11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 ( ÖSS)

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)"

Transkript

1 ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre, uzunluğu kç cm dir? ) 5 2 ) 7 ) 8 ) 7 5 ) 9 5 Yukrıdki verilere göre, kç derecedir? ( ÖSS) ) 105 ) 110 ) 115 ) 120 ) 15 ( ÖSS) 2. r H G 4. r S 1 S 2 S 2r 2r F Yukrıd, rlrındki uzklık r cm oln prlel iki doğru rsın çizilen merkezli yrım dire, ymuğu ve FGH dikdörtgeni verilmiştir. H 1 2 [ 2 H] [] = r, = F = 2r ve yrım direnin lnı S 1, ymuğun lnı S 2, dikdörtgenin lnı S olduğun göre, şğıdki sırlmlrdn hngisi odğrudur? ) S 1 < S 2 < S ) S 1 < S < S 2 ) S 2 < S 1 < S ) S < S 1 < S 2 Şekildeki 1 ve 2 merkezli çemberler noktsınd dıştn teğettir. 1 den geçen bir doğru 2 merkezli çemberi ve noktlrınd kesmektedir. 1 = 5 cm, 1 = 9 cm ve 1 = cm olduğun göre, H 1 2 üçgeninin lnı kç cm 2 dir? ) 20 ) 2 ) 12 2 ) S < S 2 < S 1 ) 14 2 ) 17 2 ( ÖSS) ( ÖSS) 11. SINIF GMRİ 1

2 ÖSS Sorulrı Çember 5. M b 7. P 4 2 R S PR doğrusu merkezli çembere noktsınd teğet PR R P = 4 cm = 2 cm Şekilde, ve M merkezli çemberler noktsınd teğet ve M merkezli çember dn geçmektedir. dn geçen bir doğru, büyük çemberi d, küçük çemberi ise de kesmektedir. luşn ve yylrının uzunluklrı sırsıyl cm ve b cm olduğun göre, ile b rsındki bğıntı şğıdkilerden hngisidir? R = Yukrıdki verilere göre, kç cm dir? ) 4 2 ) ) 2 ) 5 ) 2 5 ) = b ) = b 2 ) = 4b ( ÖSS) ) = 5b 4 ) = 5b ( ÖSS) 6. bir dikdörtgen 8. = 12 cm 12 = 9 cm = 6 9 Şekildeki, ve noktlrı merkezli çeyrek çemberin üzerindedir. un göre, kç cm dir? ) 10 ) 9 ) 8 ) 7 ) 6 ( ÖSS) Şekildeki üçgeni eşkenr üçgendir ve merkezli çember üçgeninin iç teğet çemberidir. Küçük çemberler de bu çembere ve üçgenin kenrlrın teğettir. merkezli çemberin yrıçpı 6 cm olduğun göre, küçük çemberlerin lnlrı toplmı kç cm 2 dir? ) 6π ) 9π ) 12π ) 15π ) 18π ( ÖSS) SINIF GMRİ

3 Çember ÖSS Sorulrı 9. M merkezli bir çemberin [] çpının yırdığı frklı yylr üzerinde ve noktlrı lınıyor. [] kirişi üzerinde lınn bir K noktsı için K doğrusu, çemberi noktsınd kesiyor. K M m ( ) = 15 mm ( ) = 110 mk ( ) = Yukrıdki verilere göre, kç derecedir? ) 10 ) 125 ) 120 ) 115 ) P doğrusu merkezli çembere noktsınd teğet P = 5 cm = 12 cm Şekildeki P noktsı çember üzerinde değişmektedir. un göre, P uzunluğunun en büyük değeri kç cm dir? ) 22 ) 20 ) 19 ) 18 ) 17 ( ÖSS) ( ÖSS) 10. M 2 K bir kre = // = 2 cm Şekildeki M merkezli çember [] kenrın noktsınd ve merkezli, [] çplı yrı çembere K noktsınd teğettir. un göre, trlı bölgenin lnı kç cm 2 dir? ) 2 π ) 2 5π ) 2 π m ( ) = 0 0 m( ) = 45 m ( ) = 45 Yukrıdki verilere göre, kç derecedir? ) 95 ) 100 ) 105 ) 110 ) 115 ( ÖSS) ) 4 π ) 4 5π 8 7 ( ÖSS) 11. SINIF GMRİ

4 ÖSS Sorulrı Çember ikey kesiti çember biçiminde oln bir iş mkinesi lstiği; derinliği 40 cm, boyu 120 cm, dikey kesiti dikdörtgen biçiminde olck şekilde oyulmuş bir ltlığ şekildeki gibi tm oturtulrk sergilenmektedir. un göre, lstiğin dikey kesitinin yrıçpı kç cm dir? ) 75 ) 72,5 ) 70 ) 67,5 ) 65 ( ÖSS) Şekilde verilen 8 cm uzunluğundki ipi, gergin durumd tutulrk, çevre uzunluğu 8 cm oln kresi biçimindeki çerçevenin etrfın st yönünde döndürülerek srılıyor. İpin ucu krenin köşesine geldiğinde ipin trdığı lnı kç cm 2 olur? ) 20π ) 22π ) 24π ) 28π ) 0π ( ÖSS) 14. m ( ) = m ( ) = 40 = cm 1 Şekildeki 1 merkezli yrım çember, merkezli çeyrek çembere noktsınd, [] doğru prçsın d noktsınd teğettir. un göre, kç derecedir? ) 15 ) 20 ) 0 ) 45 ) 60 Şekildeki doğrusu merkezli çembere noktsınd teğettir ve uzunluğu yyının uzunluğun eşittir. un göre, trlı lnlrın toplmı kç cm 2 dir? ) 8π ) 6π ) 5π ) 4π ) 2π ( ÖSS) ( ÖSS) SINIF GMRİ

5 Çember ÖSS Sorulrı M ,, noktlrı merkezli çemberin üzerinde,, doğrusl 2 m ( ) = 70 m ( ) = 1, 2, ve M merkezli çemberler birbirlerine şekildeki gibi teğettir. 1, 2 ve merkezli çemberlerin yrıçplrı r cm, M merkezli çemberin yrıçpı d 1 cm olduğun göre, r kçtır? Yukrıdki verilere göre, kç derecedir? ) 10 ) 15 ) 20 ) 25 ) 0 ( ÖSS) ) ) 1+ ) 2+ 2 ) + 2 ) + ( ÖSS) 18. H 10, merkezli çemberin teğetler dörtgeni // = 10 cm H = cm Yukrıdki verilere göre, teğetler dörtgeninin lnı kç cm 2 dir? ) 50 ) 48 ) 46 ) 44 ) bir kre noktsı [] doğru prçsı üzerinde Şekildeki krenin [] köşegeni, merkezli, [] yrıçplı yrım çembere noktsınd teğet olduğun göre, ornı kçtır? ( ÖSS) ) 2+1 ) 2+2 ) +1 ) + 2 ) 2 ( ÖSS) 11. SINIF GMRİ 5

