BİLİM VE TEKNOLOJİ - Gizli ilimler Sitesi

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BİLİM VE TEKNOLOJİ - Gizli ilimler Sitesi"

Transkript

1 Parçacık fiziği, maddenin parçacıklarını ve aralarındaki karşılıklı etkileşimi konu alan [1] ve ışıma, maddenin temel parçacıkları üzerine çalışan fiziğin bir dalıdır ve onların aralarındaki etkileşimleri de incelemektedir. Yüksek enerji fiziği diye de adlandırılmaktadır; çünkü birçok temel parçacık, doğada normal koşullarda oluşmaz; fakat oluşturulması veya gözlenmesi için geçen süre zarfında parçacık hızlandırıcılarında, diğer parçacıklarla enerjik çarpıştırılmaları gerekir. [2] Atomaltı parçacıkları, bağımsız olarak ömürleri çok kısa olduğu için normal şartlar altında gözlemlenemezler. Bu amaçla oluşturulan "parçacık hızlandırıcısı" denilen dev düzeneklerde, yüksek elektrik alan etkisi ile hızlandırılmış parçacıkların manyetik alan etkisi ile odaklanarak çarpıştırılması ile ortaya çıkan farklı parçacıklar incelenebilir hale getirilmeye çalışılır. [1] 20. Yüzyıl başlarında Rutherford deneyi ile ortaya konulan atom modeli sonrasında insanoğlunun maddenin temel yapısını çözümleme çerçevesindeki arayış ve gayretleri, özellikle parçacık fiziği ve nükleer fizik konusunda yapacağı yeni deneylerde elektron ve proton gibi hızlandırılmış temel parçacıkların kullanılmasını gündeme getirmiştir. Parçacık hızlandırıcıları ile ilgili ilk deneysel çalışmalar 1920'lerde başlamış, 1930'larda çeşitlenmiş ve 1940'lı yılların sonlarından başlayarak gelişen teknoloji ile ortalama her yedi yılda bir demet enerjilerinde ulaşılabilen üst sınır 10 kat artmış ve günümüzde 1 TeV enerjili hızlandırıcıların kurulması sağlanmış ve 5-10 TeV enerjili hızlandırıcıların yapımına başlanmıştır. Parçacık fiziğinin ve nükleer fiziğin vazgeçilmez deneysel aygıtları olan hızlandırıcılar günümüzde temel parçacıkların üretimi, ikincil demetlerin üretimi, sinkrotron ışınımı üretimi, serbest elektron lazerlerinin üretimi ve başta temel araştırmalar olmak üzere, bilim ve teknolojinin çeşitli alanlarında endüstriyel ve teknolojik ürünlerin üretiminde ve kalite kontrolünde kullanılması ile özellikle gelişmiş ülkelerde makro ekonominin, mühendisliğin ve teknolojinin gelişmesinde kilit rol oynamaya başlamışlardır. Bu çerçeveden bakılıp, her birinde yüzlerce doktoralı nükleer, parçacık ve hızlandırıcı fizikçisinin çalıştığı İsviçre-Fransa sınırında yerleşik Avrupa Nükleer Araştırmalar Merkezi CERN'in [0.1], Almanya'da Alman Elektron Sinkrotronu DESY'nin [0.2], Japonya'da Japon Ulusal Hızlandırıcı Merkezi KEK'in [0.3], Amerika'da Stanford Lineer Hızlandırıcısı SLAC'ın [0.4] ve Fermi Ulusal Hızlandırıcı Laboratuvarı FNAL'in [0.5], Rusya'da Novosibirsk [0.6] ve Protvino [0.7] hızlandırıcı merkezlerinin kurulduğu dönemler ve sonrasında bu ülkelere bilgi birikimi, mühendislik ve teknoloji alanında kazandırdıkları dikkatlice incelenirse hızlandırıcı laboratuarlarına sahip olmanın önemi kendiliğinden ortaya çıkacaktır. 1 / 13

2 Parçacık hızlandırıcılarının başta temel parçacık fiziği ve nükleer fizik deneyleri olmak üzere malzeme fiziğinden yüzey fiziğine, x-ışınlarından, nötron terapisine, proton terapisinden iyon implantasyonuna, petrol ve gaz yataklarının aranmasından çevre atıklarının etkisiz hale getirilmesine, gıda sterilizasyonundan izotop üretimine, nükleer atıkların temizlenmesinden toryuma dayalı nükleer santrallere, polimerizasyondan litografiye, anjiografiden baca gazlarının temizlenmesine, mikrospektroskopiden güç mühendisliğine, sinkrotron ışınımından serbest elektron lazerlerine, ağır iyon füzyonlarından plasma ısıtılmasına kadar günümüzde yüzlerce kullanım alanı mevcuttur. Bu gün gramına on binlerce dolar ödenebilen bir izotopu üretmek veya iyon implantasyonu yoluyla 15 yıl paslanmazlık garantisi verilebilen metalik bir yüzeyi ortaya koymak hızlandırıcıya dayalı basit ve yaygın teknolojiler haline gelmiştir. Sadece sinkrotron ışınımının Avrupa'da kullanımını ele alınırsa, çalışır durumda bulunan ve halka tipli elektron hızlandırıcılarına dayalı HASYLAB (Hamburg), BESSY (Berlin), ESRF (Grenoble), ELEITRA (Trieste) v.b. sinkrotron ışınımı laboratuarlarında fiziksel, biyolojik, kimyasal ve jeolojik numuneler üzerinde yapılan ve genel anlamda spektroskopiye dayalı araştırmaların sayısının bir yılda binlerce olması mikro teknolojilerin uygulamalarının artış hızı ve bunlara yapılan yatırımların boyutu konusunda bazı ipuçları kendiliğinden ortaya çıkacaktır. Bugün dünyada 4 kıtaya dağılmış on beş binin (15000) üzerinde küçüklü büyüklü hızlandırıcı mevcuttur [0.8]. Bunların yaklaşık 7000 adedi iyon implantasyonu ve yüzey modifikasyonunda, 1500 adedi endüstride, 1000 adedi nükleer-dışı araştırmada, 5000 adedi radyo-terapide, 200 adedi medical izotop üretiminde, 20 adedi hadron terapide, 70 adedi sinkrotron ışınımı kaynağı olarak kullanılmaktadır. Daha önce bazılarının isimleri ve ülkeleri verilen ve daha çok parçacık fiziği ve nükleer fizik deneyleri, sinkrotron ışınımı ve serbest elektron lazeri üretimi ve yeni teknoloji geliştirme amacıyla kurulan büyük ölçekli olanların sayısı ise 110 civarındadır. Ziyaretçi bilim adamları ile birlikte bu gün CERN de çalışan bilim adamı sayısı 4500 dür. [3] "Farklı maddeleri oluşturan benzer temel yapıtaşları vardır" fikri, Demokritus'un atom modeline kadar uzanır. Yakin tarihte J.J. Thompson'un elektronu bulması ve E. Rutherford'un atom yapısı deneyi ile ortaya çıkan atom fiziği, Curie'lerin radium & polonyum gibi ışıyan (radyoaktif) elementleri ortaya çıkarması ile çekirdek (nükleer) fiziğine yol vermiştir. Güncel araştırmalar, atom çekirdeğini oluşturan daha temel yapıtaşları üzerinedir. Bu araştırmalar, CERN, FNAL gibi çok uluslu laboratuarlarda yapılmaktadır. Atom bombasından, kanser terapisine kadar, birey ve toplum hayatına doğrudan etki eden sonuçları vardır. [4] Çağdaş fiziğin en yoğun ilgi alanı, temel parçacıklar üzerine yapılan araştırmalardır. Parçacık fiziği ya da yüksek enerji fiziği olarak bilinen bu dal çok sayıdaki temel parçacık arasındaki 2 / 13

3 ilişkilerin aydınlatılmasıyla uğraşır. Kararlı elektron ve protondan, 10'2 saniyelik ömrü olan çok kararsızlarına kadar geniş çeşitlilik gösteren bu parçacıklar, kabarcık odası gibi düzenekler aracılığıyla incelenir. Çağdaş fiziğin kuramsal temellerini, kuantum ve görelilik kuramları oluşturmaktadır. Fiziğin çeşitli dallarının konuları, deneysel yöntemleri ve kuramsal teknikleri ne kadar farklı olsa da, bu iki kuramın uyarlamalarına, birçok araştırma alanında rastlanmaktadır. kuantum mekaniği, elektromagrıetik ışınımın sürekli dalgalardan değil, enerji ve momentumları, frekansları ile orantılı olan parçacığa benzer fotonlardan oluştuğunu ileri sürer. Klasik mekanik, bir olası değerler aralığında sürekli değişebilen fiziksel niceliklerle belirlenirken, kuantum kuramının belirleyici özelliği kesikli (ayrık) değerler taşıması ve içkin olarak belirsizlik ilkesine yer vermesidir. Einstein'ın ortaya koyduğu görelilik kuramı, iki temel postula üzerine kurulmuştur: 1. Bir ışık kaynağına göre hareket durumları ne olursa olsun tüm gözlemciler, ışık hızı için aynı değeri ölçerler. 2. Tüm eylemsiz koordinat sistemlerinde fizik yasaları aynıdır. Birinci postuladaki ışık hızının değişmezliği, deneysel olarak kanıtlanmıştır. İkinci postula ise, klasik mekanik için de geçerlidir. [ 5] Araştırmalar sonucunda parçacıkların listesi uzuncadır. [2] Tanımlanabilen tanecik türlerinin sayısı 200 dolayındadır. Bu sayı karşı tanecikleri de kapsar. Karşı tanecikler kütle bakımından öteki taneciklerle özdeştir, ama başka özellikleri bakımından karşıtlıklar gösterirler. Sözgelimi, bir elektron eksi gerilimle yüklü bir elektrot tarafından itilir, oysa bir karşı elektron (pozitron), aynı elektrot tarafından çekilir. Bunun nedeni, elektronun eksi yük, pozitronunsa artı yük taşımasıdır. Tanecikler, kütle bakımından birbirinden ayrılırlar. Sözgelimi, fotonlar (ışık taneciği,) kütlesizdir, yalnızca enerji taşırlar. N ve Z harfleriyle gösterilen ve kütleleri PROTON ve NÖTRON'dan üç kez daha büyük olan tanecikler de vardır. Taneciklerin, elektrik yükleri (artı, eksi) ve dönüleri (spin) gibi ölçülebilir özellikleri vardır. Tanecik etkileşimleri arasında büyük farklar bulunmuş ve tanecik özelliklerini denetleyen dört kuvvet tanımlanmıştır: Güçlü kuvvet; elektromagnetik kuvvet; zayıf kuvvet; çekimsel kuvvet. Şiddetleri çok farklı olan bu kuvvetler, birbirinden kolayca ayırt edilebilir. Elektromagnetik kuvvet güçlü kuvvetten yüz kez, zayıf kuvvet milyar kez, çekimsel kuvvet de milyon kez daha küçüktür. 3 / 13

