Uyarlanabilir Konum Tespit Sistemi: UKTS

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Uyarlanabilir Konum Tespit Sistemi: UKTS"

Transkript

1 Kablosuz Gömülü Sistemler İçin Uyarlanabilir Konum Tespit Sistemi: UKTS Ramil Agliamzanov Danışman: Yrd. Doç. Dr. Kasım Sinan YILDIRIM Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 35100, Bornova, İzmir 1

2 İçindekiler 1 Giriş Problemin Tanımı Amaç ve Kapsam İlişkili Çalışmalar 6 3 Sistem Tasarımı Haberleşme Modülü Saat Eşzamanlaması Modülü Konum Tespit Modülü AVT ile Uzaklık Arama ve Takip Etme AVT ler ile Devingen ve Uyarlanabilir Konum Tespiti Gerçekleştirim Araçlar, Kütüphaneler ve Konfigürasyon Genetlab Platformunda Ultrasonik Algılayıcı Sürücüsü Arayüz Tasarımı Proje Takvimi 14 6 Değerlendirme ve Sonuçlar Sonuçlar Projenin Özgünlüğü 19 8 Ekler 21 2

3 Özet Kablosuz algılayıcı ağları çevreyi algılama yeteneğine sahip, ucuz ve enerji kısıtları olan küçük cihazlardan oluşur. Birbirlerinden fiziksel olarak ayrılmış olan algılayıcı düğümleri, çevresel verileri algılayıcılarını ve kablosuz iletişim donanımlarını kullanarak işbirliği içerisinde toplar, işler ve yayarlar. Hedef takibi gibi temel kablosuz algılayıcı ağı uygulamaları, algılayıcı düğümlerinin kendi konumlarını bilmelerini gerektirmektedir. Düğümlerin kendi konumlarını tahmin edebilmeleri için bir konum tespit protokolüne ihtiyaç vardır. Bu projede konum bulma bir devingen arama problemi olarak ele alınmıştır. Kendi konumunu bilmeyen bir algılayıcı düğümü, kendi konumunu bilen diğer düğümlerden aldığı paketlerle belirli bir arama uzayında kendi konumunu aramakta ve belirli bir hata ile konumlarını tahmin edebilmektedirler. Bu bağlamda geliştirilmiş Uyarlanabilir Konum Tespit Sistemi (UKTS), kullanılan algoritmanın uyarlanabilir yapısı sayesinde ağdaki hatalara ve devingenliğe karşı sağlam ve hızlı tepki verebilen bir sistemdir. Ayrıca sistem oldukça düşük işlemci ve bellek yüküne sahiptir. Anahtar Kelimeler : Gömülü Sistemler, Kablosuz Algılayıcı Ağları, Konum Tespiti 3

4 Şekil 1: Genetlab Sensenode algılayıcı düğümü [10]. 1 Giriş Sayısal elektronik, kablosuz ağlar ve gömülü sistemler alanlarındaki gelişmeler düşük maliyetli, düşük güç tüketimli, ortamla haberleşme özelliği olan, çok işlevli minyatür algılama aygıtlarının üretilmesine olanak sağlamıştır. Ortamdaki farklı fiziksel olayları algılayabilen bu cihaz ailesine Kablosuz Algılayıcı Ağları (KAA) ismi verilmiştir. KAA lar ortamın gözlemlenmesi ya da hedef takipi gibi birçok uygulama alanına sahiptir. Askeri uygulamalar, çevre (ve doğa) gözlemleme, sağlık alanındaki uygulamalar, ticari alanlarda uygulamalar ve bilimsel araştırmalarda KAA çok yaygın kullanılmaktadır. Şekil 1 de Genetlab Sensenode platformuna ait bir algılayıcı düğümü gösterilmiştir. KAA larda ağın her düğümü otonom olarak çalışmaktadır. Bu, büyük bir esneklik getirmekle beraber, bu cihazların getirdiği kısıtlamalar da mevcuttur. Sınırlı güç kaynağı, düşük işlemci, sınırlı bellek kapasitesi bunlar arasındadır. Bu yüzden geliştirilecek sistemler bu kısıtları göz önünde bulundurarak şekillendirilmelidir. Bu kısıtlar KAA lardaki problemleri oldukça ilginç kılmakta ve bu alandaki araştırmayı devingen tutmaktadır. 1.1 Problemin Tanımı Kapsama alanı (coverage), konuşlandırma (deployment), yönlendirme (routing), konum servisi (location service), hedef takibi (target tracking), kurtarma (rescue) ve olay yerinin tespiti bağlamlarında konum bilgisi KAA için önemli bir gereksinimdir [7]. Algılayıcı düğümler dinamik bir şekilde ortamda konuşlandırılabileceği için (örn. uçaktan aşağıya bırakılma) yada çalışma sırasında konumları değişebileceği için (örn. kargo konteynerine bağlansa), önceden konumlarını bilseler bile belli bir zaman sonra bu bilgi güncelliğini yitirebilir [4]. Geleneksel sistemlerde bu problemi çözmek için Global Positioning System (GPS) türü küresel konumlandırma sistemleri kullanılmaktadır. GPS, 10 metre hassasiyetle konumu tespit edebilir, kullanımı ücretsiz olduğu için çoğu mobil uygulama için mükemmel bir çözümdür. Ama bunun yanında GPS nin güvenli çalışmadığı durumlar da vardır. Sistem, birden çok uydunun görüş çizgisinde olmasını gerektirdiği için, kentsel, bina içi, yeraltı ya da uzay ortamlarında oluşturulan algılayıcı ağlar GPS den yararlanamazlar [4]. KAA ların güç tüketimi sınırlaması da çok güç tüketen GPS modüllerin kullanımı engellemektedir. KAA nda konum tespitinin zorlukları sıralayacak olursak [3]: Fiziksel katmanın ölçüm hataları: İki düğüm arasındaki mesafe ölçümü için alınan sinyalin gücü ya da aktarma zamanı kullanılıyorsa, ölçümler donanımdan dolayı ortama göre çok farklılık gösterilebilir. Bu da konum tespitinin yüksek hatalara yol açmaktadır. Hesaplama kısıtları: Konum tespitin sonuçlarını iyileştirmek için bazı algoritmalar kullanılabilir, ama bu algoritmalar çok hesaplama gerektiriyorsa KAA lar için uygun değildir. 4

5 GPS konum verisinin eksikliği: Yukarıda bahsettiğimiz gibi, çok hassas konum tespiti yapabilen GPS teknolojisi gömülü sistemlerde yaygın olarak kullanılsa da, KAA larında kullanımı güç tüketimi ve maliyet açısından uygun olmayabilir. Düşük kaliteli algılayıcı düğümler: Düğümlerin maliyet açısından ucuz olmaları, donanımsal yeteneklerinin düşük kalitede olmaları sonucunu doğurmuştur. Düğümlerin sinyal gücü ölçümleri oldukça gürültülü olabilir, saat eşzamanlaması hataları hesaplamalara oldukça büyük hatalar ekletebilir, düğümler bozularak bazen ağdan kopabilirler. 1.2 Amaç ve Kapsam Bu çalışmada, KAA ların kısıtları gözetilerek bir uyarlanabilir konum tespit sistemi (UKTS) geliştirilmiştir. UKTS, bir algılayıcı ağındaki her düğümün konumunun devingen ve gerçekzamanlı olarak takip edilmesi için kullanılabilmektedir. Sisteme yeni bir düğüm eklendiğinde ya da düğümlerin yeri değiştirildiğinde, geliştirilecek arayüzler aracılığı ile kullanıcıya ağdaki her elemanın konum bilgisi anında yansıtılabilmektedir. UKTS düğümlerin ortam gürültüsünden ve hesaplama hatalarından en az etkilenmesini Uyarlanabilir Değer İzleyicileri (Adaptive Value Trackers -AVT) [21] ile sağlamaktadır. Geliştirilen sistem, hareketli nesnelerin takipinin de yapılabilmesi için kullanılabilecektir. Özetle, tam anlamıyla devingen bir ortamda çalışabilen uyarlanabilir bir konum tespit sistemi ortaya koyulmuştur. 5

6 2 İlişkili Çalışmalar Literatürdeki konum bulma protokolleri, uzaklık tayinine dayalı yöntemler kullanmaktadır. Her uzaklık tayin yöntemi özel donanım desteğine ihtiyaç duymakta ve bu durum yöntemlerin uygulanabilirliğini sınırlamaktadır. Ayrıca uzaklık tayininin doğruluğu ve hassasiyeti yöntemden yönteme değişmektedir. Gelen sinyal gücü (Received Signal Strength) uzaklık tayininde kullanılan en yaygın yöntemdir. Ancak bu yöntemin hassasiyeti sınırlıdır ve çevresel faktörlerden oldukça etkilenebilmektedir. Alınan sinyal seviyesi ile uzaklık arasında bir ilişki kurabilmek zordur ve algılayıcıların donanımına ve çevresel değişimlere bağlıdır. Varış zamanı (Time of Arrival) yöntemleri mesajların gönderim ve alım zamanlarına dayanmaktadır. Saat eşzamanlaması bu yöntemlerin temel gereksinimidir. Ancak görüş açısının (line of sight) olmaması ve sinyallerin doğrudan alınmaması gönderim ve alım zamanlarını etkilemekte ve konum bulma hatalarını arttırmaktadır. Uzaklık tayin edildikten sonra, düğümler kendi konumlarını belirleyebilmek için, kendi konumunu bilen yeterli sayıda düğümden konum bilgilerini toplamaya gereksinim duyarlar. Toplanan bilgilerden konum bilgisini hesaplamak için kullanılan temel yöntemler trilaterasyon (Trilateration), üçgenleme (Triangulation) ve en büyük olabilirlik çoklulaterasyon (Maximum likelihood multilateration) yöntemleridir [20, 8, 19, 17]. Günümüz sistemlerinde, sistem parametrelerin doğru değerlerinin bulunması çok önemlidir. Sistemin bileşenleri belirsizlik içeren ortamla etkileşerek kendi parametrelerini uyarlayabilmeleri için gerekli olan bilgiyi toplamaya çalışırlar. Uyarlanabilir parametre kontrol yöntemlerinde, parametreler geribildirimler sayesinde bir arama süreci sonunda devingen olarak uyarlanmaktadırlar. Bu çalışmada kullanılan parametre kontrol yöntemi olan Uyarlanabilir Değer İzleyicisi (Adaptive Value Tracker - AVT) ilk olarak [15] çalışmasında tanıtılmıştır. Günümüze kadar, bu yöntem deniz gözetlemede [6, 5], kontrol oyunlarında [18], öz-örgütlenen sinir ağlanrında [12, 11], kullanıcı profili çıkarmada [14], KAA larda öz-örgütlenen ve dağıtık saat eşzamanlaması için [21, 13] kullanılmıştır. 6