6 ÖSS Sorulrı Çember 21. şğıdki şekilde çpı [] oln yrım dire üzerinde [] kirişi gösterilmiştir. 2. y K(0,6) (,b) 12 (9,0) = 2 = 12 cm olduğun göre, trlı bölgenin lnı kç cm 2 dir? ) 9π ) 12π ) 18π ) 9π+ 24 ) 12π+ 9 ( ÖSS) ik koordint düzleminde (0,0) merkezli, K(0,6) noktsındn geçen I. bölgedeki çeyrek çembere (9,0) noktsındn çizilen teğetin değme noktsı (,b) olduğun göre, kçtır? ) ),5 ) 4 ) 4,5 ) 5 ( ÖSS) 22. şğıdki şekilde merkezleri noktsınd bulunn, yrıçp uzunluklrı d 1 cm ve 2 cm oln iki çember verilmiştir. 24. K 1 = 1 cm = 5 cm 5 = cm üyük çember üzerinde lınn herhngi bir noktsındn içteki çembere iki frklı teğet çiziliyor. u teğetler büyük çemberi ve noktlrınd kesiyor. un göre, üçgeninin çevre uzunluğu kç cm dir? ) 4 ) 6 ) 8 Yukrıdki şekilde üçgeninin kenrı çembere K noktsınd, kenrı ise noktsınd teğet olduğun göre, frkı kç cm dir? ) ) ) 6 ) 6 ) 6 6 ( ÖSS) ) 2( + 1) ) ( + 1) ( ÖSS) SINIF GMRİ

7 Çember ÖSS Sorulrı M 1 M 2 Yukrıdki şekilde yrıçpı 1 cm oln M 1 merkezli çember, yrıçpı 4 cm oln M 2 merkezli çembere noktsınd teğettir. ve doğrulrı bu iki çemberin ortk teğetleridir ve noktsı bu iki çembere de teğet oln büyük çember üzerindedir. (M 1 ve M 2 noktlrı d, büyük çemberin çpı üzerindedir.) un göre, uzunluğu kç cm dir? Şekildeki çember kresinin kenrlrın teğettir. Çember üzerinde lınn bir P noktsının [] ve [] kenrlrın uzklıklrı sırsıyl 2 cm ve 1 cm olduğun göre, çemberin yrıçpının lbileceği değerler toplmı kç cm dir? ) 7 ) 6 ) 5 ) 4 ) (200 - ÖSS) ) 5 ) ) 2 ) ) 2 ( ÖSS) 26. 2R r = 2R cm = r cm Yukrıdki şekilde yrıçpı oln merkezli çember, yrıçpı oln merkezli çeyrek çembere, çpı [] oln yrım çembere ve noktsınd [] doğru prçsın teğettir. 28. [], merkezli çemberin çpı m ( ) = m ( ) = m ( ) = Yukrıdki verilere göre, kç derecedir? ) 25 ) 22 ) 20 ) 18 ) 15 (200 - ÖSS) un göre, R nin r türünden eşiti şğıdkilerden hngisidir? ) 2r ) 4r ) 6r ) r 2 ) r( 2 + 1) ( ÖSS) 11. SINIF GMRİ 7

8 ÖSS Sorulrı Çember 29. K bir kre [] ve [] köşegenler [], merkezli çemberin çpı = = 4 cm = 5 cm = Yukrıdki şekilde, K noktsı merkezli, yrıçplı çember ve [] köşegeni üzerindedir. kresinin lnı 64 cm 2 olduğun göre, K üçgeninin lnı kç cm 2 dir? ) 18 ) 16 ) 12 Yukrıdki verilere göre, kç cm dir? ) ) ) ) ) (200 - ÖSS) ) 2( 2 1) ) 16( 2 1) (200 - ÖSS) 0. P Şekildeki [] çplı yrım çemberin içinde, [] ve [] çplı yrım çemberlerin dışınd kln trlı P bölgesinin lnı p cm 2, kenr uzunluklrı cm ve cm oln dikdörtgensel bölge K nın lnı k cm 2 dir. = olduğun göre, p k K ornı kçtır? 2. [ teğet [ teğet m ( ) = α m ( ) = α Şekildeki verilere göre, α kç derecedir? ) 45 ) 6 ) 4 ) 2 ) 0 ( ÖSS) ) π 4 ) π ) π 2 ) π ) 2π (200 - ÖSS) SINIF GMRİ

9 Çember ÖSS Sorulrı. K KL 5. F 2 F = 2 cm r K = M = r = 8 cm N M r 8 L Şekildeki M ve N merkezli çemberler noktsınd birbirlerine teğettir. M merkezli çemberin yrıçp uzunluğu r olduğun göre, üçgeninin lnı kç r 2 dir? Şekildeki [] çplı yrım çember, dikdörtgeninin [] kenrını ve F noktlrınd kesmektedir. un göre, dikdörtgeninin lnı kç cm 2 dir? ) 2 ) 2 2 ) 16 ) 2,5 ) ),5 ) 4 ) 4,5 ( ÖSS) ) 16 2 ) 8 6 ( ÖSS) 4. y M m ( ) = 120 = 1 cm 1 1 Şekildeki M merkezli çember, merkezli ve 1 cm yrıçplı çeyrek çembere noktsınd, ve y eksenlerine de sırsıyl ve noktlrınd teğettir. un göre, M merkezli çemberin yrıçpı kç cm dir? ) 2 ) ) 2 ) 4 ) ( ÖSS) Şekildeki [ ışını merkezli çembere noktsınd, [ ışını d noktsınd teğettir. un göre, noktsının çembere uzklığı (en kıs) kç cm dir? ) 2 ) 1 2 ) 1 ) 1 ) 2 2 ( ÖSS) 11. SINIF GMRİ 9

10 ÖSS Sorulrı Çember 7. bir kre m ( ) = 9. F = F = cm, H, doğrusl G, H, G doğrusl H Şekildeki noktsı, ve merkezli yrıçplı çember yylrının kesim noktsıdır. un göre, kç derecedir? ) 55 ) 60 ) 65 ) 70 ) 75 ( ÖSS) Yukrıdki kresinde ve merkezli çemberler F noktsınd birbirine teğettir. un göre, trlı bölgenin lnı kç cm 2 dir? ) 2 ( 5 π ) ) 5 2 ( 7 π) ) 5 2 ( 9 π ) ) 7 2 ( π) ) 9 2 ( 5 π) ( ÖSS) 8. K L 40. 0,,, noktlrı çember üzerinde m( ) = 0 Şekildeki merkezli çember eşkenr üçgeninin iç teğet çemberi ve [KL] bu çembere noktsınd teğettir. eşkenr üçgeninin çevresinin uzunluğu 24 cm olduğun göre, KL üçgeninin çevresinin uzunluğu kç cm dir? m ( ) = m()=m()=m() Yukrıdki verilere göre, m() = kç derecedir? ) 40 ) 50 ) 60 ) 70 ) 80 ( ÖSS) ) 4 ) 6 ) 8 ) 10 ) 12 ( ÖSS) SINIF GMRİ

11 Çember ÖSS Sorulrı P 18 merkezli [] çplı yrım çemberin P keseni, doğrusunu şekildeki gibi noktsınd kesmektedir. Şekilde, merkezli, yrıçplrı cm ve 5 cm oln iki çember verilmiştir. ikizkenr üçgeninin köşesi dıştki çemberin üzerinde, kenrlrı d içteki çembere teğettir. = olduğun göre, kç cm dir? ) 6 ) 8 2 ) 9 = ve m(p) = 18 olduğun göre, m(p) = α kç derecedir? ) 51 ) 54 ) 57 ) 60 ) 6 ( ÖSS/ipt.) ) 10 ) 12 ( ÖSS) = 20 cm = 9 cm = 9 Şekildeki [] çplı çember, merkezli ve [] çplı çembere noktsınd içten teğettir. doğrusu her iki çembere noktsınd teğet, doğrusu d içteki çembere noktsınd teğet olduğun göre, ornı kçtır? Şekildeki [] çplı çemberin, dki teğetine it noktsını ye birleştiren doğru, çemberi de kesmektedir. un göre, = kç cm dir? ) 18 ) 16 ) 15 ) 14 ) 12 ) 1 2 ) 1 ) 1 4 ) 2 5 ) 2 7 ( ÖSS/ipt.) ( ÖSS) 11. SINIF GMRİ 11

