EMG İşaretlerinin K-Ortalama Algoritması Kullanılarak Öbekleştirilmesi. EMG Signal Analysis Using K-Means Clustering

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "EMG İşaretlerinin K-Ortalama Algoritması Kullanılarak Öbekleştirilmesi. EMG Signal Analysis Using K-Means Clustering"

Transkript

1 KSÜ Mühendslk Blmler Dergs, (), 9 5 KSU Journal of Engneerng Scences, (), 9 EMG İşaretlernn K-Ortalama Algortması Kullanılarak Öbekleştrlmes Mücahd Günay, Ahmet ALKA, KSÜ Mühendslk-Mmarlık Fakültes Elektrk-Elektronk Mühendslğ Bölümü, Kahramanmaraş/TÜRKİYE Oho State Unversty, Department of Bomedcal Informatcs, Columbus/OHIO/USA Gelş Tarh: //9 Kabul Tarh: 5/3/ ÖZET: Bu çalışmada Elektromyograf (EMG) şaretler kullanılarak başarılı br kol protez kontrolü çn gerekl olan şaretlern öbekleştrlmes araştırılmıştır. EMG şaretler kas lflernn kasılması sonucu oluşan çok sayıda aksyon potansyellern brleşm olup der yüzeynde algılanmaktadır. Çalışmada dört farklı hareket çn bceps ve trceps kaslarından üretlen EMG şaretler ncelenmştr. Her EMG şaretnn tek br örüntüsü olup, bu örüntülern doğru ayrıştırılması ve kümelenmes önemldr. Özellkle protez kol tasarımlarında değşk hareketler yapılırken elde edlen EMG şaretlernn analz oldukça önemldr. Bu amaçla çalışmada koldan alınan farklı harekete at EMG şaret K- Ortalama algortması kullanılarak öbekleştrme (kümeleme) gerçekleştrlmştr. Bu algortmalar kullanılmadan önce şaretlern br ön şlemeden geçrlmes gerekmektedr. Ön şlemede çok değşk uygulamalar mevcuttur. Bu amaçla şaretlern mutlak değerler alınıp, değşk pencere genşlkler kullanılarak elde edlen ortalama değerler elde edlmştr. Elde edlen bu özellk vektörler öbekleştrme algortmalarına grş olarak uygulanmıştır. Kullanılan ver set üzernde %97.5 gb oldukça başarılı öbekleştrme sonuçları elde edlmştr. Anahtar Kelmeler: EMG, Kümeleme Analz EMG Sgnal Analyss Usng K-Means Clusterng ABSTRACT: The electromyography (EMG) sgnal s the synthess of numerous acton potentals captured from the skn surface. In ths paper, a new technque s proposed to cluster sgnals requred for a prosperous arm prosthess control by usng EMG sgnals. Ths work uses EMG sgnals generated by bceps and trceps muscles for four dfferent movements. Each EMG sgnal has one sngle pattern and t s essental to seperate and cluster these patterns properly. A K-means based clusterng algorthm has been used by defnng four dfferent arm movements sgnals. Pror to clusterng, proper feature vectors are derved from the sgnal. The feature vectors are generated by obtanng the average of the absolute values of the sgnal and usng varant-wndow wdths. These feature vectors are provded as nputs to the clusterng algorthm. Our experemantal results show that a hgh clusterng performance of 97.5% s acheved usng the data sets. Key Words: EMG, Cluster Analyss. GİRİŞ Vücutta meydana gelen değşk elektrokmyasal olayların sonucunda byoelektrk şaret adı verlen şaretler oluşmaktadır. Kaslar aktf oldukları zaman yan kas kasıldığı takdrde br elektrksel şaret üretr. Bu elektrksel şaretn sevyes kasın aktvtes le orantılıdır. Elektromyograf (EMG) olarak adlandırılan bu byoelektrksel şaretlern analz oldukça öneml sonuçlar vermektedr. İsteml kas hareketler beynde snrler yoluyla elektrksel uyarıların kasa letlmes sonucu oluşur. Kas lflernn kasılmaları snrlerce letlen elektrksel uyarılar yoluyla gerçekleştğ gb kasılmaları da elektrksel br şaret doğurur. Bu şaretler ğne veya yüzey elektrotlarıyla ölçülür. EMG şaretler klnk teşhs/tanı ve protezlern hareketlern kontrol etmek çn kullanılablmektedr. Bu çalışmada üst-kol tarafından kontrol edlecek protez kontrollernn daha fonksyonel ve kolay olmasının sağlanablmes araştırılmıştır. Son zamanlarda el, drsek ve blek kontrolü gb protez kol kontrolü yapablen brçok myoelektrk kontrol sstemler önerlmştr. Bu sstemler kontrol blgsn myoelektrk şaretlernn genlk tahmn [] veya değşm oranından çıkartmaya [] dayanmaktadır. Bu sstemler başarılı olsa da brden çok fonksyon çn güvenlr kontrol sağlayamamaktadır. Brden çok fonksyon kontrolü daha güç br problem olup, özellkle drsekten yukarıda olan kol eksklklernde gerekl olmaktadır [5]. EMG şaretlernn analz ver toplama, şaret sınıflarının bçmlenm, özntelk seçm, sınıflama algortmasının belrlenmes ve sınıflama hatasının kestrm gb brçok aşamalardan oluşur. Burada en öneml adımlar özntelk seçm ve sınıflayıcı/öbekleştrc tasarımıdır. Sınıflayıcı tasarımı çn sezgsel yaklaşım, belrgn yaklaşım, statstksel yaklaşım, yapay snr ağları yaklaşımı ve bulanık yaklaşım gb pek çok yöntem vardır [3].

2 KSÜ Mühendslk Blmler Dergs, (), 9 KSU Journal of Engneerng Scences, (), 9 EMG şaretlern ayrıştırmak çn bugüne kadar değşk çalışmalarda farklı teknkler kullanılmıştır. Zaman domen özntelkler [,9], özbağlanım (AR) katsayıları [,3,7,,], cepstral katsayılar [], dalgacık dönüşümü katsayıları [5]. Bu çalışma, drsekten altını kaybetmş br hastaya at kol proteznn dört farklı hareketn sağlamaya yönelktr. Bunun çn kola at drsek açma, drsek kapama, ön kolu çe döndürme ve ön kolu dışa döndürme hareketlernden oluşan dört tp EMG şaret kullanılmıştır [5]. Bu dört farklı harekete at EMG şaretlernn mutlak değer alındıktan sonra farklı uzunlukta pencerelern ortalamaları alınmak suretyle elde edlen özntelkler K-Ortalama algortması kullanılarak öbekleştrme gerçekleştrlmştr.. MATERYAL ve METOT.. Kullanılan Verler Bu çalışmada, kola at drsek açma, drsek kapama, ön kolu çe döndürme ve ön kolu dışa döndürme hareketlernden oluşan dört farklı sınıfa at er adet toplam EMG şaret kullanılmıştır. Bu dört sınıfa at EMG şaretler, kolun bceps ve trceps kaslarından k kanallı olarak elde edlmş ve her kanaldan alınmış şaret Hz de örneklenmş, her kanaldan 5 örnek olmak üzere toplam 5 örnekten oluşmuştur [5,3]. Şekl. de bu dört tür şaretten brer örnek görülmektedr. Genlk (Mk)ro V (a) (b) Genlk (Mkro V) (c) Örnek Sayısı (d) Örnek Sayısı Şekl. Dört Ayrı Hareketten Alınmış İşlenmemş EMG Vers (a) Drsek Açma (b) Drsek Kapama (c) Ön Kolu İçe Döndürme (d) Ön Kolu Dışa Döndürme EMG şaretlernn analznde özntelk çıkartma şlem oldukça büyük br öneme sahptr. Bu amaçla lteratürde çok değşk özellk çıkarım yöntemler kullanılmaktadır. Kullanılan her özellk çıkarım yöntemnn başarımları da değşk olmaktadır. Bu çalışmada özellk çıkarımı amacıyla şaret, 3 örneklk pencerelere ayrılıp, elde edlen adet penceredek örneklern önce mutlak değerler sonra da her pencerenn ortalaması hesaplanmıştır. Bu şeklde her şaret bu şlem sonunda adet özellk vektörüyle fade edlmştr. Elde edlen özellkler kullanılarak dört tür şaretten oluşan EMG vers öbekleştrme şlemne tab tutulmuştur... Yöntem... Öbekleştrme Analz Kümeleme analz öğretcsz nesne sınıflandırma metotlarından olup, verlen özellk vektörlernn sınıflandırılması, eğtm safhası olmaksızın gerçekleştrlr. Burada anahtar kavram gruplanacak nesneler arasındak benzerlktr. Verlen nesneler brbrlerne benzerlklerne göre kümelenerek sınıflandırma şlem gerçekleştrlr.