4 Aşağıda bu kuvvetler, tanımlanmış ve bu sınıflara giren tanecikler verilmiştir. Güçlü kuvvete duyarlı olan taneciklere "kadron", zayıf kuvvete duyarlı olanlara da "lepton" adı verilir. Elektrik bakımından yüklü olanlar elektromagnetik kuvvete, kütlesi olan her tanecik de çekimsel kuvvete duyarlıdır. [6] Çekimsel Kuvvet Çekimsel kuvvet, kütlesi olan iki tanecik arasında bulunur ve Newton'un düşen bir elmadan esinlenerek çıkardığı yasayla tanımlanır. Bu kuvvet, Dünya ve öteki gezegenlerin Güneş çevresindeki yörüngelerinde dönmelerini denetler. Çekim kuvveti, yalnızca çeken bir kuvvettir. İki kütle birbirini çeker, hiç bir zaman itmez. Bu kuvvetin değeri, kütlelerin çarpımının aralarındaki uzaklığın karesine bölümüyle orantılıdır. Gök cisimleri ele alındığında büyük bir güç olarak ortaya çıkan çekim kuvveti, tek tek tanecikler söz konusu olduğunda sezilmeyecek kadar küçüktür ve çoğunlukla öteki kuvvetler tarafından gölgelenir. [6] Elektromagnetik Kuvvet Elektromagnetik kuvvet, elektrik yükü taşıyan bütün tanecikler arasında bulunur. Elektrik ve magnetizma olaylarında yer alır. Atom içinde, eksi elektronun artı çekirdek çevresindeki dolanımını denetler ve böylece atom hareketlerinin kaynağını oluşturur. Karşıt yüklü taneciklerin birbirini çekmesini, aynı yüklü taneciklerinse birbirini itmesini sağlar. Elektromagnetik kuvvetin değeri de, çekimsel kuvvete benzer biçimde, iki yükün çarpımının, uzaklığın karesine bölümüyle orantılıdır. Elektromagnetik kuvvetin etkinliği ve işlevi, kuantum elektrodinamiği kuramında tanımını bulmaktadır. Buna göre, her taneciğin çevresi bir foton bulutuyla sarılıdır. Söz konusu bulut, ışusta (?) olduğu gibi kütlesiz bir enerji paketidir. Tanecikse, sürekli olarak bu fotonları dışa doğru fırlatmakta, sonra da kendine doğru çekip yakalamaktadır. Eğer bir foton başka bir fotonla karşılaşırsa etkileşim başlar (sözgelimi, karşıt yüklüyseler birbirlerini çekerler). Foton yardımıyla bir tanecik, ikinci bir taneciğe mesaj iletmektedir. Foton bulutunun yoğunluğu, taneciğe yakın yerlerde yüksek, dışa doğru düşüktür. Bu, elektromagnetik etkileşimin uzaklıkla azaldığını ortaya koyar. 4 / 13

5 kuantum elektrodinamiğinin geçerli bir kuram olduğu söylenebilir. Bu kuram deneyle de kanıtlanabilir. Çünkü, yüklü taneciğin çevresinde bulunan foton bulutu, tanecik özelliklerini biraz değiştirir. Küçük değişimler ölçülmüş ve milyonda birkaç hatayla kuantum elektrodinamiği kuramında öngörülen değerler bulunmuştur. Kuram, küçük çaplı olayları açıklamak için geliştirilmiş olmasına karşın, başka elektromagnetik kuvvetlerin saptanmasında da başarılı sonuçlar vermiştir. Tanecikler arası uzaklığın, atomsal ölçekte ya da uzaysal boyutlarda olması fark etmemektedir. [6] Güçlü Kuvvet Güçlü kuvvet, hadronlar arasında ortaya çıkar. Atom çekirdeği içinde işlevini sürdürür. Elektromagnetik kuvvetin artı yüklü protonları birbirinden uzaklaştırmaya çalışmasına karşı, proton ve nötronları bir arada tutar. Bu kuvvetin etkisi, ancak atom çekirdeği ölçeğindeki uzaklıklarda (yani 10-"J cm düzeyinde) duyulabilir. Bu özellik, öteki hadronların, nükleer hacme girmedikçe neden çekirdek tarafından çekilmediklerini açıklar. Güçlü kuvvetin, "mezon" adı verilen taneciklerin yer değiştirmesi sonucu ortaya çıktığı düşünülmektedir. En çok tanınan mezon, pi mezonudur (ya da pion). Bir hadron, varlığını başka bir hadrona duyurmak için, bir pion değiş tokuşunda bulunur. Bu durum, yüklü taneciklerin foton değiştirmesine benzer. Bununla birlikte, pionun bir kütlesi vardır (protonunki-nin dörtte biri kadar) ve hadronun çok yakınına gelip kaldığından, güçlü kuvvet, tanecikten uzaklarda pek etkili değildir. Hızlandırıcılarda, çeşitli hadron ve mezonların bulunması, yukarda verilen yalın açıklamalara çelişkili bir durum getirmiştir. Yüksek enerjilerde hızlandırılmış tanecikler başka taneciklerle çarpıştıklarında, varlıkları önceden bilinmeyen bazı yeni tanecikler ortaya çıkmaktadır. Bunların tümü, güçlü kuvvetin etkisi altında bulunmaktadır yıllarının başlarında çekirdek fizikçileri, yeni tanecikler bulmaya başlamışlar, ama bunların doğadaki işlevleri ve varlıklarının nedeni anlaşılamamıştır. Zamanla,tanecik özellikleri ortaya çıkarıldıkça, bunlar arasında kimyasal elementlerdeki gibi bir düzen bulunduğu ortaya çıkmıştır. Tıpkı atom yapısının periyodik çizelgedeki ilişkileri belirlemesi gibi, hadronların yapısı da, bunların birbiriyle ilişkisini düzenlemektedir. Benzer özellikler taşıyan sekiz-on tanecik, hadron gruplarını oluşturur. Bu gruplaşmanın nedeni de, "kuark" adı verilen ve çeşitli düzenlemelerle hadronu oluşturan daha temel nesnelere bağlanmaktadır. Son yıllarda proton ve nötronlardan yüksek enerjili, farklı tiplerde taneciklerin koparıldığı bir dizi deney yapılmıştır. Bu çalışmaların amacı, XX. yüzyılın başında, Rutherford'un yaptığı ünlü deneye benzer. Rutherford, atomdan tanecikler koparmış, böylece merkezde çekirdek adı verilen bir bileşenin varlığını ortaya koymuştur. Taneciklerin proton ve nötronlar üstüne 5 / 13

6 saçılması, hadronlar içinde üç küçük taneciğin (büyük bir olasılıkla kuark) varlığını göstermektedir. Böylece, maddenin temel yapısı diye nitelendirilen bileşenlerin, gerçekte daha yalın cisimlerden oluştuğu anlaşılmaktadır. Ancak, günümüzde deneysel yoldan, hadronlar içinde bulunan kuarkları açığa çıkarmak olanaklı değildir. Güçlü kuvvetin etkisinde bulunan taneciklerin özellikleri kuark kavramıyla açıklanabilmekteyse de, varlıkları, deneylerle kanıtlanamamıştır. [6] Zayıf Kuvvet Zayıf kuvvet, taneciklerin parçalanıp başka taneciklere dönüşmesi sırasında ortaya çıkar. Tanecik dönüşümü için geçen süre saniyenin milyarda biri düzeyindedir. Bu. tanecik etkileşim süresine göre çok uzun bir zamandır ve söz konusu kuvvetin zayıflığını gösterir. Bilindiği kadarıyla, bu kuvvetin etkisi tanecik içiyle sınırlıdır, dışarıya taşmaz. Yüksek enerjili hızlandırıcılar geliştirilmeden önce, zayıf kuvvet konusundaki bilgiler, çekirdek parçalanması sırasındaki gözlemlere dayanmaktaydı. Burada özellikle nötronun proton ve elektronlara parçalanmasına bağlı beta bozunması dikkat çekiciydi. Gözlemlerde, elektronun değişik enerjilerde ortaya çıktığı izlendiğinden, enerjinin geri kalan bölümünü yutan başka taneciklerin var olması gerektiği düşünüldü. Bu görünmez taneciğe «nötrino Zayıf kuvvet altındaki tanecikle yapılan deneyler, doğa konusunda önceden doğruluğuna inanılan pek çok düşünceyi çürütmüştür. Sözgelimi, 1950 yıllarında, çekirdeğin beta bozunması sırasında açığa çıkan elektronlar üstünde yapılan ölçmeler bir gerçeği ortaya çıkarmıştır. Buna göre, elektronlar saat ibreleri yönünde dönmekte, görünmeyen nötrinolarsa saat ibrelerinin tersi yönünde dönmektedirler. Bu olay şu gerçeği açığa çıkarır: Zayıf kuvvet etkisini gösterdiğinde, doğada bir doğrultu davranışı gözlenmektedir. Oysa eskiden «sağ On yıl sonra, mezonların bozunumu sırasında daha ilginç bir gerçek ortaya çıkmıştır: Doğada, yalnızca doğrultu özelliği değil, ayrıca, zaman içindeki doğrultu kavramı da vardır. Buna göre, zaman içinde geri gidilerek olayların yeniden yaşanabileceği düşüncesi (film şeridinin geriye döndürülmesi gibi) geçerliliğini yitirmiştir. Gözlenen zayıf kuvveti yeterli biçimde açıklayan bir kuram geliştirilmemiştir. Bir kuramda açıklama, güçlü kuvvetteki pion değiş tokuşu ile elektromagnetik kuvvetteki foton değiş tokuşu gibi bir tanecik alış verişine dayandırılmaktadır. Buna "ara bozon" ya da "W taneciği" adı verilmektedir. Ama bu tür bir tanecik bulunamamıştır. Tanecik fiziğindeki en gizemli kuvvet, zayıf kuvvettir. [6] 6 / 13