12 ÖSS Sorulrı Çember = 9 cm = 8 cm 47. ir st kulesindeki stin krebinin uzunluğu 72 cm dir. u krebin ucu 1 stte kç cm yol lır? ) 12π ) 10π ) 8π Kenrlrı 9 cm ve 8 cm oln dikdörtgeninin, köşesinden geçen merkezli çember bu dikdörtgenin [] ve [] kenrlrın şekildeki gibi teğettir. un göre, çemberin yrıçpı şğıdkilerden hngisidir? ) 6π ) 4π ( ÖSS) ) 2 ) 2 2 ) 6 ) 5 ) 2 ( ÖSS/ipt.) merkezli [] çplı çember, çember üzerinde m( ) =α,, ve bir düzlemin dört noktsı olmk üzere, merkezleri bu noktlr oln cm yrıçplı dört mkr, şekildeki gibi bir iple sıkıc çevrelenmiştir. dörtgeninin çevresi 47π cm olduğun göre, ipin uzunluğu kç cm dir? ) 50π ) 51π ) 5π ) 56π ) 60π Şekilde = cm, = 2 cm olduğun göre, m() = α kç derecedir? ) 120 ) 110 ) 100 ) 90 ) 80 ( ÖSS) ( ÖSS/ipt.) SINIF GMRİ

13 Çember ÖSS Sorulrı 49. r r 51. Merkezleri rsındki uzklık 15 birim oln, r ve R yrıçplı eş düzlemli iki çember, frklı iki noktd kesişmektedir. 240p noktsındn yuvrlnmy bşlyn r yrıçplı bir çember 5 tm dönme yprk şekildeki gibi noktsınd durmuştur. = 240π cm olduğun göre, çemberin yrıçpı kç cm dir? r R = 1 4 olduğun göre, r için şğıdkilerden hngisi doğrudur? ) 1 < r < ) < r < 5 ) 5 < r < 6 ) 6 < r < 7 ) 7 < r < 8 ( ÖSS) ) 0 ) 26 ) 24 ) 20 ) 18 ( ÖSS) merkezli, [] çplı yrım çember, çember üzerinde m ( ) = 2α , çember üzerinde,, doğrusl m ( ) = 10 m ( ) = m ( ) = 90 m ( ) = Yukrıdki verilere göre, m() = derece türünden şğıdkilerden hngisine eşittir? ) α ) 2α ) α + 45 ) α + 90 ) 2α + 45 ( ÖSS) Şekildeki [ ışını, merkezli çembere noktsınd teğettir. [] // [] olduğun göre, m() = kç derecedir? ) 50 ) 60 ) 65 ) 70 ) 75 ( ÖSS) 11. SINIF GMRİ 1

14 ÖSS Sorulrı Çember 5., çember üzerinde 14 [H] [] 10 7 = 10 cm H = 14 cm = 7 cm H = cm Şekildeki [ ışını çembere noktsınd teğettir. 55. [], merkezli çemberin çpı 0,, doğrusl 14 [, noktsınd çembere teğet m( ) = 0 = 14 birim Yukrıdki verilere göre, kç birimdir? üçgeninin lnı 25 2 H = kç cm dir? cm 2 olduğun göre, ) 14 ) 15 ) 16 ) 17 ) 18 ( ÖSS) ) ) 5 ) 6 ) 7 ) 8 ( ÖSS) 54. enizler? Krlr Yeryüzündeki denizlerin lnlrı toplmının, krlrın lnlrı toplmın ornı 7 olrk veriliyor = m ( ) = 100 m( ) = α un göre, yeryüzünün toplm lnınd denizlerle krlrın pyını gösteren bir diresel grfikte krlrın lnı kç derecelik bir merkez çı ile gösterilir? ) 95 ) 100 ) 105 ) 106 ) 108 ( ÖSS) Şekilde, merkezli çemberin [] çpı ile birbirine eşit [] ve [] kirişleri çizilmiştir. un göre, m() = α kç derecedir? ) 40 ) 50 ) 60 ) 70 ) 80 ( ÖSS) SINIF GMRİ

15 Çember ÖSS Sorulrı L 60 merkezli çember L, noktsınd 12 çembere teğet ml ( ) = 60 = 12 birim Kenr uzunluklrı 4 birim ve birim oln bir dikdörtgende, şekildeki gibi merkezli, 1 birim yrıçplı çember yyı çizilmiştir. nin, bu yy üzerinde kendisine en ykın oln nokt ile rsındki uzklık kç birimdir? ) 4, ) 4,2 ) 4 Yukrıdki verilere göre, çemberin yrıçpı kç birimdir? ) 6 ) 6 2 ) 4 ) 8 ) 2 (199 - ÖSS) ) 2 ) (199 - ÖSS) m ( ) = 55 m ( ) = = 5 birim = birim Şekildeki kirişler dörtgeninde, işretli dört çının ölçüleri verilmiştir. un göre, bu dörtgenin çısının ölçüsü kç derecedir? ) 90 ) 80 ) 75 ) 70 ) 60 (199 - ÖSS) Şekildeki merkezli ve [] çplı yrı çember üzerinde ve noktlrı lınmıştır. un göre, = kç birimdir? ) ) 4 ) 5 ) 5 2 ) 5 ( ÖSS) 11. SINIF GMRİ 15

16 ÖSS Sorulrı Çember Şekildeki çemberde, kesişen [] ve [] kirişlerinin oluşturduğu dört yyın derece türünden ölçüleri verildiğine göre, α çısı kç derecedir? ) 2 ) 5 ) 6 ) 40 ) 45 ( ÖSS) 120 Şekildeki [] çplı yrım çemberin noktsındki teğeti, doğrusunu de kesiyor. m() = 120 olduğun göre, m() = α kç derecedir? ) 5 ) 10 ) 15 ) 20 ) 25 ( ÖSS) 62. b bir kirişler dörtgeni m ( ) = 10 m ( ) = Şekildeki bir dikdörtgen, =, = b, merkezli çember üç kenr teğettir. noktsındn çizilen teğet doğru, merkezli çembere noktsınd değiyor. = olduğun göre, b ) 2 ) 5 2 ornı kçtır? ) 2 ) 2 ) Yukrıdki verilere göre, m() = kç derecedir? ) 20 ) 25 ) 0 ) 5 ) 40 ( ÖSS) ( ÖSS) SINIF GMRİ

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90 G O M T R İ. ÖLÜM Üçgende çılr. ÜÇGN oğrusl olmyn üç noktyı birleştiren doğru prçlrının birleşim kümesine üçgen denir. ış çı ış çı ış çı. ÇILRIN GÖR ÜÇG N ÇŞİTLR İ r çılı Üçgen Üç çının ölçüsü de 90 den

Detaylı

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır. LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün ÜZGÜN TIGN ( ÜZGÜN TIGN TNIMI, ÖZİİ V NI ĞNİM ) ÜZGÜN TIGN Örnek...2 : TNIM V ÖZİİ enr syısı 6 oln çok - gene lt ıgen denir. ltıgeni için [], [] ve [] köşegenlerinin kesim noktsı oln noktsı dü zgün ltıge

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK G O M T R İ www.kdemivizyon.com.tr. ÖÜM Prlelkenr ve şkenr örtgen. PRNR rşılıklı kenrlrı prlel oln dörtgenlere prlelkenr denir. [] // [] [] // [] = =. PRNRIN ÖZ İRİ. rşılıklı çılr eş ve rdışık çılr ütünlerdir.

