerin yüksek konsantrasyonlarının çözünebilmesinde çözücü aracı olarak karbondioksit içerisinde su (water in CO 2 ) ve su içerisinde karbondioksit (CO 2 in water) mikroemülsiyon sistemlerinin kullanılmaya başlanmıştır. Mikroemülsiyonlar ve emülsiyon şeklindeki su / CO 2 veya CO 2 / su dispersiyonlar,kimyasal proses, ecza sanayisi, mikroelektronikler,çözünme ve ayırma işlemleri(ör:proteniler,iyonlar ve ağır metaller) için, parçacık oluşumu,organometalik katalizör ve polimer koollodilerin ve inorganik nanoparçacıkların sentezi gibi birçok alanda kullanım alanına sahiptirler.(keith P. Johnston,2008) Polar maddelerin scco 2 içerisindeki çözünürlüuklerini artırma da en fazla gelişme kaydeden reverse micelle in water in scco 2 microemulsion diye adlandırılan sürekli scco 2 fazı içerisinde ters misel oluşumları kullanmaktadıtr. Su/scCO 2 mikroemülsiyon sistemlerinin kararlığını sağlayan sürfektanlarla ilgili günümüze kadar birçok calisma yapilmiş olup son yıllarda, su/scco 2 21

33 1.GİRİŞ mikroemülsiyon sistemleri içerisinde, florlu türevleri başta olmak üzere sodyum bis(1h,1h,5h-oktafloropentil)-2-sulfosuksinat Aerosal-OT(AOT) un türevleri üzerine yoğunlaşılmıştır.masanobu Sagisaka ve ark., yapmış oldukları calışmalarda, su/sürfektan orani maksimum 32 olarak seçildiğinde ve de sodyum bis(1h,1h,5hoktafloropentil)-2-sülfosuksinat kullanıldığı zaman su/scco 2 mikroemülsiyon oluşumunda daha etkili olduğunu belirtmişlerdir. Buna ek olarak ise scco 2 içerisindeki ters misel oluşumundaki su/sürfektan molar oranını belirlemek icin W 0 parametresini kullanmışlardır.( Masanobu Sagisaka, 2010) W 0 = [ ] [ ] [ ] (1.1) [H 2 O] 0 = sistemdeki su moleküllerinin mol sayısı [H 2 O] s = CO 2 içerisinde çözünmüş olan moleküllerin sayısı [surfektan] 0 = sistemdeki sürfektan moleküllerinin sayısı Birçok genel yüzey aktif madde(sürfektan) scco 2 de çözünmediğinden dolayı, seçeceğimiz Yüzey aktif maddenin CO 2 ile uyumlu olması scco 2 içerisinde ters misel oluşumunun kararlılığı açısından önemlidir. Hoeflin ve ark., florlu yüzey aktif maddelerin CO 2 ile uyumunu inceleyip, CO 2 içerisinde daha iyi çözünürlük sağladıklarını gözlemlemişlerdir.aot(sodyumbis(2-aotetil hekzil)sülfosüksinat) florlu türevleri gibi sürfektanlar kullanarak,scco 2 içerisindeki mikroemülsiyon sistemlerinin stabilizasyonlarını gerçekleştirmişlerdir. Yüksek CO 2 uyumluluğu florlu yüzey aktif maddelerle sağlanabilmesine rağmen bunlar çok pahalı ve toksik özelliğe sahiptirler. Çevresel ve ekonomik faktörler göz önüne alınarak hidrokarbon sürfektantlar, hibrit florokarbon-hidrokarbon sürfektantlar ve yardımcısürfaktantların kullanılması daha çevreci olabilmektedir. 22

34 1.GİRİŞ Şekil ScCO 2 de ters misel oluşumu, AOT un yardımcı sürfektan F-pentanol ile yapısı 1.5. HİDROJENASYON Doymamış organik bileşiklerin hidrojenasyon reaksiyonları sentetik organik kimyada önemli temel reaksiyonlardandır. Alkenlerin hidrojenasyonu bir katalizör varlığında iki H atomunun çift bağa katılarak indirgenmesi ile gerçekleşir. R R H 2(g), Katalizör R R çözücü R R R Şekil Olefin hidrojenasyonun şematik gösterimi R Hidrojenasyon tepkimesinde katalitik çevrim sırasında gerçekleşen temel basamaklar aşağıdaki gibi sıralanabilir: i. Ligandın M den ayrılması M ile birleşmesi (18 e- kuralı): Ara ürünlerden ürünlere geçiş aşamasında metalin değerlik elektron sayısı 18 e- dan 16 e- a değişmektedir. ii. M merkezinin indirgenmesi yükseltgenmesi 23

35 1.GİRİŞ iii. Yükseltgen katılma İndirgen ayrılma iv. İnsertion (araya girme) Eliminasyon v. Koordine liganda saldırı Şekil ScCO 2 ortamında hidrojenasyon reaksiyon sistemi 24

36 2.ÖNCEKİ ÇALIŞMALAR 2- Önceki çalışmalar Baldwin ve Fink(2002), çalışmalarında 1,2- bis(difenil fosfino) etan ligandını sentezlemişler ve bunula birlikte R 2 PCH 2 CH 2 R 2 yapısında alkil grubu olarak fenilin dışında R= Cy ve Pr moleküllerini de kullanmışlardır. Orta büyüklükte olan bu organik grupların iyi ürün verdiklerini bildirmişlerdir. Küçük alkil grubu olan Bu 2 P(O)H ın büyük oranda oluştuğunu belirtmişlerdir. Ayrıca 1,2- bis(dfenilfosfino) etan ın %84 oranında elde edildiğini bildirmişlerdir. Şekil 2.1. Baldwin ve ark. larının sentezledikleri dppe ligandı Burk ve ark. (1995a), scco 2 i çözücü olarak kullandıkları çalışmada α- enamidlerin asimetrik hidrojenasyonunda, sentezledikleri DuPHOS-Rh komplekslerini kullanmışlar, bu komplekse tetrakis(3,5- bis(triflorometil)fenil)borat (BArF) eklenildiği zaman kompleksin scco 2 içerisinde daha iyi çözündüğünü belirtmişlerdir. Burk ve ark. (1995b), β, β-dialkil enaminlerin serisinin hidrojenasyonunda [Me(DuPHOS)-Rh + türevi katalizörler kullanmışlar, %96 ve daha fazla saflıkta enantiyomerler sentezlemişlerdir. Carroll ve ark.(2000), scco 2 içinde florlanmış fosfin paladyum komplekslerini sentezlemişler ve komplekslerin yapısında bulunan alkil fosfinlerin çözünürlüğe olan katkısını araştırmışlardır. De Wollf ve arkadaşları(2002), 1,2-bis-difenilfosfinoetanın para pozisyonunda perfloroalkil silil fonksiyonlu türevini sentezleyerek, [Rh(COD)(dppe)]BF 4 kompleksinin florlu türevini hazırlamada kullanmışlardır. 1- oktenin hidrojenasyonunda florlu sistemin flor içermeyenlere göre katalitik aktivitesinin ve seçiciliğinin daha yüksek olduğunu belirtmişlerdir. 25