7 Temel Parçacıklar Leptonlar ve kuarklar şimdiki bilgilerimize göre en temel parçacıklardır. Yani, kendilerini oluşturan başka parçacıklardan yapılmamışlardır. Temel parçacıklar fermiyonlardır, dönüş (spin) kuantum değerleri kesirlidir (1/2 gibi). Bu parçacıklar dönüş değerleri kesirsiz (0, 1 gibi) olan bozonlar sayesinde birbirleri ile etkileşirler. [1] Leptonlar Leptonların en çok bilineni elektrondur. Elektron şimdilik başka parçacıklardan yapılmamış olarak kabul edilmektedir. Leptonların spini (dönüş; parçacığın iç açısal momentumu) ½ ve elektrik yükleri (protonun elektrik yükünün katları olarak) -1 veya 0 dır. Yunanca lepton hafif parçacık anlamına gelmektedir. Şimdilik (2007'de) bilinen 6 lepton vardır: 1. e electron (Elektrik yükü=-1) 2. νe elektron-nötrino (Elektrik yükü=0) 3. τ tau (Elektrik yükü=-1) 4. ντ tau-nötrino (Elektrik yükü=0) 5. μ muon (Elektrik yükü=-1) 7 / 13

8 6. νμ muon-nötrino (Elektrik yükü=0) [1] Kuarklar Temel parçacıklar içinde adını Murray Gell-Mann ve Georg Zweig tarafından alan parçacıklar kuarklardır. Kuarklarda spin ½ ve elektrik yükleri 2/3 veya -1/3 olan parçacıklardır. Şimdilik (2007'de) bilinen 6 kuark vardır: 1. u up (üst, elektrik yükü=2/3) 2. d down (alt, elektrik yükü=-1/3) 3. c charm (çekici, elektrik yük=2/3) 4. s strange (tuhaf, elektrik yükü=-1/3) 5. t top (tavan, elektrik yükü=2/3) 6. b bottom (taban, elektrik yükü=-1/3) [1] 8 / 13

9 Atom altı parçacıklar Modern parçacık fiziği araştırmaları atom altı parçacıklar üzerine odaklanmıştır, atomlardan daha küçük yapılara sahipler. Atomu oluşturan bileşenleri elektronlar, protonlar ve nötronlardır, parçacıklar ışıma ve saçılma süreçleri tarafından üretilir; fotonlar, nötrinolar ve müonlar gibi ya da egzotik parçacıklar gibi... Açıkçası, parçacık terimi yanlış isim kullanımıdır çünkü parçacık fiziğinin dinamiği kuantum mekaniği tarafından yönlendirilmiştir. Bunun gibi, onlar parçacık-dalga ikililiği gösterirler, güvenilir deneysel koşullar altında parçacıksal ve diğerleri (daha fazla teknik detayda onlar Hilbert uzayında durum vektörleri tarafından tanımlanır, kuantum alan teorisinin konusu) için de dalgasal davranış gösterirler. Parçacık fizikçilerinin kongreleri izlendiğinde, biz temel parçacıkları referans nesne olarak kullanırız öyle ki elektronlar ve fotonlar gibi, anlaşılmaz şekilde bu parçacıklar dalga özelliği gösterirler. Bugüne kadar gözlenen bütün parçacıklar ve onların etkileşimleri, tamamen kuantum alan teorisi tarafından Standard model adı ile tanımlanmıştır.standart Model özelleşmiş 40 temel parçacığı içerir bu parçacıklar 24 fermiyon, 12 vektör bozonu ve 4 skaler bozon olarak gruplandırılırlar. Bileşik parçacıklar birleşerek 1960'lı yıllarda diğer tür parçacıklar bulundu. Parçacık fizikçilerinin çoğu doğanın eksik kısımlarının tamamlanacağı inancını taşıyorlar ve daha fazlasını en temel teorinin bulunmasını bekliyorlar. Son zamanlarda, Standart Modelden sapmadan ilk kez evrendeki nötrinonun kütlesi ölçüldü. [2] Temel Kuvvetler Doğada şimdilik varlığı bilinen dört temel kuvvet vardır. Bu kuvvetler belli parçacıkların değiş-tokuşu ile oluşurlar ve şöyle sınıflanabilirler: 1. Elektromanyetik Kuvvet: Foton tarafından iletilir. Foton kütlesizdir. Foton, günlük hayatta iç içe yaşadığımız Isı, Işık, Radyo-TV sinyalleri, Mikrodalga sinyalleri, X-ışınları, Gama ışınları ve bunlara benzer enerji yayılımlarını taşımakla yükümlüdür. Elektromanyetik kuvvet yüklü parçacıklar arasındaki mesafe ile '1/mesafe 2 ' şeklinde değişir. 2. Zayıf Çekirdek Kuvveti: Z adı verilen kütleli foton ile W adı verilen kütleli ve elektrik yükünü 9 / 13

10 haiz parçacıklar tarafından iletilirler. Z ve W boson'lar radyoaktif bozunmalardan sorumludurlar. Zayıf kuvvet zayıf bir kuvvettir ve yüklü parçacıklar arasındaki mesafe ile 'Exp(- M Z * mesafe)/mesafe 2 )' şeklinde değişir ve yalnız 'mesafe ~ 1/ M Z ' civarında etkili olur. 3. Şiddetli Çekirdek Kuvveti: Gluon (yani 'zamk' parçacığı) tarafından iletilir. Güçlü kuvvet yüklü parçacıklar arasındaki mesafe ile 'mesafe' şeklinde değişir ve büyük mesafelerde güçlü bir etkileşme verirken, küçük mesafelerde oldukça zayıftır (Hook kuvveti gibi.) 4. Kütleçekim Kuvveti: Graviton tarafından iletilir. Graviton henüz keşfedilmemiştir. Bu kuvvet hep çekimseldir ve yüklü (kütleli) parçacıklar arasındaki mesafe ile '1/mesafe2' şeklinde değişir. [1] Hadronlar Kuarklar ve/veya antikuarklar gluon tarafından zamklanarak hadronları oluştururlar. Yeğin kuvvet gereğince kuarklar hadronlar içinde hapsolmuş olarak bulunurlar; serbest parçacık olarak gözlemlenemezler. 3 kuarktan (veya anti kuarktan) oluşan spini kesirli hadronlara Baryonlar (bu kelime Yunanca ağır anlamındadır), bir kuark ve bir anti kuarktan oluşan spini tam sayı hadronlara ise Mezonlar denir. [1] Atom çekirdeği Atom çekirdeği temel parçacık değildir, nükleon adı verilen proton ve nötronlardan meydana gelir. Elektron ve çekirdeğin içindeki nötron ile proton kararlı parçacıklardır. Kuarklar bir araya gelerek nükleonları oluştururlar. Nötron u,d,d kuarklarından, proton ise u,u,d kuarklarından 10 / 13

11 meydana gelmiştir. Elektrik yükleri hesaplandığında nötronun yüksüz (2/3-1/3-1/3 = 0) ve protonun +1 yüklü (2/3 + 2/3-1/3 = 1) olduğu görülür. Bir atom çekirdeğini oluşturan nükleonlar aradaki mezon alışverişi ile kararlı parçacıklar ortaya çıkar. Bu olay esnasındaki kuvvet Yeğin etkileşimdir ve çekirdeği parçalanmadan tutar. Bu olgu ilk kez Hideki Yukawa tarafından ortaya konulmuştur ve bu olayda en çok rol oynayan mezon pi mezondur. Ortalıkta fazla görülmeyen bu parçacıkların ömrü çok kısadır. Yüklü pi mezon 10 8 sn yaşar. Bir atom çekirdeğinin her zaman kararlı değildir, kararsız atom çekirdeklerinde, ki radyoaktif maddelerin çekirdekleri böyledir, çekirdek parçalanması olur. Bunun nedeni zayıf etkileşim adlı kuvvettir. [1] Spin istatistiği Yukarda belirtilen bu parçacıkların Pauli yasası dahilinde spinleri göz önüne alındığında, ya tam sayılı (0,1,..) veya buçuklu (1/2, 3/2,...) olduğu görülür. Yarı tamsayılı spinli parçacıklar Fermi istatiklerine, tamsayılı spine sahip olanlar Bose-Einstein istatiklerine uyarlar. Bu nedenle spinler göz önüne alındığında parçacıklar iki kısma ayrılırlar; 1. Fermiyonlar (Enrico Fermi'den) 2. Bozonlar (M. K. Bose'dan) Fermi istatistiklerine uyan parçacıklar aynı anda aynı kuantum sayılarına sahip olamazlar. Bose istatiklerine uyanlar ise aynı anda aynı konumda olabilirler. (fotonlar bu grupta oldukları için lazer ışını oluşabilir). Yukarıda bahsi geçen Temel Kuvvetlerin etkileşim parçacıkları Bozonlardır. Tüm bahsedilen parçacıkların bir anti parçacığı da mevcuttur; bu parçacıkların tamamı, "anti madde" olarak adlandırılır. [1] 11 / 13

12 Parçacık Fiziğinin Tarihi Tüm maddenin temel parçacıkların bileşiminden oluştuğu yönünde milattan önce 6.yüzyılda bir kanı oluşmuştu. Antik Yunan filozoflarından Lefkippos, Demokritos ve Epikurus atom üzerine çalışmışlardır. 19. yüzyılda John Dalton, stokiyometri çalışmaları sayesinde, her bir doğa elementinin bir bileşenden oluştuğunu düşündü, tek tür parçacık. Dalton ve çağdaşları bunların doğanın temel parçacıkları olduğuna inanıyorlardı ve adlarını atom olarak koydular. Anlamı bölünemez idi. Ancak yüzyılın sonuna yaklaşıldığında, fizikçiler atomları keşfediyorlardı, gerçekten de, doğanın temel parçacıkları ama daha küçük atom parçacıkları kümeleriydi. 20.yüzyılın başlarında nükleer fizik ve kuantum fiziğinin keşfi, nükleer fizyon ve nükleer füzyon bulunuşu ile kanıtlandı.nükleer fizyon 1939 yılında Lise Meitner tarafından (deneyi yapan Otto Hahn) ve Nükleer füzyon Hans Bethe tarafından aynı yılda bulundu. Bu buluşlardan sonra nükleer gücün farkına varılmıştı ve aslında nükleer bir çağ başlamıştı. 1950'li ve 1960'lı yıllar arasında, saçılma deneyleriyle şaşırtıcı çeşitlikte parçacıklar bulundu. 1970'lerde Standart Model geliştirildi. [2] Kısaca Standart Model Standart Model, temel parçacıkların sınıflandırılması üzerine günümüzde geçerli olan bir modeldir. Güçlü ve zayıf nükleer, elektromanyetik temel kuvvetleri ile aracı olan ölçü bozonları tanımlayarak kullanılır. Ölçü bozon türleri gluonlar,w- ve w+ ile Z bozonları, ve fotonlardır. Model maddenin bileşenleri olan 24 tane temel parçacığı kapsıyor. Son olarak, model bozonun bir türü olan Higgs bozonun varlığını önceden kestirmektedir, henüz bulunamadı. [2] Sözü geçen 3 temel kuvvet: Elektromanyetik kuvvet, zayıf nükleer kuvvet (elektro-zayıf kuvvet) ve güçlü nükleer kuvvettir. SM'in en büyük başarısı şimdiye dek bir çok kez sınanmış olmasına rağmen atom altı parçacıkların özellikleri ile aralarındaki etkileşmelerine ait gözlenebilir nicelikleri büyük hassaslıkta tahmin edebilmesidir. Bununla birlikte yapılan daha hassas deneyler ile SM'in öngördüğü değerler arasında farklar bulunmaktadır. Bunlara ek olarak SM'in temel birçok eksik tarafı vardır. [7] İlgili Yayınlar / 13