Detaylı

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ ÜZGÜN ŞGN ( ÜZGÜN ŞGN TNII, ÖZİRİ ĞRNİRR ) ÜZGÜN ŞGN ÖZİ 3 TNI V ÖZİRİ enr syısı 5 oln düzgün çokgene öşe düzgün beşgen denir. üzgün beşgenin; köşeleri,,, ve dir, kenrlrı [], [], β θ [], [] ve [] dır,

Detaylı

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik)

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik) ÜÇGN LN Üçgende ln Şekilde verilen üçgeninde,, üçgenin köşeleri, [], [], [] üçgenin kenrlrıdır. c b üçgeninin kenrlrı dlndırılırken, her kenr krşısınd bulunn köşenin hrfi ile isimlendirilir. üçgeninin

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI ., ÖZEL EGE LİSESİ OKULLR RSI 8. MTEMTİK YRIŞMSI 8. SINI TEST SORULRI 5. 0,0008.0 b 0,0000.0 ise; b.0 kç bsmklı bir sıdır? olduğun göre, ifdesinin değeri şğıdkilerden hngisine eşittir? ) 80 ) 8 ) 8 ) 8

Detaylı

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır?

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır? 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000 6. Bir lstik çekilip uztıldığınd

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız.

Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız. Isınm Hreketleri şğıd verilenleri inceleyiniz. Yönlü çı: Trigonometrik irim Çember: Merkezi orjin, yrıçpı br oln çemberdir. O + yön éo Pozitif yönlü (Stin tersi) O yön éo Negtif yönlü (St yönü) O y x Denklemi:

Detaylı

ÜÇGENDE AÇI-KENAR BAĞINTILARI

ÜÇGENDE AÇI-KENAR BAĞINTILARI ÜÇGN ÇI-NR ĞINTILRI ir üçgende üük çı krşısınd üük kenr, küçük çı krşısınd küçük kenr ulunur. 3 Şekildeki verilere göre, en uzun kenr şğıdkilerden hngisidir? 3 3 üçgeninde, kenrlr rsınd > > ğıntısı vrs,

Detaylı

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur?

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur? 986 ÖSS. (0,78+0,8).(0,3+0,7) Yukrıdki işlemin sonucu nedir? B) C) 0, D) 0, E) 0,0. doğl syısı 4 ile bölünebildiğine göre şğıdkilerden hngisi tek syı olbilir? Yukrıdki çrpm işleminde her nokt bir rkmın

Detaylı

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır?

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır? 987 ÖSS. Yukrıdki çıkrm işlemine göre, K+L+M toplmı şğıdkilerden hngisine dim eşittir? A) M B) L C) K M K 5. 4 işleminin sonucu kçtır? A) 0 B) C) 5 4 5. Aşğıdki toplm işleminde her hrf sıfırın dışınd fklı

Detaylı

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000. Bir stıcı, elindeki mlın önce

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI OKULLAR ARASI 9. MATEMATİK YARIŞMASI. 700 doğl syısı için şğıdkilerden kç tnesi doğrudur? I. Asl çrpnı tnedir. II. Asl çrpnlrının çrpımı 0 dir. III. Tmsyı bölenlerinin toplmı 0 dır. IV. Asl çrpnlrının

Detaylı

UZAYDA VEKTÖRLER / TEST-1

UZAYDA VEKTÖRLER / TEST-1 UZAYDA VEKTÖRLER / TEST-. A(,, ) ve B(,, ) noktlrı rsındki uklık kç birimdir? 6. A e e e B e e e AB vektörü ile nı doğrultud ıt öndeki birim vektör şğıdkilerden ( e e e ). A(, b, ) B(,, ) noktlrı ve U

Detaylı

KONİKLER KONİKLER...318-357. Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2

KONİKLER KONİKLER...318-357. Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2 Sf No.........................................................8-7 Prol....................................................................... 9 - Etkinlikler.....................................................................

Detaylı

ÇEMBERDE AÇILAR. 5. O merkez. 9. AB çap, AE = ED = DC. 6. O merkez. 10. AB çap, DC//AB. 2. O merkez. 7. AB çap. 11. O merkez 3. O merkez 8.

ÇEMBERDE AÇILAR. 5. O merkez. 9. AB çap, AE = ED = DC. 6. O merkez. 10. AB çap, DC//AB. 2. O merkez. 7. AB çap. 11. O merkez 3. O merkez 8. ÇMR ÇILR. merkez. çap, = =. 0 0. merkez 0. çap, //. merkez 0 0. çap K. merkez. merkez 0 0 T 0 0. =. çap 00 0. P teğet, = 0 P . merkez. merkez, =. = = 0 0 0. çap, =. merkezli çeyrek çember. merkez, = 0.

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir.

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir. 7.SINIF: ÇOKGNLR oğrusl olmyn üç vey dh fzl noktnın birleşmesiyle oluşn kplı geometrik şekillere çokgen denir. n kenrlı bir çokgenin bir dış çısının ölçüsü 360/n dir. n kenrlı bir çokgenin bir iç çısının

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) 009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..

Detaylı

DOĞRUDA AÇILAR GEOMETRİ KAF01 TEMEL KAVRAMLAR NOKTA: AÇI ÖLÇÜ BİRMLERİ: DERECE: = 360 2π DOĞRU: RADYAN: KOMŞU AÇI: KAPALI DOĞRU PARÇASI: TÜMLER AÇI:

DOĞRUDA AÇILAR GEOMETRİ KAF01 TEMEL KAVRAMLAR NOKTA: AÇI ÖLÇÜ BİRMLERİ: DERECE: = 360 2π DOĞRU: RADYAN: KOMŞU AÇI: KAPALI DOĞRU PARÇASI: TÜMLER AÇI: ĞRU ÇILR GMTRİ 01 TML VRMLR NT: ĞRU: ÇI ÖLÇÜ İRMLRİ: R: RYN: R = 360 2π PLI ĞRU PRÇSI: MŞU ÇI: YRI ÇI ĞRU PRÇSI: TÜMLR ÇI: ÇI ĞRU PRÇSI: ÜTÜNLR ÇI: PLI YRI ĞRU (IŞIN): R ÇI: ÇI YRI ĞRU: İ ÇI: ÇI: GNİŞ

Detaylı

(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC

(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC ÜÇGNLR TRİGONOMTRİK ÖZLLİKLR. Kosinüs Teoremi: Herhngi ir üçgeninin, kenr uzunluklrı,, ise; = +... os = +... os = +... os İspt: Şekilde görüldüğü üçgeni, köşesi ile orijin, kenrı ile ekseni ile çkışk şekilde

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

Mobil Test Sonuç Sistemi. Nasıl Kullanılır?

Mobil Test Sonuç Sistemi. Nasıl Kullanılır? Mobil Test Sonuç Sistemi Nsıl ullnılır? Tkdim Sevgili Öğrenciler ve eğerli Öğretmenler, ğitimin temeli okullrd tılır. İyi bir okul eğitiminden geçmemiş birinin hytt bşrılı olmsı beklenemez. Hedefe ulşmks

Detaylı

ÜNİTE - 9 GEOMETRİK CİSİMLER

ÜNİTE - 9 GEOMETRİK CİSİMLER ÜNİ - 9 GMRİK İSİMLR KI İSİMLRİN YÜZY LNLRI V İMLRİ RİZMLR Q ve Q birbirine prlel iki düzlem olsun. iri, diğeri Q düzlemindeki birbirine eş iki çokgenin köşeleri krşılıklı olrk birleştirilirse elde edilen

Detaylı

GeoUmetri Notları Mustafa YAĞCI, Deltoit

GeoUmetri Notları Mustafa YAĞCI, Deltoit www.mustfgci.cm.tr, 01 GeUmetri Ntlrı Mustf YĞI, gcimustf@h.cm eltit n z ir köşegenine göre simetrik ln dörtgene deltit denir. = ve = lmsı deltidin iki ikizkenr üçgen rındırdığını nltır. Şöle de izh edeiliriz

Detaylı

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu OĞRU ÇILR Temel Kvrmlr ve oğrud çılr Nokt: Nokt geometrinin en temel terimidir. ni, boyu vey yüksekliği yoktur. İnce uçlu bir klemin kğıt üzerinde bırktığı iz olrk düşünebilirsiniz. oğru: üz, klınlığı

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VEKTÖRLER. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. YÖNLÜ

Detaylı

(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin

(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin 4 () ve (bb) iki bsmklı syılr, () ve 1 x=15! +1 y=15!+16 olmk üzere, (bbb) üç bsmklı syılrdır x ile y rsınd kç tne sl syı vrdır? A)0 B)1 C) D) 3 E) 4 b + bb + bbb = 6 olduğun göre, b çrpımı en çok kçtır?