37 2.ÖNCEKİ ÇALIŞMALAR Güzel ve ark.(2001), sodyum tetrakis((3,5-triflorometil)fenil) borat (NaBArF) ile [(COD) 2 Cl 2 Rh] reaksiyonundan [(COD) 2 Rh] + BArF - kompleksini sentezlemişler. Bu kompleksin 1,2-bis((2R,5R)-2,5-dietilfosfohalon) benzen in (Et-DuPHOS) ile tepkimesinden [(COD)Rh(Et-DuPHOS)]BarF kompleksini sentezleyerek, X-ray ile yapısını aydınlatmışlardır. C 2 H 5 C 2 H 5 + P P Rh BArF - C 2 H 5 C 2 H 5 Şekil 2.2. Güzel ve ark. Sentezlediği [(COD) 2 Rh] + BArF - kompleksi Hope ve ark. (1999), bir model sistem gibi stirenin katalizlenmiş hidrojenasyonunda, rodyum kullanumı ile birlikte perflorokarbon ve organik çözücülerin homojen katalizleme olayına etkisini incelemişlerdir. Wilkinson katalizöründen yola çıkarak bir dizi rodyum-fosfin katalizörlerini kullanarak stirenin hidrojenasyonu gerçekleştirmişlerdir. ji young ve ark. 2005, CO 2 -filik zincir grubuna ve hidrofilik baş grubuna sahip olan AOT sürfektanının florlu halini( sodium salt of bis(2,2,3,3,4,4,5,5- octafluoro-1-pentanol) sulfosuccinate) sentezleyerek, bunun scco 2 içerisinde su mikroemülsiyon sistemindeki faz davranışlarını araştırmışlar ve bu sürfektanın hem bulutlanma noktası cloud point noktasını belirlemişlerdir. Yapmış oldukları çalışmalar sonucunda mikroemülsiyon sisteminin faz davranışının su ve sürfektan moleküllerin CO 2 içerisindeki konsantrsayonundan etkilendiğini belirtip, buradan yararlanarak suyun molar konsantrsayonun sürfektanın molar komsantrayonuna oranı olarak tanımladıkları Wo oranın belirlemişlerdir. Ayrıca homejen mikroemülsiyon sisteminin üzerinde de yüksek bulutlanma noktası( upper cloud point ) diye 26

38 2.ÖNCEKİ ÇALIŞMALAR adlandırdıkları başka bir bulutlanma noktası tespit etmişlerdir. Normal bulutlanma noktası içinde düşük bulutlanma ( lower cloud point ) noktası ifadelerini kullanmışlardır. {Rf: H(CF 2 ) 4 CH 2 } Şekil 2.3. Ji Young ve ark. larının sentezlemiş oldukları AOT un florlu türevi Juan Sebastian ve ark.(2009), İki fazlı sistemlerle mikroemülsiyon sistemlerini karşılaştırabilmek için Rh-TPPTS katalizörü eşliğinde dimetil itakonat ın hidrojenasyonunu hem iki fazlı siklohekzan-su sisteminde hem de [Triton x-100/1- pentanol] siklohekzan-su mikroemülsiyon sisteminde denemişler ve Tritonx-100 sürfektanı ve 1-pentanol yardımcı sürfektanın kullanıldığı zaman daha yüksek dönüşüm ve seçicilik gözlemlemişlerdir. Juncheng Liu ve ark., Sodium bis(2-rtilhekzil)sülfosüksinat (AOT) ın scco 2 içerisindeki çözünürlüğünü, değişik basınclarda ve 38 o C de etanol,1-pentanol ve 2,2,3,3,4,4,5,5-octafloro-1-pentanol(F-pentanol) varlığında belirlemişlerdir. AOT( M) ın scco 2 deki çöüzünürlüğü, etanol( m),1- pentanol(0.6m-1.00m ) ve F-pentanol( M) varlığında karşılaştırdıklarında, F- pentanol un CO 2 -filik alkan zinciri olduğundan dolayı daha düşük konsantrasyonda bile daha fazla çözünebildiğini tespit etmişlerdir.ayrıca,aot(0.03m)/fpentanol(0.18m-0.35m)/scco 2 sistemi için o C aralığında ve Mpa basınç değerlerindeki faz davranışlarına bakıldığı zaman, F-pentanol ilavesiyle AOT un bulutlanma noktası basıncının cloud poınt pressure onemli ölçüde düştüğünü 27

ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ

ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ AY EKİM 06-07 EĞİTİM - ÖĞRETİM YILI. SINIF VE MEZUN GRUP KİMYA HAFTA DERS SAATİ. Kimya nedir?. Kimya ne işe yarar?. Kimyanın sembolik dili Element-sembol Bileşik-formül. Güvenliğimiz ve Kimya KONU ADI

Detaylı

Bir maddenin başka bir madde içerisinde homojen olarak dağılmasına ÇÖZÜNME denir. Çözelti=Çözücü+Çözünen

Bir maddenin başka bir madde içerisinde homojen olarak dağılmasına ÇÖZÜNME denir. Çözelti=Çözücü+Çözünen ÇÖZÜCÜ VE ÇÖZÜNEN ETKİLEŞİMLERİ: Çözünme olayı ve Çözelti Oluşumu: Bir maddenin başka bir madde içerisinde homojen olarak dağılmasına ÇÖZÜNME denir. Çözelti=Çözücü+Çözünen Çözünme İyonik Çözünme Moleküler

Detaylı

Paylaşılan elektron ya da elektronlar, her iki çekirdek etrafında dolanacaklar, iki çekirdek arasındaki bölgede daha uzun süre bulundukları için bu

Paylaşılan elektron ya da elektronlar, her iki çekirdek etrafında dolanacaklar, iki çekirdek arasındaki bölgede daha uzun süre bulundukları için bu 4.Kimyasal Bağlar Kimyasal Bağlar Aynı ya da farklı cins atomları bir arada tutan kuvvetlere kimyasal bağlar denir. Pek çok madde farklı element atomlarının birleşmesiyle meydana gelmiştir. İyonik bağ

Detaylı

Her madde atomlardan oluşur

Her madde atomlardan oluşur 2 Yaşamın kimyası Figure 2.1 Helyum Atomu Çekirdek Her madde atomlardan oluşur 2.1 Atom yapısı - madde özelliği Elektron göz ardı edilebilir kütle; eksi yük Çekirdek: Protonlar kütlesi var; artı yük Nötronlar

Detaylı

6.PPB (milyarda bir kısım) Kaynakça Tablo A-1: Çözelti Örnekleri... 5 Tablo B-1:Kolloidal Tanecikler... 8

6.PPB (milyarda bir kısım) Kaynakça Tablo A-1: Çözelti Örnekleri... 5 Tablo B-1:Kolloidal Tanecikler... 8 İçindekiler A. ÇÖZELTİLER... 2 1.Çözünme... 2 2.Homojenlik... 4 3.Çözelti... 5 4.Çözünürlük... 5 Çözünürlüğe Sıcaklık Ve Basınç Etkisi... 6 B. KARIŞIMLAR... 7 1.Çözeltiler... 7 2.Kolloidal Karışımlar...

Detaylı

Fiziksel özellikleri her yerde aynı olan (homojen) karışımlara çözelti denir. Bir çözeltiyi oluşturan her bir maddeye çözeltinin bileşenleri denir.

Fiziksel özellikleri her yerde aynı olan (homojen) karışımlara çözelti denir. Bir çözeltiyi oluşturan her bir maddeye çözeltinin bileşenleri denir. GENEL KİMYA 1 LABORATUARI ÇALIŞMA NOTLARI DENEY: 8 ÇÖZELTİLER Dr. Bahadır KESKİN, 2011 @ YTÜ Fiziksel özellikleri her yerde aynı olan (homojen) karışımlara çözelti denir. Bir çözeltiyi oluşturan her bir

Detaylı

Moleküllerarası Etkileşimler, Sıvılar ve Katılar - 11

Moleküllerarası Etkileşimler, Sıvılar ve Katılar - 11 Moleküllerarası Etkileşimler, Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Sıvılar ve Katılar - 11 Maddenin Halleri Maddenin halleri arasındaki

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Ela BATMAN YENİ FOSFİN LİGANDLARI VE METAL KOMPLEKSLERİNİN SENTEZİ, SÜPERKRİTİK KARBONDİOKSİTTE ÇÖZÜNÜRLÜKLERİNİN İNCELENMESİ KİMYA ANABİLİM

Detaylı

ALKANLAR FİZİKSEL VE KİMYASAL ÖZELLİKLERİ

ALKANLAR FİZİKSEL VE KİMYASAL ÖZELLİKLERİ ALKANLAR FİZİKSEL VE KİMYASAL ÖZELLİKLERİ ALKANLAR Alkanların Fiziksel Özellikleri Alkan bileşikleri apolar yapılı moleküllerden oluşur. Bu yüzden molekülleri arasında zayıf London kuvvetleri bulunmaktadır.