7 UYGULAMA Saat Eşzamanlaması Modülü Konum Tespit Modülü Haberleşme Modülü Saat Donanımı Akustik Algılayıcı Haberleşme Donanımı 3 Sistem Tasarımı Şekil 2: UKTS sisteminin genel mimarisi Uyarlanabilir konum bulma sisteminin genel mimarisi Şekil 2 de gösterilmiştir. Mimari, temel olarak saat eşzamanlaması ve konum tespit modüllerini içermektedir. Haberleşme modülü ise düğümler arasındaki iletişim için gereklidir. 3.1 Haberleşme Modülü Hem Saat Eşzamanlaması Modülü hem de Konum Tespit Modülü diğer düğümlerle haberleşmeye ve bilgi değiş-tokuşuna gereksinim duymaktadır. Haberleşme Modülü, düğümler arası haberleşmede iletişimin düzenli, kayıpsız ve enerji verimli yapılmasından sorumludur. Bu işlevsellik için Bölüm 4.1 te belirteceğimiz gibi, TinyOS [16] işletim sistemi ile gelen yazılım bileşenleri kullanılmıştır. 3.2 Saat Eşzamanlaması Modülü Bölüm 2 te bahsedildiği gibi saat eşzamanlaması, varış zamanlı konum bulma protokolleri için temel bir gereksinimdir. UKTS protokolü de ultrasonik algılayıcıları kullanarak konum tahminleme işlemi yapacağı için, saat eşzamanlamasına ihtiyaç duymaktadır. Dağıtık sistemlerde, bütün düğümlerin ortak bir saat kaynağına doğrudan erişimleri mümkün değildir. Bunun yerine her düğüm bir saat ile donatılmıştır. Düğümlerin saatleri farklı hızlarda tıklayabilmekte ve bunun sonucunda saatlerin gösterdiği değerler birbirinden uzaklaşabilmektedir. Bu durum her düğümün kendi yerel zaman kavramına sahip olmasına yol açmaktadır. Dağıtık sistemlerde, düğümlerin ortak bir zaman kavramına sahip olmalarını sağlayan sürece dağıtık saat eşzamanlaması denilmektedir. Bu süreçte, her düğüm bir dağıtık saat eşzamanlama algoritması çalıştırarak diğer düğümlerle haberleşir ve elde ettiği zaman bilgisini işleyerek bir ortak saat değerini hesaplar. Dağıtık saat eşzamanlama algoritmasının temel hedefi, herhangi bir anda düğümlerin hesapladığı ortak saat değerleri arasındaki farkın en aza indirilmesidir. Saat Eşzamanlaması Modülü kapsamında literatürdeki AVTS protokolü [21] gerçekleştirilecektir. Bu protokol, detayları daha sonra açıklanacak olan Uyarlanabilir Değer İzliyicisi AVT ler kullanmaktadır. 7

8 3.3 Konum Tespit Modülü Konum Tespit Modülü ultrasonik algılayıcısından gelen verileri kullanarak, AVT lerle düğümlerin konumunu özgün bir şekilde bulmaktadır. Bu işlevsellik için öncelikle ultrasonik algılayıcılar kullanılarak uzaklık tahmini yapılmaktadır. Yapılan uzaklık tahmini sonucunda ilgili AVT ye geribildirimler gönderilerek gerçek uzaklık devingen olarak aranmakta ve takip edilmektedir AVT ile Uzaklık Arama ve Takip Etme Bir düğüm, diğer herhangi bir düğüme göreceli olarak uzaklığını hesaplayabilmek için ultrasonik algılayıcısını kullanmaktadır. Mesafe tahmini yapabilmek için, ultrasonik sinyalin göndericiden kendisine ulaşma zamanını hesaplamalıdır. Saat Eşzamanlaması Modülü nün sunduğu eşzamanlanmış saat bilgisi, bunun için kullanılmaktadır. Bir gönderici, bir ultrasonik sinyali hemen göndermeden önce bir RF sinyali gönderir. Bu sinyalde ultrasonik sinyalin gönderim zamanı t 1 taşınmaktadır. Alıcı düğüm ultrasonik sinyalini almadan önce daha hızlı olan RF sinyalini alacaktır. Alıcı düğüm ultrasonik sinyali alınca bu sinyalin alım zamanı olan t 2 yi saklar. Sesin iletim hızı v ses kullanılarak bu iki düğüm arasındaki tahmini uzaklık ˆd = t 2 t 1 v ses ile hesaplanır [19]. Düğümler mesafe takipi yapmak istedikleri her diğer düğüm için bir adet AVT içermektedirler. AVT, bir değerin bir arama uzayında aranmasını ve bulunmasını sağlayan yazılım bileşenidir. Ultrasonik sinyal ile yapılan uzaklık tahmini ortamın devingenliğinden ötürü gürültüye sahiptir. Gürültülü uzaklık tahmininden hatalara karşı daha dayanıklı ve devingen uzaklık takipinin yapılması AVT ler ile sağlanmaktadır. Uyarlanabilir Değer İzleyicisi - AVT Literatürdeki çalışmaların aksine, konum bulma bu projede bir devingen arama problemi olarak ele alınmıştır. Gürültülü ve devingen bir algılayıcı ağında, kendi konumunu bilmeyen bir algılayıcı düğümü, kendi konumunu bilen diğer düğümlerden aldığı paketlerle belirli bir arama uzayında kendi konumunu arayacaktır. Bu devingen arama için yöntem olarak Uyarlanabilir Değer İzleyicisi (Adaptive Value Tracker - AVT) kullanılmıştır [15, 21, 13]. İzleme işlemi, AVT nin ortamından gelen muhtemelen aranan değere doğru götüren ardışık geribildirimler sayesinde sağlanmaktadır. Biçimsel olarak, bir avt devingen bir değer v ı (konum bulma probleminde düğümün konumu) v min alt sınır, v max üst sınır olmak üzere verilen bir gerçel aralık (arama uzayı) AV T ss = [v min, v max ] R içerisinde (düğümün konum uzayı) arar (ve izler). Herhangi bir t anında avt, v t = avt.value(t) eylemi şeklinde erişilebilen bir v t AV T ss değerini (düğümün olası konumunu) ortamına sunabilmektedir. avt nin ortamının amacı aranan değer v ın o anda önerilen değer v t den küçük, büyük veya v t ye eşit olduğunu saptamaktır. Bu saptamadan sonra, ortam avt ile avt.adjust(f t F) şeklinde bir eylem ile etkileşime geçer ve dolayısıyla F = {f, f, f } kümesinden bir f t geribildirimini gönderir. f t geribildirimi, v t yi artırmak (f ), azaltmak v t (f ) veya v t nin iyi olduğunu (f ) bildirmek için olabilir [21]. AVT ler ile örnek devingen arama süreci Şekil 3 te gösterilmiştir. Geribildirimi aldıktan sonra, avt sonraki değeri v t+1 yi v t den şu şekilde türetir v t+1 = v t + t+1, v t t+1, v t, f t = f f t = f f t = f (1) 8

9 AVT Environment f " f " [...] f # ➊ ➋ ➍ ➎ ➐ ➑ v t v t+1 v t+3 v t+2 ➒ D t+3 v min ➌ D t+1 ➏ D t+2 Adaptive Value Tracker (AVT) v max Şekil 3: AVT ile ortamı arasındaki ilişki. AVT değer izleme süreci bir başlangıç değeri v 0 ile başlar ve birçok iterasyon döngüsünden oluşur: örneğin, (1) AVT, ortamına v t 2 değerini sunar, (2) ortam, bir f geribildirimi gönderir, (3) bu geribildirimden (ve muhtemelen diğer eski geribildirimlerden), AVT büyük olasılıkla v değerine yakın olan v t 1 = v t 2 + t 1 değerine ulaşmak için en iyi ayar adımı t 1 i saptar, (4) yeni değer v t 1 ortama önerilir, (5) sonra ortam tarafından bir başka f geribildirimi gönderilir, (6) bu geribildirimden AVT daha ileri gitmesi gerektiğini saptar ve t ayar adımını artırır, (7) yeni değer v t ortama önerilir, (8) ancak bu defa ortam tarafından zıt bir f geribildirimi gönderilir, (9) bu nedenle AVT ayar adımını küçültür ve ters yönde ilerler, sonra bir başka yeni değer önerilir ve süreç v a erişilinceye dek devam eder [21]. öyle ki t+1 değeri t + 1 anındaki ayar adımıdır 1. Ayar adımı için şu sağlanmalıdır t [ min, max ] (2) öyle ki min t nin alt sınırıdır ve max da üst sınırıdır. min, avt nin kullanabileceği en küçük ayar adımıdır bu değere ayrıca hassasiyet denilmektedir. max, öte yandan, avt nin kullanabileceği en büyük ayar adımıdır ve bunun bir sonucu olarak v t nin en büyük evrim hızıdır. Arama süreci boyunca, avt aynı yöndeki geribildirimleri arka arkaya ne kadar çok alırsa, v t değerinin v dan o kadar uzakta demektedir (ya da daha kötüsü: v t değeri v dan uzaklaşmaktadır). Böyle bir durumda v a daha çabuk erişmek için v t ın ayarı hızlandırılmalıdır. Bu nedenle, her geribildirim alındığında, ayar adımı şöyle artırılmaktadır t+1 = t λ incr. (3) Öte yandan, avt ters yöndeki geribildirimleri arka arkaya ne kadar çok alırsa, v t değeri az veya çok tutarlı bir v değerinin etrafında o kadar dalgalanmaktadır 2. v değerine daha fazla yaklaşmak için (başka bir uzak değer aniden zıplamamak için) ve dolayısıyla v değerine daha çabuk erişebilmek için, ayarlamanın yavaşlatılması gerekmektedir. Bu nedenle, her geribildirim alındığında, ayar adımı şöyle azaltılmaktadır t+1 = t λ decr. (4) Son olarak, avt bir iyi geribildirim aldığında, bu demek oluyordur ki v t değeri (en azından kabaca) doğru değere ulaşmıştır. Bu nedenle, v t+1 değeri v t+1 = v t aynı kalır çünkü v muhtemelen v t ye yakındır. Ayar adımı, öte yandan, eşitlik 4 de gösterildiği gibi azaltılmaktadır, çünkü 1 Dikkat edilirse, v t+1 değeri AV T ss nin sınır değerlerini geçemeyeceği için, eğer v t + t+1 > v max ise v t+1 = v max ve eğer v t + t+1 < v min ise v t+1 = v min. 2 Ortamdan gelen geribildirimlerin doğru olduğu kabul edilmektedir. 9

10 bir sonraki adımda eğer farklı bir geribildirim alınırsa, v değeri muhtemelen v t+1 değerinden daha az uzaktadır. Bu sürecin bir sonucu olarak, yeterli sayıdaki iterasyondan sonra önerilen değer ve ayar adımı değerinin t anında şunu sağladığı gösterilebilir v min v t v + min, (5) t = min. (6) Şurası not edilmelidir ki bu duruma erişildikten sonra devingen değer v bir şekilde değişse bile, avt bu değeri ortamından gelen geribildirimler sayesinde izlemeye devam edebilir. AVT ile Devingen ve Hatalara Karşı Sağlam Uzaklık Tahmini Ultrasonik sinyaller vasıtasıyla hesaplanan uzaklık değeri ˆd, alıcı düğüm tarafından gönderici düğümün uzaklık değerinin takibi için saklanan AVT nin önerdiği uzaklık değerinden büyükse konumun arttırılmasına yönetik bir geribildirim f, küçükse konumun azaltılmasına yönetil bir geribildirim f, bu koşul da sağlanmadıysa tahminin iyi olduğuna dair f geribildirim AVT ye gönderilir. En son aşamada alıcı düğüm,tüm komşuları için tuttuğu AVTleri kullanarak kendi konumunu güncellemektedir. Bu kapsamda işletilecek algoritma kabaca aşağıdaki şekilde özetlenebilir: Algoritma 1: Bir v düğümü için konum tahmini modülünün temel uzaklık tahminleme algoritması. 1: Bir u komşusundan RF sinyali alındığında 2: 3: Sinyalin alındığı t u 1 zamanını kaydet. 4: Bir u komşusundan ultrasonik sinyal alındığında 5: Sinyalin alındığı t u 2 zamanını kaydet. 6: ˆdu = tu 2 tu 1 v ses formülü ile tahmini uzaklığı hesapla 7: error = ˆd u avt u.getv alue() 8: if error > 0 then avt u.adjust(f ) // u düğümünün konumu arttır 9: else if error < 0 then avt u.adjust(f ) // u düğümünün konumu azalt 10: else avt u.adjust(f ) // u düğümünün konum gayet iyi AVT ler ile Devingen ve Uyarlanabilir Konum Tespiti Bir düğümün kendi konumunu bulabilmesi için, kendi konumunu bilen 3 çapa (anchor) düğümden konum bilgilerini alması ve bu düğümlere olan göreceli uzaklıklarını hesaplaması gerekmektedir. Bir önceki alt bölümde belirtilien Algoritma 1 kullanılarak, üç çapa düğüm için üç adet AVT kullanılarak göreceli konumlar hesaplanır. Herhangi bir anda, ilgili u çapa düğümü için kullanılan avt u bileşeninden, avt u.getv alue arayüzü sayesinde o çapa düğümüne ilişkin tahmini uzaklık değeri d u elde edilir. Bu düğümden gelen koordinat bilgisi (x u, y u ) da sistemde tutulmaktadır. Diğer k ve z düğümlerinden gelen bilgiler de kullanılarak trilaterasyon yöntemi ile aşağıdaki gibi hesaplanır: [ xk x 2 z y k y z x k x u y k y u ] [ xv y v ] = [ (d 2 z d 2 k ) (x2 z x 2 k ) (y2 z y 2 k ) (d 2 u d 2 k ) (x2 u x 2 k ) (y2 u y 2 k ) ] 10