Detaylı

T 35 ZAMBAK MERAKLISINA TESTLERİ(GEO): ÇÖZÜM: ŞekildeIBCI=8, IACI=4,m(B)= a,m(c)= q ve = 180 olduğuna göre IABI kaç br dir? A)4 B)5 C)6 D)8 E)10

T 35 ZAMBAK MERAKLISINA TESTLERİ(GEO): ÇÖZÜM: ŞekildeIBCI=8, IACI=4,m(B)= a,m(c)= q ve = 180 olduğuna göre IABI kaç br dir? A)4 B)5 C)6 D)8 E)10 1) Z RII Rİ(GO): 0 0 ŞekildeII=, II=,m()=,m()= ve + = 10 olduğun göre II kç br dir? ) )5 ) ) )10 ÇÖZÜ-1: 0 5 5 5 0 105 ile yi birleştirelim. @ (.. eşliği) olur. ikizkenr olur.unlr göre çılrı simgelendirirsek

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

Öğrenci Seçme Sınavı (Öss) / 7 Nisan Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 7 Nisan Matematik Soruları ve Çözümleri Öğrenci Seçme Sınvı (Öss) / 7 Nisn 99 Mtemtik Sorulrı ve Çözümleri (0,0 0,8) işleminin sonucu kçtır? 0,00 A) 00 B) 0 C) D), E) 0, Çözüm (0,0 0,00 0,8) 0, 0,00 0, 0,00 0 işleminin sonucu kçtır? A) B) C)

Detaylı

Çevre ve Alan. İlköğretim 6. Sınıf

Çevre ve Alan. İlköğretim 6. Sınıf Çevre ve Aln İlköğretim 6. Sınıf Çevre Merhb,ilk olrk seninle birlikte evin çevresini bulmy çlışlım Kırmızı çizgiler evin çevre uzunluğunu verir. Çevre Şimdi sır futbol shsınd Çevre Şimdi,Keloğlnın Pmuk

Detaylı

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir?

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir? MTEMTİK TESTİ 1 1 1 1 1. + 4 4 1 ) 0 ) 4 işleminin sonucu kçtır? ) 1 ) 1., irer gerçek syı ve + < 3tür. u syılrın syı doğrusund gösterilişi şğıdkilerden hngisindeki gii olilir? ) -3 - -1 0 1 3 ) -3 - -1

Detaylı

MATEMATİK 1 TESTİ (Mat 1)

MATEMATİK 1 TESTİ (Mat 1) ÖSS MT-1 / 008 MTMTİK 1 TSTİ (Mt 1) 1. u testte 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik 1 Testi için yrıln kısmın işretleyiniz. 1. 1 + 4 1 ( ) 4. syısı b 0 ) b syısının kç ktıdır? ) b ) b işleminin

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI EGE BÖLGESİ OKULLAR ARASI 7. MATEMATİK YARIŞMASI. SINIF TEST SORULARI. + işleminin sonucu kçtır? 5 5 A) 0 B) 0 C) 0 7 D) 0 9 E). y = x x + prbolünün y = x doğrusun en ykın noktsının koordintlrı toplmı

Detaylı

G E O M E T R İ ÖRNEK. AB = 8 br. BC = x br ÇÖZÜM. Cevap C dir. ÖRNEK. [AF] [BF] [AF açıortay BE = EC EF = 1 br AB = 7 br

G E O M E T R İ  ÖRNEK. AB = 8 br. BC = x br ÇÖZÜM. Cevap C dir. ÖRNEK. [AF] [BF] [AF açıortay BE = EC EF = 1 br AB = 7 br G O M T R İ www.kemivizyon.om.tr 3. ÖLÜM Üçgene çı Kenr ğıntılrı 1. < < + < < + < < + ir üçgene ir kenr uzunluğu, iğer iki kenr uzunluklrının toplmınn küçük; mutlk frkınn üyüktür. ÖRNK m() m() m() = r

Detaylı

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4.

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4. IV. HTTİN TTIŞ MTEMTİK YRIŞMSI u test 30 sorudn oluşmktdır. İREYSEL YRIŞM SORULRI 1. 4 3 + 1 4. 3 3 + = + 1 + 1 denkleminin çözüm kümesi şğıdkilerden hngisidir? ) 5 3 ) ) 3 D) 13 3 ) { 0 } ) { 1} ) { }

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

Örnek...1 : İNTEGRAL İNTEGRAL İLE ALAN HESABI UYARI 2 UYARI 3 ALAN HESABI UYARI 1 A 2 A 1. f (x )dx. = a. w w w. m a t b a z.

Örnek...1 : İNTEGRAL İNTEGRAL İLE ALAN HESABI UYARI 2 UYARI 3 ALAN HESABI UYARI 1 A 2 A 1. f (x )dx. = a. w w w. m a t b a z. İNTEGRAL İLE ALAN HESABI UYARI =f() =f() =f() [,] rlığınd f() işret değiştiriors, f onksi on prçlr rılır =f() Şekilde =f() eğrisile ekseni ltınd kln lnı ulmk için eğrinin ltınd kln ölgei dikdörtgenlere

Detaylı

Matematik Olimpiyatları İçin

Matematik Olimpiyatları İçin ONU NLTIMLI Mtemtik Olimpiytlrı İçin enzerlik LİS MTMTİ OLİMPİYTLRI İÇİN Mustf Yğı, Osmn kiz enzerlik Mustf Yğı Osmn kiz İki çokgenin köşeleri rsınd ire-ir eşleme ypılırs eşleştirilen köşelere krşılıklı

Detaylı

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160 8 ÖSS. Bir çiftlikte 800 koun 00 inek ve 600 mnd vrdır. Bu hvnlrın tümü bir dire grfikle gösterilirse ineklerle ilgili dilimin merkez çısı kç derece olur? A) 60 B) 0 C) 0 D) 0 E) 60 6. 0 - =p olduğun göre

Detaylı

4. x ve y pozitif tam sayıları için,

4. x ve y pozitif tam sayıları için, YGS MTEMTİK ENEMESİ., b ve c pozitif tm syılrı için, b c b b c c biçiminde tnımlnıyor. un göre, işleminin sonucu kçtır? ) 6 ) 4 ) 0 ) 6 E) 8. Rkmlrı frklı dört bsmklı doğl syısının ilk iki bsmğı ile son

Detaylı

ÇEMBER KARMA / TEST-1

ÇEMBER KARMA / TEST-1 ÇMR RM / S-... Verilenlere göre, m( ) ) ) 0 ) ) 0 ) Verilenlere göre, m(g ) ) ) ) 6 ) 0 ) 60 0 0 G 0 ) ) ) ) ) 8 L 0 [] [] = {} m( ) = 0 m() = 0 ve üçgenlerinin çevrel çemberi m( ) = 0 m() = 0 m() = üçgen

Detaylı

Soru 1- Köşegenleri dik kesişen bir dikdörtgende köşegenlerin uzunlukları toplamı 12 ise bu dörtgenin alanı en çok kaç olabilir?