Detaylı

10. Sınıf Kimya Konuları KİMYANIN TEMEL KANUNLARI VE TEPKİME TÜRLERİ Kimyanın Temel Kanunları Kütlenin korunumu, sabit oranlar ve katlı oranlar

10. Sınıf Kimya Konuları KİMYANIN TEMEL KANUNLARI VE TEPKİME TÜRLERİ Kimyanın Temel Kanunları Kütlenin korunumu, sabit oranlar ve katlı oranlar 10. Sınıf Kimya Konuları KİMYANIN TEMEL KANUNLARI VE TEPKİME TÜRLERİ Kimyanın Temel Kanunları Kütlenin korunumu, sabit oranlar ve katlı oranlar kanunları Demir (II) sülfür bileşiğinin elde edilmesi Kimyasal

Detaylı

5) Çözünürlük(Xg/100gsu)

5) Çözünürlük(Xg/100gsu) 1) I. Havanın sıvılaştırılması II. abrika bacasından çıkan SO 3 gazının H 2 O ile birleşmesi III. Na metalinin suda çözünmesi Yukardaki olaylardan hangilerinde kimyasal değişme gerçekleşir? 4) Kütle 1

Detaylı

YENİ BINAP TÜREVİ LİGAND VE RUTENYUM KOMPLEKSLERİNİN SENTEZİ, KATALİTİK ETKİNLİKLERİNİN İNCELENMESİ

YENİ BINAP TÜREVİ LİGAND VE RUTENYUM KOMPLEKSLERİNİN SENTEZİ, KATALİTİK ETKİNLİKLERİNİN İNCELENMESİ YENİ BINA TÜREVİ LİGAND VE RUTENYUM KOMLEKSLERİNİN SENTEZİ, KATALİTİK ETKİNLİKLERİNİN İNCELENMESİ Synthesis of New Binap Derivative Ligand and Their Ruthenium Complexes, Investigation of Their Catalytic

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ Göktürk AVŞAR ORİJİNAL NİTELİKTE FLORLANMIŞ FOSFİN VE RODYUM(I) KOMPLEKSLERİNİN SENTEZİ VE SÜPERKRİTİK KARBON DİOKSİT ORTAMINDA HİDROJENASYON

Detaylı

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM GENEL KİMYA MOLEKÜLLER ARASI KUVVETLER Moleküller Arası Kuvvetler Yüksek basınç ve düşük sıcaklıklarda moleküller arası kuvvetler gazları ideallikten saptırır. Moleküller arası kuvvetler molekülde kalıcı

Detaylı

KİMYA-IV. Yrd. Doç. Dr. Yakup Güneş

KİMYA-IV. Yrd. Doç. Dr. Yakup Güneş KİMYA-IV Yrd. Doç. Dr. Yakup Güneş Organik Kimyaya Giriş Kimyasal bileşikler, eski zamanlarda, elde edildikleri kaynaklara bağlı olarak Anorganik ve Organik olmak üzere, iki sınıf altında toplanmışlardır.

Detaylı

GENEL KİMYA. 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar

GENEL KİMYA. 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar GENEL KİMYA 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar Kimyasal Türler Doğada bulunan bütün maddeler tanecikli yapıdadır. Maddenin özelliğini gösteren küçük yapı

Detaylı

FARMASÖTİK TEKNOLOJİ I «ÇÖZELTİLER»

FARMASÖTİK TEKNOLOJİ I «ÇÖZELTİLER» FARMASÖTİK TEKNOLOJİ I «ÇÖZELTİLER» Uygun bir çözücü içerisinde bir ya da birden fazla maddenin çözündüğü veya moleküler düzeyde disperse olduğu tektür (homojen: her tarafta aynı oranda çözünmüş veya dağılmış

Detaylı

ORGANĠK BĠLEġĠKLER. 2. ÜNİTE 6. Bölüm

ORGANĠK BĠLEġĠKLER. 2. ÜNİTE 6. Bölüm ORGANĠK BĠLEġĠKLER 2. ÜNİTE 6. Bölüm Organik ve Anorganik BileĢiklerin Ayırt Edilmesi Kimya bilimi temelde organik ve anorganik olmak üzere ikiye ayrılır. * Karbonun oksitleri (CO, CO 2 ) * Karbonatlar

Detaylı

GENEL KİMYA. 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar

GENEL KİMYA. 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar GENEL KİMYA 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar Kimyasal Türler Doğada bulunan bütün maddeler tanecikli yapıdadır. Maddenin özelliğini gösteren küçük yapı

Detaylı

Biochemistry Chapter 4: Biomolecules. Hikmet Geçkil, Professor Department of Molecular Biology and Genetics Inonu University

Biochemistry Chapter 4: Biomolecules. Hikmet Geçkil, Professor Department of Molecular Biology and Genetics Inonu University Biochemistry Chapter 4: Biomolecules, Professor Department of Molecular Biology and Genetics Inonu University Biochemistry/Hikmet Geckil Chapter 4: Biomolecules 2 BİYOMOLEKÜLLER Bilim adamları hücreyi

Detaylı

Çözelti iki veya daha fazla maddenin birbiri içerisinde homojen. olarak dağılmasından oluşan sistemlere denir.

Çözelti iki veya daha fazla maddenin birbiri içerisinde homojen. olarak dağılmasından oluşan sistemlere denir. 3. ÇÖZELTİLER VE ÇÖZELTİ KONSANTRASYONLARI Çözelti: Homojen karışımlardır. Çözelti iki veya daha fazla maddenin birbiri içerisinde homojen olarak dağılmasından oluşan sistemlere denir. Çözelti derişimi

Detaylı

ÇÖZELTİLER VE ÇÖZELTİ KONSANTRASYONLARI 3.1. Çözeltiler için kullanılan temel kavramlar

ÇÖZELTİLER VE ÇÖZELTİ KONSANTRASYONLARI 3.1. Çözeltiler için kullanılan temel kavramlar 1.10.2015. ÇÖZELTİLER VE ÇÖZELTİ KONSANTRASYONLARI.1. Çözeltiler için kullanılan temel kavramlar Homojen karışımlardır. Çözelti iki veya daha fazla maddenin birbiri içerisinde homojen olarak dağılmasından

Detaylı

Adsorpsiyon. Kimyasal Temel İşlemler

Adsorpsiyon. Kimyasal Temel İşlemler Adsorpsiyon Kimyasal Temel İşlemler Adsorpsiyon Adsorbsiyon, malzeme(lerin) derişiminin ara yüzeyde (katı yüzeyinde) yığın derişimine göre artışı şeklinde tanımlanabilir. Adsorpsiyon yüzeyde tutunma olarak

Detaylı

Serüveni 3. ÜNİTE KİMYASAL TÜRLER ARASI ETKİLEŞİM GÜÇLÜ ETKİLEŞİM. o İYONİK BAĞ o KOVALENT BAĞ o METALİK BAĞ

Serüveni 3. ÜNİTE KİMYASAL TÜRLER ARASI ETKİLEŞİM GÜÇLÜ ETKİLEŞİM. o İYONİK BAĞ o KOVALENT BAĞ o METALİK BAĞ Serüveni 3. ÜNİTE KİMYASAL TÜRLER ARASI ETKİLEŞİM GÜÇLÜ ETKİLEŞİM o İYONİK BAĞ o KOVALENT BAĞ o METALİK BAĞ KİMYASAL TÜR 1. İYONİK BAĞ - - Ametal.- Kök Kök Kök (+) ve (-) yüklü iyonların çekim kuvvetidir..halde

Detaylı

Soygazların bileşik oluşturamamasının sebebi bütün orbitallerinin dolu olmasındandır.

Soygazların bileşik oluşturamamasının sebebi bütün orbitallerinin dolu olmasındandır. KİMYASAL BAĞLAR Kimyasal bağ, moleküllerde atomları birarada tutan kuvvettir. Bir bağın oluşabilmesi için atomlar tek başına bulundukları zamankinden daha kararlı (az enerjiye sahip) olmalıdırlar. Genelleme

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : Mustafa Kemal YILMAZ 2. Doğum Tarihi : 22 Haziran Unvanı : Araştırma Görevlisi Doktor 4.