3 KSÜ Mühendslk Blmler Dergs, (), 9 7 KSU Journal of Engneerng Scences, (), 9 Şekl. EMG İşaretlernn Analz Adımları... K-Ortalama K-ortalama algortması, her br very kendsne en yakın merkezn olduğu öbeğe atama yapar. Öbektek tüm verlern ortalaması merkez oluşturur. Bu algortmanın asıl üstünlüğü, büyük ver setlernde koşturulmasının bast ve hızlı olmasıdır. Sakıncası se her koşturulmada aynı sonucu üretmemesdr. Çünkü ortaya çıkan öbekler başlangıç rastgele atamasına bağlıdır. Öbekler ç varyansı en küçültür, ancak varyansın global mnmum durumunu garant etmez. Verlen br özellk vektör kümes doğal yapısındak gruplara veya kümelere ayrıştırılarak gerçekleştrlen bu statstksel yöntem çok değşk alanlarda, değşk amaçlarla kullanılmaktadır. Bu, çzebldğmz, görsel olarak belrleyebldğmz ve her kümey br nesne sınıfı olarak etketleyebldğmz k boyutlu vektörlerde oldukça kolaydır. Benzerlk kavramı doğal olarak vektörler arasındak uzaklık temelne dayanır. x ve y gb k vektör arasındak mesafe ökld uzaklığı (Eucldean dstance) olarak blnr ve d(x,y) le gösterlr. n d( x, y) ( x y ) () Burada x ve y uzunluğu n olan k vektörü göstermektedr. Ökld uzaklığı aşağıdak şeklde verlen daha genel uzaklık ölçü yapısının p= çn elde edlmş özel br formudur. d ( x, y) ( x n y p / p () p= olarak alındığında bu formül cty blok ölçüsünü verr. Küçük br d(x,y)değer x ve y vektörler arasında benzerlğn büyük olduğunu fade ederken, bu değern büyük olması benzerlğn az olduğunu fade eder. [5]. Kümeleme şlemnn başarısını ölçmek çn değşk performans göstergeler oluşturulablr. Bunlardan yaygın olarak kullanılanlarından br karesel hataların toplamı performans ndeks uygulaması olup, ) kümelemenn başarısı hakkında öneml br blg verr. Karesel hataların toplamı; c j xs j J x (3) m j İfadesyle hesaplanır. Burada, küme alanlarının sayısını, Sj se J. kümedek örnek setn göstermektedr. m j x j xs j () se J. kümesndek örneklern ortalama vektörüdür ve j de Sj dek örnek sayısıdır...3. Sluet Değer Analzlern performansı, kümelern doğruluklarının ölçümü yan sluet değer le karşılaştırılır. Sluet değernn tanımı aşağıdak gb özetleneblr: Her br çft şaret ve j, arasındak uzaklık da d(,j) olarak tanımlanırsa P kümesnn. elemanı le aynı kümedek dğer elemanların ortalama uzaklığı şöyledr: a A A ja, j d(, j) (5) Burada, A kümesnn eleman sayısıdır. A dan farklı kümelern elemanları (C olarak gösterlmştr) le nn ortalama uzaklığı şöyle tanımlanır: d (, C) d(, j) C jc C () Burada, C kümesnn eleman sayısını belrtr. Sonra, en yakın kümenn üyeler le olan uzaklık aşağıdak gb hesap edlr.

4 KSÜ Mühendslk Blmler Dergs, (), 9 8 KSU Journal of Engneerng Scences, (), 9 b mn{ d (, C)} CA Sonuçta sluet değer s() aşağıdak fade le verlr: s( ) b a max{ a, b } (7) (8) Her br şaret çn s() sluet değer - le arasında br değer alır. Eğer s()> se şaret y sınıflandırılmış, s()< se şaret kötü sınıflandırılmış demektr. [8]. Aslında s() e ne kadar yakınsa. eleman o kadar y sınıflandırılmış denleblr. Genlk (a) 5 5 (b) Genlk 5 5 (c) 5 5 (d) Şekl 3. Ayrı Hareketten Alınmış, Pencereleme le Elde Edlen Ortalama Mutlak Değerler. (a) Drsek Açma (b) Drsek Kapama (c) Ön Kolu İçe Döndürme (d) Ön Kolu Dışa Döndürme Şekl. Öbekleştrme İşlemnn Başarısını Gösteren Sluet Değerler Şekl. çn sluet değer yorumlanacak olursa düşey eksende.,., 3. ve. kümelere at er adet şaretn sluet değer her küme çn en yden en kötüye doğru sıralanarak yatay eksende - aralığında gösterlmştr. 3. BULGULAR ve TARTIŞMA Çoğu byoelektrksel şarette olduğu gb EMG şaretlernn analznde de özntelk çıkartma şlem oldukça büyük br öneme sahptr. Bu amaçla yapılan çalışmalar ncelendğnde, çok değşk özellk çıkarım yöntemlernn kullanıldığı görülmektedr. Kullanılan her özellk çıkarım yöntemnn başarımları da değşk olmakta, en y sonuç verecek özntelk yöntemler rdelenmektedr. Bu çalışmada özellk çıkarımı amacıyla, şaret 3 örneklk pencerelere ayrılıp, her penceredek örneklern önce mutlak değerler sonra da bunların ortalaması alınmıştır. Bu şeklde her şaret bu şlem sonunda adet özellk vektörüyle fade

5 KSÜ Mühendslk Blmler Dergs, (), 9 9 KSU Journal of Engneerng Scences, (), 9 edlmştr. Elde edlen özellkler kullanılarak dört tür şaret öbekleştrme şlemne tab tutulmuştur. Bu şlem sonucunda Şekl. de gösterlen örnek EMG şaretlern fade edecek özellkler Şekl.3 te görüldüğü gb br hal almaktadır. Böylelkle hem her şaret onu temsl edecek uygun, ortalama değerler le ve şlem yükünü azaltacak daha az sayıda örnek le temsl edlmştr. Elde edlen yen şaretler kullanılarak kümeleme şlem gerçekleştrlmştr. Bu şlemler en uygun ve başarılı sonuç verecek pencere uzunluğunu göreblmek amacıyla, değşk pencereleme uzunlukları çn şlemler tekrarlanmıştır. Yapılan denemelerden elde edlen sonuçların brbrne yakın değerler vermekle brlkte, en y sonucun 3 örneklk pencereleme kullanıldığında elde edldğ görülmüştür. EMG şaretlernn eğtcsz br öğrenme metodu olan öbekleştrme şlemnde 3 örnek uzunluğunda pencereleme kullanıldığında sluet ve sonuç kümeleme ndeks değerler Şekl. te gösterlmştr.. SOUÇ Yukarıdak küme numaralarının çzm verlmştr. Şekl. tek sluet değer grafğnden de görüldüğü gb kümeleme şlem başarıyla yapılmıştır. adet verde adet hatalı sonuç çıkmıştır. Yan başarı %97.5tr. 5. KAYAKLAR. Asres A., Dou H., Zhou Z., Zhang Y. and Zhu S., A combnaton of AR and neural network technque for EMG pattern dentfcaton., 8th Annual Internatonal Conference of the IEEE Engneerng n Medcne And Bology Socety, 99, Amsterdam, 5. Zamanda Kontrolü. Yıldız Teknk Ünverstes, Fen Bl. Ensttüsü Doktora Tez. 7. Graupe D., Salah, J. and Zhang, D. 985., Stochastc analyss of myoelectrc temporal sgnatures for multfuncton sngle-ste actvaton of prostheses and orthoses, Journal of Bomedcal Engneerng., 7,, 8-9, Hormoto K. And Toh H.., Statstcal estmaton of cluster boundares n gene expresson profle data, Bonformatcs, 7, Hudgns B., Parker P.A. and Scott R , A new strategy for multfuncton myoelectrc control, IEEE Transactons on Bomedcal Engneerng,,, Kang W., Shu J., Cheng C., La L., Tsao H. and Kuo T. 995., The applcaton of cepstral coeffcents and maxmum lkelhood method n EMG pattern recognton, IEEE Transactons on Bomedcal Engneerng,, Karlık, B. 99., Çok Fonksyonlu Protezler İçn Yapay Snr Ağları Kullanılarak Myoelektrk Kontrol. Yıldız Teknk Ünverstes, Fen Bl. Ensttüsü Doktora Tez.. Karlık B., Tokh O., Alcı M. A. 3., Fuzzy Clusterng eural etwork Archtecture for Mult- Functon Upper-Lmb Prosthess, IEEE Transactons on Bomedcal Engneerng, 5,, Koçyğt Y., Korürek M. 5., EMG İşaretlern Dalgacık Dönüşümü ve Bulanık Mantık Sınıflayıcı Kullanarak Sınıflama, İTÜ dergs/d mühendslk Clt:, Sayı:3.. Chldress D.A., A myoelectrc three state controller usng rate senstvty., n Proc. 8th ICMBE Conf., 99. Chcago, IL. 3. Doerschuk P.C., Gustafson D.E. and Wllsky A.S. 983, Upper extremty lmb functon dscrmnaton usng EMG sgnal analyss, IEEE Transactons on Bomedcal Engneerng, 3,,8-9.. Dorcas D. and Scott R.. 9., A three state myoelectrc control, Med.Bol. Eng., vol., pp Englehart K., Hudgns B., Parker P.A.., A Wavelet-based contnuous classfcaton scheme for multfuncton myoelectrc control, IEEE Transactons on Bomedcal Engneerng, 8, Fdan, C.B.. Drsek Üstü Kol Proteznn YSA Kullanılarak DSP Tabanlı Br Devre le Gerçek