11 d z 2 =( x v x z ) 2 +( y v y z ) 2 d u 2 =(x v x u ) 2 +( y v y u ) 2 d k 2 =(x v x k ) 2 +( y v y k ) 2 Trilateration avt u, x u, y u avt k, x k, y k avt z, x z, y z Şekil 4: Çapa Düğümler kullanılarak koordinat hesaplama adımları. Yukarıdaki formülden hesaplanan (x v, y v ) koordinatının da devingen ve hatalara karşı duyarlı bir şekilde takipinin yapılabilmesi için bu iki değişken için de AVT algoritması kullanılmıştır. Algoritma 2 de ve Şekil 5 te bu adımlar özetlenmiştir. Algoritma 2: Bir v düğümü için konum tahmini modülünün koordinat bulma algoritması. 1: Bir u çapasından (x u, y u ) koordinat bilgisi alındığında 2: Kaydedilen diğer 2 çapa bilgisi kullanılarak, tirlaterasyonla (x v, y v ) hesapla 3: x err = avt x v.getv alue x v 4: y err = avt y v.getv alue y v 5: if x err > 0 then avt x v.adjust(f ) // v düğümünün x konumu arttır 6: else if x err < 0 then avt x v.adjust(f ) // v düğümünün x konumu azalt 7: else avt x v.adjust(f ) // v düğümünün x konumu gayet iyi 8: if y err > 0 then avt y v.adjust(f ) // v düğümünün y konumu arttır 9: else if y err < 0 then avt y v.adjust(f ) // v düğümünün y konumu azalt 10: else avt y v.adjust(f ) // v düğümünün y konumu gayet iyi 11

12 4 Gerçekleştirim Şekil 5: Çapa düğümlerden gelen mesajlarla konum tespiti. 4.1 Araçlar, Kütüphaneler ve Konfigürasyon Konum tespit sisteminin geliştiriminde kullanılan donanım platformu Genetlab Sensenode v.1.3 [10] dır. Bu platform 16- bit düşük-güç MSP430 [2] mikrodenetleycisini içermektedir. Mikrodenetleyici 10kB RAM, 48kB program flash ve 1024kB external flash belleğe sahiptir. Platformda bulunan CC2420 [1] haberleşme yongası 2.4 GHz frekansta çalışmaktadır ve 250kbps veri iletim hızına sahiptir. Sistem açık kaynak kodlu bir işletim sistemi olan TinyOS [16] işletim sisteminin son sürümü olan ve nesc [9] programlama dili kullanılarak geliştirilmiştir. TinyOS kablosuz gömülü sistemler için tasarlanmıştır ve bileşen tabanlı bir mimariye sahiptir. TinyOS un bileşen kütüphaneleri ağ protokolleri, dağıtık servisler, algılayıcı sürücüleri ve veri toplama araçlarını içermektedir. Geliştirme ortamı olarak Ubuntu LTS kullanılmıştır. Sistem ayarları olabildiğince varsayılan olarak tutulmuştur ve geliştirme ortamımız başka yerde yeniden kolayca kurulabilir Genetlab Platformunda Ultrasonik Algılayıcı Sürücüsü Kullandığımız Sensenode algılayıcı platformdaki Ultrasonic algılayıcısı, platformuyla gelen sürücü ile calışmamıştır. Bu yüzden algılayıcının sürücüsünü kendimiz gerçekleştirmek zorunda kaldık. Platformun kapalı tasarıma sahip olmasi, geliştirme sürecini oldukça yavaşlatmıştır. Çoğunlukla reverse-engineering ile elde ettigimiz algılayıcının çalışma prensibini çıkarttıktan sonra, msp430 işlemcisi için PWM ile 40khz kare dalga üreten ve DAC ile 2.4V referans degeri üreten ve donanım seviyesinde çalısan bir sürücüyü gerçekleştirdik Arayüz Tasarımı Veri toplayan merkezin (sink) işlevini USB portu ile bilgisayara bağlanmış programcı/seri veri bağdaştırıcına takılı ve BaseStation uygulaması yüklenmiş düğüm görmektedir. Bu uygulama TinyOS ile gelmektedir ve çok basit görev yapmaktadır: RF kanalı ile gelen bütün mesajları seri bağlantısı ile bilgisayara aktarmaktır. Seri bağlantısından gelen bit akıntısından, daha önce tanımlanmış mesaj tiplerine göre mesajlar elenmektedir. Java nesnelerine dönüştürülen 12

13 bu mesajlar ilgili arayüze gönderilmektedir. Her yeni mesaj alan arayüz, içindeki bilgileri alıp ekrana yazdırılmaktadır. Şekil 6: Algılayıcı ağından toplanan konum bilgisini görselleştiren Java programı. Düğümlerin konumun görsel olarak kullanıcılara devingen olarak sunulması için, Java programlama dili tabanlı bir görsel arayüz geliştirilmiştir. Şekil 6 da geliştirilen arayüz yazılımı gösterilmektedir. Arayüz, sisteme yeni düğümler eklendikçe ve bir düğüm konumu değişince kullanıcıya anında görsel bilgi sunmaktadır. Böylece, kullanıcı gerçek zamanlı bir şekilde algılayıcı ağını gözetleyebilmektedir. 13

14 5 Proje Takvimi Proje Ramil Agliamzanov tarafından gerçekleştirilmiştir. gösterilmiştir. Görev Tanımı Ultrasonik algılayıcıların çalıştırılması Saat eşzamanlaması modülünün çalıştırılması Konum tespit modülünün gerçekleştirimi Arayüz gerçekleştirimi Sistem testleri Proje geliştirme takvimi aşağıda Tarih 16 Mart - 22 Mart 23 Mart - 31 Mart 1 Nisan - 13 Nisan 14 Nisan - 28 Nisan 28 Nisan - 5 Mayıs Özellikle Genetlab platformunda ultrasonik algılayıcıları çalıştırarak mesafe ölçümü yapmak oldukça zaman kaybettirici olmuştur. Bu adım, bir donanım sürücüsü yazılmasını gerektirmiştir. Donanımsal tutarsızlıklar ve geliştirme ortamının oldukça ilkel olması, projenin oldukça zahmetli bir şekilde geliştirilmesi sonucunu doğurmuştur. 14

15 6 Değerlendirme ve Sonuçlar Geliştirilen sistemin değerlendirilmesi için gerçek donanım platformunda deneyler yapılmıştır. Bu deneylerde AVT lerin min ve max değerleri 0.1 ve 50, uzaklık arama uzayı ise [0, 300] olarak sınırlandırılmıştır. AVT ile Uzaklık Tahminleme Başarımı Şekil 7: Bir çapa ve bir alıcı düğümden oluşan ağ. Öncelikle AVT ile uzaklık tahminlemenin başarımının değerlendirilmesi için 2 algılayıcı düğümü kullanılmıştır. Bir algılayıcı düğüm, çapa düğüme belirli bir sıklıkta REQUEST mesajı gönderir. Bu mesajı alan çapa düğüm ise bir RF ve bir Ultrasonik sinyal gönderir. Alıcı düğüm, Algoritma 1 deki adımları işleterek uzaklık bilgisini hesaplamaktadır. Şekil 7 de ilgili deney düzeneği gösterilmiştir. Şekil 8 de alıcı düğümün çapa düğüm için çalıştırdığı AVT nin değerinin ve parametresinin değişimi gösterilmiştir. İlk başta saat eşzamanlaması olmadığı için, ultrasonik sinyaller ile hesaplanan uzaklık değeri oldukça hatalıdır. Saat eşzamanlaması sağlanıncaya kadar geçen sürede AVT nin değeri adım adım gerçek uzaklık değerine yaklaşmaktadır. Bu süreçte, değeri öncelile en yüksek değeri olan 50 değerinde kalmakta, AVT gerçek değere yaklaştıkça bu değer de küçülerek en sonunda min değerine kavuşmaktadır. Alıcı düğümün konumu değiştiğinde, AVT kendisine gelen geribildirimler sayesinde yeni uzaklık değerini aramaya başlamakta, ve devingen bir şekilde kendini uyarlamaktadır. değeri tekrar büyüyerek AVT nin hızlı bir şekilde yeni konuma yaklaşması sağlanmakta, sonra bu değer 15

16 Şekil 8: Uzaklık değişiminden AVT nin değerinin (kırmızı) ve delta parametresinin (beyaz) evrimi. küçülerek AVT nin hassas bir şekilde yeni konumu bulması sağlanmaktadır. Şekil 9 AVT ile uzaklık tahmininin ortam gürültüsüne ve hatalı hesaplamalara karşı nasıl dayanıklı olduğunu göstermektedir. Uzaklık hesaplaması için kullanılan yöntemde, ultrasonik sinyallerin yakalanması kendi içinde belirli bir hatayı barındırır. Saat eşzamanlamasının hatası ile beraber, hesaplanan uzaklık değeri sürekli değişkenlik göstermiş ve tutarsızlıklar sergilemiştir. AVT, anlık hatalara karşı oldukça sağlam bir başarım sergilemiş ve oldukça tutarlı uzaklık bilgisi hesaplamıştır. Şekil 9: AVT ile (kırmızı) ve AVT siz (beyaz) uzaklık tahmini. AVT hatalara karşı oldukça sağlam bir davranış sergilemiştir, diğer yönteme göre oldukça tutarlı ve sabit bir uzaklık değeri döndürmüştür. AVT ile Konum Tespit Başarımı AVT ile konum tespit başarımının değerlendirilmesi için 4 algılayıcı düğümü kullanılmıştır. Bir algılayıcı düğüm, üç çapa düğüme belirli bir sıklıkta REQUEST mesajı gönderir. Bu mesajı alan çapa düğümler sırayla bir RF ve bir Ultrasonik sinyal gönderir. Alıcı düğüm, Algoritma 1 deki adımları işleterek bu üç çapa düğüme olan göreceli uzaklık bilgisini hesaplamaktadır. Daha sonra 2 işletilerek konum bilgisini hesaplar. Bu adımlar Şekil 5 te özetlenmiştir. Şekil 10 de ilgili deney düzeneği gösterilmiştir. Şekil 11 bu deney düzeneğinde AVT ile konum tespitinin ne kadar tutarlı ve ortam devingenliğine karşı sağlam olduğunu göstermektedir. Çapa düğümlere olan uzaklık AVT ler ile hesaplandığı için bu uzaklıklar oldukça tutarlı ve az değişkenlik göstermektedirler. Bu uzaklık değerleri üzerinden trilaterasyon yapmak ve elde edilen x ve y koordinatı bilgilerini tekrar AVT ler ile takip etmek, sistemi daha da sağlamlaştırmıştır. Şekilden görüleceği gibi hiç AVT kullanmayan bir sistem oldukça değişken bir konum bilgisi 16

17 Şekil 10: Üç çapa ve bir alıcı düğümden oluşan ağ. hesaplamaktadır. Şekil 12 AVT ile konum tespitinin devingenliğini ve uyarlanabilirliğini göstermektedir. Alıcı düğümün konumu değiştiğinde AVT hemen yeni bir arama başlatarak yeni konumu hızlı bir şekilde bulmaktadır. Konum bulunduktan sonra, değişkenlik göstermemektedir. AVT siz konum bulma ise olduka değişken ve tutarsızdır. 6.1 Sonuçlar Yapılan deneyler sonucunda, aşağıdaki gözlemler yapılmış ve sonuçlara varılmıştır: Yapılan mesafe ölçümlerde AVT mekanizması kullanmadan mesafeyi cm hatayla, AVT mekanizması eklendikten sonra mesafe ölçümleri 2-5 cm hata ile yapılmıştır. Trilaterasyon sonucunda konum tahmini, AVT siz gerçek konumun cm etrafında, AVT mekanizması eklendikten sonra konum tahmini çok az oynamamakla birlikte gerçek konumundan 2-5 cm farkla ölçülmüştür. AVT yöntemi ile oldukça tutarlı ve hatalara karşı sağlam uzaklık tahmini yapılmaktadır. AVT, hesaplamalar ve kaynak tüketimi açısından oldukça hafif bir algoritma olduğu için, kablosuz gömülü cihazlar için tam olarak uygundur. AVT ortamdan gelen geribildirimler sayesinde hızlı bir şekilde değişimlere karşı kendini uyarlayabilmektedir. 17