ÖZGEÇMİŞ. 1. Adı Soyadı : Mustafa Kemal YILMAZ 2. Doğum Tarihi : 22 Haziran Unvanı : Araştırma Görevlisi Doktor 4. ÖZGEÇMİŞ 1. Adı Soyadı : Mustafa Kemal YILMAZ 2. Doğum Tarihi : 22 Haziran 1981 3. Unvanı : Araştırma Görevlisi Doktor 4. Öğrenim Durumu : Derece Alan Üniversite Yıl Lisans Kimya Çukurova Üniversitesi

Detaylı

Sıvılardan ekstraksiyon:

Sıvılardan ekstraksiyon: Sıvılardan ekstraksiyon: Sıvı haldeki bir karışımdan bir maddenin, bu maddenin içinde bulunduğu çözücü ile karışmayan ve bu maddeyi çözen bir başka çözücü ile çalkalanarak ilgili maddenin ikinci çözücüye

Detaylı

TURUNCU RENGĐN DANSI NASIL OLUR?

TURUNCU RENGĐN DANSI NASIL OLUR? KĐMYA EĞĐE ĞĐTĐM M SEMĐNER NERĐ PROF. DR. ĐNCĐ MORGĐL TURUNCU RENGĐN DANSI NASIL OLUR? HAZIRLAYAN: GÜLÇĐN YALLI KONU: ÇÖZELTĐLER KONU BAŞLIĞI: TURUNCU RENGĐN DANSI NASIL OLUR? ÇÖZELTĐLER Fiziksel özellikleri

Detaylı

A- LABORATUAR MALZEMELERİ

A- LABORATUAR MALZEMELERİ 1- Cam Aktarma ve Ölçüm Kapları: DENEY 1 A- LABORATUAR MALZEMELERİ 2- Porselen Malzemeler 3- Metal Malzemeler B- KARIŞIMLAR - BİLEŞİKLER Nitel Gözlemler, Faz Ayırımları, Isısal Bozunma AMAÇ: Karışım ve

Detaylı

Çözeltiler. MÜHENDİSLİK KİMYASI DERS NOTLARI Yrd. Doç. Dr. Atilla EVCİN. Yrd. Doç. Dr. Atilla EVCİN Afyonkarahisar Kocatepe Üniversitesi 2006

Çözeltiler. MÜHENDİSLİK KİMYASI DERS NOTLARI Yrd. Doç. Dr. Atilla EVCİN. Yrd. Doç. Dr. Atilla EVCİN Afyonkarahisar Kocatepe Üniversitesi 2006 Çözeltiler Çözelti, iki veya daha fazla maddenin homojen bir karışımı olup, en az iki bileşenden oluşur. Bileşenlerden biri çözücü, diğeri ise çözünendir. MÜHENDİSLİK KİMYASI DERS NOTLARI Yrd. Doç. Dr.

Detaylı

( PİRUVİK ASİT + SU + ALKOL ) ÜÇLÜ SIVI-SIVI SİSTEMLERİNİN DAĞILIM DENGESİNİN İNCELENMESİ

( PİRUVİK ASİT + SU + ALKOL ) ÜÇLÜ SIVI-SIVI SİSTEMLERİNİN DAĞILIM DENGESİNİN İNCELENMESİ TOA17 ( PİRUVİK ASİT + SU + ALKOL ) ÜÇLÜ SIVI-SIVI SİSTEMLERİNİN DAĞILIM DENGESİNİN İNCELENMESİ B. Başlıoğlu, A. Şenol İstanbul Üniversitesi, Mühendislik Fakültesi, Kimya Mühendisliği Bölümü, 34320, Avcılar

Detaylı

3.1 ATOM KÜTLELERİ... 75 3.2 MOL VE MOLEKÜL KAVRAMLARI... 77 3.2.1 Mol Hesapları... 79 SORULAR 3... 84

3.1 ATOM KÜTLELERİ... 75 3.2 MOL VE MOLEKÜL KAVRAMLARI... 77 3.2.1 Mol Hesapları... 79 SORULAR 3... 84 v İçindekiler KİMYA VE MADDE... 1 1.1 KİMYA... 1 1.2 BİRİM SİSTEMİ... 2 1.2.1 SI Uluslararası Birim Sistemi... 2 1.2.2 SI Birimleri Dışında Kalan Birimlerin Kullanılması... 3 1.2.3 Doğal Birimler... 4

Detaylı

İÇİNDEKİLER TEMEL KAVRAMLAR - 2. 1. Atomlar, Moleküller, İyonlar...36. 1.2. Atomlar...36. 1.2. Moleküller...37. 1.3. İyonlar...37

İÇİNDEKİLER TEMEL KAVRAMLAR - 2. 1. Atomlar, Moleküller, İyonlar...36. 1.2. Atomlar...36. 1.2. Moleküller...37. 1.3. İyonlar...37 vi TEMEL KAVRAMLAR - 2 1. Atomlar, Moleküller, İyonlar...36 1.2. Atomlar...36 1.2. Moleküller...37 1.3. İyonlar...37 2. Kimyasal Türlerin Adlandırılması...38 2.1. İyonların Adlandırılması...38 2.2. İyonik

Detaylı

SU ve ÇEVRENİN CANLILAR İÇİN UYGUNLUĞU

SU ve ÇEVRENİN CANLILAR İÇİN UYGUNLUĞU SU ve ÇEVRENİN CANLILAR İÇİN UYGUNLUĞU Suyun polaritesinin etkileri Su molekülünün polar olması hidrojen bağlarının oluşmasına neden olur. 2 Su molekülü Oldukça basit yapılıdır. Tekli bağla bağlı olup

Detaylı

AROMATİK BİLEŞİKLER

AROMATİK BİLEŞİKLER AROMATİK BİLEŞİKLER AROMATİK HİDROKARBONLAR BENZEN: (C 6 H 6 ) Aromatik moleküllerin temel üyesi benzendir. August Kekule (Ogüst Kekule) benzen için altıgen formülü önermiştir. Bileşik sınıfına sistematik

Detaylı

Doç. Dr. Cengiz ÇETİN, BEK153 Organik Eserlerde Önleyici Koruma Ders Notu DERS 6 4. ÇÖZÜCÜLER. Resim 1. Ciriş bitkisi.

Doç. Dr. Cengiz ÇETİN, BEK153 Organik Eserlerde Önleyici Koruma Ders Notu DERS 6 4. ÇÖZÜCÜLER. Resim 1. Ciriş bitkisi. DERS 6 4. ÇÖZÜCÜLER Resim 1. Ciriş bitkisi. 1 4. ÇÖZÜCÜLER Çözücüler normal sıcaklık ve basınçta sıvı halde bulunan organik maddelerdir. Organik olmayan fakat herkes tarafından bilinen su da bir çözücüdür.

Detaylı

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM GENEL KİMYA ÇÖZELTİLER Homojen karışımlara çözelti denir. Çözelti bileşiminin ve özelliklerinin çözeltinin her yerinde aynı olması sebebiyle çözelti, «homojen» olarak nitelendirilir. Çözeltinin değişen

Detaylı

Nanolif Üretimi ve Uygulamaları

Nanolif Üretimi ve Uygulamaları Nanolif Üretimi ve Uygulamaları Doç. Dr. Atilla Evcin Malzeme Bilimi ve Mühendisliği Bölümü Çözelti Özellikleri Elektro-eğirme sırasında kullanılacak çözeltinin özellikleri elde edilecek fiber yapısını

Detaylı

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar 5.111 Ders Özeti #12 Bugün için okuma: Bölüm 2.9 (3. Baskıda 2.10), Bölüm 2.10 (3. Baskıda 2.11), Bölüm 2.11 (3. Baskıda 2.12), Bölüm 2.3 (3. Baskıda 2.1), Bölüm 2.12 (3. Baskıda 2.13). Ders #13 için okuma:

Detaylı

ATOMLAR ARASI BAĞLARIN POLARİZASYONU. Bağ Polarizasyonu: Bağ elektronlarının bir atom tarafından daha fazla çekilmesi.

ATOMLAR ARASI BAĞLARIN POLARİZASYONU. Bağ Polarizasyonu: Bağ elektronlarının bir atom tarafından daha fazla çekilmesi. ATOMLAR ARASI BAĞLARIN POLARİZASYONU Tüm kimyasal reaksiyonlardaki ortak nokta: elektron (e - ) alışverişi e - transferi sonucu bazı bağlar kırılır, bazı bağlar yer değiştirir ya da yeni bağlar oluşabilir.