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE TEK ÇARPIMSAL SİNİR HÜCRELİ YAPAY SİNİR AĞI MODELİNİN EĞİTİMİ İÇİN ABC VE BP YÖNTEMLERİNİN KARŞILAŞTIRILMASI ÖZ

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE TEK ÇARPIMSAL SİNİR HÜCRELİ YAPAY SİNİR AĞI MODELİNİN EĞİTİMİ İÇİN ABC VE BP YÖNTEMLERİNİN KARŞILAŞTIRILMASI ÖZ ANADOLU ÜNİVERSİTESİ Blm ve Teknoloj Dergs A-Uygulamalı Blmler ve Mühendslk Clt: 14 Sayı: 3 013 Sayfa: 315-38 ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE Faruk ALPASLAN 1, Erol EĞRİOĞLU 1, Çağdaş Hakan ALADAĞ,

Detaylı

K-Ortalamalar Yöntemi ile Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelerin Belirlenmesi *

K-Ortalamalar Yöntemi ile Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelerin Belirlenmesi * İMO Teknk Derg, 2012 6037-6050, Yazı 383 K-Ortalamalar Yöntem le Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelern Belrlenmes * Mahmut FIAT* Fath DİKBAŞ** Abdullah Cem KOÇ*** Mahmud GÜGÖ**** ÖZ

Detaylı

Veride etiket bilgisi yok Denetimsiz öğrenme (unsupervised learning) Neden gereklidir?

Veride etiket bilgisi yok Denetimsiz öğrenme (unsupervised learning) Neden gereklidir? MEH535 Örünü Tanıma 7. Kümeleme (Cluserng) Doç.Dr. M. Kemal GÜLLÜ Elekronk ve Haberleşme Mühendslğ Bölümü web: hp://akademkpersonel.kocael.edu.r/kemalg/ E-posa: kemalg@kocael.edu.r Verde eke blgs yok Denemsz

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Pamukkale Ünverstes Mühendslk Blmler Dergs, Clt 0, Sayı 3, 04, Sayfalar 85-9 Pamukkale Ünverstes Mühendslk Blmler Dergs Pamukkale Unversty Journal of Engneerng Scences PREFABRİK ENDÜSTRİ YAPIARININ ARMONİ

Detaylı

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA YÖNETİM VE EKONOMİ Yıl:2006 Clt:3 Sayı: Celal Bayar Ünverstes İ.İ.B.F. MANİSA Bulanık Araç Rotalama Problemlerne Br Model Öners ve Br Uygulama Doç. Dr. İbrahm GÜNGÖR Süleyman Demrel Ünverstes, İ.İ.B.F.,

Detaylı

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI Fırat Ünverstes-Elazığ MİTRAL KAPAK İŞARETİ ÜZERİNDEKİ ANATOMİK VE ELEKTRONİK GÜRÜLTÜLERİN ABC ALGORİTMASI İLE TASARLANAN IIR SÜZGEÇLERLE SÜZÜLMESİ N. Karaboğa 1, E. Uzunhsarcıklı, F.Latfoğlu 3, T. Koza

Detaylı

STANDART VE HİBRİD YAPILAR KULLANARAK YAPAY SİNİR AĞLARI İLE İMZA TANIMA

STANDART VE HİBRİD YAPILAR KULLANARAK YAPAY SİNİR AĞLARI İLE İMZA TANIMA STANDART VE HİBRİD YAPILAR KULLANARAK YAPAY SİNİR AĞLARI İLE İMZA TANIMA Canan ŞENOL Tülay YILDIRIM Kadr Has Ünverstes, Elektronk Mühendslğ Bölümü, 3430, Cbal, Fath-İstanbul Yıldız Teknk Ünverstes, Elektronk

Detaylı

Epilepside EEG Tabanlı Entropi Değişimleri

Epilepside EEG Tabanlı Entropi Değişimleri TURKMIA 9 Proceedngs 7 VI. Ulusal Tıp Blşm Kongres Bldrler ENMI Vol V No 1, 9 Eplepsde EEG Tabanlı Entrop Değşmler b c Serap 1 AYDINa,1, H.Melh SARAOĞLU, Sadık KARA a Elektrk-Elektronk Müh Böl, Ondokuz

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

Makine Öğrenmesi 6. hafta

Makine Öğrenmesi 6. hafta Makne Öğrenmes 6. hafta Yapay Snr Ağlarına Grş Tek katmanlı YSA lar Algılayıcı (Perceptron) Aalne (Aaptve Lnear Elemen Byolojk Snr Hücres Byolojk snrler ört ana bölümen oluşmaktaır. Bunlar: Denrt, Akson,

Detaylı

Metin Madenciliği ile Soru Cevaplama Sistemi

Metin Madenciliği ile Soru Cevaplama Sistemi Metn Madenclğ le Soru Cevaplama Sstem Sevnç İlhan 1, Nevchan Duru 2, Şenol Karagöz 3, Merve Sağır 4 1 Mühendslk Fakültes Blgsayar Mühendslğ Bölümü Kocael Ünverstes slhan@kocael.edu.tr, nduru@kocael.edu.tr,

Detaylı

TÜRKİYE DEKİ 380 kv LUK 14 BARALI GÜÇ SİSTEMİNDE EKONOMİK YÜKLENME ANALİZİ

TÜRKİYE DEKİ 380 kv LUK 14 BARALI GÜÇ SİSTEMİNDE EKONOMİK YÜKLENME ANALİZİ TÜRİYE DEİ 38 kv LU 4 BARALI GÜÇ SİSTEMİDE EOOMİ YÜLEME AALİZİ Mehmet URBA Ümmühan BAŞARA 2,2 Elektrk-Elektronk Mühendslğ Bölümü Mühendslk-Mmarlık Fakültes Anadolu Ünverstes İk Eylül ampüsü, 2647, ESİŞEHİR

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi Harta Teknolojler Elektronk Dergs Clt: 5, No: 1, 2013 (61-67) Electronc Journal of Map Technologes Vol: 5, No: 1, 2013 (61-67) TEKNOLOJİK ARAŞTIRMALAR www.teknolojkarastrmalar.com e-issn: 1309-3983 Makale

Detaylı

KARDİOTOKOGRAM VERİSİNDEN FETAL İYİLİK HALİNİN BELİRLENMESİ İÇİN BİR KARAR DESTEK SİSTEMİ

KARDİOTOKOGRAM VERİSİNDEN FETAL İYİLİK HALİNİN BELİRLENMESİ İÇİN BİR KARAR DESTEK SİSTEMİ Uludağ Ünverstes Mühendslk Fakültes Dergs, Clt 1, Sayı, 016 ARAŞTIRMA DOI: 10.1748/uumfd.78033 KARDİOTOKOGRAM VERİSİDE FETAL İYİLİK HALİİ BELİRLEMESİ İÇİ BİR KARAR DESTEK SİSTEMİ Ersen YILMAZ * Alınma:

Detaylı

ROTASYON ORMAN ALGORİTMASI İLE YÜKSEK ÇÖZÜNÜRLÜKLÜ MULTİSPEKTRAL UYDU GÖRÜNTÜLERİNİN SINIFLANDIRILMASI

ROTASYON ORMAN ALGORİTMASI İLE YÜKSEK ÇÖZÜNÜRLÜKLÜ MULTİSPEKTRAL UYDU GÖRÜNTÜLERİNİN SINIFLANDIRILMASI ROTASYON ORMAN ALGORİTMASI İLE YÜKSEK ÇÖZÜNÜRLÜKLÜ MULTİSPEKTRAL UYDU GÖRÜNTÜLERİNİN SINIFLANDIRILMASI İsmal ÇÖLKESEN 1, Tahsn YOMRALIOĞLU 2, Taşkın KAVZOĞLU 3 1 Araş. Gör., Gebze Yüksek Teknoloj Ensttüsü,

Detaylı

G.1. : Y.Kutlu, M.Kuntalp, D.Kuntalp. : Öz Düzenleyici Haritalar Kullanilarak Diken Dalgalarin Analizi. Yay nlanan Kitapç k.