18 Şekil 11: AVT ile (kırmızı) ve AVT siz (beyaz) konum tespiti. AVT diğer yönteme göre oldukça tutarlı ve sabit bir konum değeri döndürmüştür. AVT siz hesaplamalar oldukça sapma göstermekte ve tutarsızlıklar barındırmaktadır. Hassasiyet ve yerleştirme problemleri aşmak için, daha nitelikli algılayıcı donanımları kullanılmalıdır. Daha kaliteli ultrasonic algılayıcıları hassasiyeti arttıracak, 120 derece görüş açısından kaynaklanan yerleştirme problemleri ise omni-directional 360 derece görecek şekilde dizilen birkaç tane algılayıcı ile çözülebilecektir. 18

19 Şekil 12: AVT ile (kırmızı) konum tespiti devingendir ve değişimlere kendini hemen uyarlamaktadır. AVT siz (beyaz) konum tespiti oldukça tutarsızdır. 7 Projenin Özgünlüğü Özellikle günümüz uygulamalarının konum bilgisine ihtiyaç duymaları, konum tespit sistemlerini önemli hale getirmiştir. Bu projede gerçek anlamda çalışan bir konum tespit sistemi prototipi geliştirilmiştir. Geliştirdiğimiz sistemde, uzaklık ölçümleri ultrasonik algılayıcılar yardımıyla yapılmaktadır. Ancak, sistemimiz uzaklık ölçümü teknolojisinden bağımsızdır ve diğer ölçüm yöntemleri ile de kullanılabilmektedir. Yani tak-çalıştır özelliğine sahiptir. Daha kaliteli algılayıcılar ve daha az hatalı ölçümler konum tespit sistemimizin başarımını arttıracaktır. Oldukça basit hesaplamalarla oldukça sağlam ve başarılı bir sistem geliştirmiş bulunmaktayız. Sistemin uygulanabilir ve kullanışlı olduğunu deneylerle gözlemledik. Literatürdeki diğer çalışmaların aksine, konum bulma bu projede bir devingen arama problemi olarak ele alınmıştır. Gürültülü ve devingen bir algılayıcı ağında, kendi konumunu bilmeyen bir algılayıcı düğümü, kendi konumunu bilen diğer düğümlerden aldığı paketlerle belirli bir arama uzayında kendi konumunu aramaktadır. Bu devingen arama için yöntem olarak Uyarlanabilir Değer İzleyicisi (Adaptive Value Tracker - AVT) kullanılmıştır. Projenin bilimsel literatüre kattığı yenilikler aşağıdaki gibi özetlenebilir: Konum bulma problemi literatürde ilk defa bir devingen arama problemi olarak ele alınmıştır. Literatürde daha önce saat eşzamanlaması problemine uygulanan AVT ler, ilk defa konum bulma problemi için kullanılmıştır. Geliştirilen sistem, AVT lerin uyarlanabilir yapısı sayesinde ağdaki hatalara ve devingenliğe karşı sağlam ve hızlı tepki verebilen bir sistem olmuştur. Önerilen yöntem tutarlı ve sağlam konum bulmayı çok az işlemci ve bellek yük ile yapmaktadır. 19

20 Bu çalışmanın daha da geliştirilerek bilimsel bir yayına dönüşmesi, ayrıca sistemin tüm kablosuz gömülü sistem araştırmacılarının kullanımına açılması hedeflenmektedir. Ülkemiz için, uluslararası bağlamda özgün bir akademik çalışma ortaya koyulmuş ve bu alandaki bilgi ileriye götürülmüştür. Buna ek olarak, herhangi bir ticari ürünün içine tak-çalıştır olarak koyulabilecek pratik bir konum tespit yöntemi ortaya koyulmuştur. Bu anlamda, ilgili donanımsal mesafe ölçme yeteneğinin olduğu bir sistemde yazılımsal ve algoritmik bağımlılıklar ortadan kaldırılmıştır. Gelecek çalışmalarımız, geliştirilen sistemin hassasiyet, yerleştirme, güç tüketimi vb. açısından iyileştirilmesini hedeflemektedir. 20

21 8 Ekler Geliştirilen sisteme ait deneysel görüntüler: Sistemin Yüksek Kaliteli Demo Görüntüsü 1. Grafik: AVT ler ile devingen ve uyarlanabilir uzaklık tahmini 2. Grafik: AVT ler ile devingen ve uyarlanabilir konum tahmini 21

22 Referanslar [1] Cc2420 from texas instruments. [2] Msp430 from texas instruments. [3] I. F. Akyildiz and M. C. Vuran. Wireless Sensor Networks. John Wiley & Sons, [4] I. Amundson and X. Koutsoukos. A survey on localization for mobile wireless sensor networks. In R. Fuller and X. Koutsoukos, editors, Mobile Entity Localization and Tracking in GPS-less Environnments, volume 5801 of Lecture Notes in Computer Science, pages Springer Berlin Heidelberg, [5] N. Brax, E. Andonoff, M. Gleizes, and P. Glize. Mas4at : un sma auto-adaptatif pour le déclenchement d alertes dans le cadre de la surveillance maritime. Revue d Intelligence Artificielle (forthcoming), [6] N. Brax, E. Andonoff, M. Gleizes, and P. Glize. Self-adapted aided decision-making: Application to maritime surveillance. In 5th International Conference on Agents and Artificial Intelligence, [7] L. Cheng, C. Wu, Y. Zhang, H. Wu, M. Li, and C. Maple. A survey of localization in wireless sensor network. IJDSN, 2012, [8] X. Cheng, A. Thaeler, G. Xue, and D. Chen. Tps: a time-based positioning scheme for outdoor wireless sensor networks. In INFOCOM Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies, volume 4, pages vol.4, March [9] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesc language: A holistic approach to networked embedded systems. In PLDI 03: Proceedings of the ACM SIGPLAN 2003 conference on Programming language design and implementation, pages 1 11, New York, NY, USA, ACM. [10] Genetlab. Sensenode technical specifications document v1.3b [11] O. Gürcan, C. Bernon, K. S. Türker, J.-P. Mano, P. Glize, and O. Dikenelli. Simulating human single motor units using self-organizing agents. In Self-Adaptive and Self-Organizing Systems (SASO), 2012 IEEE Sixth International Conference on, pages 11 20, sept [12] Ö. Gürcan, K. S. Türker, J.-P. Mano, C. Bernon, O. Dikenelli, and P. Glize. Mimicking human neuronal pathways in silico: an emergent model on the effective connectivity. Journal of Computational Neuroscience, pages 1 23, /07/04/online. [13] Ö. Gürcan and K. S. Yildirim. Self-organizing time synchronization of wireless sensor networks with adaptive value trackers. In Self-Adaptive and Self-Organizing Systems (SASO), 2013 IEEE Sixth Int. Conf. on, pages , sept [14] S. Lemouzy, V. Camps, and P. Glize. Real time learning of behaviour features for personalised interest assessment. In Y. Demazeau, F. Dignum, J. Corchado, and J. Pérez, editors, Advances in Practical Applications of Agents and Multiagent Systems, volume 70 of Advances in Soft Computing, pages Springer Berlin / Heidelberg,

23 [15] S. Lemouzy, V. Camps, and P. Glize. Principles and properties of a mas learning algorithm: A comparison with standard learning algorithms applied to implicit feedback assessment. In Web Intelligence and Intelligent Agent Technology (WI-IAT), 2011 IEEE/WIC/ACM International Conference on, volume 2, pages , Aug [16] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler. Tinyos: An operating system for sensor networks. In in Ambient Intelligence. Springer Verlag, [17] D. Moore, J. Leonard, D. Rus, and S. Teller. Robust distributed network localization with noisy range measurements. In Proceedings of the 2Nd International Conference on Embedded Networked Sensor Systems, SenSys 04, pages 50 61, New York, NY, USA, ACM. [18] L. Pons, C. Bernon, and P. Glize. Scenario Control for (Serious) Games using Selforganizing Multi-Agent Systems (regular paper). In International Conference on Complex Systems (ICCS), Agadir, Morocco, 05/11/ /11/2012, page (electronic medium), IEEExplore digital library. [19] N. B. Priyantha. The cricket indoor location system. Technical report, [20] A. Savvides, C.-C. Han, and M. B. Strivastava. Dynamic fine-grained localization in ad-hoc networks of sensors. In Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, MobiCom 01, pages , New York, NY, USA, ACM. [21] K. S. Yildirim and Ö. Gürcan. Efficient time synchronization in a wireless sensor network by adaptive value tracking. Wireless Communications, IEEE Tran. on, to appear. 23

EGE Üniversitesi Mühendislik Fakültesi Bilgisayar Müh. Bölümü 2013-2014 Öğretim Yılı Lisans Tezi Önerileri

EGE Üniversitesi Mühendislik Fakültesi Bilgisayar Müh. Bölümü 2013-2014 Öğretim Yılı Lisans Tezi Önerileri EGE Üniversitesi Mühendislik Fakültesi Bilgisayar Müh. Bölümü 2013-2014 Öğretim Yılı Lisans Tezi Önerileri Danışman Öğretim Üyesi: Kasım Sinan YILDIRIM 1) Tez Başlığı: Kablosuz Algılayıcı Ağlarında Hareketli

Detaylı

Kablosuz Algılayıcı Ağları ile Yangın Tespit Sistemi

Kablosuz Algılayıcı Ağları ile Yangın Tespit Sistemi Kablosuz Algılayıcı Ağları ile Yangın Tespit Sistemi Çağdaş Döner Gömülü Sistemler ve Uygulamaları Sempozyumu Kasım,4-5,2010 İTÜ, İstanbul Ege Üniversitesi Bilgisayar Mühendisliği Bölümü İzmir, Türkiye

Detaylı

Kablosuz Algılayıcı Ağları İçin TinyOS İle Uygulama Geliştirme

Kablosuz Algılayıcı Ağları İçin TinyOS İle Uygulama Geliştirme Kablosuz Algılayıcı Ağları İçin TinyOS İle Uygulama Geliştirme Kasım Sinan YILDIRIM 1, Aylin KANTARCI 2 1 Ege Üniversitesi, Bilgisayar Mühendisliği Bölümü, İzmir 2 Ege Üniversitesi, Bilgisayar Mühendisliği

Detaylı

Kablosuz Algılayıcı Ağları İçin TinyOS İle Uygulama Geliştirme

Kablosuz Algılayıcı Ağları İçin TinyOS İle Uygulama Geliştirme Kablosuz Algılayıcı Ağları İçin TinyOS İle Uygulama Geliştirme Kasım Sinan YILDIRIM AKADEMİK BİLİŞİM 2010 10-12 Şubat 2010 Muğla Üniversitesi, Muğla Ege Üniversitesi Bilgisayar Mühendisliği Bölümü İzmir,

Detaylı

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008 Kablosuz Sensör Ağlar ve Eniyileme Tahir Emre KALAYCI 21 Mart 2008 Gündem Genel Bilgi Alınan Dersler Üretilen Yayınlar Yapılması Planlanan Doktora Çalışması Kablosuz Sensör Ağlar Yapay Zeka Teknikleri

Detaylı

SOME-Bus Mimarisi Üzerinde Mesaj Geçişi Protokolünün Başarımını Artırmaya Yönelik Bir Algoritma

