İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını

Save this PDF as:
Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını"

Transkript

1 OPTİMİZASYON

2 İktisat bilimi açısından optimizasyon, amacımıza en uygun olan seçeneğin belirlenmesidir. Örneğin bir firmanın kârını maksimize edecek olan üretim miktarının belirlenmesi; bir bireyin toplam faydasını maksimize edecek tüketim miktarlarının belirlenmesi; belirli üretim kısıtı altında toplam maliyetin minimize edilmesi gibi çok sayıda minimizasyon ya da maksimizasyon seçenekleri birer optimal seçimdir. Maksimizasyon ve minimizasyon durumlarına genel olarak uçdeğer diyoruz.

3 3 Biz bu konu başlığı altında yalnızca kısıtsız optimizasyon durumlarını inceliyoruz. Bir optimizasyon probleminde yapılacak ilk iş, amaç fonksiyonunun belirlenmesidir. Bundan sonraki aşamada, amacımızı (bir maksimizasyon ya da minimizasyon) gerçekleştirecek olan değerler bulunur.

4 Örneğin bir firmanın toplam kârını maksimize etmek istediğini varsayalım. Bu durumda amaç fonksiyonu şöyle oluşacaktır. 4 π ( Q) = TR( Q) TC( Q) Burada amacımız, kârı (π) maksimize eden üretim miktarının (Q) belirlenmesidir. İlk olarak optimizasyon konusuna salt matematiksel açıdan bakalım ve ardından iktisadi uygulamaları yapalım. y=f() fonksiyonuna ilişkin bazı şekiller aşağıda yer almaktadır.

5 Şekil 4.1a da sabit bir fonksiyon vardır. Fonksiyonun üzerinde 5 farklı değerlerine karşılık yer alan tüm y değerleri aynı olduğundan, bu değerleri bir optimal olarak öne süremeyiz. Şekil 4.1b de D noktası bir mutlak minimumdur. Fonksiyon monotonik artan olduğundan, bir maksimuma sahip değildir. Şekil 4.1c de ise fonksiyonun bir maksimumu (E noktası) bir de minimumu (F noktası), yani iki uç değeri vardır.

6 Şekil 4.1. UçdeU değer er Noktalarının n Belirlenmesi 6 y y y E B C A D F ( a ) ( b ) ( c)

7 Göreli UçdeU değer er İçin Birinci Türev T SınamasS naması 7 Üzerinde çalışacağımız y=f() fonksiyonunun, sürekli ve türevlenebilir olduğunu varsayıyoruz. Öyle ki, bazı durumlarda fonksiyonun birinci türevinin alınamadığı bir noktada bir uçdeğer söz konusu olabilir. Örneğin aşağıdaki Şekil 4.a da A ve B noktaları birer uçdeğer olmakla birlikte, bu noktada fonksiyonun tanımlı türevi yoktur. Şekil 4.b de ise C ve D noktalarında birer uçdeğer vardır ve bunu birinci ve ikinci türev sınamalarıyla anlayabiliriz.

8 Şekil 4.. Göreli G UçdeU değerlerin erlerin Belirlenmesi 8 y A y D B C ( a) ( b)

9 y=f() fonksiyonunun birinci türevi = noktasında sıfıra eşitse ve; 9 1. Türevin işareti, ın solundan sağına giderken pozitiften negatife doğru işaret değiştiriyorsa göreli maksimum.. Türevin işareti, ın solundan sağına giderken negatiften pozitife doğru işaret değiştiriyorsa göreli minimum 3. Türevin işareti, ın solundan sağına giderken değişmiyorsa ne göreli maksimum ne de göreli minimum vardır.

10 f ()= eşitliğini sağlayan değerine kritik değer er, f( ) değerine 1 de durgunluk değeri eri diyoruz. Bu anlamda, Şekil 4.b de yer alan C ve D noktaları, birer durgunluk değerine sahiptir. Ancak tüm durgunluk noktaları, bir uç değer anlamına gelmez. Şekil 4.3a ve b de birer durgunluk noktası olmasına rağmen, bir göreli uçdeğer yoktur. Buna karşın Şekil 4.3c ve d deki durgunluk noktalarında sırasıyla bir minimum ve maksimum vardır.