G.1. : Y.Kutlu, M.Kuntalp, D.Kuntalp. : Öz Düzenleyici Haritalar Kullanilarak Diken Dalgalarin Analizi. Yay nlanan Kitapç k. G.1 Yazarlar : Y.Kutlu, M.Kuntalp, D.Kuntalp Ba l k : Öz Düzenley Hartalar Kullanlarak Dken Dalgalarn Analz Yay nlanan Ktapç k : Genç Blm nsanlar le Beyn Byofz II. Çal tay, Izmr / Turkey, 21-23 ubat2008

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

Bulanık-Sinir Ağı Yapısı İçin Yeni Bir Karma Yaklaşım

Bulanık-Sinir Ağı Yapısı İçin Yeni Bir Karma Yaklaşım Bulanık-Snr Ağı Yapısı İçn Yen Br Karma Yaklaşım Canan ŞENOL, Tülay YILDIRIM Mühendslk Fakültes, Elektronk Mühendslğ Bölümü Kadr Has Ünverstes canan@khas.edu.tr Elektrk-Elektronk Fakültes, Elektronk ve

Detaylı

BİRLEŞİK DALGACIK-SİNİR AĞI MODELİ YAKLAŞIMI İLE ELEKTRİK GÜÇ SİSTEMLERİNDE ARIZA SINIFLAMA

BİRLEŞİK DALGACIK-SİNİR AĞI MODELİ YAKLAŞIMI İLE ELEKTRİK GÜÇ SİSTEMLERİNDE ARIZA SINIFLAMA BİRLEŞİK DALGACIK-SİNİR AĞI MODELİ YAKLAŞIMI İLE ELEKTRİK GÜÇ SİSTEMLERİNDE ARIZA SINIFLAMA Oben DAĞ Canbolat UÇAK, Elektrk-Elektronk Mühendslğ Bölümü Mühendslk-Mmarlk Fakültes Yedtepe Ünverstes,, Erenköy,

Detaylı

3. Parçaları Arasında Aralık Bulunan Çok Parçalı Basınç Çubukları

3. Parçaları Arasında Aralık Bulunan Çok Parçalı Basınç Çubukları 3. Parçaları Arasında Aralık Bulunan Çok Parçalı Basınç Çubukları Basınç çubukları brden fazla profl kullanılarak, bu profller arasında plan düzlemnde bell br mesafe bulunacak şeklde düzenleneblr. Bu teşklde,

Detaylı

T.C. ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KONUŞMACI TANIMA YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ. Cemal HANİLÇİ

T.C. ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KONUŞMACI TANIMA YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ. Cemal HANİLÇİ T.C. ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KONUŞMACI TANIMA YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ Cemal HANİLÇİ YÜKSEK LİSANS TEZİ ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI BURSA-2007 T.C. ULUDAĞ ÜNİVERSİTESİ

Detaylı

Karaciğer mikrodizi kanser verisinin sınıflandırılması için genetik algoritma kullanarak ANFIS in eğitilmesi

Karaciğer mikrodizi kanser verisinin sınıflandırılması için genetik algoritma kullanarak ANFIS in eğitilmesi Karacğer mkrodz kanser versnn sınıflandırılması çn genetk algortma kullanarak ANFIS n eğtlmes Bülent Haznedar 1*, Mustafa Turan Arslan 2, Adem Kalınlı 3 ÖZ 21.06.2016 Gelş/Receved, 30.11.2016 Kabul/Accepted

Detaylı

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Ünsal M.; Varol, A.: Soğutma Kulelernn Boyutlandırılması İçn Br Kuramsal 8 Mayıs 990, S: 8-85, Adana 4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Asaf Varol Fırat Ünverstes, Teknk Eğtm Fakültes,

Detaylı

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa ELECO '0 Elektrk Elektronk ve Blgsaar ühendslğ Sempozumu, 9 Kasım 0 Aralık 0, Bursa Amotrofk Lateral Skleroz (ALS) Hastalığının Destek Vektör aknes le eşhs Dagnoss of Amotrophc Lateral Scleross (ALS) th

Detaylı

2005 Gazi Üniversitesi Endüstriyel Sanatlar Eğitim Fakültesi Dergisi Sayı:16, s31-46

2005 Gazi Üniversitesi Endüstriyel Sanatlar Eğitim Fakültesi Dergisi Sayı:16, s31-46 2005 Gaz Ünverstes Endüstryel Sanatlar Eğtm Fakültes Dergs Sayı:16, s31-46 ÖZET BANKALARDA MALİ BAŞARISIZLIĞIN ÖNGÖRÜLMESİ LOJİSTİK REGRESYON VE YAPAY SİNİR AĞI KARŞILAŞTIRMASI 31 Yasemn KESKİN BENLİ 1

Detaylı

Türk Dilinin Biçimbilim Yapısından Yararlanarak Türkçe Metinlerin Farklı İmgelere Ayrılarak Kodlanması ve Sıkıştırılması

Türk Dilinin Biçimbilim Yapısından Yararlanarak Türkçe Metinlerin Farklı İmgelere Ayrılarak Kodlanması ve Sıkıştırılması Türk Dlnn Bçmblm Yapısından Yararlanarak Türkçe Metnlern Farklı İmgelere Ayrılarak Kodlanması ve Sıkıştırılması Banu DİRİ, M.Yahya KARSLIGİL Yıldız Teknk Ünverstes Elektrk Elektronk Fakültes - Blgsayar

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 16 Sayı: 48 sh. 61-75 Eylül 2014 KRİL SÜRÜSÜ ALGORİTMASI İLE ATÖLYE ÇİZELGELEME

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 16 Sayı: 48 sh. 61-75 Eylül 2014 KRİL SÜRÜSÜ ALGORİTMASI İLE ATÖLYE ÇİZELGELEME DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Clt: 16 Sayı: 48 sh. 61-75 Eylül 2014 KRİL SÜRÜSÜ ALGORİTMASI İLE ATÖLYE ÇİZELGELEME (JOB SHOP SCHEDULING WITH KRILL HERD ALGORITHM) İlker GÖLCÜK

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.teknolojkarastrmalar.com ISSN:305-63X Yapı Teknolojler Elektronk Dergs 008 () - TEKNOLOJĐK ARAŞTIRMALAR Makale Başlığın Boru Hattı Etrafındak Akıma Etks Ahmet Alper ÖNER Aksaray Ünverstes, Mühendslk

Detaylı

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI C.Ü. İktsad ve İdar Blmler Dergs, Clt 4, Sayı 1, 3 6 Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI H. BİRCAN, Y. KARAGÖZ ve Y. KASAPOĞLU

Detaylı

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE BAÜ Fen Bl. Enst. Dergs (6).8. YAYII YÜK İE YÜKENİŞ YAPI KİRİŞERİNDE GÖÇE YÜKÜ HESABI Perhan (Karakulak) EFE Balıkesr Ünverstes ühendslk marlık Fakültes İnşaat üh. Bölümü Balıkesr, TÜRKİYE ÖZET Yapılar

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3 Yıldız Teknk Ünverstes Elektrk Mühendslğ Bölümü Deneyn Amacı İşlemsel kuvvetlendrcnn çalışma prensbnn anlaşılması le çeştl OP AMP devrelernn uygulanması ve ncelenmes. Özet ve Motvasyon.. Operasyonel Amplfkatör

Detaylı

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 5-7 Kasım 5 ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN

Detaylı

TÜRKİYE DEKİ 22 BARALI 380 kv LUK GÜÇ SİSTEMİ İÇİN EKONOMİK DAĞITIM VE OPTİMAL GÜÇ AKIŞI YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ

TÜRKİYE DEKİ 22 BARALI 380 kv LUK GÜÇ SİSTEMİ İÇİN EKONOMİK DAĞITIM VE OPTİMAL GÜÇ AKIŞI YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING FACULTY MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 7 : 3 : 3 : 369-378

Detaylı

ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ

ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ Emel KOCADAYI EGE ÜNİVERSİTESİ MÜH. FAK., KİMYA MÜH. BÖLÜMÜ, 35100-BORNOVA-İZMİR ÖZET Bu projede, Afyon Alkalot Fabrkasından

Detaylı

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Türkye İnşaat Mühendslğ, XVII. Teknk Kongre, İstanbul, 2004 İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Nur MERZİ 1, Metn NOHUTCU, Evren YILDIZ 1 Orta Doğu Teknk Ünverstes, İnşaat Mühendslğ Bölümü, 06531 Ankara

Detaylı

Tuğla Duvardaki ve Tesisattaki Isı Kaybının Yapay Sinir Ağları İle Belirlenmesi

Tuğla Duvardaki ve Tesisattaki Isı Kaybının Yapay Sinir Ağları İle Belirlenmesi Fırat Ünv. Fen ve Müh. Bl. Der. Scence and Eng. J of Fırat Unv. 18 (1), 133-141, 2006 18 (1), 133-141, 2006 Tuğla Duvardak ve Tessattak Isı Kaybının Yapay Snr Ağları İle Belrlenmes Ömer KELEŞOĞLU ve Adem

Detaylı

OTOMATİK PARMAKİZİ TANIMA SİSTEMLERİNDE ÖZELLİK NOKTALARININ TESPİTİNDE YAPAY SİNİR AĞLARININ KULLANILMASI

OTOMATİK PARMAKİZİ TANIMA SİSTEMLERİNDE ÖZELLİK NOKTALARININ TESPİTİNDE YAPAY SİNİR AĞLARININ KULLANILMASI PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 007 : 13 : 1 : 911

Detaylı

Şiddet-Süre-Frekans Bağıntısının Genetik Algoritma ile Belirlenmesi: GAP Örneği *

Şiddet-Süre-Frekans Bağıntısının Genetik Algoritma ile Belirlenmesi: GAP Örneği * İMO Teknk Derg, 28 4393-447, Yazı 29 Şddet-Süre-Frekans Bağıntısının Genetk Algortma le Belrlenmes: GAP Örneğ * Hall KARAHAN* M. Tamer AYVAZ** Gürhan GÜRARSLAN*** ÖZ Bu çalışmada, Genetk Algortma (GA)

Detaylı

PARMAKİZİ RESİMLERİNİN YAPAY SİNİR AĞLARI İLE TEMİZLENMESİ VE İYİLEŞTİRİLMESİ

PARMAKİZİ RESİMLERİNİN YAPAY SİNİR AĞLARI İLE TEMİZLENMESİ VE İYİLEŞTİRİLMESİ PARMAKİZİ RESİMLERİNİN YAPAY SİNİR AĞLARI İLE TEMİZLENMESİ VE İYİLEŞTİRİLMESİ Necla ÖZKAYA Şeref SAĞIROĞLU Blgsayar Mühendslğ Bölümü, Mühendslk Fakültes, Ercyes Ünverstes, 38039, Talas, Kayser Gaz Ünverstes,

Detaylı

TRİSTÖR VE TRİYAK HARMONİKLERİNİN 3 BOYUTLU GÖSTERİMİ VE TOPLAM HARMONİK BOZUNUMA EĞRİ UYDURMA

TRİSTÖR VE TRİYAK HARMONİKLERİNİN 3 BOYUTLU GÖSTERİMİ VE TOPLAM HARMONİK BOZUNUMA EĞRİ UYDURMA PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K BİL İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : : : : 5- TRİSTÖR VE TRİYAK

Detaylı

Basel II Geçiş Süreci Sıkça Sorulan Sorular

Basel II Geçiş Süreci Sıkça Sorulan Sorular Basel II Geçş Sürec Sıkça Sorulan Sorular Soru No: 71 Cevaplanma Tarh: 06.03.2012 İlgl Hüküm: --- Konu: Gayrmenkul İpoteğyle Temnatlandırılmış Alacaklar İçn KR510AS Formunun Doldurulmasına İlşkn Örnek

Detaylı

Konumsal Enterpolasyon Yöntemleri Uygulamalarında Optimum Parametre Seçimi: Doğu Karadeniz Bölgesi Günlük Ortalama Sıcaklık Verileri Örneği

Konumsal Enterpolasyon Yöntemleri Uygulamalarında Optimum Parametre Seçimi: Doğu Karadeniz Bölgesi Günlük Ortalama Sıcaklık Verileri Örneği S. ZENGİN KAZANCI, E. TANIR KAYIKÇI Konumsal Enterpolasyon Yöntemler Uygulamalarında Optmum Parametre Seçm: Doğu Karadenz Bölges Günlük Ortalama Sıcaklık S. ZENGİN KAZANCI 1, E. TANIR KAYIKÇI 1 1 Karadenz

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A) KOCELİ ÜNİVERSİTESİ Mühendslk akültes Makna Mühendslğ Bölümü Mukavemet I Vze Sınavı () dı Soyadı : 18 Kasım 013 Sınıfı : No : SORU 1: Şeklde verlen levhalar aralarında açısı 10 o la 0 o arasında olacak

Detaylı

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet Dokuz Eylül Ünverstes Sosyal Blmler Ensttüsü Dergs Yayın Gelş Tarh: 18.02.2011 Clt: 13, Sayı: 1, Yıl: 2011, Sayfa: 21-37 Yayına Kabul Tarh: 17.03.2011 ISSN: 1302-3284 ALGILANAN HİZMET KALİTESİ VE LOJİSTİK

Detaylı

Yapay Sinir Ağı ve Bulanık-Yapay Sinir Ağı Yöntemleri Kullanılarak Tava Buharlaşma Tahmini

Yapay Sinir Ağı ve Bulanık-Yapay Sinir Ağı Yöntemleri Kullanılarak Tava Buharlaşma Tahmini Tarım Blmler Araştırma Dergs 3 (): 45-5, 00 ISSN: 308-3945, E-ISSN: 308-07X, www.nobel.gen.tr Yapay Snr Ağı ve Bulanık-Yapay Snr Ağı Yöntemler Kullanılarak Tava Buharlaşma Tahmn Özgür KIŞI Selcan AFŞA

Detaylı

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY Clt/Vol.:7 Saı/No: 1 : 97-101 (006) ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE ÖĞRENCİLERİN YAZ OKULU HAKKINDAKİ

Detaylı

ORTOTROPİK ZİNCİR YAN PLAKALARINDA GERİLME YIĞILMASI KATSAYILARININ HESAPLANMASI

ORTOTROPİK ZİNCİR YAN PLAKALARINDA GERİLME YIĞILMASI KATSAYILARININ HESAPLANMASI PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 997 : 3 : 3 :45-49

Detaylı

ROBİNSON PROJEKSİYONU

ROBİNSON PROJEKSİYONU ROBİNSON PROJEKSİYONU Cengzhan İPBÜKER ÖZET Tüm yerkürey kapsayan dünya hartalarının yapımı çn, kartografk lteratürde özel br öneme sahp olan Robnson projeksyonu dk koordnatlarının hesabı brçok araştırmacı

Detaylı

6. NORMAL ALT GRUPLAR

6. NORMAL ALT GRUPLAR 6. ORMAL ALT GRUPLAR G br grup ve olsun. 5. Bölümden çn eştlğnn her zaman doğru olamayacağını blyoruz. Fakat bu özellğ sağlayan gruplar, grup teorsnde öneml rol oynamaktadır. Bu bölümde bu tür grupları

Detaylı

Sinirsel Bulanık Sistemler İle Trafik Gürültüsünün Tahmini

Sinirsel Bulanık Sistemler İle Trafik Gürültüsünün Tahmini Snrsel Bulanık Sstemler İle Trafk Gürültüsünün Tahmn Ahmet Tortum Yrd. Doç. Dr.,Atatürk Ünverstes,Mühendslk Fakültes,İnşaat Bölümü,Erzurum E-posta : atortum@ataun.edu.tr Yasn Çodur Arş.Gör., Atatürk Ünverstes,Mühendslk

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Blgsayarla Görüye Grş Ders 8 Görüntü Eşleme Alp Ertürk alp.erturk@kocael.edu.tr Panorama Oluşturma Görüntüler eşlememz / çakıştırmamız gerekmektedr Panorama Oluşturma İk görüntüden özntelkler çıkar Panorama