13 Robert Gilmore, "Kuarkların Büyücüsü / Bir Parçacık Fiziği Masalı", çev. İlker Kalender, ODTÜ Geliştirme Vakfi Yayıncılık, İstanbul Sezen Sekmen, "Parçacık Fiziği / En Küçüğü Keşfetme Macerası", ODTÜ Geliştirme Vakfı Yayıncılık / Bilim ve Toplum Dizisi Kaynaklar [1] Vikipedi, "Parçacık Fiziği" maddesi, tr.wikipedia.org/wiki/parçacık_fiziği [2] Gökhan Atmaca, "Parçacık Fiziği ve Tarihçesi", Kuark Bilim Topluluğu, [3] [4] [5] ansiklopedi.turkcebilgi.com/parçacık_fiziği [6] nin-temel-bilesenlerinin-ozelli/ [7] Vikipedi, "Standart Model" maddesi, tr.wikipedia.org/wiki/standart_model 13 / 13

STANDART MODEL VE ÖTESİ. : Özge Biltekin

STANDART MODEL VE ÖTESİ. : Özge Biltekin STANDART MODEL VE ÖTESİ : Özge Biltekin Standart model, bilim tarihi boyunca keşfedilmiş parçacıkların birleşimidir. Uzay zamanda bir nokta en, boy, yükseklik ve zaman ile tanımlanır. Alanlar da uzay zamanda

Detaylı

ALIfiTIRMALARIN ÇÖZÜMÜ

ALIfiTIRMALARIN ÇÖZÜMÜ ATOMLARDAN KUARKLARA ALIfiTIRMALARIN ÇÖZÜMÜ 1. Parçac klar spinlerine göre Fermiyonlar ve Bozonlar olmak üzere iki gruba ayr l r. a) Fermiyonlar: Spin kuantum say lar 1/2, 3/2, 5/2... gibi olan parçac

Detaylı

FİZ314 Fizikte Güncel Konular

FİZ314 Fizikte Güncel Konular FİZ314 Fizikte Güncel Konular 2015-2016 Bahar Yarıyılı Bölüm-8 23.05.2016 Ankara A. OZANSOY 23.05.2016 A.Ozansoy, 2016 1 Bölüm 8: Parçacık Fiziği 1. Temel Olmayan Parçacıklardan Temel Parçacıklara 2. 4

Detaylı

Temel Parçacık Dinamikleri. Sunum İçeriği

Temel Parçacık Dinamikleri. Sunum İçeriği 1 Sunum İçeriği 2 Genel Tekrar Leptonlar Örnek: elektron Fermionlar Kuarklar Örnek: u kuark Bozonlar Örnek: foton Kuarklar serbest halde görülmezler. Kuarklardan oluşan yapılar ise genel olarak şu şekilde

Detaylı

Herbir kuarkın ters işaretli yük ve acayipliğe sahip bir anti kuarkı vardır: TİP (ÇEŞNİ,flavor) YÜK ACAYİPLİK. u (up, yukarı) 2/3 0

Herbir kuarkın ters işaretli yük ve acayipliğe sahip bir anti kuarkı vardır: TİP (ÇEŞNİ,flavor) YÜK ACAYİPLİK. u (up, yukarı) 2/3 0 Hardronlar neden böyle ilginç şekillere uyarlar? Cevap Gell-Mann ve Zweig tarafından (birbirinden bağımsız olarak) Verildi: Tüm hardronlar KUARK denilen daha temel bileşenlerden oluşmuştur! Kuarklar bir

Detaylı

STANDART MODEL ÖTESİ YENİ FİZİK

STANDART MODEL ÖTESİ YENİ FİZİK STANDART MODEL ÖTESİ YENİ FİZİK MUSA ÖZCAN TTP 8 (CERN TÜRK ÖĞRETMEN ÇALIŞTAYI 8) 21-27 OCAK 2018 1 Bugünü anlamak için, geçmişe bakmak. Büyüğü anlamak için, en küçüğe bakmak. *TTP 8 Güncel sorunlar Gökhan

Detaylı

Fizik bilimi nedir? Fizik Bilimi nedir? Fizik biliminin uğraşı alanları nelerdir? On5yirmi5.com. Fizik Bilimi nedir?

Fizik bilimi nedir? Fizik Bilimi nedir? Fizik biliminin uğraşı alanları nelerdir? On5yirmi5.com. Fizik Bilimi nedir? On5yirmi5.com Fizik bilimi nedir? Fizik Bilimi nedir? Fizik biliminin uğraşı alanları nelerdir? Yayın Tarihi : 22 Ekim 2012 Pazartesi (oluşturma : 11/28/2015) Fizik Bilimi nedir? Fizik, deneysel gözlemler

Detaylı

Parçacık Fiziği. Dr. Bora Akgün / Rice Üniversitesi CERN Türkiye Öğretmenleri Programı Temmuz 2015

Parçacık Fiziği. Dr. Bora Akgün / Rice Üniversitesi CERN Türkiye Öğretmenleri Programı Temmuz 2015 Parçacık Fiziği Dr. Bora Akgün / Rice Üniversitesi CERN Türkiye Öğretmenleri Programı Temmuz 2015 Parçacık Fiziğinin Standard Modeli fermion boson Dönü 2 Spin/Dönü Bir parçacık özelliğidir (kütle, yük

Detaylı

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri 7 Büyük Patlama ve Evrenin Oluşumu 225 Test 1 in Çözümleri 1. Elektrikçe yüksüz parçacıklar olan fotonların kütleleri yoktur. Işık hızıyla hareket ettikleri için atom içerisinde bulunamazlar. Fotonlar

Detaylı

Parçacıkların Standart Modeli ve BHÇ

Parçacıkların Standart Modeli ve BHÇ Parçacıkların Standart Modeli ve BHÇ Prof. Dr. Altuğ Özpineci ODTÜ Fizik Bölümü Parçacık Fiziği Maddeyi oluşturan temel yapı taşlarını ve onların temel etkileşimlerini arar Democritus (460 MÖ - 370 MÖ)

Detaylı

RADYASYON FİZİĞİ 1. Prof. Dr. Kıvanç Kamburoğlu

RADYASYON FİZİĞİ 1. Prof. Dr. Kıvanç Kamburoğlu RADYASYON FİZİĞİ 1 Prof. Dr. Kıvanç Kamburoğlu Herbirimiz kısa bir süre yaşarız ve bu kısa süre içerisinde tüm evrenin ancak çok küçük bir bölümünü keşfedebiliriz Evrenle ilgili olarak en anlaşılamayan

Detaylı

Parçacık Fiziği Söyleşisi

Parçacık Fiziği Söyleşisi Parçacık Fiziği Söyleşisi Saleh Sultansoy - TOBB ETÜ Gökhan Ünel - UC Irvine HPFBU2012 12-19 Şubat, Kars, Kafkas Üniversitesi 1 Parçacık fiziği Maddenin ve etkileşimlerin alt yapısını anlamak 2 Büyük Patlama

Detaylı

Temel Sabitler ve Birimler

Temel Sabitler ve Birimler Temel Sabitler ve Birimler Işığın boşluktaki hızı: c=299792458 m/s ~3x10 8 m/s Planck sabiti: h= 6.62606957(29)x10-34 Js İndirgenmiş Planck sabiti ħ = h/2π Temel elektrik yükü : e=1.60218x10-19 C İnce

Detaylı

BÖLÜM 3: (6,67x10 Nm kg )(1,67x10 kg)»10 36 F (9x10 Nm C )(1,6x10 C) NÜKLEONLAR ARASI KUVVET- NÜKLEER KUVVET

BÖLÜM 3: (6,67x10 Nm kg )(1,67x10 kg)»10 36 F (9x10 Nm C )(1,6x10 C) NÜKLEONLAR ARASI KUVVET- NÜKLEER KUVVET BÖLÜM : NÜKLEONLAR ARASI KUVVET- NÜKLEER KUVVET Atomdaki elektronların hareketini kontrol eden kuvvetler elektromanyetik kuvvettir. Elektromanyetik kuvvet atomları ve molekülleri bir arada tutar. Çekirdekteki

Detaylı

CERN VE HİGGS HİGGS PARÇACIĞI NEDİR? Tuba KÖYLÜ Bilişim Teknolojileri Öğretmeni Şanlıurfa İl Milli Eğitim Müdürlüğü 27 Haziran 2017

CERN VE HİGGS HİGGS PARÇACIĞI NEDİR? Tuba KÖYLÜ Bilişim Teknolojileri Öğretmeni Şanlıurfa İl Milli Eğitim Müdürlüğü 27 Haziran 2017 CERN VE HİGGS HİGGS PARÇACIĞI NEDİR? Tuba KÖYLÜ Bilişim Teknolojileri Öğretmeni Şanlıurfa İl Milli Eğitim Müdürlüğü 27 Haziran 2017 2 CERN CERN; Fransızca Avrupa Nükleer Araştırma Konseyi kelimelerinin

Detaylı

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Temel kavramlar Atomsal yapı

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Temel kavramlar Atomsal yapı Malzeme Bilgisi Prof. Dr. Akgün ALSARAN Temel kavramlar Atomsal yapı İçerik Temel kavramlar Atom modeli Elektron düzeni Periyodik sistem 2 Temel kavramlar Bütün maddeler kimyasal elementlerden oluşur.