SOME-Bus Mimarisi Üzerinde Mesaj Geçişi Protokolünün Başarımını Artırmaya Yönelik Bir Algoritma SOME-Bus Mimarisi Üzerinde Mesaj Geçişi Protokolünün Başarımını Artırmaya Yönelik Bir Algoritma Çiğdem İNAN, M. Fatih AKAY Çukurova Üniversitesi Bilgisayar Mühendisliği Bölümü Balcalı-ADANA İçerik Çalışmanın

Detaylı

Sensör Kullanarak Servis Araçlarının Koltuk Doluluk Durumlarının Uzaktan İzlenmesi

Sensör Kullanarak Servis Araçlarının Koltuk Doluluk Durumlarının Uzaktan İzlenmesi Sensör Kullanarak Servis Araçlarının Koltuk Doluluk Durumlarının Uzaktan İzlenmesi Emre Okumuş 1, Yusuf Furkan Mutlu 1, Şenol Zafer Erdoğan 2, Fatih Yücalar 2 Maltepe Üniversitesi, Bilgisayar Mühendisliği

Detaylı

Elbistan Meslek Yüksek Okulu Güz Yarıyılı

Elbistan Meslek Yüksek Okulu Güz Yarıyılı HAFTA III Bilgi iletişim sistemi : Bilgi iletişim sistemi, dağıtık sistem içerisinde düğümler arasındaki iletişimi desteklemekle yükümlüdür. İletişim sistemi, iletişim ağı ile bağlanmış herhangi bir düğümün,

Detaylı

Özet Kablosuz alglayc a lar çevreyi alglama yetene ine sahip, ucuz ve enerji kstlar olan küçük cihazlardan olu³ur. Birbirlerinden ziksel olarak

Özet Kablosuz alglayc a lar çevreyi alglama yetene ine sahip, ucuz ve enerji kstlar olan küçük cihazlardan olu³ur. Birbirlerinden ziksel olarak i Özet Kablosuz alglayc a lar çevreyi alglama yetene ine sahip, ucuz ve enerji kstlar olan küçük cihazlardan olu³ur. Birbirlerinden ziksel olarak ayrlm³ olan alglayc dü ümleri, çevresel verileri alglayclarn

Detaylı

İŞLETİM SİSTEMLERİNE GİRİŞ. Modern bilgisayar çalışma prensipleri, Von Neumann ın 1945 de geliştirdiği

İŞLETİM SİSTEMLERİNE GİRİŞ. Modern bilgisayar çalışma prensipleri, Von Neumann ın 1945 de geliştirdiği İŞLETİM SİSTEMLERİNE GİRİŞ Von Neumann Mimarisi Modern bilgisayar çalışma prensipleri, Von Neumann ın 1945 de geliştirdiği mimariyi temel almaktadır. Merkezi İşlem Birimi Aritmetik ve Mantık Birimi Kontrol

Detaylı

RF İLE ÇOK NOKTADAN KABLOSUZ SICAKLIK ÖLÇÜMÜ

RF İLE ÇOK NOKTADAN KABLOSUZ SICAKLIK ÖLÇÜMÜ RF İLE ÇOK NOKTADAN KABLOSUZ SICAKLIK ÖLÇÜMÜ Fevzi Zengin f_zengin@hotmail.com Musa Şanlı musanli@msn.com Oğuzhan Urhan urhano@kou.edu.tr M.Kemal Güllü kemalg@kou.edu.tr Elektronik ve Haberleşme Mühendisliği

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ EĞİTİM ÖĞRETİM YILI DERS KATALOĞU

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ EĞİTİM ÖĞRETİM YILI DERS KATALOĞU T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ - EĞİTİM ÖĞRETİM YILI DERS KATALOĞU Ders Kodu Bim Kodu Ders Adı Türkçe Ders Adı İngilizce Dersin Dönemi T Snf Açıl.Dönem P

Detaylı

KENDĐ KENDĐNE YOL BULAN ARAÇ

KENDĐ KENDĐNE YOL BULAN ARAÇ KENDĐ KENDĐNE YOL BULAN ARAÇ Projeyi Yapan : Selim Göksu Proje Yöneticisi : Prof. Dr. Tülay Yıldırım GĐRĐŞ Günümüzde, kullanılan bir takım araçların (evdeki robotlardan fabrikalardaki forkliftlere, sokaktaki

Detaylı

08225 AĞ TEMELLERĠ. Elbistan Meslek Yüksek Okulu GÜZ Yarıyılı. Öğr. Gör. Murat KEÇECĠOĞLU. 20 EKi Salı, Çarşamba

08225 AĞ TEMELLERĠ. Elbistan Meslek Yüksek Okulu GÜZ Yarıyılı. Öğr. Gör. Murat KEÇECĠOĞLU. 20 EKi Salı, Çarşamba 08225 AĞ TEMELLERĠ Elbistan Meslek Yüksek Okulu 2014 2015 GÜZ Yarıyılı 20 EKi. 2014 Salı, Çarşamba Öğr. Gör. Murat KEÇECĠOĞLU Bilgi iletişim sistemi, dağıtık sistem içerisinde düğümler arasındaki iletişimi

Detaylı

BSM 532 KABLOSUZ AĞLARIN MODELLEMESİ VE ANALİZİ OPNET MODELER

BSM 532 KABLOSUZ AĞLARIN MODELLEMESİ VE ANALİZİ OPNET MODELER BSM 532 KABLOSUZ AĞLARIN MODELLEMESİ VE ANALİZİ OPNET MODELER Yazılımı ve Genel Özellikleri Doç.Dr. Cüneyt BAYILMIŞ Kablosuz Ağların Modellemesi ve Analizi 1 OPNET OPNET Modeler, iletişim sistemleri ve

Detaylı

MÜFREDAT DERS LİSTESİ

MÜFREDAT DERS LİSTESİ MÜFREDAT DERS LİSTESİ MÜHENDİSLİK FAK. / BİLGİSAYAR MÜHENDİSL / 2010 BİLGİSAYAR MÜHENDİSLİĞİ Müfredatı 0504101 Matematik I Calculus I 1 GÜZ 4 5 Z 0504102 Genel Fizik I General Physics I 1 GÜZ 4 4 Z 0504103

Detaylı

Prof. Dr. Oğuzhan Urhan GYY Müh.Tas 3 ve Tez Konusu Önerileri

Prof. Dr. Oğuzhan Urhan GYY Müh.Tas 3 ve Tez Konusu Önerileri Prof. Dr. Oğuzhan Urhan 2018-2019 GYY Müh.Tas 3 ve Tez Konusu Önerileri Mobil platformlarda Derin Öğrenme (Deep Learning) uygulaması Geleneksel örüntü tanıma yaklaşımları yerine geçmeye başlayan derin

Detaylı

Bilgisayar Mühendisliği. Bilgisayar Mühendisliğine Giriş 1

Bilgisayar Mühendisliği. Bilgisayar Mühendisliğine Giriş 1 Bilgisayar Mühendisliği Bilgisayar Mühendisliğine Giriş 1 Mühendislik Nedir? Mühendislik, bilim ve matematiğin yararlı cihaz ve sistemlerin üretimine uygulanmasıdır. Örn: Elektrik mühendisleri, elektronik

Detaylı

5 İki Boyutlu Algılayıcılar

5 İki Boyutlu Algılayıcılar 65 5 İki Boyutlu Algılayıcılar 5.1 CCD Satır Kameralar Ölçülecek büyüklük, örneğin bir telin çapı, objeye uygun bir projeksiyon ile CCD satırının ışığa duyarlı elemanı üzerine düşürülerek ölçüm yapılır.

Detaylı

Kablosuz Sensör Ağlar ve Uygulamaları

Kablosuz Sensör Ağlar ve Uygulamaları Tahir Emre KALAYCI 11 Şubat 2008 Kablosuz Sensör Ağlar Sensör Düğümü Kablosuz Sensör Ağlar Uygulama Örnekleri Sonuç Kablosuz Sensör Ağlar Donanım ve kablosuz sistemlerdeki gelişmeler düşük maliyetli, düşük

Detaylı

Yerleştirme Problemi. Tahir Emre KALAYCI. 16 Aralık 2010

Yerleştirme Problemi. Tahir Emre KALAYCI. 16 Aralık 2010 Kablosuz Algılayıcı Ağlarında Düğüm (Algılayıcı) Yerleştirme Problemi Tahir Emre KALAYCI 16 Aralık 2010 Gündem 1 Kablosuz Algılayıcı Ağlar Algılayıcı Düğümü Kablosuz Algılayıcı Ağlar ın Özellikleri Uygulama

Detaylı

İŞLETİM SİSTEMİ KATMANLARI (Çekirdek, kabuk ve diğer temel kavramlar) Bir işletim sisteminin yazılım tasarımında ele alınması gereken iki önemli konu

İŞLETİM SİSTEMİ KATMANLARI (Çekirdek, kabuk ve diğer temel kavramlar) Bir işletim sisteminin yazılım tasarımında ele alınması gereken iki önemli konu İŞLETİM SİSTEMİ KATMANLARI (Çekirdek, kabuk ve diğer temel kavramlar) Bir işletim sisteminin yazılım tasarımında ele alınması gereken iki önemli konu bulunmaktadır; 1. Performans: İşletim sistemi, makine

Detaylı

WiFi RS232 Converter Sayfa 1 / 12. WiFi RS232 Converter. Teknik Döküman

WiFi RS232 Converter Sayfa 1 / 12. WiFi RS232 Converter. Teknik Döküman WiFi RS232 Converter Sayfa 1 / 12 WiFi RS232 Converter Teknik Döküman WiFi RS232 Converter Sayfa 2 / 12 1. ÖZELLĐKLER 60.20mm x 40.0mm devre boyutları (5-15)VDC giriş gerilimi Giriş ve çalışma gerilimini

Detaylı

İşletim Sistemleri (Operating Systems)

İşletim Sistemleri (Operating Systems) İşletim Sistemleri (Operating Systems) 1 İşletim Sistemleri (Operating Systems) Genel bilgiler Ders kitabı: Tanenbaum & Bo, Modern Operating Systems:4th ed., Prentice-Hall, Inc. 2013 Operating System Concepts,

Detaylı

Üç Boyutlu Grafik Teknolojilerinin Mobil Öğrenme Alanı ile Bütünleştirilmesi

Üç Boyutlu Grafik Teknolojilerinin Mobil Öğrenme Alanı ile Bütünleştirilmesi Future Learning Future 2008 : e Learning Üç Boyutlu Grafik Teknolojilerinin Mobil Öğrenme Alanı ile Bütünleştirilmesi Eray HANGÜL eray.hangul@sandarta.com Tahir Emre KALAYCI tahir.kalayci@ege.edu.tr Aybars

Detaylı

Doç. Dr. Cüneyt BAYILMIŞ

Doç. Dr. Cüneyt BAYILMIŞ BSM 460 KABLOSUZ ALGILAYICI AĞLAR Doç. Dr. Cüneyt BAYILMIŞ Nesnelerin İnterneti 1 BSM 460 KABLOSUZ ALGILAYICI AĞLAR 5. Hafta KABLOSUZ ALGILAYICI AĞLAR Nesnelerin İnterneti 2 Kablosuz Algılayıcı Ağlar (Wireless

Detaylı

Şifrebilimde Yapay Sinir Ağları

Şifrebilimde Yapay Sinir Ağları Ege Üniversitesi Bilgisayar Mühendisliği Bölümü Şifrebilimde Yapay Sinir Ağları BİM345 Yapay Sinir Ağları İlker Kalaycı Mayıs,2008 Gündem Şifrebilim Şifrebilim nedir Şifreleme Şifre Çözme Klasik Şifreleme

Detaylı

Bilişim Sistemleri. Modelleme, Analiz ve Tasarım. Yrd. Doç. Dr. Alper GÖKSU

Bilişim Sistemleri. Modelleme, Analiz ve Tasarım. Yrd. Doç. Dr. Alper GÖKSU Bilişim Sistemleri Modelleme, Analiz ve Tasarım Yrd. Doç. Dr. Alper GÖKSU Ders Akışı Hafta 5. İhtiyaç Analizi ve Modelleme II Haftanın Amacı Bilişim sistemleri ihtiyaç analizinin modeli oluşturulmasında,