Detaylı

FARKLI VERİ YAPILARINDA KULLANILABİLECEK REGRESYON YÖNTEMLERİ

FARKLI VERİ YAPILARINDA KULLANILABİLECEK REGRESYON YÖNTEMLERİ Anadolu Tarım Blm. Derg., 203,28(3):68-74 Anadolu J Agr Sc, 203,28(3):68-74 do: 0.76/anaas.203.28.3.68 URL: htt://dx.do.org/0.76/anaas.203.28.3.68 Derleme Revew FARKLI VERİ YAPILARINDA KULLANILABİLECEK

Detaylı

FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ

FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ 1 Nasır Çoruh, Tarık Erfdan, 3 Satılmış Ürgün, 4 Semra Öztürk 1,,4 Kocael Ünverstes Elektrk Mühendslğ Bölümü 3 Kocael Ünverstes Svl Havacılık Yüksekokulu ncoruh@kocael.edu.tr,

Detaylı

Veri Madenciliğinde Temel Bileşenler Analizi ve Negatifsiz Matris Çarpanlarına Ayırma Tekniklerinin Karşılaştırmalı Analizi

Veri Madenciliğinde Temel Bileşenler Analizi ve Negatifsiz Matris Çarpanlarına Ayırma Tekniklerinin Karşılaştırmalı Analizi Akademk Blşm 10 - XII. Akademk Blşm Konferansı Bldrler 10-12 Şubat 2010 Muğla Ünverstes Ver Madenclğnde Temel Bleşenler Analz ve Negatfsz Matrs Çarpanlarına Ayırma Teknklernn Karşılaştırmalı Analz Marmara

Detaylı

TEKNOLOJİ BAĞIMLI YAŞAMIN MATEMATİKSEL DESENLERİ-I

TEKNOLOJİ BAĞIMLI YAŞAMIN MATEMATİKSEL DESENLERİ-I TEKNOLOJİ BAĞIMLI YAŞAMIN MATEMATİKSEL DESENLERİ-I Fevz ÜNLÜ *, Esra DALAN YILDIRIM **,Şule AYAR *** ÖZET: Evren her an nano-önces, nano, mkro, normal, makro ve makro-ötes gözler le gözlemlermze açıktır.

Detaylı

Toplam Eşdeğer Deprem Yükünün Hesabı Bakımından 1975 Deprem Yönetmeliği İle 2006 Deprem Yönetmeliğinin Karşılaştırılması

Toplam Eşdeğer Deprem Yükünün Hesabı Bakımından 1975 Deprem Yönetmeliği İle 2006 Deprem Yönetmeliğinin Karşılaştırılması Fırat Ünv. Fen ve Müh. Bl. ergs Scence and Eng. J of Fırat Unv. 19 (2, 133-138, 2007 19 (2, 133-138, 2007 Toplam Eşdeğer eprem Yükünün Hesabı Bakımından 1975 eprem Yönetmelğ İle 2006 eprem Yönetmelğnn

Detaylı

Obtaining Classical Reliability Terms from Item Response Theory in Multiple Choice Tests

Obtaining Classical Reliability Terms from Item Response Theory in Multiple Choice Tests Ankara Unversty, Journal of Faculty of Educatonal Scences, year: 26, vol: 39, no: 2, 27-44 Obtanng Classcal Relablty Terms from Item Response Theory n Multple Choce Tests Hall Yurdugül * ABSTRACT: The

Detaylı

TRAFİK İŞARETLERİNİN HOUGH DÖNÜŞÜMÜ VE DVM KULLANILARAK SINIFLANDIRILMASI TRAFFIC SIGN CLASSIFICATION USING HOUGH TRANSFORM AND SVM

TRAFİK İŞARETLERİNİN HOUGH DÖNÜŞÜMÜ VE DVM KULLANILARAK SINIFLANDIRILMASI TRAFFIC SIGN CLASSIFICATION USING HOUGH TRANSFORM AND SVM TRAFİK İŞARETLERİNİN HOUGH DÖNÜŞÜMÜ VE DVM KULLANILARAK SINIFLANDIRILMASI TRAFFIC SIGN CLASSIFICATION USING HOUGH TRANSFORM AND SVM Emrah ONAT SDT - Space & Defence Technologes A.Ş. emrahonat@yahoo.com

Detaylı

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

CuEEG: EEG Verilerinin Hızlı İşlenmesi için GPU Tabanlı Bir Yaklaşım CuEEG: A GPU-Based Approach for Fast Processing of EEG Data

CuEEG: EEG Verilerinin Hızlı İşlenmesi için GPU Tabanlı Bir Yaklaşım CuEEG: A GPU-Based Approach for Fast Processing of EEG Data ELECO '212 Elektrk - Elektronk ve Blgsayar Mühendslğ Sempozyumu, 29 Kasım - 1 Aralık 212, Bursa CuEEG: EEG Verlernn Hızlı İşlenmes çn GPU Tabanlı Br Yaklaşım CuEEG: A GPU-Based Approach for Fast Processng

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

Soğutucu Akışkan Karışımlarının Kullanıldığı Soğutma Sistemlerinin Termoekonomik Optimizasyonu

Soğutucu Akışkan Karışımlarının Kullanıldığı Soğutma Sistemlerinin Termoekonomik Optimizasyonu Soğutucu Akışkan arışımlarının ullanıldığı Soğutma Sstemlernn ermoekonomk Optmzasyonu * 1 Hüseyn aya, 2 ehmet Özkaymak ve 3 rol Arcaklıoğlu 1 Bartın Ünverstes akne ühendslğ Bölümü, Bartın, ürkye 2 arabük

Detaylı

Saklı Markov Modeli Kullanarak Türkçe Konuşma Tanıma

Saklı Markov Modeli Kullanarak Türkçe Konuşma Tanıma Saklı Markov Model Kullanarak Türkçe Konuşma Tanıma Özlem Yakar, Rıfat Aşlıyan Adnan Menderes Ünverstes, Matematk Bölümü, Aydın ozlemyakar.34@gmal.com, raslyan@adu.edu.tr Özet: Konuşma tanıma, sesl fadelern

Detaylı

BULANIK AKIŞ TİPİ ÇİZELGELEME PROBLEMİ İÇİN ÇOK AMAÇLI GENETİK ALGORİTMA

BULANIK AKIŞ TİPİ ÇİZELGELEME PROBLEMİ İÇİN ÇOK AMAÇLI GENETİK ALGORİTMA Gaz Ünv. Müh. Mm. Fak. Der. J. Fac. Eng. Arch. Gaz Unv. Clt 22, No 4, 855-862, 2007 Vol 22, No 4, 855-862, 2007 BULANIK AKIŞ TİPİ ÇİZELGELEME PROBLEMİ İÇİN ÇOK AMAÇLI GENETİK ALGORİTMA İzzettn TEMİZ ve

Detaylı

KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM TALEP SİSTEMİ YAKLAŞIMIYLA ANALİZİ

KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM TALEP SİSTEMİ YAKLAŞIMIYLA ANALİZİ Süleyman Demrel Ünverstes Sosyal Blmler Ensttüsü Dergs Yıl: 2007/2, Sayı: 6 Journal of Suleyman Demrel Unversty Insttue of Socal Scences Year: 2007/2, Number: 6 KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüneyt BAYILMIŞ Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz SAYISAL ANALİZ SAYISAL TÜREV Numercal Derentaton Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz İÇİNDEKİLER Sayısal Türev Ger Farklar

Detaylı

GÜNEŞ ENERJİLİ BİR SULAMA SİSTEMİNDE BOOST KONVERTERDEN BESLENEN ARM SÜRÜCÜ SİSTEMİNİN ANALİZİ

GÜNEŞ ENERJİLİ BİR SULAMA SİSTEMİNDE BOOST KONVERTERDEN BESLENEN ARM SÜRÜCÜ SİSTEMİNİN ANALİZİ GÜNEŞ ENERJİLİ BİR SULAMA SİSTEMİNDE BOOST KONERTERDEN BESLENEN ARM SÜRÜÜ SİSTEMİNİN ANALİZİ Mahr Dursun, Al Saygın Gaz Ünverstes Teknk Eğtm Fakültes Elektrk Eğtm Bölümü Teknkokullar, Ankara mdursun@gaz.edu.tr,

Detaylı

UZAKTAN ALGILANMIŞ GÖRÜNTÜLERDE SINIFLANDIRMA VE ANALİZ (CLASSIFICATION OF REMOTE SENSING IMAGES AND ANALYSIS)