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Atom, birkaç türü birleştiğinde çeşitli molekülleri, bir tek türü ise bir kimyasal öğeyi oluşturan parçacıktır. Atom, elementlerin özelliklerini taşıyan en küçük yapı birimi olup çekirdekteki

Detaylı

Hazırlayan: Ayten İLHAN Branşı: Bilişim Teknolojileri Görev Yaptığı Okul: EMİNE ÖZCAN ANADOLU LİSESİ

Hazırlayan: Ayten İLHAN Branşı: Bilişim Teknolojileri Görev Yaptığı Okul: EMİNE ÖZCAN ANADOLU LİSESİ Hazırlayan: Ayten İLHAN Branşı: Bilişim Teknolojileri Görev Yaptığı Okul: EMİNE ÖZCAN ANADOLU LİSESİ 1 LEPTONLAR AYAR BOZONLARI (KUVVET TAŞIYICI BOZONLAR) KUARKLAR STANDART MODELİ ANLAMAK MADDE PARÇACIKLARI

Detaylı

ATOM ATOMUN YAPISI 7. S I N I F S U N U M U. Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir.

ATOM ATOMUN YAPISI 7. S I N I F S U N U M U. Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. ATO YAP Atomu oluşturan parçacıklar farklı yüklere sahiptir Atomda bulunan yükler; negatif yükler ve pozitif yüklerdir Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir Atomu oluşturan

Detaylı

6.HAFTA BÖLÜM 3: ÇEKİRDEK KUVVETLERİ VE ÇEKİRDEK MODELLERİ

6.HAFTA BÖLÜM 3: ÇEKİRDEK KUVVETLERİ VE ÇEKİRDEK MODELLERİ 6.HAFTA BÖLÜM 3: ÇEKİRDEK KUVVETLERİ VE ÇEKİRDEK MODELLERİ 3.1 ÇEKİRDEK KUVVETLERİ 3.1.1. GENEL KARAKTERİSTİK Çekirdek hakkında çok fazla bir şey bilmezden önce yalnızca iki farklı etkileşim kuvveti bilinmekteydi.

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 Elektron Kütlesi 9,11x10-31 kg Proton Kütlesi Nötron Kütlesi 1,67x10-27 kg Bir kimyasal elementin atom numarası (Z) çekirdeğindeki

Detaylı

ÇALIŞMA YAPRAĞI (KONU ANLATIMI)

ÇALIŞMA YAPRAĞI (KONU ANLATIMI) ÇALIŞMA YAPRAĞI (KONU ANLATIMI) ATOMUN YAPISI HAZIRLAYAN: ÇĐĞDEM ERDAL DERS: ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME DERS SORUMLUSU: PROF.DR. ĐNCĐ MORGĐL ANKARA,2008 GĐRĐŞ Kimyayı ve bununla ilgili

Detaylı

ATLAS Dünyası. Standart Model. ATLAS ağ sayfası Karşımadde

ATLAS Dünyası. Standart Model. ATLAS ağ sayfası  Karşımadde Fizikçiler dünyanın ne olduğunu ve onu neyin bir arada tuttuğunu açıklayan isimli bir kuram geliştirmişlerdir. yüzlerce parçacığı ve karmaşık etkileşmeleri yalnızca aşağıdakilerle açıklayabilen bir kuramdır:

Detaylı

HİGGS HAKKINDA NAZLI FANUS FEN BİLİMLERİ ÖĞRETMENİ ULUPAMİR ORTAOKULU (CERN TÜRK ÖĞRETMEN ÇALIŞTAYI-7)

HİGGS HAKKINDA NAZLI FANUS FEN BİLİMLERİ ÖĞRETMENİ ULUPAMİR ORTAOKULU (CERN TÜRK ÖĞRETMEN ÇALIŞTAYI-7) HİGGS HAKKINDA NAZLI FANUS FEN BİLİMLERİ ÖĞRETMENİ ULUPAMİR ORTAOKULU (CERN TÜRK ÖĞRETMEN ÇALIŞTAYI-7) HİGGS HAKKINDA KONU BAŞLIKLARI STANDART MODEL-TEMEL PARÇACIKLAR HİGGS BOZONU HİGGS ALANI HIZLANDIRICILAR(HİGGS

Detaylı

ATOM BİLGİSİ Atom Modelleri

ATOM BİLGİSİ Atom Modelleri 1. Atom Modelleri BÖLÜM2 Maddenin atom adı verilen bir takım taneciklerden oluştuğu fikri çok eskiye dayanmaktadır. Ancak, bilimsel bir (deneye dayalı) atom modeli ilk defa Dalton tarafından ileri sürülmüştür.

Detaylı

Radyoaktif elementin tek başına bulunması, bileşik içinde bulunması, katı, sıvı, gaz, iyon halinde bulunması radyoaktif özelliğini etkilemez.

Radyoaktif elementin tek başına bulunması, bileşik içinde bulunması, katı, sıvı, gaz, iyon halinde bulunması radyoaktif özelliğini etkilemez. RADYOAKTİFLİK Kendiliğinden ışıma yapabilen maddelere radyoaktif maddeler denir. Radyoaktiflik çekirdek yapısıyla ilişkilidir. Radyoaktif bir atom hangi bileşiğin yapısına girerse o bileşiği radyoaktif

Detaylı

DEMOCRİTUS. Atom hakkında ilk görüş M.Ö. 400 lü yıllarda Yunanlı filozof Democritus tarafından ortaya konmuştur.

DEMOCRİTUS. Atom hakkında ilk görüş M.Ö. 400 lü yıllarda Yunanlı filozof Democritus tarafından ortaya konmuştur. ATOM TEORİLERİ DEMOCRİTUS DEMOCRİTUS Atom hakkında ilk görüş M.Ö. 400 lü yıllarda Yunanlı filozof Democritus tarafından ortaya konmuştur. Democritus, maddenin taneciklerden oluştuğunu savunmuş ve bu taneciklere

Detaylı

A. ATOMUN TEMEL TANECİKLERİ

A. ATOMUN TEMEL TANECİKLERİ ÜNİTE 3 MADDENİN YAPISI VE ÖZELLİKLERİ 1. BÖLÜM MADDENİN TANECİKLİ YAPISI 1- ATOMUN YAPISI Maddenin taneciklerden oluştuğu fikri yani atom kavramı ilk defa demokritus tarafından ortaya atılmıştır. Örneğin;

Detaylı

Temel Sabitler ve Birimler

Temel Sabitler ve Birimler Temel Sabitler ve Birimler Işığın boşluktaki hızı: c=299792458 m/s ~3x10 8 m/s Planck sabiti: h= 6.62606957(29)x10-34 Js İndirgenmiş Planck sabiti ħ = h/2π Elektron yükü : e=1.602176565(35)x10-19 C İnce

Detaylı

SU Lise Yaz Okulu. Evrenin Başlangıcı ve Enflasyon Teorisi

SU Lise Yaz Okulu. Evrenin Başlangıcı ve Enflasyon Teorisi SU Lise Yaz Okulu Evrenin Başlangıcı ve Enflasyon Teorisi Evrenin ilk zamanları Büyük patlamadan önce: Bilimsel olarak tar.şılamaz. Büyük patlama uzay ve zamanda bir tekilliğe karşılık gelir ve o noktada

Detaylı

STANDART MODEL VE ÖTESİ. Güncel sorunlar ve çözüm arayışı. A. Zorluer Türk Öğretmen Çalıştayı 8 Ocak 2018

STANDART MODEL VE ÖTESİ. Güncel sorunlar ve çözüm arayışı. A. Zorluer Türk Öğretmen Çalıştayı 8 Ocak 2018 STANDART MODEL VE ÖTESİ Güncel sorunlar ve çözüm arayışı. A. Zorluer Türk Öğretmen Çalıştayı 8 Ocak 2018 1 Evrenin kısa tarihi Görüldüğü gibi evrenimizin tarihi aynı zamanda atom altı parçacıkların oluşum

Detaylı

Proton, Nötron, Elektron

Proton, Nötron, Elektron Atomun Yapısı Atom Atomu oluşturan parçacıklar farklı yüklere sahiptir. Farklı yüklere sahip bu parçacıklar birbirini etkileyerek bir arada bulunur ve atomu oluşturur. Atomda bulunan yükler negatif ve

Detaylı

Madde Dünya. Molekül Atom. Atomlar Elektron. Kuark

Madde Dünya. Molekül Atom. Atomlar Elektron. Kuark PARÇACIK FĠZĠĞĠ ve CERN Aytül ADIGÜZEL (Çukurova Üniversitesi) Tayfun ĠNCE (University of Bonn) 1 PARÇACIK FĠZĠĞĠ Maddenin temel yapıtaģları nelerdir? Bu yapıtaģlarının davranıģlarını en temel düzeyde

Detaylı

Theory Tajik (Tajikistan)

Theory Tajik (Tajikistan) Q3-1 Büyük Hadron Çarpıştırıcısı Bu probleme başlamadan önce ayrı bir zarfta verilen genel talimatları lütfen okuyunuz. Bu görevde, CERN de bulunan parçacık hızlandırıcısının LHC ( Büyük Hadron Çarpıştırıcısı)

Detaylı

Doğayı anlamak için, Parçacıkları, Kuvvetleri ve Kuralları Bilmemiz gerekir. Gordon Kane,Süpersimetri

Doğayı anlamak için, Parçacıkları, Kuvvetleri ve Kuralları Bilmemiz gerekir. Gordon Kane,Süpersimetri EVREN NASIL İŞLER? Doğayı anlamak için, Parçacıkları, Kuvvetleri ve Kuralları Bilmemiz gerekir. Gordon Kane,Süpersimetri Evrenin olağanüstü karmaşıklığını açıklamak için küçüklerin dünyasını anlamak gerekir

Detaylı

Atomun Yapısı Boşlukta yer kaplayan, hacmi, kütlesi ve eylemsizliği olan her şeye madde denir. Maddeyi (elementi) oluşturan ve maddenin (elementin)

Atomun Yapısı Boşlukta yer kaplayan, hacmi, kütlesi ve eylemsizliği olan her şeye madde denir. Maddeyi (elementi) oluşturan ve maddenin (elementin) Atomun Yapısı Boşlukta yer kaplayan, hacmi, kütlesi ve eylemsizliği olan her şeye madde denir. Maddeyi (elementi) oluşturan ve maddenin (elementin) kendi özelliğini taşıyan en küçük yapı birimine atom