Detaylı

4. Açısal momentum kuantum sayısı (,) 2 olan bir orbital türü ile ilgili, 5. Orbitaller Maksimum elektron sayısı

4. Açısal momentum kuantum sayısı (,) 2 olan bir orbital türü ile ilgili, 5. Orbitaller Maksimum elektron sayısı Kuantum Sayıları Ve rbitaller 1. Başkuantum sayısı (n) belirtilen temel enerji düzeylerinden hangisinde bulunabilecek maksimum orbital sayısı yanlış verilmiştir? Başkuantum sayısı (n) Maksimum orbital

Detaylı

Atomlar ve Moleküller

Atomlar ve Moleküller Atomlar ve Moleküller Madde, uzayda yer işgal eden ve kütlesi olan herşeydir. Element, kimyasal tepkimelerle başka bileşiklere parçalanamayan maddedir. -Doğada 92 tane element bulunmaktadır. Bileşik, belli

Detaylı

Aşağıda verilen özet bilginin ayrıntısını, ders kitabı. olarak önerilen, Erdik ve Sarıkaya nın Temel. Üniversitesi Kimyası" Kitabı ndan okuyunuz.

Aşağıda verilen özet bilginin ayrıntısını, ders kitabı. olarak önerilen, Erdik ve Sarıkaya nın Temel. Üniversitesi Kimyası Kitabı ndan okuyunuz. KİMYASAL BAĞLAR Aşağıda verilen özet bilginin ayrıntısını, ders kitabı olarak önerilen, Erdik ve Sarıkaya nın Temel Üniversitesi Kimyası" Kitabı ndan okuyunuz. KİMYASAL BAĞLAR İki atom veya atom grubu

Detaylı

BENZENİN NİTROLANMASINDA GRAFİTİN KATALİZÖR OLARAK ETKİSİNİN ARAŞTIRILMASI

BENZENİN NİTROLANMASINDA GRAFİTİN KATALİZÖR OLARAK ETKİSİNİN ARAŞTIRILMASI BENZENİN NİTROLANMASINDA GRAFİTİN KATALİZÖR OLARAK ETKİSİNİN ARAŞTIRILMASI AMACIMIZ: Günümüz kimya endüstrisinde ideal katalizörler ekonomik olan, bol bulunan, geri kazanılan ve tepkime mekanizmasında

Detaylı

İKİ YADA DAHA FAZLA MADDENİN ÖZELLİKLERİNİ KAYBETMEDEN ÇEŞİTLİ ORANLARDA KARIŞMASI İLE OLUŞAN TOPLULUĞA KARIŞIM DENİR KARIŞIMLAR İKİ SINIFTA

İKİ YADA DAHA FAZLA MADDENİN ÖZELLİKLERİNİ KAYBETMEDEN ÇEŞİTLİ ORANLARDA KARIŞMASI İLE OLUŞAN TOPLULUĞA KARIŞIM DENİR KARIŞIMLAR İKİ SINIFTA İKİ YADA DAHA FAZLA MADDENİN ÖZELLİKLERİNİ KAYBETMEDEN ÇEŞİTLİ ORANLARDA KARIŞMASI İLE OLUŞAN TOPLULUĞA KARIŞIM DENİR KARIŞIMLAR İKİ SINIFTA İNCELENİR Her tarafında aynı özelliği gösteren, tek bir madde

Detaylı

İKİ YADA DAHA FAZLA MADDENİN ÖZELLİKLERİNİ KAYBETMEDEN ÇEŞİTLİ ORANLARDA KARIŞMASI İLE OLUŞAN TOPLULUĞA KARIŞIM DENİR KARIŞIMLAR İKİ SINIFTA İNCELENİR

İKİ YADA DAHA FAZLA MADDENİN ÖZELLİKLERİNİ KAYBETMEDEN ÇEŞİTLİ ORANLARDA KARIŞMASI İLE OLUŞAN TOPLULUĞA KARIŞIM DENİR KARIŞIMLAR İKİ SINIFTA İNCELENİR KARIŞIMLAR İKİ YADA DAHA FAZLA MADDENİN ÖZELLİKLERİNİ KAYBETMEDEN ÇEŞİTLİ ORANLARDA KARIŞMASI İLE OLUŞAN TOPLULUĞA KARIŞIM DENİR KARIŞIMLAR İKİ SINIFTA İNCELENİR Her tarafında aynı özelliği gösteren, tek

Detaylı

POLİMER KİMYASI -2. Prof. Dr. Saadet K. Pabuccuoğlu

POLİMER KİMYASI -2. Prof. Dr. Saadet K. Pabuccuoğlu POLİMER KİMYASI -2 Prof. Dr. Saadet K. Pabuccuoğlu Polimerize Olabilirlik Nedir? Bir monomerin polimerize olabilirliği termodinamik ve kinetik düşüncelere bağlıdır. Termodinamikçe uygun olan her monomer,

Detaylı

ÇÖZÜNME ve ÇÖZÜNÜRLÜK

ÇÖZÜNME ve ÇÖZÜNÜRLÜK ÇÖZÜNME ve ÇÖZÜNÜRLÜK Prof. Dr. Mustafa DEMİR M.DEMİR 05-ÇÖZÜNME VE ÇÖZÜNÜRLÜK 1 Çözünme Olayı Analitik kimyada çözücü olarak genellikle su kullanılır. Su molekülleri, bir oksijen atomuna bağlı iki hidrojen

Detaylı

ORGANİK KİMYA. Prof.Dr. Özlen Güzel Akdemir. Farmasötik Kimya Anabilim Dalı

ORGANİK KİMYA. Prof.Dr. Özlen Güzel Akdemir. Farmasötik Kimya Anabilim Dalı ORGANİK KİMYA Prof.Dr. Özlen Güzel Akdemir Farmasötik Kimya Anabilim Dalı Ders sunumlarına erişim için : http://aves.istanbul.edu.tr/oguzel/dokumanlar 2018-2019 EĞİTİM-ÖĞRETİM YILI ORGANİK KİMYA DERS PLANI

Detaylı

12-B. 31. I. 4p II. 5d III. 6s

12-B. 31. I. 4p II. 5d III. 6s -B.. 4p. 5d. 6s Baş kuantum sayısı n, açısal kuantum sayısı olmak üzere yukarıda verilen orbitallerin enerjilerinin karşılaştırılması hangisinde doğru verilmiştir? A) == B) >> C) >> D) >> E) >> ÖLÇME,

Detaylı

Aeresol. Süspansiyon. Heterojen Emülsiyon. Karışım. Kolloidal. Çözelti < 10-9 m Süspansiyon > 10-6 m Kolloid 10-9 m m

Aeresol. Süspansiyon. Heterojen Emülsiyon. Karışım. Kolloidal. Çözelti < 10-9 m Süspansiyon > 10-6 m Kolloid 10-9 m m Aeresol Süspansiyon Karışım Heterojen Emülsiyon Kolloidal Çözelti < 10-9 m Süspansiyon > 10-6 m Kolloid 10-9 m - 10-6 m Homojen Çözelti Dağılan Faz Dağılma Fazı Kolloid Tipi katı katı,sıvı,gaz sol katı

Detaylı

Öğretim Üyeleri İçin Ön Söz Öğrenciler İçin Ön Söz Teşekkürler Yazar Hakkında Çevirenler Çeviri Editöründen

Öğretim Üyeleri İçin Ön Söz Öğrenciler İçin Ön Söz Teşekkürler Yazar Hakkında Çevirenler Çeviri Editöründen Öğretim Üyeleri İçin Ön Söz Öğrenciler İçin Ön Söz Teşekkürler Yazar Hakkında Çevirenler Çeviri Editöründen ix xiii xv xvii xix xxi 1. Çevre Kimyasına Giriş 3 1.1. Çevre Kimyasına Genel Bakış ve Önemi

Detaylı

Hidroklorik asit ve sodyum hidroksitin reaksiyonundan yemek tuzu ve su meydana gelir. Bu kimyasal olayın denklemi

Hidroklorik asit ve sodyum hidroksitin reaksiyonundan yemek tuzu ve su meydana gelir. Bu kimyasal olayın denklemi KİMYASAL DENKLEMLER İki ya da daha fazla maddenin birbirleri ile etkileşerek kendi özelliklerini kaybedip yeni özelliklerde bir takım ürünler meydana getirmesine kimyasal olay, bunların formüllerle gösterilmesine

Detaylı

HİDROKARBONLAR ve ALKANLAR. Kimya Ders Notu

HİDROKARBONLAR ve ALKANLAR. Kimya Ders Notu HİDROKARBONLAR ve ALKANLAR Kimya Ders Notu HİDROKARBONLAR ve ALKANLAR ALKANLAR Hidrokarbon zincirinde C atomları birbirine tek bağ ile bağlanmışlardır ve tüm bağları sigma bağıdır. Moleküllerindeki C atomları

Detaylı

EVDE KİMYA SABUN. Yağ asitlerinin Na ve ya K tuzuna sabun denir. Çok eski çağlardan beri kullanılan en önemli temizlik maddeleridir.