Soru 1- Köşegenleri dik kesişen bir dikdörtgende köşegenlerin uzunlukları toplamı 12 ise bu dörtgenin alanı en çok kaç olabilir? Soru - Köşegenleri dik kesişen bir dikdörtgende köşegenlerin uzunluklrı toplmı ise bu dörtgenin lnı en çok kç olbilir? A) 8 B) C) 6 D) E)6 Köşegenlerin uzunluklrı ve y olsun. Köşegenleri dik kesiştiği

Detaylı

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80. 11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?

Detaylı

ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN

ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN ÖZEL EGE ORTAOKULU ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN HAZIRLAYAN ÖĞRENCĠLER: Olçr ÇOBAN Sevinç SAYAR DANIġMAN ÖĞRETMEN: Gizem GÜNEL AÇIKSÖZ ĠZMĠR 2014 ĠÇĠNDEKĠLER 1. PROJENĠN AMACI... 2 2. GĠRĠġ... 2 3.

Detaylı

İÇİNDEKİLER ÇEMBERDE TEMEL KAVRAMLAR ÇEMBERDE ALAN CEMBERDE UZUNLUK

İÇİNDEKİLER ÇEMBERDE TEMEL KAVRAMLAR ÇEMBERDE ALAN CEMBERDE UZUNLUK ÇMRLR, GMRİK YR V ÇİZİMLR İÇİNKİLR Sayfa No est No ÇMR ML KVRMLR... 001-00... 01-01 ÇMR LN... 003-00... 0-10 MR UZUNLUK... 01-06... 11-3 ÇMR Ğ V KİRİŞ ÖZLLİKLRİ... 07-068... -3 ÇMR ÇILR... 069-09... 35-7

Detaylı

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir?

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir? 98 ÜYS Sorulrı. r top kumşın önce, sonr d klnın ü 5 stılıor. Gere 6 m kumş kldığın göre, kumşın tümü kç metredr? ) 7 ) 65 ) 6 ) 55 ) 5 4. r şekln, u brm uzunluğun göre ln ölçüsü, v brm uzunluğun göre ln

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 27 Kasım Matematik Sorularının Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 27 Kasım Matematik Sorularının Çözümleri Akdemik Personel ve Lisnsüstü Eğitimi Giriş Sınvı ALES / Sonbhr / Syısl II / 7 Ksım 0 Mtemtik Sorulrının Çözümleri. Bölüm şeklindeki kreköklü ifdenin pydsını krekökten kurtrmk için py ve pydyı, pydnın

Detaylı

ÜÇGENDE BENZERLİK. Benzerlik. Benzerlik Oranı. Uyarı

ÜÇGENDE BENZERLİK. Benzerlik. Benzerlik Oranı. Uyarı ÜÇN NZRLİK enzerlik eometride benzerlik kvrmı görsel olrk birbiri ile ynı oln şekiller için kullnılır. enzer iki şeklin krşılıklı kenrlrı rsınd sbit bir orn vrdır. iz bu bölümde sdece üçgenler rsındki

Detaylı

Diğer kitaplar ve testler için aşağıdaki linki tıklayınız. www.izmirkpsskursu.net. EĞİTİM BİLİMLERİ MERKEZİ www.izmirkpsskursu.net 0 232 445 21 25

Diğer kitaplar ve testler için aşağıdaki linki tıklayınız. www.izmirkpsskursu.net. EĞİTİM BİLİMLERİ MERKEZİ www.izmirkpsskursu.net 0 232 445 21 25 EĞİTİM BİLİMLERİ MERKEZİ 0 5 5 DÜZLEMDE ÇILR Prlel Ġki Doğrunun Bir Kesenle Yptığı çılr: Tnım: Bşlngıç noktsı ortk iki ışının irleşim kümesine çı denir. d 6 5 d 7 8 O OB OB = BO ÇI ÇEġĠTLERĠ. Dr çı: Ölçüsü

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı., b olduğun göre, b. b ifdesinin değeri şğıdkilerden hngisidir?,,,9 8... b b ifdesinin eşiti şğıdkilerden hngisidir?.. Bun göre, verilior. ifdesinin değeri kçtır? 8. b b c 8 c d

Detaylı

ÜÇGEN VE PİSAGOR BAĞINTISI

ÜÇGEN VE PİSAGOR BAĞINTISI ÜÇGEN VE PİSGOR ĞINTISI KZNIMLR Üçgen kvrmı Üçgen çizimi Üçgenin kenrlrı rsındki ğıntılr Üçgen eşitsizliği Üçgenlerde yükseklik Üçgenlerde kenrorty Üçgenlerde çıorty Kenr ort dikme kvrmı Pisgor ğıntısı

Detaylı

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR Vektörler zr rd.doç.dr.nevin MAHİR ÜNİTE 3 Amçlr Bu üniteyi çlıştıktn sonr; Düzlemde vektör kvrmını öğrenecek, İki vektörün eşitliği, toplmı, doğrusl bğımlılığı ile bir vektörün bir gerçel syı ile çrpımı,

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Haziran Matematik I Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 17 Haziran Matematik I Soruları ve Çözümleri Öğrenci Seçme Sınvı (Öss) / 7 Hzirn 007 Mtemtik I Sorulrı ve Çözümleri.. 7 işleminin sonucu kçtır? A) B) 9 C) D) E) Çözüm. 7..9.. + işleminin sonucu kçtır? 4 8 A) 8 B) 8 C) 8 D) 4 E) 4 Çözüm + 4 8 8 4+

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =?

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =? Lisns Yerleştirme Sınvı (Ls ) 6 Hirn Mtemtik Sorulrının Çöümleri 8 sı tnınd verilen ( ) 8 sısının sı tnınd ılışı? Bu durumd ( ) 8 sısı önce tnın çevrilir Sonr tnınd ılır ( ) 8 8 8 8 Bun göre ( ) 8 ( )

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı 8. sısının pozitif tek tmsı bölenlerinin sısı kçtır? 8. olmk üzere; kesrinin değeri şğıdkilerden hngisi olmz?. (8!) sısının sondn kç bsmğı sıfırdır? 8. ifdesinin sonucu kçtır? (

Detaylı

ÖZEL EGE LİSESİ PEDAL DÖRTGENLERİNDE GEOMETRİK EŞİTSİZLİKLER

ÖZEL EGE LİSESİ PEDAL DÖRTGENLERİNDE GEOMETRİK EŞİTSİZLİKLER ÖZEL EGE LİEİ PEDAL DÖRTGENLERİNDE GEOMETRİK EŞİTİZLİKLER HAZIRLAYAN ÖĞRENCİLER: Güneş BAŞKE Zeynep EZER DANIŞMAN ÖĞRETMEN: ereny ŞEN İZMİR 06 İçindekiler yf. Giriş.... Amç.... Ön Bilgiler...... 3. Yöntem....