UZAKTAN ALGILANMIŞ GÖRÜNTÜLERDE SINIFLANDIRMA VE ANALİZ (CLASSIFICATION OF REMOTE SENSING IMAGES AND ANALYSIS) ÖZET UZAKTAN ALGILANMIŞ GÖRÜNTÜLERDE SINIFLANDIRMA VE ANALİZ (CLASSIFICATION OF REMOTE SENSING IMAGES AND ANALYSIS) Emnnur AYHAN Fevz KARSLI Esra TUNÇ Sınıflandırma; brçok blm dalında kullanılan br karar

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.teknolojkarastrmalar.com ISSN:134-4141 Makne Teknolojler Elektronk Dergs 28 (1) 61-68 TEKNOLOJĐK ARAŞTIRMALAR Kısa Makale Tabakalı Br Dskn Termal Gerlme Analz Hasan ÇALLIOĞLU 1, Şükrü KARAKAYA 2 1

Detaylı

Sınır özniteliklerinin belirlenmesi ve adaptasyonu algoritması ve konsensüs karar verici yapılarda kullanımı

Sınır özniteliklerinin belirlenmesi ve adaptasyonu algoritması ve konsensüs karar verici yapılarda kullanımı Sınır özntelklernn belrlenmes ve adaptasyonu algortması ve konsensüs karar verc yapılarda kullanımı N. Gökhan KASAPOĞLU *, Okan K. ERSOY 2 İTÜ Elektronk ve Haberleşme Mühendslğ Bölümü, 34469 Maslak, İstanbul

Detaylı

Otomatik Kontrol Ulusal Toplantısı, TOK2013, 26-28 Eylül 2013, Malatya DOĞRUSAL KONTROL SİSTEMLERİ

Otomatik Kontrol Ulusal Toplantısı, TOK2013, 26-28 Eylül 2013, Malatya DOĞRUSAL KONTROL SİSTEMLERİ DOĞRUSAL KONTROL SİSTEMLERİ 96 Anahtarlamalı Sstemler Kararlı Yapan PI Kontrolör Setnn Hesabı İbrahm Işık, Serdar Ethem Hamamcı Elektrk-Elektronk Mühendslğ Bölümü İnönü Ünverstes, Malatya {İbrahm.sk, serdar.hamamc}@nonu.edu.tr

Detaylı

Jenerik Cordic algoritmasının FPGA da donanımsal gerçeklenmesi. Hardware iplementation of generic CORDIC algorithm on FPGA

Jenerik Cordic algoritmasının FPGA da donanımsal gerçeklenmesi. Hardware iplementation of generic CORDIC algorithm on FPGA Jenerk Cordc algortmasının FPGA da donanımsal gerçeklenmes Suhap Şahn *, Burcu Kır Savaş 2 07.05.206Gelş/Receved,06.0.206Kabul/Accepted do: 0.6984/saufenblder.4583 ÖZ Trgonometrk, logartmk, hperbolk vb.

Detaylı

KENDİ KENDİNİ DÜZENLEYEN HARİTALAR YÖNTEMİYLE TÜRKÇE SESLİ HARFLERİN SINIFLANDIRILMASI VE TANINMASI

KENDİ KENDİNİ DÜZENLEYEN HARİTALAR YÖNTEMİYLE TÜRKÇE SESLİ HARFLERİN SINIFLANDIRILMASI VE TANINMASI Uludağ Ünverstes Mühendslk-Mmarlık Fakültes Dergs, Clt 17, Sayı 1, 2012 ARAŞTIRMA KENDİ KENDİNİ DÜZENLEYEN HARİTALAR YÖNTEMİYLE TÜRKÇE SESLİ HARFLERİN SINIFLANDIRILMASI VE TANINMASI Emrah YÜRÜKLÜ * Osman

Detaylı

VEKTÖRLER VE VEKTÖREL IŞLEMLER

VEKTÖRLER VE VEKTÖREL IŞLEMLER VEKTÖRLER VE VEKTÖREL IŞLEMLER 1 2.1 Tanımlar Skaler büyüklük: Sadece şddet bulunan büyüklükler (örn: uzunluk, zaman, kütle, hacm, enerj, yoğunluk) Br harf le sembolze edleblr. (örn: kütle: m) Şddet :

Detaylı

MESLEK SEÇİMİ PROBLEMİNDE ÇOK ÖZELLİKLİ KARAR VERME VE ÇÖZÜME YÖNELİK GELİŞTİRİLEN BİREYSEL KARİYER PLANLAMA PROGRAMI

MESLEK SEÇİMİ PROBLEMİNDE ÇOK ÖZELLİKLİ KARAR VERME VE ÇÖZÜME YÖNELİK GELİŞTİRİLEN BİREYSEL KARİYER PLANLAMA PROGRAMI MESLEK SEÇİMİ PROBLEMİNDE ÇOK ÖZELLİKLİ KARAR VERME VE ÇÖZÜME YÖNELİK GELİŞTİRİLEN BİREYSEL KARİYER PLANLAMA PROGRAMI Fath ÇİL GAZİ ÜNİVERSİTESİ Mühendslk Mmarlık Fakültes Endüstr Mühendslğ Bölümü 4. Sınıf

Detaylı

TÜKETİCİ TATMİNİ VERİLERİNİN ANALİZİ: YAPAY SİNİR AĞLARI ve REGRESYON ANALİZİ KARŞILAŞTIRMASI

TÜKETİCİ TATMİNİ VERİLERİNİN ANALİZİ: YAPAY SİNİR AĞLARI ve REGRESYON ANALİZİ KARŞILAŞTIRMASI 1 TÜKETİCİ TATMİNİ VERİLERİNİN ANALİZİ: YAPAY SİNİR AĞLARI ve REGRESYON ANALİZİ KARŞILAŞTIRMASI Metehan TOLON Nuray GÜNERİ TOSUNOĞLU Özet Tüketc tatmn araştırmaları özelde pazarlama yönetclernn, genelde

Detaylı

TOPSIS ÇOK KRİTERLİ KARAR VERME SİSTEMİ: TÜRKİYE DEKİ KAMU BANKALARI ÜZERİNE BİR UYGULAMA

TOPSIS ÇOK KRİTERLİ KARAR VERME SİSTEMİ: TÜRKİYE DEKİ KAMU BANKALARI ÜZERİNE BİR UYGULAMA Araştırma Makaleler TOPSIS ÇOK KRİTERLİ KARAR VERME SİSTEMİ: TÜRKİYE DEKİ KAMU BANKALARI ÜZERİNE BİR UYGULAMA Dr., Dokuz Eylül Ünverstes, İİBF İşletme Bölümü erhan.demrel@deu.edu.tr ÖZET Ekonomk faalyetlern

Detaylı

Algı Farklılaşmalarının Shannon Ayrışma Endeksi Kullanılarak Belirlenmesi

Algı Farklılaşmalarının Shannon Ayrışma Endeksi Kullanılarak Belirlenmesi Algı Farklılaşmalarının Shannon Ayrışma Endeks Kullanılarak Belrlenmes Latf ÖZTÜK * Murat ATAN ** Özet Daha çok byoloj blmnde türlern ayrışmasını belrlemek çn kullanılarak ön lana çıkan Shannon, Smson,

Detaylı

ANOVA. CRD (Completely Randomized Design)

ANOVA. CRD (Completely Randomized Design) ANOVA CRD (Completely Randomzed Desgn) Örne Problem: Kalte le blgnn, ortalama olara, br urumun üç farlı şehrde çalışanları tarafından eşt olara algılanıp algılanmadığını test etme amacıyla, bu üç şehrde

Detaylı

NİTEL TERCİH MODELLERİ

NİTEL TERCİH MODELLERİ NİTEL TERCİH MODELLERİ 2300 gözlem sayısı le verlen değşkenler aşağıdak gbdr: calsma: çocuk çalışıyorsa 1, çalışmıyorsa 0 (bağımlı değşken) Anne_egts: Anne eğtm sevyes Baba_egts: Baba eğtm sevyes Kent:

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8 BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8 FARKLI YÜZEY ÖZELLİKLERİNE SAHİP PLAKALARIN ISIL IŞINIM YAYMA ORANLARININ HESAPLANMASI BAŞKENT ÜNİVERSİTESİ