EVDE KİMYA SABUN. Yağ asitlerinin Na ve ya K tuzuna sabun denir. Çok eski çağlardan beri kullanılan en önemli temizlik maddeleridir. EVDE KİMYA SABUN Yağ asitlerinin Na ve ya K tuzuna sabun denir. Çok eski çağlardan beri kullanılan en önemli temizlik maddeleridir. CH 3(CH 2) 16 COONa: Sodyum stearat (Beyaz Sabun) CH 3(CH 2) 16 COOK:

Detaylı

Serüveni. 1.ÜNİTE: KİMYA BİLİMİ Kimyanın Sembolik Dili #3

Serüveni. 1.ÜNİTE: KİMYA BİLİMİ Kimyanın Sembolik Dili #3 Serüveni 1.ÜNİTE: KİMYA BİLİMİ Kimyanın Sembolik Dili #3 MADDE SAF MADDE SAF OLMAYAN MADDE(KARIŞIM) ELEMENT BİLEŞİK HOMOJEN KARIŞIM HETEROJEN KARIŞIM METAL İYONİK BİLEŞİKLER SÜSPANSİYON AMETAL KOVALENT

Detaylı

Genel Kimya. Bölüm 7: ÇÖZELTİLER VE ÇÖZÜNÜRLÜK. Yrd. Doç. Dr. Mustafa SERTÇELİK Kafkas Üniversitesi Kimya Mühendisliği Bölümü

Genel Kimya. Bölüm 7: ÇÖZELTİLER VE ÇÖZÜNÜRLÜK. Yrd. Doç. Dr. Mustafa SERTÇELİK Kafkas Üniversitesi Kimya Mühendisliği Bölümü Genel Kimya Bölüm 7: ÇÖZELTİLER VE ÇÖZÜNÜRLÜK Yrd. Doç. Dr. Mustafa SERTÇELİK Kafkas Üniversitesi Kimya Mühendisliği Bölümü ÇÖZELTİ VE TÜRLERİ Eğer bir madde diğer bir madde içinde molekül, atom veya iyonları

Detaylı

Alkinler (Asetilenler)

Alkinler (Asetilenler) Organik-İnorganik Kimya Alkinler (Asetilenler) ALKİNLER (ASETİLENLER) Genel formülleri C n H 2n-2 şeklinde olan ve yapılarında en az bir üçlü bağ içeren bileşiklerdir. Bu bileşiklere, moleküllerindeki

Detaylı

BURADA ÖZET BİLGİ VERİLMİŞTİR. DAHA AYRINTILI BİLGİ İÇİN VERİLEN KAYNAK KİTAPLARA BAKINIZ. KAYNAKLAR

BURADA ÖZET BİLGİ VERİLMİŞTİR. DAHA AYRINTILI BİLGİ İÇİN VERİLEN KAYNAK KİTAPLARA BAKINIZ. KAYNAKLAR BURADA ÖZET BİLGİ VERİLMİŞTİR. DAHA AYRINTILI BİLGİ İÇİN VERİLEN KAYNAK KİTAPLARA BAKINIZ. KAYNAKLAR 1) P. Volhardt, N. Schore; Organic Chemistry-Structure and Function, Sixth Edition. 2) H. Hart, L. E.

Detaylı

Su ve çevrenin canlılar için uygunluğu

Su ve çevrenin canlılar için uygunluğu Su ve çevrenin canlılar için uygunluğu Su ve çevrenin canlılar için uygunluğu Yeryüzündeki yaşam su içinde ortaya çıkmış ve canlıların karalar üzerine yayılışından önceki 3 milyar yıl boyunca su içinde

Detaylı

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM GENEL KİMYA KİMYASAL REAKSİYONLAR Kimyasal Tepkime Kimyasal tepkime, Bir ya da birkaç maddenin (tepkenler) yeni bir bileşik grubuna (ürünler) dönüştürülmesi işlemidir. Tepkenler Ürünler NO + 1/2 O 2 NO

Detaylı

PROBLEM 1.1 a ) Örnek Çözüm b ) 9 F; 1s 2 2s 2 2p 5 (Değerlik elektronları: 2s 2 2p 5 ) c ) 16 S; 1s 2 2s 2 2p 6 3s 2 3p 4 (Değerlik elektronları: 3s

PROBLEM 1.1 a ) Örnek Çözüm b ) 9 F; 1s 2 2s 2 2p 5 (Değerlik elektronları: 2s 2 2p 5 ) c ) 16 S; 1s 2 2s 2 2p 6 3s 2 3p 4 (Değerlik elektronları: 3s PROBLEM 1.1 b ) 9 F; 1s 2 2s 2 2p 5 (Değerlik elektronları: 2s 2 2p 5 ) c ) 16 S; 1s 2 2s 2 2p 6 3s 2 3p 4 (Değerlik elektronları: 3s 2 3p 4 ) ç ) 14 Si; 1s 2 2s 2 2p 6 3s 2 3p 2 (Değerlik elektronları:

Detaylı

SABUN SENTEZİ (Yağların Hidrolizi veya Sabunlaştırılması)

SABUN SENTEZİ (Yağların Hidrolizi veya Sabunlaştırılması) SABUN SENTEZİ (Yağların Hidrolizi veya Sabunlaştırılması) Gerek hayvansal yağlar gerekse bitkisel (nebati) yağlar, yağ asitlerinin gliserin (gliserol) ile oluşturdukları oldukça kompleks esterlerdir. Bu

Detaylı

KİMYASAL BAĞLAR İYONİK BAĞ KOVALANT BAĞ POLAR KOVALENT BAĞ APOLAR KOVALENT BAĞ

KİMYASAL BAĞLAR İYONİK BAĞ KOVALANT BAĞ POLAR KOVALENT BAĞ APOLAR KOVALENT BAĞ KİMYASAL BAĞLAR İYONİK BAĞ KOVALANT BAĞ POLAR KOVALENT BAĞ APOLAR KOVALENT BAĞ Atomlar bağ yaparken, elektron dizilişlerini soy gazlara benzetmeye çalışırlar. Bir atomun yapabileceği bağ sayısı, sahip

Detaylı

EMÜLSİYONLAR. 8. hafta

EMÜLSİYONLAR. 8. hafta EMÜLSİYONLAR 8. hafta Tanım: Birbiriyle karışmayan en az iki sıvıdan birinin diğeri içinde bir emülgatör yardımıyla damlacıklar halinde dağılması ile oluşan, homojen görünümlü heterojen sistemlerdir. Damlacıklardan

Detaylı

Kloroform, eter ve benzen gibi organik çözücülerde çözünen bunun yanı sıra suda çözünmeyen veya çok az çözünen organik molekül grubudur.