Detaylı

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK MTEMTİK KPSS ÇEVİR KONU - ÇEVİR SORU MTEMTİK EDİTÖR Turgut MEŞE YZR İdris DOĞN ütün hklrı Editör Yyınlrın ittir. Yyınevinin izni olmksızın, kitbın tümünün vey bir kısmının bsımı, çoğltılmsı ve dğıtımı

Detaylı

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı,

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı, Rsyonel Syılr. Sınıf Mtemtik Soru Bnksı TEST. Aşğıdki bilgilerden hngisi ynlıştır? A) Rsyonel syılr Q sembolü ile gösterilir. B) Her tm syı bir rsyonel syıdır. şeklinde yzıln bütün syılr rsyoneldir. b

Detaylı

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu Fonksionlr Konu Özeti. Köklü fonksionlrın en geniş tnım kümesi: f( f( n f( g( fonksionun en geniş tnım kümesi, g( koşulunu sğln noktlr kümesidir. f( f( n f( g( tüm reel sılrd tnımlıdır. fonksionu g( in

Detaylı

OLİMPİYAT SINAVI. a ise b 2006 b 2005 =? A) 1330 B) 1995 C) 1024 D) 1201 E) 1200

OLİMPİYAT SINAVI. a ise b 2006 b 2005 =? A) 1330 B) 1995 C) 1024 D) 1201 E) 1200 ., b, c, d Z olmk üzere / + /b + /c + /d = ½ ve ( + b + c + d) =.b + c.d + ( + b ).(c +d) + dekliklerii sğly kç (, b, c, d) dörtlüsü vrdır? A) 48 B) 4 C) D) 6 E) 5. Alı 40 birim kre ol bir ABC üçgeii AB,

Detaylı

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º Geometri Çözmek ir yrıcal calıkt ktır ÇI I ve UZUNLUK 1? m()=, m()=, m()= 7º merkezli çemberde m()= 7º Verilenlere göre açısının ölçüsü kaç derecedir? ) 10 ) 1 ) 10 ) 1 ) 17 Verilenlere göre açısının ölçüsü

Detaylı

Öğrenci Seçme Sınavı (Öss) / 16 Haziran Matematik Soruları ve Çözümleri = 9, : = 6

Öğrenci Seçme Sınavı (Öss) / 16 Haziran Matematik Soruları ve Çözümleri = 9, : = 6 Öğrenci Seçme Sınvı (Öss) / 6 Hzirn 00 Mtemtik Sorulrı ve Çözümleri.,4 0,4,4,4 işleminin sonucu kçtır? A) 0 B) 0, C) 9,9 D) 0, E), Çözüm,4 0,4,4,4 0 99 0 0 40 4 4 40 9,9. 6 : 4. işleminin sonucu kçtır?

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Haziran Matematik I Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 17 Haziran Matematik I Soruları ve Çözümleri Öğrenci Seçme Sınvı (Öss) / 7 Hzirn 007 Mtemtik I Sorulrı ve Çözümleri.. 7 işleminin sonucu kçtır? A) B) 9 C) D) E) Çözüm. 7..9.. + işleminin sonucu kçtır? 4 8 A) 8 B) 8 C) 8 D) 4 E) 4 Çözüm + 4 8 8 4+

Detaylı

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS LİMİT VE SÜREKLİLİK KONU ÖETLİ ÇÖÜMLÜ SORU BANKASI ANKARA İÇİNDEKİLER Limit Kvrmı ve Grfik Sorulrı... Limitle İlgili Bzı Özellikler...7 Genişletilmiş Reel Sılrd Limit... Bileşke Fonksionun Limiti...

Detaylı

Milli Eğitim Bakanlığı, Talim ve Terbiye Kurulu Bakanlığı'nın 30.12.2010 tarih ve 330 sayılı kararı ile kabul edilen ve 2011 2012 Öğretim Yılından

Milli Eğitim Bakanlığı, Talim ve Terbiye Kurulu Bakanlığı'nın 30.12.2010 tarih ve 330 sayılı kararı ile kabul edilen ve 2011 2012 Öğretim Yılından Milli ğitim knlığı, Tlim ve Terbie urulu knlığı'nın 0.1.010 trih ve 0 sılı krrı ile kbul edilen ve 011 01 Öğretim Yılındn itibren ugulnck progrm göz önüne lınrk hzırlnmıştır. u kitb n her hkk skl d r ve

Detaylı

MATEMATİK.

MATEMATİK. MTEMTİK www.e-ershne.iz. s( \ ) = 6, s( \ ) = 8 tür. kümesinin lt küme syısı ise, kümesinin elemn syısı kçtır?... D. 7 Ynıt:. s( ) =? s( ) = = s( ) = 6 8 s( ) = 6 + + 8 =. Rkmlrı frklı üç smklı üç oğl

Detaylı

Ö.Y.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. 5 k 3

Ö.Y.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. 5 k 3 Ö.Y.S. 997 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ.,,, k olduğun göre, k kçtır? A) B) C) D) E) Çözüm,,, k k k 7 k. [( ) ( )] [ (9 ) ( )] işleminin sonucu kçtır? A) B) C) D) 9 E) 6 Çözüm [( ) ( )] [ (9 ) ( )] [.(

Detaylı

7.SINIF: PARALELKENARIN ve ÜÇGENİN ALANI

7.SINIF: PARALELKENARIN ve ÜÇGENİN ALANI 7.SINIF: PRLLKNRIN ve ÜÇGNİN LNI ikdörtgen şeklindeki ir krtonu şekildeki gii işretlenen yerden kesip diğer trf eklediğimizde krtonun eksilmediğini,sdece görüntüsünün değiştiğini görürüz. Prlelkenrd Yükseklik

Detaylı

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1 YGS-YS GOMTRİ ÖZT ÇÖZÜMRİ TST 1 1. 1. y 1 1 + 1 1ʺ 1 1ʹ 17 0ʹ 1 1ʹ ʹ + ʹ 1ʺ ʹ + ʹ 1ʺ 7 0ʹ 1ʺ 0 0ʹ 1ʺ bulunur. 1 y < + 1 y dir. y < 7 + 1 < 7 0 < < 1 in en büyü tm syı değeri 17 in en üçü tm syı değeri

Detaylı

Öğrenci Seçme Sınavı (Öss) / 19 Haziran Matematik Soruları ve Çözümleri 82 E) 9

Öğrenci Seçme Sınavı (Öss) / 19 Haziran Matematik Soruları ve Çözümleri 82 E) 9 Öğrenci Seçme Sınvı (Öss) / 9 Hzirn 005 Mtemtik Sorulrı ve Çözümleri. 3 (3 ) 3 3 9 (9 ) 9 9 işleminin sonucu kçtır? 0 A) 3 B) 9 C) 7 D) 3 8 E) 9 Çözüm 3 (3 ) 3 3 9 (9 ) 9 9 0 8 3 3 8 80 9 9 3 9 9. 3 3

Detaylı

) = 5 = 0,5 Ö.S.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. işleminin sonucu kaçtır? A) 3 B) 9 C) 27 D) Çözüm 1 = 3. isleminin sonucu kaçtır?

) = 5 = 0,5 Ö.S.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. işleminin sonucu kaçtır? A) 3 B) 9 C) 27 D) Çözüm 1 = 3. isleminin sonucu kaçtır? Ö.S.S. 00 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. ( 9 (9 9 9 işleminin sonucu kçtır? 0 A B 9 C 7 D 8 E 9 Çözüm ( 9 (9 9 9 0 8 8 80 9 9 9 9.. 4 isleminin sonucu kçtır? A 4 B 4 C D E 4 Çözüm 4 4.(.(. 4.( ².( 4.