Detaylı

YILDIZ TEKNIK ÜNİVERSİTESİ ELEKTRİK - ELEKTRONİK FAKULTESİ ELEKLTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

YILDIZ TEKNIK ÜNİVERSİTESİ ELEKTRİK - ELEKTRONİK FAKULTESİ ELEKLTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ YILDIZ TEKNIK ÜNİVERSİTESİ ELEKTRİK - ELEKTRONİK FAKULTESİ ELEKLTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ GEZGİN ROBOT UYGULAMASI ORHAN BEDİR ORHAN MERT Proje Danışmanı : Y.Doç.Dr. Tuncay UZUN İstanbul,

Detaylı

Kablosuz Ağ Tabanlı Gezgin Keşif Robotu: Kaşif

Kablosuz Ağ Tabanlı Gezgin Keşif Robotu: Kaşif Kablosuz Ağ Tabanlı Gezgin Keşif Robotu: Kaşif Onur Çelik 1 Erkan Yiğiter 2 Herman Sedef 3 1,2,3 Elektronik ve Haberleşme Mühendisliği Bölümü, Yıldız Teknik Üniversitesi, İstanbul 1 e-posta: onurcel@yahoo.com

Detaylı

GÖRÜNTÜ TABANLI ALGILAMA İLE QUADROTORUN HAREKETLİ BİR CİSMİ TAKİBİ

GÖRÜNTÜ TABANLI ALGILAMA İLE QUADROTORUN HAREKETLİ BİR CİSMİ TAKİBİ GÖRÜNTÜ TABANLI ALGILAMA İLE QUADROTORUN HAREKETLİ BİR CİSMİ TAKİBİ 1 PROJENİN TANIMI Bu projede bir quadrotora, görüntü tabanlı algılama ile hareketli bir nesneyi otonom olarak takip etme özelliği kazandırılmıştır.

Detaylı

Kablosuz Algılayıcı Ağlar Kullanılarak Bal Arıları İçin Nektar Akış Periyodunun İzlenmesi

Kablosuz Algılayıcı Ağlar Kullanılarak Bal Arıları İçin Nektar Akış Periyodunun İzlenmesi Kablosuz Algılayıcı Ağlar Kullanılarak Bal Arıları İçin Nektar Akış Periyodunun İzlenmesi Öğr. Gör. Ahmet ALBAYRAK, Trabzon Meslek Yüksekokulu, Karadeniz Teknik Üniversitesi ahmetalbayrak@ktu.edu.tr Prof.

Detaylı

Gezgin Etmen Sistemlerinin Başarım Ölçümü: Benzetim Tekniği

Gezgin Etmen Sistemlerinin Başarım Ölçümü: Benzetim Tekniği Gezgin Etmen Sistemlerinin Başarım Ölçümü: Benzetim Tekniği Gürol Erdoğan 1, Mustafa Yıldız 1, Mehmet Erdem Türsem 2, Selahattin Kuru 1 1 Enformatik Uygulama ve Araştırma Merkezi, Işık Üniversitesi, İstanbul

Detaylı

Bulanık Mantık Tabanlı Uçak Modeli Tespiti

Bulanık Mantık Tabanlı Uçak Modeli Tespiti Bulanık Mantık Tabanlı Uçak Modeli Tespiti Hüseyin Fidan, Vildan Çınarlı, Muhammed Uysal, Kadriye Filiz Balbal, Ali Özdemir 1, Ayşegül Alaybeyoğlu 2 1 Celal Bayar Üniversitesi, Matematik Bölümü, Manisa

Detaylı

Doç. Dr. Cüneyt BAYILMIŞ

Doç. Dr. Cüneyt BAYILMIŞ BSM 460 KABLOSUZ ALGILAYICI AĞLAR 1 BSM 460 KABLOSUZ ALGILAYICI AĞLAR 1. Hafta NESNELERİN İNTERNETİ (Internet of Things, IoT) 2 Giriş İletişim teknolojilerinde ve mikroelektronik devrelerde yaşanan gelişmeler

Detaylı

MESLEKİ TERMİNOLOJİ I 1. HAFTA YAZILIM MÜH. TEMEL KAVRAMLAR

MESLEKİ TERMİNOLOJİ I 1. HAFTA YAZILIM MÜH. TEMEL KAVRAMLAR YAZILIM: SOFTWARE Yazılım (Software): Yazılım sadece bir bilgisayar programı değildir. Basılı veya elektronik ortamdaki her tür dokümanı da içeren ürün. Dokümanlar yazılım mühendislerine ve son kullanıcıya

Detaylı

Mobil Cihazlardan Web Servis Sunumu

Mobil Cihazlardan Web Servis Sunumu Mobil Cihazlardan Web Servis Sunumu Özlem Özgöbek Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2010 İnternet erişiminin yaygınlaşması ve artık mobil cihazlar üzerinden bile yüksek hızlı veri iletişimine

Detaylı

Veri İletişimi, Veri Ağları ve İnternet

Veri İletişimi, Veri Ağları ve İnternet Veri İletişimi, Veri Ağları ve İnternet 2. Ders Yrd. Doç. Dr. İlhami M. ORAK Veri İletişimi Nedir? Haberleşmenin temel problemi bir noktadan gönderilen mesajın diğer noktada aynı veya aynıya yakın bir

Detaylı

Bir bölgede başka bir bölgeye karşılıklı olarak, veri veya haberin gönderilmesini sağlayan.sistemlerdir.

Bir bölgede başka bir bölgeye karşılıklı olarak, veri veya haberin gönderilmesini sağlayan.sistemlerdir. 1.1.3. Scada Yazılımından Beklenenler Hızlı ve kolay uygulama tasarımı Dinamik grafik çizim araçları Çizim kütüphaneleri Alarm yönetimi Tarih bilgilerinin toplanması Rapor üretimi 1.1.4. Scada Sistemleri

Detaylı

MODBUS PROTOKOLÜ ÜZERİNDEN KABLOLU VE KABLOSUZ ENERJİ İZLEME SİSTEMİ

MODBUS PROTOKOLÜ ÜZERİNDEN KABLOLU VE KABLOSUZ ENERJİ İZLEME SİSTEMİ MODBUS PROTOKOLÜ ÜZERİNDEN KABLOLU VE KABLOSUZ ENERJİ İZLEME SİSTEMİ 192.168.1.0 Networkunda çalışan izleme sistemi PC Eth, TCP/IP Cihaz 1, Cihaz 2, Şekil-1 U 200 Şekil-1 deki örnek konfigürasyonda standart

Detaylı

Sistem Nasıl Çalışıyor: Araç İzleme ve Filo Yönetim Sistemi

Sistem Nasıl Çalışıyor: Araç İzleme ve Filo Yönetim Sistemi arvento Araç Takip ve Filo Yönetim Sistemleri ile araçlarınızı 7 gün 24 saat on-line ve geçmişe yönelik olarak izleyebilir, hızlarını, izlemiş oldukları güzergahı, duraklama yaptıkları yerleri uzaktan

Detaylı

KABLOSUZ DUYARGA AĞLARINDA YER BULMA PROBLEMİ

KABLOSUZ DUYARGA AĞLARINDA YER BULMA PROBLEMİ KABLOSUZ DUYARGA AĞLARINDA YER BULMA PROBLEMİ (ÖZET) Kablosuz Duyarga Ağları, üzerlerinde çeşitli duyargaların yer aldığı, birbirleriyle ve mevcut ise bir ana birimle, üzerlerindeki radyo veya akustik

Detaylı

ESİS Projesi. Kaynaklar Bakanlığı

ESİS Projesi. Kaynaklar Bakanlığı ESİS Projesi Hem ulusal, hem de uluslararası platformda enerji, bir ülkenin politika üretmesi ve uygulaması gereken en önemli stratejik alanlardan birisidir. Ülkemiz de sahip olduğu kritik jeopolitik konumu

Detaylı

Bilişim Sistemleri Değerlendirme Modeli ve Üç Örnek Olay İncelemesi

Bilişim Sistemleri Değerlendirme Modeli ve Üç Örnek Olay İncelemesi Bilişim Sistemleri Değerlendirme Modeli ve Üç Örnek Olay İncelemesi Özet Dr. Sevgi Özkan ve Prof. Dr Semih Bilgen Enformatik Enstitüsü, Orta Doğu Teknik Üniversitesi, Ankara Tel: (312) 210 3796 e-posta:

Detaylı

Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri Veri modelleri, veriler arasında ilişkisel ve sırasal düzeni gösteren kavramsal tanımlardır. Her program en azından bir veri modeline dayanır. Uygun

Detaylı

ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ SANAL ARTIRILMIŞ VE AKILLI TEKNOLOJİLER (SAAT) LABORATUVARI SAAT Laboratuvarı Koordinatör: Yrd. Doç. Dr. Gazi Erkan BOSTANCI SAAT

Detaylı

VIERO, görüntü tabanlı analiz sayesinde, ortalama araç hızı bilgisi üretmekte ve araç yoğunluğunu da ölçmektedir. VIERO Araç Sayım Sistemi

VIERO, görüntü tabanlı analiz sayesinde, ortalama araç hızı bilgisi üretmekte ve araç yoğunluğunu da ölçmektedir. VIERO Araç Sayım Sistemi ARAÇ SAYIM SİSTEMİ VIERO, görüntü tabanlı analiz sayesinde, ortalama araç hızı bilgisi üretmekte ve araç yoğunluğunu da ölçmektedir. VIERO Araç Sayım Sistemi VIERO Araç Sayım Sistemi, görüntü tabanlı olarak,

Detaylı

VIERO ARAÇ SAYIM SİSTEMİ

VIERO ARAÇ SAYIM SİSTEMİ VIERO ARAÇ SAYIM SİSTEMİ VIERO, görüntü tabanlı analiz sayesinde, ortalama araç hızı bilgisi üretmekte ve araç yoğunluğunu da ölçmektedir. Viero Araç Sayım Sistemi Viero Araç Sayım Sistemi, görüntü tabanlı

Detaylı

Android e Giriş. Öğr.Gör. Utku SOBUTAY

Android e Giriş. Öğr.Gör. Utku SOBUTAY Android e Giriş Öğr.Gör. Utku SOBUTAY Android İşletim Sistemi Hakkında 2 Google tarafından geliştirilmiştir. Dünyada en çok kullanılan mobil işletim sistemidir. 2018 itibariyle Dünyada Android; %78.65,

Detaylı

Proje Adı : MATLAB Real-Time Windows Target toolbox kullanımı ve ilişkili bir uygulama geliştirilmesi

Proje Adı : MATLAB Real-Time Windows Target toolbox kullanımı ve ilişkili bir uygulama geliştirilmesi Proje Yöneticisi: Doç.Dr. Cihan KARAKUZU Proje Adı : MATLAB Real-Time Windows Target toolbox kullanımı ve ilişkili bir uygulama geliştirilmesi MATLAB Real-Time Windows Target toolbox kullanımının basit

Detaylı

Hareketli. Sistem. Sistemleri. Hareketli. Sistemi

Hareketli. Sistem. Sistemleri. Hareketli. Sistemi Sistemi tartım sistemleri birçok yapının birbirine entegre edilmesiyle oluşur. kalite kriteri sistemleri direkt olarak etkilemektedir. Bu parçaların çoğunun direkt üretimini gerçekleştirebiirnek kurulacak

Detaylı

Lineer Pivot Sulama ve Center Pivot Sulama Sistemlerinde Uzaktan RF Kontrol & İzleme & Pozisyon Kontrol Sistemleri

Lineer Pivot Sulama ve Center Pivot Sulama Sistemlerinde Uzaktan RF Kontrol & İzleme & Pozisyon Kontrol Sistemleri Lineer Pivot Sulama ve Center Pivot Sulama Sistemlerinde Uzaktan RF Kontrol & İzleme & Pozisyon Kontrol Sistemleri 1 -Makineların sulama oranı 2-Nem oranı 3-PIVOT Çalış / Dur 4- Pivot Enerjisini Aç / Kapat

Detaylı

Tarih Saat Modül Adı Öğretim Üyesi. 01/05/2018 Salı 3 Bilgisayar Bilimlerine Giriş Doç. Dr. Hacer Karacan