Detaylı

Çekirdek Modelleri. Alfa Bozunumu. Nükleer Fizikte Kullanışlı Birimler Çekirdeğin Yapısı ve Etkileşmeler. Çekirdeğin Sıvı Damlası Modeli

Çekirdek Modelleri. Alfa Bozunumu. Nükleer Fizikte Kullanışlı Birimler Çekirdeğin Yapısı ve Etkileşmeler. Çekirdeğin Sıvı Damlası Modeli NÜKLEER FİZİK Bu sunumun büyük bir bölümünü aşağıdaki siteden indirebilir veya fotokopiciden fotokopisini alabilirsiniz. http://s3.dosya.tc/server11/efgmzh/fotokopi.pdf.html Nükleer Fizikte Kullanışlı

Detaylı

ATOMUN YAPISI. Özhan ÇALIŞ. Bilgi İletişim ve Teknolojileri

ATOMUN YAPISI. Özhan ÇALIŞ. Bilgi İletişim ve Teknolojileri ATOMUN YAPISI ATOMLAR Atom, elementlerin en küçük kimyasal yapıtaşıdır. Atom çekirdeği: genel olarak nükleon olarak adlandırılan proton ve nötronlardan meydana gelmiştir. Elektronlar: çekirdeğin etrafında

Detaylı

İÇİNDEKİLER -BÖLÜM / 1- -BÖLÜM / 2- -BÖLÜM / 3- GİRİŞ... 1 ÖZEL GÖRELİLİK KUANTUM FİZİĞİ ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ...

İÇİNDEKİLER -BÖLÜM / 1- -BÖLÜM / 2- -BÖLÜM / 3- GİRİŞ... 1 ÖZEL GÖRELİLİK KUANTUM FİZİĞİ ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ... İÇİNDEKİLER ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ... viii -BÖLÜM / 1- GİRİŞ... 1 -BÖLÜM / 2- ÖZEL GÖRELİLİK... 13 2.1. REFERANS SİSTEMLERİ VE GÖRELİLİK... 14 2.2. ÖZEL GÖRELİLİK TEORİSİ... 19 2.2.1. Zaman Ölçümü

Detaylı

Murat ŞENER Bursa Sınav Fen Lisesi

Murat ŞENER Bursa Sınav Fen Lisesi Murat ŞENER Bursa Sınav Fen Lisesi Kütlenin kökeni Nötrino salınımı Madde-karşıt madde asimetrisi Karanlık madde ve karanlık enerjinin doğası gibi kuramsal olarak geliştirilmiş olayların açıklanmaya çalışılmasıdır.

Detaylı

HİGGS??? STANDART MODEL HIGGS BOZONU ve ALANI HIGGS İ BULMAK İÇİN: HIZLANDIRICILAR PEKİ YA SONRA?

HİGGS??? STANDART MODEL HIGGS BOZONU ve ALANI HIGGS İ BULMAK İÇİN: HIZLANDIRICILAR PEKİ YA SONRA? Higgsli Günler HİGGS??? STANDART MODEL HIGGS BOZONU ve ALANI HIGGS İ BULMAK İÇİN: HIZLANDIRICILAR PEKİ YA SONRA? 1. STANDART MODEL En basit haliyle, temel parçacıklar ve etkileşimleri hakkında bütün bilgimizi

Detaylı

, (Compton Saçılması) e e, (Çift Yokoluşu) OMÜ_FEN

, (Compton Saçılması) e e, (Çift Yokoluşu) OMÜ_FEN Göreli olmayan kuantum mekaniği 1923-1926 yıllarında tamamlandı. Göreli kuantum mekaniğinin ilk başarılı uygulaması 1927 de Dirac tarafından gerçekleştirildi. Dirac denklemi serbest elektronlar için uygulandığında

Detaylı

FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım

FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım devreleri Manyetik alanlar Akım nedeniyle oluşan manyetik

Detaylı

Kadri Yakut 08.03.2012

Kadri Yakut 08.03.2012 Kadri Yakut 08.03.2012 TEŞEKKÜR Lisans Kara Delikler Eser İş (2009-2010) Büyük Kütleli Kara Delikler Birses Debir (2010-2011) Astrofiziksel Kara Deliklerin Kütlelerinin Belirlenmesi Orhan Erece (2010-2011)

Detaylı

Yeni bir radyoterapi yöntemi: Hadron terapi

Yeni bir radyoterapi yöntemi: Hadron terapi Yeni bir radyoterapi yöntemi: Hadron terapi Hadron terapi, nükleer kuvvetlerle (yeğin kuvvet) etkileşen parçacıkları kullanarak yapılan bir radyasyon tedavi (ışın tedavisi) yöntemidir. Bu parçacıklar protonlar,

Detaylı

KİMYA -ATOM MODELLERİ-

KİMYA -ATOM MODELLERİ- KİMYA -ATOM MODELLERİ- ATOM MODELLERİNİN TARİHÇESİ Bir çok bilim adamı tarih boyunca atomun yapısı ile ilgili pek çok fikir ortaya atmış ve atomun yapısını tanımlamaya çalışmış-tır. Zaman içerisinde teknoloji

Detaylı

ATOMUN YAPISI ATOMUN ÖZELLİKLERİ

ATOMUN YAPISI ATOMUN ÖZELLİKLERİ ATOM Elementlerin özelliğini taşıyan, en küçük yapı taşına, atom diyoruz. veya, fiziksel ve kimyasal yöntemlerle daha basit birimlerine ayrıştırılamayan, maddenin en küçük birimine atom denir. Helyum un

Detaylı

ATOMUN YAPISI VE PERİYODİK ÖZELLİKLER

ATOMUN YAPISI VE PERİYODİK ÖZELLİKLER ATOMUN YAPISI VE PERİYODİK ÖZELLİKLER IŞIĞIN YAPISI Işığın; Dalga ve Parçacık olmak üzere iki özelliği vardır. Dalga Özelliği: Girişim, kırınım, polarizasyon, yayılma hızı, vb. Parçacık Özelliği: Işığın

Detaylı

3- KİMYASAL ELEMENTLER VE FONKSİYONLARI

3- KİMYASAL ELEMENTLER VE FONKSİYONLARI 3- KİMYASAL ELEMENTLER VE FONKSİYONLARI Doğada 103 elementin olduğu bilinmektedir. Bunlardan 84 metal elementlerdir. Metal elementler toksik olan ve toksik olmayan elementler olarak ikiye ayrılmaktadır.

Detaylı

Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar

Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar Termal nötronlar (0.025 ev) Orta enerjili nötronlar (0.5-10 kev) Hızlı nötronlar (10 kev-10 MeV) Çok hızlı nötronlar (10 MeV in üzerinde)

Detaylı

Atomlar ve Moleküller

Atomlar ve Moleküller Atomlar ve Moleküller Madde, uzayda yer işgal eden ve kütlesi olan herşeydir. Element, kimyasal tepkimelerle başka bileşiklere parçalanamayan maddedir. -Doğada 92 tane element bulunmaktadır. Bileşik, belli

Detaylı

HIGGS HAKKINDA. STANDART MODEL HIGGS BOZONU ve ALANI HIGGS İ BULMAK İÇİN: HIZLANDIRICILAR PEKİ YA SONRA?

HIGGS HAKKINDA. STANDART MODEL HIGGS BOZONU ve ALANI HIGGS İ BULMAK İÇİN: HIZLANDIRICILAR PEKİ YA SONRA? HIGGS HAKKINDA Seher DAMLI (TTP- 5 katılımcısı) seher.damli@eba.gov.tr Eğitmen: Sezen SEKMEN (Kore Kyungpook Ulusal Üniversitesi adına araştırmacı olarak CERN de CMS deneyinde görevli) sezen.sekmen@cern.ch

Detaylı

Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sahiptir. Atomda bulunan yükler;

Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sahiptir. Atomda bulunan yükler; Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sahiptir. Atomda bulunan yükler; negatif yükler ve pozitif yüklerdir. Atomu oluşturan parçacıklar:

Detaylı

Bhabha Saçılması (Çift yokoluş ve Çift oluşumu. Moller Saçılması (Coulomb Saçılması) OMÜ_FEN

Bhabha Saçılması (Çift yokoluş ve Çift oluşumu. Moller Saçılması (Coulomb Saçılması) OMÜ_FEN Geometrodynamics: Genel Görelilik Teorisi Gravitasyon parçacık fiziğinde önemli bir etki oluşturacak düzeyde değildir. Çok zayıftır. Elektrodinamiğin kuantum teorisi Tomonaga, Feynman ve Schwinger tarafında

Detaylı

ATOMUN YAPISI. Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir.

ATOMUN YAPISI. Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. ATOMUN YAPISI ATOMUN YAPISI Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomda bulunan yükler; negatif yükler ve pozitif yüklerdir. Atomu oluşturan parçacıklar: * Cisimden cisme

Detaylı

J.J. Thomson (Ġngiliz fizikçi, 1856-1940), 1897 de elektronu keģfetti ve kütle/yük oranını belirledi. 1906 da Nobel Ödülü nü kazandı.

J.J. Thomson (Ġngiliz fizikçi, 1856-1940), 1897 de elektronu keģfetti ve kütle/yük oranını belirledi. 1906 da Nobel Ödülü nü kazandı. 1 5.111 Ders Özeti #2 Bugün için okuma: A.2-A.3 (s F10-F13), B.1-B.2 (s. F15-F18), ve Bölüm 1.1. Ders 3 için okuma: Bölüm 1.2 (3. Baskıda 1.1) Elektromanyetik IĢımanın Özellikleri, Bölüm 1.4 (3. Baskıda

Detaylı

Radyoaktivite - Büyük Patlama ve Evrenin Oluşumu

Radyoaktivite - Büyük Patlama ve Evrenin Oluşumu 40 Radyoaktivite - Büyük Patlama ve Evrenin Olşm 1 Test 1 in Çözümleri 1. Elektrikçe yüksüz parçacıklar olan fotonların kütleleri yoktr. Işık hızıyla hareket ettikleri için atom içerisinde blnamazlar.