Kloroform, eter ve benzen gibi organik çözücülerde çözünen bunun yanı sıra suda çözünmeyen veya çok az çözünen organik molekül grubudur. Kloroform, eter ve benzen gibi organik çözücülerde çözünen bunun yanı sıra suda çözünmeyen veya çok az çözünen organik molekül grubudur. Yağların suda çözünmemesi canlılığın devamı içi önemlidir. Çünkü

Detaylı

Bolum 11&12 Eterler, Epoksitler, Sülfitler

Bolum 11&12 Eterler, Epoksitler, Sülfitler Bolum 11&12 Eterler, Epoksitler, Sülfitler Giriş Eter Formülü R--R (R ve R alkil veya aril). Simetrik ve asimetrik olabilir Örnekler: C 3 C 3 C 3 2 Yapı ve Polarite Eğik moleküler geometri ksijen sp 3

Detaylı

DİELS-ALDER REAKSİYONU

DİELS-ALDER REAKSİYONU BALIKESİ ÜNİVESİTESİ KİMYA FEF-I.ÖĞ. PELİN YILMAZ 200610105055 DİELS-ALDE EAKSİYNU + DİENLEİN 1,4-SİKL KATILMA TEPKİMESİ 1928 de iki Alman kimyacısı tto Diels ve Kurt Alder, dienlerin, daha sonraları kendi

Detaylı

ÇEV416 ENDÜSTRİYEL ATIKSULARIN ARITILMASI

ÇEV416 ENDÜSTRİYEL ATIKSULARIN ARITILMASI ÇEV416 ENDÜSTRİYEL ATIKSULARIN ARITILMASI 8.Kolloid Giderimi Yrd. Doç. Dr. Kadir GEDİK Çapları 10-6 mm 10-3 mm ( 0.001-1μm) arasındadır. Kil, kum, Fe(OH) 3, virusler (0.03-0.3μm) Bir maddenin kendisi için

Detaylı

ALKOLLER ve ETERLER. Kimya Ders Notu

ALKOLLER ve ETERLER. Kimya Ders Notu ALKOLLER ve ETERLER Kimya Ders Notu ALKOLLER Alkan bileşiklerindeki karbon zincirinde H atomlarından biri yerine -OH grubunun geçmesi sonucu oluşan organik bileşiklere alkol adı verilir. * Genel formülleri

Detaylı

KANTİTATİF YAPI-ETKİ İLİŞKİLERİ ANALİZİNDE KULLANILAN FİZİKOKİMYASAL PARAMETRELER (QSAR PARAMETRELERİ)

KANTİTATİF YAPI-ETKİ İLİŞKİLERİ ANALİZİNDE KULLANILAN FİZİKOKİMYASAL PARAMETRELER (QSAR PARAMETRELERİ) KANTİTATİF YAPI-ETKİ İLİŞKİLERİ ANALİZİNDE KULLANILAN FİZİKOKİMYASAL PARAMETRELER (QSAR PARAMETRELERİ) -YALÇIN Farmasötik Kimya Anabilim Dalı 2017 QSAR nedir, ne için ve nerede kullanılır? Kemometriklerin

Detaylı

MAKRO-MEZO-MİKRO. Deney Yöntemleri. MİKRO Deneyler Zeta Potansiyel Partikül Boyutu. MEZO Deneyler Reolojik Ölçümler Reometre (dinamik) Roww Hücresi

MAKRO-MEZO-MİKRO. Deney Yöntemleri. MİKRO Deneyler Zeta Potansiyel Partikül Boyutu. MEZO Deneyler Reolojik Ölçümler Reometre (dinamik) Roww Hücresi Kolloidler Bir maddenin kendisi için çözücü olmayan bir ortamda 10-5 -10-7 cm boyutlarında dağılmasıyla oluşan çözeltiye kolloidal çözelti denir. Çimento, su, agrega ve bu sistemin dispersiyonuna etki

Detaylı

T.W.Graham Solomons ORGANİK KİMYA 7. Basımdan çeviri. ALKOLLER, ETERLER, EPOKSİTLER

T.W.Graham Solomons ORGANİK KİMYA 7. Basımdan çeviri. ALKOLLER, ETERLER, EPOKSİTLER T.W.Graham Solomons ORGANİK KİMYA 7. Basımdan çeviri. ALKOLLER, ETERLER, EPOKSİTLER ALKOL, ETER VE EPOKSİTLER: YAPILARI VE FİZİKSEL ÖZELLİKLERİ Alkoller, doymuş bir karbon atomuna bağlı bir hidroksil (-OH)

Detaylı

KÝMYA. 1. Dalton atom modelinde;

KÝMYA. 1. Dalton atom modelinde; 8. I. Kütlenin korunumu kanunu II. Sabit oranlar kanunu III. Katlı oranlar kanunu Yukarıdaki kimya kanunlarından hangileri Dalton Atom Kuramı ile açıklanabilir? A) Yalnız I B) Yalnız II C) I ve III D)

Detaylı

BİYOKİMYAYA GİRİŞ: ATOM, MOLEKÜL, ORGANİK BİLEŞİKLER

BİYOKİMYAYA GİRİŞ: ATOM, MOLEKÜL, ORGANİK BİLEŞİKLER BİYOKİMYAYA GİRİŞ: ATOM, MOLEKÜL, ORGANİK BİLEŞİKLER Biyokimyanın tanımı yaşamın temel kimyası ile ilgilenen bilim dalı (Bios, Yunancada yaşam demektir.) canlı sistemin yapısını ve fonksiyonlarını kimyasal

Detaylı

Birden çok maddenin kimyasal bağ oluşturmadan bir arada bulunmasıyla meydana gelen maddelere karışım denir.

Birden çok maddenin kimyasal bağ oluşturmadan bir arada bulunmasıyla meydana gelen maddelere karışım denir. Anahtar Kavramlar Çözelti çözücü çözünen homojen hetorojen derişik seyreltik Birden çok maddenin kimyasal bağ oluşturmadan bir arada bulunmasıyla meydana gelen maddelere karışım denir. Solduğumuz hava;

Detaylı

KARBON ve CANLILARDAKİ MOLEKÜL ÇEŞİTLİLİĞİ

KARBON ve CANLILARDAKİ MOLEKÜL ÇEŞİTLİLİĞİ KARBON ve CANLILARDAKİ MOLEKÜL ÇEŞİTLİLİĞİ Karbonun önemi Hücrenin % 70-95ʼ i sudan ibaret olup, geri kalan kısmın çoğu karbon içeren bileşiklerdir. Canlılığı oluşturan organik bileşiklerde karbon atomuna

Detaylı

BİLEŞİKLER VE FORMÜLLERİ

BİLEŞİKLER VE FORMÜLLERİ BİLEŞİKLER VE FORMÜLLERİ Bileşikler : Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur). Bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı kimyasal özelliklere

Detaylı

4. Oksijen bileşiklerinde 2, 1, 1/2 veya +2 değerliklerini (N Metil: CH 3. Cevap C. Adı. 6. X bileşiği C x. Cevap E. n O2. C x.

4. Oksijen bileşiklerinde 2, 1, 1/2 veya +2 değerliklerini (N Metil: CH 3. Cevap C. Adı. 6. X bileşiği C x. Cevap E. n O2. C x. ÇÖZÜMLER. E foton h υ 6.0 34. 0 7 6.0 7 Joule Elektronun enerjisi E.0 8 n. (Z).0 8 (). () 8.0 8 Joule 0,8.0 7 Joule 4. ksijen bileşiklerinde,, / veya + değerliklerini alabilir. Klorat iyonu Cl 3 dir. (N

Detaylı

MADDE VE ÖZELLİKLERİ. Kimya Konu Tarama Testi-2

MADDE VE ÖZELLİKLERİ. Kimya Konu Tarama Testi-2 MADDE VE ÖZELLİKLERİ Kimya Konu Tarama Testi-2 SORU 1: I. Renk, koku, tat ve uçuculuk tüm maddelerin ortak özelliğidir. II. Özkütle, esneklik katsayısı ve kaynama noktası tüm maddelerin ayırt edici özelliğidir.