Tarih Saat Modül Adı Öğretim Üyesi. 01/05/2018 Salı 3 Bilgisayar Bilimlerine Giriş Doç. Dr. Hacer Karacan BİLGİ TEKNOLOJİLERİ YÖNETİMİ EĞİTİM MODÜLLERİ Tarih Saat Modül Adı Öğretim Üyesi 01/05/2018 Salı Bilgisayar Bilimlerine Giriş Doç. Dr. Hacer Karacan Bu dersin amacı, bilgisayar bilimlerinin temel kavramlarını

Detaylı

KABLOSUZ ALGILAYICI AĞLAR VE GÜÇ TÜKETİMİNİN İNCELENMESİ

KABLOSUZ ALGILAYICI AĞLAR VE GÜÇ TÜKETİMİNİN İNCELENMESİ KABLOSUZ ALGILAYICI AĞLAR VE GÜÇ TÜKETİMİNİN İNCELENMESİ Bilgisayar Mühendisliği Bölümü İstanbul Üniversitesi ŞAFAK DURUKAN ODABAŞI SONGÜL TOZAN İstanbul Üniversitesi Mühendislik Fakültesi Avcılar Kampüsü,

Detaylı

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı Mehmet Ali Çavuşlu Özet Yapay sinir ağlarının eğitiminde genellikle geriye

Detaylı

Elbistan Meslek Yüksek Okulu Güz Yarıyılı

Elbistan Meslek Yüksek Okulu Güz Yarıyılı HAFTA IV Elbistan Meslek Yüksek Okulu 2016 2017 Güz Yarıyılı Open System Interconnection (OSI) OSI modeli sıradüzensel 7 katmandan oluşur. OSI modeli hala geliştirilmekte olmasına rağmen satıcılar ve standart

Detaylı

WiFi Relay Sayfa 1 / 11. WiFi Relay. Teknik Döküman

WiFi Relay Sayfa 1 / 11. WiFi Relay. Teknik Döküman WiFi Relay Sayfa 1 / 11 WiFi Relay Teknik Döküman WiFi Relay Sayfa 2 / 11 1. ÖZELLĐKLER 100.0mm x 80.0mm devre boyutları 12/24 VDC giriş gerilimi Giriş ve çalışma gerilimini gösteren LED ler 4 adet, 12/24V,

Detaylı

Yazılım Mühendisliği 1

Yazılım Mühendisliği 1 Yazılım Mühendisliği 1 HEDEFLER Yazılım, program ve algoritma kavramları anlar. Yazılım ve donanım maliyetlerinin zamansal değişimlerini ve nedenleri hakkında yorum yapar. Yazılım mühendisliği ile Bilgisayar

Detaylı

Java 2 Micro Edition (J2ME)

Java 2 Micro Edition (J2ME) Java 2 Micro Edition (J2ME) Arş.Gör. Cenk ATLIĞ Bahar 2005-2006 Trakya Üniversitesi Bilgisayar Mühendisliği İçerik Giriş MIDP nedir? MIDP in Java 2 Platformundaki yeri Java 2 Platformunda cihazların kullanım

Detaylı

DB MARS Bilişim Teknolojileri ve Savunma Sanayi Ticaret Limited Şirketi

DB MARS Bilişim Teknolojileri ve Savunma Sanayi Ticaret Limited Şirketi DB MARS Bilişim Teknolojileri ve Savunma Sanayi Ticaret Limited Şirketi GERÇEK ZAMANLI VERİ TOPLAMA, VERİ KAYIT, KONTROL VE İLETİŞİM SİSTEMİ Gerçek zamanlı veri toplama, veri kayıt ve iletişim sistemi;

Detaylı

Elbistan Meslek Yüksek Okulu Güz Yarıyılı EKi Salı, Perşembe Öğr. Gör. Murat KEÇECĠOĞLU

Elbistan Meslek Yüksek Okulu Güz Yarıyılı EKi Salı, Perşembe Öğr. Gör. Murat KEÇECĠOĞLU Elbistan Meslek Yüksek Okulu 2015 2016 Güz Yarıyılı 22-23 EKi. 2015 Salı, Perşembe Öğr. Gör. Murat KEÇECĠOĞLU OSI modeli sıradüzensel 7 katmandan oluşur. OSI modeli hala geliştirilmekte olmasına rağmen

Detaylı

Bu ürün WinXP, 2000, ME, Win98 de çalıştırılmak için tasarlanmıştır. Her işletim sistemi için yükleme yordamı yaklaşık olarak aynıdır.

Bu ürün WinXP, 2000, ME, Win98 de çalıştırılmak için tasarlanmıştır. Her işletim sistemi için yükleme yordamı yaklaşık olarak aynıdır. 78 Türkçe Hızlı Yükleme Kılavuzu Bu yükleme kılavuzu GW-7100U ve yazılımının yüklenmesinde size yol gösterecektir. Kablosuz ağ bağlantınızı kurmak için, aşağıdaki işlemleri sırayla uygulayın. 1. Yükleme

Detaylı

Mobil Takip Sistemleri

Mobil Takip Sistemleri Mobil Takip Sistemleri Trio Filo Yöne,m Sistemi Yazılım Fonksiyonları Üstün teknolojik altyapısı ile rakiplerinden ayrılan bir araç takip yazılımıdır. Tüm internet tarayıcılarında ek kurulum gerektirmeden

Detaylı

OSI REFERANS MODELI-II

OSI REFERANS MODELI-II OSI REFERANS MODELI-II Ö Ğ R. G Ö R. V O L K A N A L T ı N T A Ş OSI REFERANS MODELI VERİBAĞı KATMANI Veri hattı katmanında, fiziksel katmanda elektronik medyanın üzerinde verilerin nasıl iletileceği ve

Detaylı

PR362009 24 Kasım 2009 Yazılım, PC-tabanlı kontrol Sayfa 1 / 5

PR362009 24 Kasım 2009 Yazılım, PC-tabanlı kontrol Sayfa 1 / 5 Yazılım, PC-tabanlı kontrol Sayfa 1 / 5 IT standartları otomasyonu geliştiriyor: Microsoft Visual Studio entegrasyonlu TwinCAT programlama ortamı TwinCAT 3 extended Automation Beckhoff, otomasyon dünyasını

Detaylı

MÜHENDİSLİK FAKÜLTESİ / ENSTİTÜSÜ / YÜKSEKOKULU BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ /ABD LİSANS PROGRAMI - 2 ( yılı öncesinde birinci

MÜHENDİSLİK FAKÜLTESİ / ENSTİTÜSÜ / YÜKSEKOKULU BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ /ABD LİSANS PROGRAMI - 2 ( yılı öncesinde birinci MÜHENDİSLİK FAKÜLTESİ / ENSTİTÜSÜ / YÜKSEKOKULU BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ /ABD LİSANS PROGRAMI - 2 (2016-17 yılı öncesinde birinci sınıfa başlayan öğrenciler için) BİRİNCİ YIL 1. Dönem CMPE113

Detaylı

MOBIL UYGULAMA GELIŞTIRME

MOBIL UYGULAMA GELIŞTIRME MOBIL UYGULAMA GELIŞTIRME PELIN YILDIRIM FATMA BOZYIĞIT YZM 3214 Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Bu Derste Android Nedir ve Uygulama Temelleri Android Uygulama Bileşenleri

Detaylı

BÖLÜM-6 BLOK DİYAGRAMLARI

BÖLÜM-6 BLOK DİYAGRAMLARI 39 BÖLÜM-6 BLOK DİYAGRAMLARI Kontrol sistemlerinin görünür hale getirilmesi Bileşenlerin transfer fonksiyonlarını gösterir. Sistemin fiziksel yapısını yansıtır. Kontrol giriş ve çıkışlarını karakterize

Detaylı

aselsan VHF SK2 Sabit Merkez Telsizi - Gelişmiş Konfigürasyon 4900 Atlas Sabit Merkez Telsizleri Menüler /Fonksiyonel Özellikler Genel Özellikler

aselsan VHF SK2 Sabit Merkez Telsizi - Gelişmiş Konfigürasyon 4900 Atlas Sabit Merkez Telsizleri Menüler /Fonksiyonel Özellikler Genel Özellikler Genel Özellikler SK2 Direkt Mod Sayısal ve analog kanallarda haberleşme Donanımsal kripto USB konnektörü aracılığıyla dosya aktarımı Farklı dilleri destekleyen kullanıcı arayüzü Almaç Göndermeç Mimarisi

Detaylı

SAYISAL ÇÖZÜMLEME. Yrd.Doç.Dr.Esra Tunç Görmüş. 1.Hafta

SAYISAL ÇÖZÜMLEME. Yrd.Doç.Dr.Esra Tunç Görmüş. 1.Hafta SAYISAL ÇÖZÜMLEME Yrd.Doç.Dr.Esra Tunç Görmüş 1.Hafta Sayısal çözümleme nümerik analiz nümerik çözümleme, approximate computation mühendislikte sayısal yöntemler Computational mathematics Numerical analysis

Detaylı

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine

Detaylı

Yazılım Mühendisliği Bölüm - 3 Planlama

Yazılım Mühendisliği Bölüm - 3 Planlama 1 Yazılım Mühendisliği Bölüm - 3 Planlama 2 3 4 Planlama 5 Yazılım geliştirme sürecinin ilk aşaması Başarılı bir proje geliştirebilmek için projenin tüm resminin çıkarılması işlemi Proje planlama aşamasında

Detaylı

Opcode Yazılım. Opcode Yazılım; alanlarında uzman mühendislerin bir araya gelerek kurdukları bir yazılım şirketidir.

Opcode Yazılım. Opcode Yazılım; alanlarında uzman mühendislerin bir araya gelerek kurdukları bir yazılım şirketidir. Opcode Yazılım Opcode Yazılım; alanlarında uzman mühendislerin bir araya gelerek kurdukları bir yazılım şirketidir. Şirketin çalışma alanları arasında; Nükleer tıp sektörüne yönelik otomasyon yazılımları,

Detaylı

KONUMSAL VERİNİN ELDE EDİLMESİNDE MOBİL CBS OLANAKLARI: GELENEKSEL YÖNTEMLERLE KARŞILAŞTIRMA. Fatih DÖNER

KONUMSAL VERİNİN ELDE EDİLMESİNDE MOBİL CBS OLANAKLARI: GELENEKSEL YÖNTEMLERLE KARŞILAŞTIRMA. Fatih DÖNER KONUMSAL VERİNİN ELDE EDİLMESİNDE MOBİL CBS OLANAKLARI: GELENEKSEL YÖNTEMLERLE KARŞILAŞTIRMA Fatih DÖNER TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri CBS'2007 Kongresi, 30

Detaylı

ÜRETİM SÜREÇLERİNİ GÖZLEMLEMEK VE KONTROL ETMEK İÇİN KABLOSUZ ÇÖZÜM

ÜRETİM SÜREÇLERİNİ GÖZLEMLEMEK VE KONTROL ETMEK İÇİN KABLOSUZ ÇÖZÜM NETWORKER GÖZLEMLEME SİSTEMİ ÜRETİM SÜREÇLERİNİ GÖZLEMLEMEK VE KONTROL ETMEK İÇİN KABLOSUZ ÇÖZÜM Her tür makinene de kullanılabilir Kullanıcının bilgisayarına ilave bir yazılım yüklenmesi gerekmiyor Bağımsız

Detaylı

Ağ Yönetiminin Fonksiyonel Mimarisi

Ağ Yönetiminin Fonksiyonel Mimarisi Bölüm 7 Ağ Yönetimi Ağ Yönetiminin Fonksiyonel Mimarisi a) Performans (Performance) Yönetimi b) Sistem Ayarları (Configuration) Yönetimi c) Hesap (Account) t)yönetimi i d) Hata (Fault) Yönetimi e) Güvenlik

Detaylı

Teknik Belge WDR. WDR: Wide Dynamic Range Geniş Dinamik Aralık nedir? Niçin Önemlidir? elektronik-guvenlik.com SECURITURK