Detaylı

PARÇACIK FİZİĞİ, HIZLANDIRICILAR ve DEDEKTÖRLER

PARÇACIK FİZİĞİ, HIZLANDIRICILAR ve DEDEKTÖRLER PARÇACIK FİZİĞİ, HIZLANDIRICILAR ve DEDEKTÖRLER Dr. İlkay TÜRK ÇAKIR TAEK Sarayköy Nükleer Araştırma ve Eğitim Merkezi Ar-Ge Bölümü Füzyon Birimi - Hızlandırıcı Fiziği Birimi 24/09/07 III. UPHDYO 1 İÇERİK

Detaylı

ATLAS Higgs Araştırmalarında En Yeni Sonuçlar

ATLAS Higgs Araştırmalarında En Yeni Sonuçlar ATLAS Higgs Araştırmalarında En Yeni Sonuçlar Resim 1: ATLAS ın 2012 de kaydettiği, Higgs in dört elektrona bozunma adayı. 4 Temmuz 2012 de, ATLAS deneyi, Higgs Bozonu araştırmalarındaki güncellenmiş sonuçlarının

Detaylı

1. ATOMLA İLGİLİ DÜŞÜNCELER

1. ATOMLA İLGİLİ DÜŞÜNCELER 1. ATOMLA İLGİLİ DÜŞÜNCELER Democritus Maddenin tanecikli yapıda olduğunu ileri sürmüş ve maddenin bölünemeyen en küçük parçasına da atom (Yunanca a-tomos, bölünemez ) adını vermiştir Lavoisier Gerçekleştirdiği

Detaylı

Geçen Derste. ρ için sınır şartları serinin bir yerde sona ermesini gerektirir. 8.04 Kuantum Fiziği Ders XXIII

Geçen Derste. ρ için sınır şartları serinin bir yerde sona ermesini gerektirir. 8.04 Kuantum Fiziği Ders XXIII Geçen Derste Verilen l kuantum sayılı açısal momentum Y lm (θ,φ) özdurumunun radyal denklemi 1B lu SD şeklinde etkin potansiyeli olacak şekilde yazılabilir, u(r) = rr(r) olarak tanımlayarak elde edilir.

Detaylı

Evrenimizdeki karanlık maddenin 3 boyutlu olarak modellenmesi Karanlık maddenin evrende ne şekilde dağıldığı hala cevabı bulunmamış sorulardan

Evrenimizdeki karanlık maddenin 3 boyutlu olarak modellenmesi Karanlık maddenin evrende ne şekilde dağıldığı hala cevabı bulunmamış sorulardan CERN BÖLÜM-2 1970 lerin sonlarına doğru bugün hala tam olarak açıklayamadığımız inanılmaz bir keşif yapıldı. Bu keşfe göre evrendeki toplam kütlenin yüzde doksana yakını görünmezdi! Bu heyecan verici keşfin

Detaylı

KİM-117 TEMEL KİMYA Prof. Dr. Zeliha HAYVALI Ankara Üniversitesi Kimya Bölümü

KİM-117 TEMEL KİMYA Prof. Dr. Zeliha HAYVALI Ankara Üniversitesi Kimya Bölümü KİM-117 TEMEL KİMYA Prof. Dr. Zeliha HAYVALI Ankara Üniversitesi Kimya Bölümü Bu slaytlarda anlatılanlar sadece özet olup ayrıntılı bilgiler ve örnek çözümleri derste verilecektir. BÖLÜM 5 ATOM ÇEKİRDEĞİNİN

Detaylı

ÇEKİRDEK KİMYASI. Kimya Ders Notu

ÇEKİRDEK KİMYASI. Kimya Ders Notu ÇEKİRDEK KİMYASI Kimya Ders Notu ÇEKİRDEK KİMYASI Atomaltı Tanecikler Atomaltı parçacıklar bağımsız olarak ömürleri çok kısa olduğu için normal şartlar altında gözlemlenemezler. Bu amaçla oluşturulan parçacık

Detaylı

İNSTAGRAM:kimyaci_glcn_hoca

İNSTAGRAM:kimyaci_glcn_hoca MODERN ATOM TEORİSİ ATOMUN KUANTUM MODELİ Bohr atom modeli 1 H, 2 He +, 3Li 2+ vb. gibi tek elektronlu atom ve iyonların çizgi spektrumlarını başarıyla açıklamıştır.ancak çok elektronlu atomların çizgi

Detaylı

ATOMUN YAPISI VE PERIYODIK CETVEL

ATOMUN YAPISI VE PERIYODIK CETVEL ATOMUN YAPISI VE PERIYODIK CETVEL DALTON ATOM TEORISI - Tüm maddeler atomlardan yapılmıştır. - Farklı maddelerin atomlarıda birbirlerinden farklıdır. - Bir bileşiği oluşturan atomların kütleleri arasında

Detaylı

Kimyafull Gülçin Hoca

Kimyafull Gülçin Hoca 1.ÜNİTE MODERN ATOM TEORİSİ 1. BÖLÜM: Atomla İlgili Düşünceler 1. Dalton Atom Modeli 2. Atom Altı Tanecikler Elektronun Keşfi Protonun Keşfi Nötronun Keşfi 0 Kimyafull Gülçin Hoca DALTON ATOM MODELİ Democritus

Detaylı

T. C. GAZİ ÜNİVERSİTESİ GAZİ EĞİTİM FAKÜLTESİ FİZİK EĞİTİMİ A. B. D. PROJE ÖDEVİ

T. C. GAZİ ÜNİVERSİTESİ GAZİ EĞİTİM FAKÜLTESİ FİZİK EĞİTİMİ A. B. D. PROJE ÖDEVİ T. C. GAZİ ÜNİVERSİTESİ GAZİ EĞİTİM FAKÜLTESİ FİZİK EĞİTİMİ A. B. D. PROJE ÖDEVİ ÖĞRETİMİ PLANLAMA VE DEĞERLENDİRME Dr. Yücel KAYABAŞI ÖLÇME ARACI Hazırlayan : Hasan Şahin KIZILCIK 98050029457 Konu : Çekirdek

Detaylı

Yıldızların: Farklı renkleri vardır. Bu, onların farklı sıcaklıklarda olduklarını gösterir. Daha sıcak yıldızlar, ömürlerini daha hızlı tüketirler.

Yıldızların: Farklı renkleri vardır. Bu, onların farklı sıcaklıklarda olduklarını gösterir. Daha sıcak yıldızlar, ömürlerini daha hızlı tüketirler. Yıldızların Hayatı Yıldızların: Farklı renkleri vardır Bu, onların farklı sıcaklıklarda olduklarını gösterir Daha sıcak yıldızlar, ömürlerini daha hızlı tüketirler. Yıldız Oluşum Bölgeleri Evren, yıldız

Detaylı

TÖÇ-5. Parçacık Fiziğine giriş. Gökhan ÜNEL / UCI - Şubat 2016

TÖÇ-5. Parçacık Fiziğine giriş. Gökhan ÜNEL / UCI - Şubat 2016 TÖÇ-5 Parçacık Fiziğine giriş Gökhan ÜNEL / UCI - Şubat 2016 1 Çıkış noktası Yaşadığım bu yerde bir sebep-sonuç ilişkisi var. Bilinçliyken deneyimlediklerime gerçek diyorum. Yaşadığım bu yeri anlayabilirim.

Detaylı

Newton ve Einstein nin Evren Anlayışları

Newton ve Einstein nin Evren Anlayışları Newton ve Einstein nin Evren Anlayışları Planck COPERNİCUS 1473-1543 (6 Milyon Yıl) Rutherford (M.Ö.10.000) Thales (M.Ö.625) Sokrates (M.Ö.469-399) Eudoxus Platon (M.Ö.408-355) Aristarchos (M.Ö.427-347)

Detaylı

Hızlandırıcılar ve Çarpıştırıcılar

Hızlandırıcılar ve Çarpıştırıcılar Hızlandırıcılar ve Çarpıştırıcılar 1 Hızlandırıcı nedir? Çarpıştırıcı nedir? Parçacık hızlandırıcıları, elektrik yükü olan atomik veya atom-altı parçacıkları oldukça yüksek hızlara (ışık hızına bile oldukça

Detaylı

BİYOLOJİK MOLEKÜLLERDEKİ

BİYOLOJİK MOLEKÜLLERDEKİ BİYOLOJİK MOLEKÜLLERDEKİ KİMYASALBAĞLAR BAĞLAR KİMYASAL VE HÜCRESEL REAKSİYONLAR Yrd. Doç.Dr. Funda BULMUŞ Atomun Yapısı Maddenin en küçük yapı taşı olan atom elektron, proton ve nötrondan oluşmuştur.

Detaylı

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz.

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz. Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz. Işık genellikle titreşen elektromanyetik dalga olarak düşünülür; bu suda ilerleyen dalgaya

Detaylı

Fen ve Mühendislik Bilimleri için Fizik

Fen ve Mühendislik Bilimleri için Fizik Fen ve Mühendislik Bilimleri için Fizik Giriş Fizik Temel Bilimlerin Amacı Doğanın işleyişinde görev alan temel kanunları anlamak. Diğer fen ve mühendislik bilimleri için temel hazırlamaktır. Temelde gerekli

Detaylı

SU Lise Yaz Okulu 2. Ders, biraz (baya) fizik. Dalgalar Elektromanyetik Dalgalar Kuantum mekaniği Tayf Karacisim ışıması

SU Lise Yaz Okulu 2. Ders, biraz (baya) fizik. Dalgalar Elektromanyetik Dalgalar Kuantum mekaniği Tayf Karacisim ışıması SU Lise Yaz Okulu 2. Ders, biraz (baya) fizik Dalgalar Elektromanyetik Dalgalar Kuantum mekaniği Tayf Karacisim ışıması Dalga Nedir Enerji taşıyan bir değişimin bir yöne doğru taşınmasına dalga denir.

Detaylı

Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü

Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü 101537 RADYASYON FİZİĞİ Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü TEMEL KAVRAMLAR Radyasyon, Elektromanyetik Dalga, Uyarılma ve İyonlaşma, peryodik cetvel radyoaktif bozunum

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ Spektroskopiye Giriş Yrd. Doç. Dr. Gökçe MEREY SPEKTROSKOPİ Işın-madde etkileşmesini inceleyen bilim dalına spektroskopi denir. Spektroskopi, Bir örnekteki atom, molekül veya iyonların

Detaylı

Bölüm 8: Atomun Elektron Yapısı

Bölüm 8: Atomun Elektron Yapısı Bölüm 8: Atomun Elektron Yapısı 1. Elektromanyetik Işıma: Elektrik ve manyetik alanın dalgalar şeklinde taşınmasıdır. Her dalganın frekansı ve dalga boyu vardır. Dalga boyu (ʎ) : İki dalga tepeciği arasındaki

Detaylı

TÖÇ-6. Parçacık Fiziğine giriş. Gökhan ÜNEL / UCI - Haziran 2016

TÖÇ-6. Parçacık Fiziğine giriş. Gökhan ÜNEL / UCI - Haziran 2016 TÖÇ-6 Parçacık Fiziğine giriş Gökhan ÜNEL / UCI - Haziran 2016 1 Çıkış noktası Yaşadığım bu yerde bir sebep-sonuç ilişkisi var. Bilinçliyken deneyimlediklerime gerçek diyorum. Yaşadığım bu yeri anlayabilirim.