Detaylı

Serüveni 7.ÜNİTE Endüstride -CANLILARDA ENERJİ hidrokarbonlar

Serüveni 7.ÜNİTE Endüstride -CANLILARDA ENERJİ hidrokarbonlar Serüveni 7.ÜNİTE Endüstride -CANLILARDA ENERJİ hidrokarbonlar HİDROKARBONLAR C ve H elementlerinden oluşan bileşiklere denir. Temel element karbondur. KARBON ELEMENTİNİN BAĞ YAPMA ÖZELLİKLERİ Karbon atomları

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-2 KİMYA TESTİ 25 HAZİRAN 2016 CUMARTESİ Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

YouTube:Kimyafull Gülçin Hoca Serüveni DERİŞİM BİRİMLERİ Ppm-ppb SORU ÇÖZÜMLERİ

YouTube:Kimyafull Gülçin Hoca Serüveni DERİŞİM BİRİMLERİ Ppm-ppb SORU ÇÖZÜMLERİ Serüveni DERİŞİM BİRİMLERİ Ppm-ppb SORU ÇÖZÜMLERİ ppm Toplam madde miktarının milyonda 1 birimlik maddesine denir. NOT: 1 kg su = 1 Litre ppm =. 10 6 1 kg çözeltide çözünen maddenin mg olarak kütlesine

Detaylı

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1 BÖLÜM 2 ATOMİK YAPI İÇERİK Atom yapısı Bağ tipleri 1 Atomların Yapıları Atomlar başlıca üç temel atom altı parçacıktan oluşur; Protonlar (+ yüklü) Nötronlar (yüksüz) Elektronlar (-yüklü) Basit bir atom

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-2 KİMYA TESTİ 17 HAZİRAN 2017 CUMARTESİ Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

ANADOLU ÜNİVERSİTESİ ECZACILIK FAKÜLTESİ FARMASÖTİK KİMYA ANABİLİMDALI GENEL KİMYA II DERS NOTLARI (ORGANİK KİMYAYA GİRİŞ)

ANADOLU ÜNİVERSİTESİ ECZACILIK FAKÜLTESİ FARMASÖTİK KİMYA ANABİLİMDALI GENEL KİMYA II DERS NOTLARI (ORGANİK KİMYAYA GİRİŞ) ANADOLU ÜNİVERSİTESİ ECZACILIK FAKÜLTESİ FARMASÖTİK KİMYA ANABİLİMDALI GENEL KİMYA II DERS NOTLARI (ORGANİK KİMYAYA GİRİŞ) Hazırlayan: Doç. Dr. Yusuf ÖZKAY 1. Organik bileşik kavramının tarihsel gelişimi

Detaylı

HISTOLOJIDE BOYAMA YÖNTEMLERI. Dr. Yasemin Sezgin. yasemin sezgin

HISTOLOJIDE BOYAMA YÖNTEMLERI. Dr. Yasemin Sezgin. yasemin sezgin HISTOLOJIDE BOYAMA YÖNTEMLERI Dr. Yasemin Sezgin yasemin sezgin HÜRESEL BOYAMANIN TEMEL PRENSİPLERİ Hem fiziksel hem kimyasal faktörler hücresel boyamayı etkilemektedir BOYAMA MEKANIZMASı Temelde boyanın

Detaylı

HİDROKARBONLAR ve ALKİNLER. Kimya Ders Notu

HİDROKARBONLAR ve ALKİNLER. Kimya Ders Notu HİDROKARBONLAR ve ALKİNLER Kimya Ders Notu HİDROKARBONLAR ve ALKiNLER Karbon atomları arasında en az bir üçlü bağ içerdiklerinden doymamış hidrokarbonlardır. Üçlü bağdan biri sigma, diğerleri pi bağıdır.

Detaylı

ÖĞRETĐM TEKNOLOJĐSĐ VE MATERYAL GELĐŞTĐRME ÇÖZELTĐLER

ÖĞRETĐM TEKNOLOJĐSĐ VE MATERYAL GELĐŞTĐRME ÇÖZELTĐLER ÖĞRETĐM TEKNOLOJĐSĐ VE MATERYAL GELĐŞTĐRME ÇÖZELTĐLER Ders Sorumlusu: Prof. Dr. Đnci MORGĐL HAZIRLAYAN: NAZLI KIRCI ANKARA,2008 KONU ANLATIMI ÇÖZELTĐLER Đki ya da daha fazla kimyasal maddenin herhangi

Detaylı

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ ORGANİK KİMYA LABORATUVARI DENEY 8 : YÜZEY GERİLİMİNİN BELİRLENMESİ

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ ORGANİK KİMYA LABORATUVARI DENEY 8 : YÜZEY GERİLİMİNİN BELİRLENMESİ ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ ORGANİK KİMYA LABORATUVARI DENEY 8 : YÜZEY GERİLİMİNİN BELİRLENMESİ DENEYİN AMACI Gazlarda söz konusu olmayan yüzey gerilimi sıvı

Detaylı

(a) 1,60 (b) 0,80 (c) 0,10 (d) 0, Aşağıda gösterilen potansiyel enerji grafiğinde ileri tepkimenin aktifleşme enerjisi hangisidir?

(a) 1,60 (b) 0,80 (c) 0,10 (d) 0, Aşağıda gösterilen potansiyel enerji grafiğinde ileri tepkimenin aktifleşme enerjisi hangisidir? Adı ve Soyadı.. No:. SEÇEN GUBU ÇEVE MÜENDİSLİĞİ BÖLÜMÜ GENEL KİMYA İNAL SINAVI ; 17 AALIK 2010 YÖNEGE : 27 TEST SUSU 8 KLASİK SU VADI TEST SULAI 1 A B D 15 A B D 2 A B D 16 A B D 3 A B D 17 A B D 4 A

Detaylı

vitamininin indirgenmesi istemli midir?

vitamininin indirgenmesi istemli midir? 5.111 Ders 27 Geçiş Metalleri Konular: Koordinasyon komplekslerinin oluşumu, koordinasyon sayısı, koordinasyon komplekslerinin gösterimi, koordinasyon komplekslerinin yapıları, şelat etkisi, izomerler,

Detaylı

Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi/ Journal of The Institute of Natural & Applied Sciences 17 (1):6-12, 2012

Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi/ Journal of The Institute of Natural & Applied Sciences 17 (1):6-12, 2012 Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi/ Journal of The Institute of Natural & Applied Sciences 17 (1):6-12, 2012 Araştırma Makalesi/Research Article BaCl 2 -Ba(H 2 PO 2 ) 2 -H 2 O Üçlü

Detaylı

GENEL KİMYA 101 ÖDEV 3

GENEL KİMYA 101 ÖDEV 3 TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ-27 Kasım 2013 Bütün Şubeler GENEL KİMYA 101 ÖDEV 3 ÖNEMLİ! Ödev Teslim Tarihi: 6 Aralık 2013 Soru 1-5 arasında 2 soru Soru 6-10 arasında 2 soru Soru 11-15 arasında

Detaylı

KİMYASAL DENGE. AMAÇ Bu deneyin amacı öğrencilerin reaksiyon denge sabitini,k, deneysel olarak bulmalarıdır.

KİMYASAL DENGE. AMAÇ Bu deneyin amacı öğrencilerin reaksiyon denge sabitini,k, deneysel olarak bulmalarıdır. KİMYASAL DENGE AMAÇ Bu deneyin amacı öğrencilerin reaksiyon denge sabitini,k, deneysel olarak bulmalarıdır. TEORİ Bir kimyasal tepkimenin yönü bazı reaksiyonlar için tek bazıları için ise çift yönlüdür.

Detaylı

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ MALZEME LABORATUARI II DERSİ AKIMLI VE AKIMSIZ KAPLAMALAR DENEY FÖYÜ

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ MALZEME LABORATUARI II DERSİ AKIMLI VE AKIMSIZ KAPLAMALAR DENEY FÖYÜ BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ MALZEME LABORATUARI II DERSİ AKIMLI VE AKIMSIZ KAPLAMALAR DENEY FÖYÜ Gelişen teknoloji ile beraber birçok endüstri alanında kullanılabilecek

Detaylı

ÖĞRETİM YILI 2. DÖNEM 12. SINIF / KİMYA DERSİ / 3. YAZILI

ÖĞRETİM YILI 2. DÖNEM 12. SINIF / KİMYA DERSİ / 3. YAZILI / / Adı Soyadı : Numara : ÖĞRETİM YL. DÖNEM 1. SNF / KİMYA DERSİ / 3. YAZL Soru Puan 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 TOPLAM 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 100 1. X: 3 NH Y:3 N 3

Detaylı

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Kimyasal Bağlar.

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Kimyasal Bağlar. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Kimyasal Bağlar Kimyasal Bağlar 3 temel tip bağ vardır: İyonik İyonlar arası elektrostatik etkileşim

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ KİMYA

YAZILI SINAV SORU ÖRNEKLERİ KİMYA YAZILI SINAV SORU ÖRNEKLERİ KİMYA SORU 1: 32 16X element atomundan oluşan 2 X iyonunun; 1.1: Proton sayısını açıklayarak yazınız. (1 PUAN) 1.2: Nötron sayısını açıklayarak yazınız. (1 PUAN) 1.3: Elektron

Detaylı