Teknik Belge WDR. WDR: Wide Dynamic Range Geniş Dinamik Aralık nedir? Niçin Önemlidir? elektronik-guvenlik.com SECURITURK Teknik Belge: WDR: Wide Dynamic Range nedir? Niçin Önemlidir? 1 / 10 Teknik Belge WDR WDR: Wide Dynamic Range Geniş Dinamik Aralık nedir? Niçin Önemlidir? 2018 elektronik-guvenlik.com Teknik Belge: WDR:

Detaylı

Taşınabilir Teknolojiler

Taşınabilir Teknolojiler Taşınabilir Teknolojiler Nelerdir? Akıllı cep telefonları Dizüstü bilgisayarlar Tablet PC ler Giyilebilir teknolojiler Akıllı cep telefonları Fotoğraf makinesi, video kamera, sesli ve görüntülü ortam oynatıcılar,

Detaylı

03/03/2015. OSI ve cihazlar. Ağ Donanımları Cihazlar YİNELEYİCİ (REPEATER) YİNELEYİCİ (REPEATER) Yineleyici REPEATER

03/03/2015. OSI ve cihazlar. Ağ Donanımları Cihazlar YİNELEYİCİ (REPEATER) YİNELEYİCİ (REPEATER) Yineleyici REPEATER Ağ Donanımları Cihazlar OSI ve cihazlar OSI Katmanı Uygulama Sunum Oturum Taşıma Ağ Veri İletim Fiziksel Cihaz Yönlendirici (Router) Katman 3 Switch Köprü (Bridge) Katman 2 Switch NIC, Yineleyici (Repeater)

Detaylı

Yrd. Doç. Dr. Ayşegül ALAYBEYOĞLU

Yrd. Doç. Dr. Ayşegül ALAYBEYOĞLU Yrd. Doç. Dr. Ayşegül ALAYBEYOĞLU ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Lisans Sakarya Üniversitesi Bilgisayar Mühendisliği 00-00 Y. Lisans Doktora Ege Üniversitesi Bilgisayar Mühendisliği 00-009

Detaylı

BLM 4811 MESLEKİ TERMİNOLOJİ II Salı , D-109 Dr. Göksel Biricik

BLM 4811 MESLEKİ TERMİNOLOJİ II Salı , D-109 Dr. Göksel Biricik BLM 4811 MESLEKİ TERMİNOLOJİ II 2017-1 Salı 13.00 14.50, D-109 Dr. Göksel Biricik goksel@ce.yildiz.edu.tr Ders Planı Hafta Tarih Konu 1 19.09 Tanışma, Ders Planı, Kriterler, Giriş 2 26.09 Bilgisayarın

Detaylı

VERĠ HABERLEġMESĠ OSI REFERANS MODELĠ

VERĠ HABERLEġMESĠ OSI REFERANS MODELĠ VERĠ HABERLEġMESĠ OSI REFERANS MODELĠ Bölüm-2 Resul DAġ rdas@firat.edu.tr VERİ HABERLEŞMESİ TEMELLERİ Veri İletişimi İletişimin Genel Modeli OSI Referans Modeli OSI Modeli ile TCP/IP Modelinin Karşılaştırılması

Detaylı

ProMark 800 ve GNSS Teknolojisindeki Büyük Gelişmeler. Türkiye Tek Yetkili Temsilcisi

ProMark 800 ve GNSS Teknolojisindeki Büyük Gelişmeler. Türkiye Tek Yetkili Temsilcisi ProMark 800 ve GNSS Teknolojisindeki Büyük Gelişmeler Türkiye Tek Yetkili Temsilcisi 10.Eylül.2012 ProMark 800 ü Tanıtmak Spectra Precision dan yeni GNSS Alıcısı Trimble Firması Ashtech Firmasını kendi

Detaylı

EKLER EK 12UY0106-5/A4-1:

EKLER EK 12UY0106-5/A4-1: Yayın Tarihi: 26/12/2012 Rev. :01 EKLER EK 12UY0106-5/A4-1: nin Kazandırılması için Tavsiye Edilen Eğitime İlişkin Bilgiler Bu birimin kazandırılması için aşağıda tanımlanan içeriğe sahip bir eğitim programının

Detaylı

BİLGİSAYAR AĞLARI VE İLETİŞİM

BİLGİSAYAR AĞLARI VE İLETİŞİM Hafta 7: BİLGİSAYAR AĞLARI VE İLETİŞİM 1. Kablosuz Ağ Temelleri 2. Kablosuz Bir Ağın Kurulumu 1. Kablosuz Ağ Kurulum Bileşenleri 2. Kablosuz Ağ Destek Araçları 3. Kablosuz Ağ Yapılandırması 1. Kablosuz

Detaylı

İNFOSET İNFOSET Ses Kayıt Sistemi v2.0. Sistem Kataloğu

İNFOSET İNFOSET Ses Kayıt Sistemi v2.0. Sistem Kataloğu İNFOSET İNFOSET Ses Kayıt Sistemi v2.0 Sistem Kataloğu İ N F O S E T S E S K A Y I T S İ S T E M İ V 2. 0 Sistem Kataloğu İnfoset Yazılım Marmara Cad.Yüksel Sok. 6/7 Pendik-İstanbul Telefon 216 379 81

Detaylı

Çok İşlemcili Yapılarda Sinyal İşleme Yazılımlarının Geliştirilmesi Uygulaması. Sinan Doğan, Esra Beyoğlu

Çok İşlemcili Yapılarda Sinyal İşleme Yazılımlarının Geliştirilmesi Uygulaması. Sinan Doğan, Esra Beyoğlu Çok İşlemcili Yapılarda Sinyal İşleme Yazılımlarının Geliştirilmesi Uygulaması Sinan Doğan, Esra Beyoğlu ASELSAN A.Ş., REHİS Grubu, Ankara 16 Nisan 2009 1 1 İçerik Sinyal İşleme Yazılımları Çok İşlemci

Detaylı

201 ı yılından itibaren bu sistemler otomatik olarak çalışmaktadır. Bu sistemler ücretli. geçiş tarifelerini, çalışma bilgilerini, hat

201 ı yılından itibaren bu sistemler otomatik olarak çalışmaktadır. Bu sistemler ücretli. geçiş tarifelerini, çalışma bilgilerini, hat Trafik yönetimi geliştirilmesi ve yolcu bilgilendirmelerinin zamanında teslim edilmesini sağlayan ; birincil olarak trafiği verimli kontrol etmekte, yönlendirmekte, tıkanıklık yönetimi sağlamakta, sıradışı

Detaylı

Algılayıcılar / Transmitter

Algılayıcılar / Transmitter 1 Algılayıcı / Transmitter ATH100L Algılayıcılar / Transmitter ATH100L Kullanım Kılavuzu [Rev_1.0_ATH100L] 2 Algılayıcı / Transmitter ATH100L İÇİNDEKİLER 1. GENEL ÖZELLİKLER... 3 1.1. ATH100L... 3 1.2.

Detaylı

ADC Devrelerinde Pratik Düşünceler

ADC Devrelerinde Pratik Düşünceler ADC Devrelerinde Pratik Düşünceler ADC nin belki de en önemli örneği çözünürlüğüdür. Çözünürlük dönüştürücü tarafından elde edilen ikili bitlerin sayısıdır. Çünkü ADC devreleri birçok kesikli adımdan birinin

Detaylı

22/03/2016. OSI and Equipment. Networking Hardware YİNELEYİCİ (REPEATER) YİNELEYİCİ (REPEATER) Yineleyici. Hub

22/03/2016. OSI and Equipment. Networking Hardware YİNELEYİCİ (REPEATER) YİNELEYİCİ (REPEATER) Yineleyici. Hub OSI and Equipment Networking Hardware Networking hardware may also be known as network equipment or computer networking devices. OSI Layer Uygulama Sunum Oturum Taşıma Ağ Veri İletim Fiziksel Equipment

Detaylı

GPS Nedir? Nasıl Çalışır?

GPS Nedir? Nasıl Çalışır? GPS Nedir? Nasıl Çalışır? Atalarımız kaybolmamak için çok ekstrem ölçümler kullanmak zorunda kalmışlardır. Anıtlar dikerek yerler işaretlenmiş, zahmetli haritalar çizilmiş ve gökyüzündeki yıldızların yerlerine

Detaylı

TEMEL BİLGİ TEKNOLOJİLERİ KULLANIMI

TEMEL BİLGİ TEKNOLOJİLERİ KULLANIMI BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ TEMEL BİLGİ TEKNOLOJİLERİ KULLANIMI 3. Hafta BİLGİSAYAR YAZILIMI Dr. Öğr. Üyesi Nesibe YALÇIN nesibeyalcin.wordpress.com BİLGİSAYAR

Detaylı

Bilgisayar Mimarisi Nedir?

Bilgisayar Mimarisi Nedir? BİLGİSAYAR MİMARİSİ Bilgisayar Mimarisi Nedir? Bilgisayar mimarisi, diğer mimariler gibi, bir yapı kullanıcısının ihtiyaçlarını belirleme ve bu ihtiyaçları ekonomik ve teknolojik kısıtlamalar dahilinde

Detaylı

İŞLETİM SİSTEMİ İşletim sistemi kullanıcıyla bilgisayar donanımı arasında iletişim sağlayan programdır.

İŞLETİM SİSTEMİ İşletim sistemi kullanıcıyla bilgisayar donanımı arasında iletişim sağlayan programdır. İŞLETİM SİSTEMİ İşletim sistemi kullanıcıyla bilgisayar donanımı arasında iletişim sağlayan programdır. Programların ve donanımların kullanılması için bir çalıştırılması platformu oluşturur. Sistemin yazılım

Detaylı

GEZİNME ADAPTASYONU: NEDEN VE NASIL?

GEZİNME ADAPTASYONU: NEDEN VE NASIL? GEZİNME ADAPTASYONU: NEDEN VE NASIL? S İ BEL SOMYÜREK B İLAL ATASOY İçerik Neden gezinme adaptasyonuna ihtiyaç duyulur? Gezinme adaptasyonu nedir? Gezinme adaptasyonu nasıl gerçekleştirilir? Sonuç ve öneriler

Detaylı

Yazılım Tanımlı Ağlar Ders 1 Yazılım Tanımlı Ağların Temelleri. Mehmet Demirci

Yazılım Tanımlı Ağlar Ders 1 Yazılım Tanımlı Ağların Temelleri. Mehmet Demirci Yazılım Tanımlı Ağlar Ders 1 Yazılım Tanımlı Ağların Temelleri Mehmet Demirci 1 Yazılım Tanımlı Ağların Temelleri Software-defined networking (SDN) Nedir? Ne işe yarar? Nereden geliyor? Nereye gidiyor?

Detaylı

ALMINA TECHNOLOGICAL SOLUTIONS

ALMINA TECHNOLOGICAL SOLUTIONS KARGOMETRE ALMİNA TEKNOLOJİK ÇÖZÜMLER bünyesindeki tamamı Türk Mühendislerden oluşan AR-GE grubu ile sektörlerde en yeni teknolojiler ile devrim yaratmanın verdiği gururu sizlerle paylaşmaktayız. Kargoculuk

Detaylı

EET349 Analog Haberleşme Güz Dönemi. Yrd. Doç. Dr. Furkan Akar

EET349 Analog Haberleşme Güz Dönemi. Yrd. Doç. Dr. Furkan Akar EET349 Analog Haberleşme 2015-2016 Güz Dönemi Yrd. Doç. Dr. Furkan Akar 1 Notlandırma Ara Sınav : %40 Final : %60 Kaynaklar Introduction to Analog and Digital Communications Simon Haykin, Michael Moher

Detaylı

1.Yazılım Geliştirme Metotları 1

1.Yazılım Geliştirme Metotları 1 1.Yazılım Geliştirme Metotları 1 1.1 Klasik Çevrim(Waterfall) 1.2 V Modeli 1.3 Prototipleme/Örnekleme 1.4 Spiral Model 1.5 Evrimsel Geliştirme 1.6 Evrimsel Prototipleme 1.7 Artımlı Geliştirme 1.8 Araştırmaya

Detaylı