Detaylı

CANLILARIN KİMYASAL İÇERİĞİ

CANLILARIN KİMYASAL İÇERİĞİ CANLILARIN KİMYASAL İÇERİĞİ Prof. Dr. Bektaş TEPE Canlıların Savunma Amaçlı Kimyasal Üretimi 2 Bu ünite ile; Canlılık öğretisinde kullanılan kimyasal kavramlar Hiyerarşi düzeyi Hiyerarşiden sorumlu atom

Detaylı

ATOM MODELLERİ.

ATOM MODELLERİ. ATOM MODELLERİ THOMSON ATOM MODELİ ÜZÜMLÜ KEK MODELİ Kek pozitif yüklere, üzümler ise negatif yüklere benzetilmiştir. Thomson Atom Modeline göre; Atomun yapısında pozitif ve negatif yüklü tanecikler vardır.(+)

Detaylı

1. Hafta. İzotop : Proton sayısı aynı nötron sayısı farklı olan çekirdeklere izotop denir. ÖRNEK = oksijenin izotoplarıdır.

1. Hafta. İzotop : Proton sayısı aynı nötron sayısı farklı olan çekirdeklere izotop denir. ÖRNEK = oksijenin izotoplarıdır. 1. Hafta 1) GİRİŞ veya A : Çekirdeğin Kütle Numarası (Nükleer kütle ile temel kütle birimi arasıdaki orana en yakın bir tamsayı) A > Z Z: Atom Numarası (Protonların sayısı ) N : Nötronların Sayısı A =

Detaylı

125 GeV Kütleli Yeni bir Parçacığın Gözlenmesi

125 GeV Kütleli Yeni bir Parçacığın Gözlenmesi 125 GeV Kütleli Yeni bir Parçacığın Gözlenmesi CMS Deneyi, CERN 4 Temmuz 2012 Özet Bugün, CERN deki Büyük Hadron Çarpıştırıcısı'ndaki (BHÇ) CMS deneyi araştırmacıları, CERN de ve Melbourne daki ICHEP 2012

Detaylı

ATOM FİZİĞİ-2 BÖLÜM-3 ATOMİK SPEKTROSKOPİ

ATOM FİZİĞİ-2 BÖLÜM-3 ATOMİK SPEKTROSKOPİ BÖLÜM HİDROJEN ATOMUNDA MERKEZCİL ALAN ÇÖZÜMLERİ BÖLÜM ATOMİK HAMİLTONİYENİN BAZI TERİMLERİ Rutherford Bohr Compton Pauli Fermi Feynman BÖLÜM 3 ATOMİK SPEKTROSKOPİ BÖLÜM 4 TEMEL PARÇACIKLAR ATOM FİZİĞİ-

Detaylı

Parçacık Fiziğinde Korunum Yasaları

Parçacık Fiziğinde Korunum Yasaları Parçacık Fiziğinde Korunum Yasaları I. Elektrik Yükünün Korunumu II. Lepton Sayılarının Korunumu III. Baryon Sayısının Korunumu IV. Renk Yükünün Korunumu V. Göreli Mekanik i. Göreli Konum ii. Lorentz Denklemleri

Detaylı

Kaynak: Forum Media Yayıncılık; İş Sağlığı ve Güvenliği için Eğitim Seti

Kaynak: Forum Media Yayıncılık; İş Sağlığı ve Güvenliği için Eğitim Seti Kaynak: Forum Media Yayıncılık; İş Sağlığı ve Güvenliği için Eğitim Seti Radyasyonun Keşfi 1895 yılında Wilhelm Conrad Röntgen tarafından X-ışınlarının keşfi yapılmıştır. Radyasyonun Keşfi 1896 yılında

Detaylı

Fisyon,Füzyon, Nükleer Güç Santralleri ve Radyasyon. Prof. Dr. Niyazi MERİÇ A.Ü. Nükleer Bilimler Enstitüsü

Fisyon,Füzyon, Nükleer Güç Santralleri ve Radyasyon. Prof. Dr. Niyazi MERİÇ A.Ü. Nükleer Bilimler Enstitüsü Fisyon,Füzyon, Nükleer Güç Santralleri ve Radyasyon Prof. Dr. Niyazi MERİÇ A.Ü. Nükleer Bilimler Enstitüsü Fisyon Otto Hahn ve Fritz Strassmann 1939 yılında 235 U i bir n ile bombardıman edilmesiyle ilk

Detaylı

Maddenin içine yaptığımız yolculukta...

Maddenin içine yaptığımız yolculukta... HİGGS NEDİR? Maddenin içine yaptığımız yolculukta... madde atom elektron proton quark çekirdek nötron Standart Model Standart Model Atomun İçi Doğadaki Temel Kuvvetler Temel Kuvvetler Değişim Parçacıkları

Detaylı

FİZ111 FİZİK-I. Ankara Üniversitesi Fen Fakültesi Biyoloji Bölümü B Grubu Bölüm V: Newton un Hareket Yasaları , Ankara.

FİZ111 FİZİK-I. Ankara Üniversitesi Fen Fakültesi Biyoloji Bölümü B Grubu Bölüm V: Newton un Hareket Yasaları , Ankara. İZ111 İZİK-I Ankara Üniversitesi en akültesi Biyoloji Bölümü B Grubu Bölüm V: Newton un Hareket Yasaları 23.11.2015, Ankara Aysuhan OZANSOY Bölüm-V: Newton un Hareket Yasaları: 1. Kuvvet Kavramı 2. Newton

Detaylı

NÜKLEER FİSYON Doç. Dr. Turan OLĞAR

NÜKLEER FİSYON Doç. Dr. Turan OLĞAR Doç. Dr. Turan OLĞAR Ankara Üniversitesi, Mühendislik Fakültesi, Fizik Mühendisliği Bölümü Birçok çekirdek nötron yakalama ile β - yayınlayarak bozunuma uğrar. Bu bozunum sonucu nötron protona dönüşür

Detaylı

Fen ve Mühendislik Bilimleri için Fizik

Fen ve Mühendislik Bilimleri için Fizik Fen ve Mühendislik Bilimleri için Fizik Giriş Fizik Temel Bilimlerin Amacı Doğanın işleyişinde görev alan temel kanunları anlamak. Diğer fen ve mühendislik bilimleri için temel hazırlamaktır. Temelde gerekli

Detaylı

Maddenin Yapısına Giriş Ders-2 DOÇ. DR. ZEYNEP GÜVEN ÖZDEMİR EKİM 2017

Maddenin Yapısına Giriş Ders-2 DOÇ. DR. ZEYNEP GÜVEN ÖZDEMİR EKİM 2017 Maddenin Yapısına Giriş Ders-2 DOÇ. DR. ZEYNEP GÜVEN ÖZDEMİR EKİM 2017 Maddeden kuark a maddenin yapıtaşının serüveni Elementlerin Varlığının Keşfi Maddenin yapıtaşı arayışı M.Ö. 2000 lerde Eski Yunan

Detaylı

KIM 320 NÜKLEER KİMYA. Doç. Dr. Harun Reşit YAZAR

KIM 320 NÜKLEER KİMYA. Doç. Dr. Harun Reşit YAZAR KIM 320 NÜKLEER KİMYA Doç. Dr. Harun Reşit YAZAR DERSİN HEDEFİ: Çekirdek büyüklükleri ve şekilleri ile ilgili alt yapı oluşturmak, çekirdek modelleri hakkında bilgi vermek. İÇİNDEKİLER BÖLÜM 1: TEMEL KAVRAMLAR

Detaylı

Güncel sorunlar ve çözüm arayışı. Sezen Sekmen CERN CERN Türk Öğretmenler Programı Şubat 2014

Güncel sorunlar ve çözüm arayışı. Sezen Sekmen CERN CERN Türk Öğretmenler Programı Şubat 2014 Güncel sorunlar ve çözüm arayışı Sezen Sekmen CERN CERN Türk Öğretmenler Programı 23-27 Şubat 2014 1 Maddenin en küçük öğesi bulunmadan insan evreni asla anlayamaz. Plato 2 Büyük Patlama dan sonra evrenimiz

Detaylı

Element atomlarının atom ve kütle numaraları element sembolleri üzerinde gösterilebilir. Element atom numarası sembolün sol alt köşesine yazılır.

Element atomlarının atom ve kütle numaraları element sembolleri üzerinde gösterilebilir. Element atom numarası sembolün sol alt köşesine yazılır. Atom üç temel tanecikten oluşur. Bunlar proton, nötron ve elektrondur. Proton atomun çekirdeğinde bulunan pozitif yüklü taneciktir. Nötron atomun çekirdeğin bulunan yüksüz taneciktir. ise çekirdek etrafında

Detaylı

Fizik Terimler Sözlüğü - 2. Yönetici tarafından yazıldı Pazar, 08 Şubat 2009 09:34 - Son Güncelleme Pazar, 08 Şubat 2009 09:47 - K

Fizik Terimler Sözlüğü - 2. Yönetici tarafından yazıldı Pazar, 08 Şubat 2009 09:34 - Son Güncelleme Pazar, 08 Şubat 2009 09:47 - K - K - Kara delik: Kütlesel çekim kuvvetinin çok büyük olduğu hatta ışığı bile kendine çekebilen çok küçük kütleli sönmüş yıldızlardır. - Kalori:1 gram suyun sıcaklığını 1 Celcius artırmak için gerekli

Detaylı

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM GENEL KİMYA ATOMUN ELEKTRON YAPISI Bohr atom modelinde elektronun bulunduğu yer için yörünge tanımlaması kullanılırken, kuantum mekaniğinde bunun yerine orbital tanımlaması kullanılır. Orbital, elektronun

Detaylı

UBT Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim:

UBT Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim: UBT 306 - Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim: 1. (a) (5) Radyoaktivite nedir, tanımlayınız? Bir radyoizotopun aktivitesi (A), izotopun birim zamandaki

Detaylı