Detaylı

Uzunluklar Ölçme. Çevre. Alan. Zaman Ölçme. S v lar Ölçme. Hacmi Ölçme

Uzunluklar Ölçme. Çevre. Alan. Zaman Ölçme. S v lar Ölçme. Hacmi Ölçme MTEMT K Uzunluklr Ölçme Çevre ln Zmn Ölçme S v lr Ölçme Hcmi Ölçme Temel Kynk 5 Uzunluklr Ölçme UZUNLUKLRI ÖLÇME Çevremizde metre, sntimetre, milimetre vey bunlr n herhngi ikisi ile söyledi imiz uzunluklr

Detaylı

ÜNİTE DÖRTGENLER VE ÇOKGENLER. 5.1 : Dörtgenler ve Özellikleri 5.2 : Özel Dörtgenler 5.3 : Çokgenler

ÜNİTE DÖRTGENLER VE ÇOKGENLER. 5.1 : Dörtgenler ve Özellikleri 5.2 : Özel Dörtgenler 5.3 : Çokgenler 5 ÜNİT ÖRTGNLR V ÇOGNLR 51 : örtgenler ve Özellikleri 5 : Özel örtgenler 53 : Çokgenler 50 50 0 ünymız yklşık olrk küre biçimindedir Onun üzerinde bir üçgen çizmeye klktığımızd o üçgenin iç çılrının toplmı

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

Öğrenci Yerleştirme Sınavı (Öys) / 21 Haziran Matematik Soruları Ve Çözümleri

Öğrenci Yerleştirme Sınavı (Öys) / 21 Haziran Matematik Soruları Ve Çözümleri Öğrenci Yerleştirme Sınvı (Öys) / Hzirn 99 Mtemtik Sorulrı Ve Çözümleri Bir öğrenci, hrçlığının si ile, 000 lirlık otobüs biletinden 0 det lmıştır 7 Bun göre, öğrencinin hrçlığı kç lirdır? A) 0 000 B)

Detaylı

2 olur. ADI: SOYADI: DERS: MATEMATĐK KONU: KESĐK PĐRAMĐT KONU ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN

2 olur. ADI: SOYADI: DERS: MATEMATĐK KONU: KESĐK PĐRAMĐT KONU ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN 1)KESĐK PĐRAMĐT: Bir pirmit, tbn prlel bir düzlem ile kesildiğinde, tbn düzlemi ile kesit üzei rsınd kln kısım kesik pirmit denir. KESĐK PĐRAMĐDĐN YANAL YÜZ ALANI: Bir düzgün kesik pirmidin nl lnı, lt

Detaylı

ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI

ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI ULUSL İLKÖĞRETİM MTEMTİK OLİMPİYTI DENEME SINVI -0 SINVL İLGİLİ UYRILR: * Çoktn seçmeli 0 test sorusundn oluşn sınv süresi 50 dkikdır. * evp kğıdınız, size verilen soru kitpçığının türünü işretlemeyi unutmyınız.

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 19 HAZİRAN 2016 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi TEST: 6 5. 1. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12 2. 6. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi aşağıdakilerden hangisidir? A) 7x+5y=35 B) 7x-5y=35

Detaylı

ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTALAR

ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTALAR ORTÖĞRETĐM ÖĞRENĐLERĐ RSI RŞTIRM ROJELERĐ YRIŞMSI (2008 2009) ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTLR rojeyi Hzırlyn Öğrencilerin dı Soydı : Sinem ÇKIR Sınıf ve Şuesi : 11- dı Soydı : Fund ERDĐ Sınıf ve Şuesi

Detaylı

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER TEOG Tm Syılr ve Mutlk Değer TAMSAYILAR Eksi sonsuzdn gelip, rtı sonsuz giden syılr tm syılr denir ve tm syılr kümesi Z ile gösterilir. Z = {...,,, 1,0,1,,,... } Tmsyılr kümesi ikiye yrılır: ) Negtif Tmsyılr:

Detaylı

LYS 2016 MATEMATİK ÇÖZÜMLERİ

LYS 2016 MATEMATİK ÇÖZÜMLERİ LYS 06 MATEMATİK ÇÖZÜMLERİ 6.. 5. 5. ( ) 8 6 65 buluruz. 5. 5 5 Doğru Cevp: C Şıkkı 8 7 ()... 9 buluruz. Doğru Cevp : D Şıkkı 9 8 8 9 8 9 8 9 9 9 9 9 8 buluruz. 8 8 8 8 8 Doğru Cevp : A Şıkkı (n )! (n

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı.,, z rdışık pozitif tmsılr ve z olmk üzere; z olduğun göre, kçtır? C). olduğun göre, ifdesinin değeri şğıdkilerden hngisidir? C) 8 6., b, c Z olmk üzere; b c bc c b olduğun göre,,

Detaylı

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır?

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? 014 LYS GOMTRİ 1. y 1 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? parabolü ile. O merkezli çeyrek çemberde O deltoid olduğuna göre, taralı alan kaç birim karedir? O. d:y a b doğrusu -ekseni

Detaylı

Işığın Yansıması ve Düzlem Ayna Çözümleri

Işığın Yansıması ve Düzlem Ayna Çözümleri 2 şığın Ynsımsı ve Düzlem Ayn Çözümleri 1 Test 1 1. 38 38 52 52 Ynsıyn ışının yüzeyin normli ile yptığı çıy ynsım çısı denir. Bu durumd ynsım çısı şekilde gösterildiği gibi 38 dir. 4. şıklı cisminin ve

Detaylı

2006 ÖSS MAT 1 Soruları

2006 ÖSS MAT 1 Soruları 006 ÖSS MT Soruları. a ve b sıfırdan farklı gerçel sayılar olmak üzere a ab. = = a b b olduğuna göre, a + b toplamı kaçtır? ) ) ) ) ) 0 5. 5 ( + ) ) ) 0 ) ) 6 ) 0 6. + +. a + 0 a + = ) ) ) 0 ) ) olduğuna

Detaylı

1996 ÖYS. Çözüm 1: Çözüm 3: 1. gün x a 2.gün x+5 kitap a sayfa ise 3x+15= 3 3.gün x+10 4.gün x+15 5.gün x+20 Ve 6.gün x+25 hepsi 6x+75=a oluyor.

1996 ÖYS. Çözüm 1: Çözüm 3: 1. gün x a 2.gün x+5 kitap a sayfa ise 3x+15= 3 3.gün x+10 4.gün x+15 5.gün x+20 Ve 6.gün x+25 hepsi 6x+75=a oluyor. 99 ÖYS. Bir sınıftki örencilerin 5 nin fzlsı kız örencidir. Sınıft erkek öğrenci olduğun göre, kız öğrencilerin syısı kçtır? A) B) 8 C) D) E) Çözüm : Sınıftki öğrencilere 5x dersek x+ kızlr ve geri klnlr

Detaylı

SORU SORU. ABCDEF... düzgün çokgenin ard fl k köfleleridir. m(ebf) = 12 ise

SORU SORU. ABCDEF... düzgün çokgenin ard fl k köfleleridir. m(ebf) = 12 ise GMR erginin bu sy s nd Çokgenler ve örtgenler konusund çözümlü sorulr yer lmktd r. u konud, ÖSS de ç kn sorulr n çözümü için gerekli temel bilgileri ve prtik yollr, sorulr m z n çözümü içinde ht rltmy

Detaylı

MATEMATİK 1 TESTİ (Mat 1)

MATEMATİK 1 TESTİ (Mat 1) MTMTİK TSTİ (Mat ). u testte 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. a ve b sıfırdan farklı gerçel sayılar olmak üzere,. a a b = = a b b olduğuna

Detaylı

ORAN ve ORANTI-1 ORAN-ORANTI KAVRAMI. 1. = olduğuna göre, aşağıdaki ifadelerin. + c c sisteminin çözümüne. 3. olduğuna göre, nin değeri

ORAN ve ORANTI-1 ORAN-ORANTI KAVRAMI. 1. = olduğuna göre, aşağıdaki ifadelerin. + c c sisteminin çözümüne. 3. olduğuna göre, nin değeri ORAN ve ORANTI- ORAN-ORANTI KAVRAMI A) B) 9 C) 7 D) 5 E). olduğun göre, şğıdki ifdelerin hngisi d doğrudur? + d A) d + 4 + d C) 4 d E) 5 + 5 5 5 + d d + d B) n + m n + md D) d x y z. 4 5 sisteminin çözümüne

Detaylı