Detaylı

BETONARME YAPI TASARIMI

BETONARME YAPI TASARIMI BETONARME YAPI TASARIMI DEPREM HESABI Doç. Dr. Mustafa ZORBOZAN Mart 008 GENEL BİLGİ 18 Mart 007 ve 18 Mart 008 tarhler arasında ülkemzde kaydedlen deprem etknlkler Kaynak: http://www.koer.boun.edu.tr/ssmo/map/tr/oneyear.html

Detaylı

Şehiriçi Karayolu Ağlarının Sezgisel Harmoni Araştırması Optimizasyon Yöntemi ile Ayrık Tasarımı *

Şehiriçi Karayolu Ağlarının Sezgisel Harmoni Araştırması Optimizasyon Yöntemi ile Ayrık Tasarımı * İMO Teknk Derg, 2013 6211-6231, Yazı 392 Şehrç Karayolu Ağlarının Sezgsel Harmon Araştırması Optmzasyon Yöntem le Ayrık Tasarımı * Hüseyn CEYLAN* Halm CEYLAN** ÖZ Bu çalışmada, şehrç ulaştırma ağlarının

Detaylı

ANADOLU ÜNivERSiTESi BiliM VE TEKNOLOJi DERGiSi ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY CiltNol.:2 - Sayı/No: 2 : 413-417 (2001)

ANADOLU ÜNivERSiTESi BiliM VE TEKNOLOJi DERGiSi ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY CiltNol.:2 - Sayı/No: 2 : 413-417 (2001) ANADOLU ÜNvERSTES BlM VE TEKNOLOJ DERGS ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY CltNol.:2 - Sayı/No: 2 : 413-417 (1) TEKNK NOTrrECHNICAL NOTE ELEKTRK ARK FıRıNıNDA TERMODNAMGN KNC YASASıNıN

Detaylı

ADJUSTED DURBIN RANK TEST FOR SENSITIVITY ANALYSIS IN BALANCED INCOMPLETE BLOCK DESIGN

ADJUSTED DURBIN RANK TEST FOR SENSITIVITY ANALYSIS IN BALANCED INCOMPLETE BLOCK DESIGN SAÜ Fen Edebyat Dergs (2010-I) F.GÖKPINAR v.d. DENGELİ TAMAMLANMAMIŞ BLOK TASARIMINDA, DUYUSAL ANALİZ İÇİN DÜZELTİLMİŞ DURBİN SIRA SAYILARI TESTİ Fkr GÖKPINAR*, Hülya BAYRAK, Dlşad YILDIZ ve Esra YİĞİT

Detaylı

DARBELİ RADARLARDA HEDEF SINIFLAMA İÇİN AR MODELİNİN GÜÇ SPEKTRUMU VE YAPAY SİNİR AĞI TEMELLİ ÖZELLİK ÇIKARMA YÖNTEMİ ÖZET

DARBELİ RADARLARDA HEDEF SINIFLAMA İÇİN AR MODELİNİN GÜÇ SPEKTRUMU VE YAPAY SİNİR AĞI TEMELLİ ÖZELLİK ÇIKARMA YÖNTEMİ ÖZET Polteknk Dergs Journal of Polytechnc Clt: Sayı: s. 11-17, Vol: No: pp. 11-17, DARBELİ RADARLARDA HEDEF SINIFLAMA İÇİN AR MODELİNİN GÜÇ SPEKTRUMU VE YAPAY SİNİR AĞI TEMELLİ ÖZELLİK ÇIKARMA YÖNTEMİ İbrahm

Detaylı

BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ ÖRNEK 20 İKİ KATLI YIĞMA KONUT BİNASININ TASARIMI

BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ ÖRNEK 20 İKİ KATLI YIĞMA KONUT BİNASININ TASARIMI BÖLÜM II D ÖRNEK 0 BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ ÖRNEK 0 İKİ KATLI YIĞMA KONUT BİNASININ TASARIMI 0.1. BİNANIN GENEL ÖZELLİKLERİ...II.0/ 0.. TAŞIYICI

Detaylı

Muhasebe ve Finansman Dergisi

Muhasebe ve Finansman Dergisi Muhasebe ve Fnansman Dergs Ocak/2012 Farklı Muhasebe Düzenlemelerne Göre Hazırlanan Mal Tablolardan Elde Edlen Fnansal Oranlar İle Şrketlern Hsse Sened Getrler Ve Pyasa Değerler Arasındak İlşk Ahmet BÜYÜKŞALVARCI

Detaylı

YAPILARIN ENERJİ ESASLI TASARIMI İÇİN BİR HESAP YÖNTEMİ

YAPILARIN ENERJİ ESASLI TASARIMI İÇİN BİR HESAP YÖNTEMİ YAPILARI EERJİ ESASLI TASARIMI İÇİ BİR HESAP YÖTEMİ Araş. Gör. Onur MERTER Araş. Gör. Özgür BOZDAĞ Prof. Dr. Mustafa DÜZGÜ Dokuz Eylül Ünverstes Dokuz Eylül Ünverstes Dokuz Eylül Ünverstes Fen Blmler Ensttüsü

Detaylı

Çarpımsal Ceza Modeli İle Tamsayılı Programlama

Çarpımsal Ceza Modeli İle Tamsayılı Programlama Dokuz Eylül Ünverstes Sosyal Blmler Ensttüsü Dergs Clt: 10, Sayı:3, 2008 Çarpımsal Ceza Model İle Tamsayılı Programlama Sabr Erdem Özet Doğrusal olmayan optmzasyon problemlernn çözüm yöntemlernden brs,

Detaylı

T.C. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI

T.C. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI T.C. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI ÜÇ FAZLI ASENKRON MOTORLARIN YAPAY SİNİR AĞLARI İLE VEKTÖR ESASLI HIZ KONTROLÜ ZAFER KOCA

Detaylı

AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ

AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ III. ULUSAL HAVACILIK VE UZAY KONFERANSI 16-18 Eylül 2010, ANADOLU ÜNİVERSİTESİ, Eskşehr AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ Davut ÇIKRIKCI * Yavuz YAMAN Murat SORGUÇ

Detaylı

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI Yönetm, Yl 9, Say 28, Ekm - 1997,5.20-25 TRANSPORT PROBLEMI ÇIN GELIsTIRILMIs VAM YÖNTEMI Dr. Erhan ÖZDEMIR I.Ü. Teknk Blmler M.Y.O. L.GIRIs V AM transport problemlerne en düsük malyetl baslangç çözüm

Detaylı

TÜRKİYE DEKİ ÖZEL BANKALARIN FİNANSAL PERFORMANSLARININ KARŞILAŞTIRILMASI: 2008-2011 DÖNEMİ. Fatih ECER *

TÜRKİYE DEKİ ÖZEL BANKALARIN FİNANSAL PERFORMANSLARININ KARŞILAŞTIRILMASI: 2008-2011 DÖNEMİ. Fatih ECER * AİBÜ Sosyal Blmler Ensttüsü Dergs, Güz 2013, Clt:13, Yıl:13, Sayı:2, 13:171-189 TÜKİYE DEKİ ÖZEL BANKALAIN FİNANSAL PEFOMANSLAININ KAŞILAŞTIILMASI: 2008-2011 DÖNEMİ Fath ECE COMPAISON OF PIVATE BANKS FINANCIAL

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

AHP AND GRA INTEGRATED APPROACH IN INNOVATION PERFORMANCE REVIEW PROCESS: AN APPLICATION IN DAIRY INDUSTRY

AHP AND GRA INTEGRATED APPROACH IN INNOVATION PERFORMANCE REVIEW PROCESS: AN APPLICATION IN DAIRY INDUSTRY Dumlupınar Ünverstes Sosyal Blmler Dergs / Dumlupınar Unversty Journal of Socal Scences İNOVASYON PERFORMANSI DEĞERLENDİRME SÜRECİNDE AHS VE GİA BÜTÜNLEŞİK YAKLAŞIMI: SÜT ÜRÜNLERİ SEKTÖRÜNDE BİR UYGULAMA

Detaylı

Bulanık Mantık ve Yapay Sinir Ağları ile bir 3-3 Stewart Platformu nun Pozisyon Kontrolü

Bulanık Mantık ve Yapay Sinir Ağları ile bir 3-3 Stewart Platformu nun Pozisyon Kontrolü Bulanık Mantık ve Yapay Snr Ağları le br 3-3 Stewart Platformu nun Pozsyon Kontrolü İbrahm Yıldız 1, V.Emre Ömürlü 2, Ş.Nac Engn 3 1 Makne Mühendslğ Bölümü Yıldız Teknk Ünverstes, Beşktaş yldz@yldz.edu.tr

Detaylı