11 Şekil 4.3. Göreli G UçdeU değerlerin erlerin Belirlenmesi 11 y y ( a) A ( b) D B y c ( d ) C y D

12 Örnek 1: y = f = fonksiyonunun göreli uçdeğerlerini bulalım. dy d = f = + = * } = * = = 6 = f = 4, f = * 1 * = 6 f 6 = 8, f 6 =

13 13 < f > ve > f < < 6 f < ve > 6 f >

14 Şekil 4.4. Göreli G UçdeU değerlerin erlerin Belirlenmesi (Örnek 1) y 8 3 y = f( ) =

15 Örnek : AC = AC Q = Q Q ortalama maliyet fonksiyonunun göreli uçdeğerlerini bulalım. AC = AC Q = Q Q dac = AC Q = Q = Q = AC ( Q ) = dq * * 5.5, 1.75 Q <.5 AC ( Q) < ve Q >.5 AC ( Q) >

16 Şekil 4.5. Göreli G UçdeU değerlerin erlerin Belirlenmesi (Örnek ) 16 AC 5 AC = AC Q = Q Q * Q = Q

17 Örnek 3: 17 = = y f f = 3 3= = 1 * 1, < 1 f > ve 1> > 1 f < 1< < 1 f < ve > 1 f > = 1'de maksimum, = 1'de minimum * * 1

18 Şekil 4.6. Göreli G UçdeU değerlerin erlerin Belirlenmesi (Örnek 3) y 3 18 y = f =

19 Örnek 4: 19 1 y = f ( ) = +, 1 * f = 1 = 1, = 1 < 1 f > ve > > 1 f < < < 1 f < ve > 1 f > = 1'de maksimum, = 1'de minimum * * 1

20 Şekil 4.7. Göreli G UçdeU değerlerin erlerin Belirlenmesi (Örnek 4) y y = f ( ) = +,

21 İkinci ve Daha Yüksek Y TürevlerT 1 y = f dy d = f ( ) d dy d d d y = = d f ( ) ( n 1) d y d y d d d 3 d ( n 1) n d y d y = = f ( ),..., = = f 3 n d d d d ( n )

22 Örnek 5: y = f ( ) =, ( ) f = = = + f = + ( 1+ ) ( 1+ ) 1 f = + 61 ( 4 ) = 4( 1 + ) 4 3 f 5 ( 1 )

23 Bir Fonksiyonda Birinci ve İkinci Türevlerin T Tanımlanmas mlanması 3 A noktasında : f >, f < B noktasında : f =, f < C noktasında : f <, f <

24 4 D noktasında : f <, f > E noktasında : f =, f > F noktasında : f >, f >

25 Şekil 4.8. Göreli G UçdeU değerlerin erlerin Belirlenmesine Birinci ve İkinci Türev T Yaklaşı şımları 5 y A f f ( ) f f > ( ) < ( ) = ( ) < B ( ) f < f < ( ) C y D ( ) f < f > f ( ) > E ( ) ( ) ( ) F f = f > f > ( a ) ( b)

26 Şekil 4.9. Göreli G UçdeU değerlerin erlerin Belirlenmesine Birinci ve İkinci Türev T Yaklaşı şımları 6 y K ( ) f < f > ( ) L f ( ) = f = f f M ( ) < < ( ) y f = f ( ) = P N f > R f f ( ) > > ( ) f ( ) < ( a ) ( b)

27 Göreli UçdeU değer er İçin İkinci Türev T SınamasS naması 7 Bir fonksiyonunun birinci türevi = noktasında sıfıra eşitse ve; y = f f < göreli ( ) maksimum f > göreli minimum ( )

28 Örnek 6: 8 = = 4 y f 1.. f = 8 1= = f = f = 8> =, f = 'da minimum var. 8 16

29 Şekil 4.1. Göreli G UçdeU değerlerin erlerin Belirlenmesi (Örnek 6) 9 y 3 4 y = f =

30 Örnek 7: 3 3 = = + y f f = 3 6 = =, = f = 6 6 * * 1 ( * ) ( * ) f = = 6<, f = = 6> 1 * * 1 1 * * =, f = = 'de maksimum var. =, f = = 'de minimum var.

31 Şekil Göreli G UçdeU değerlerin erlerin Belirlenmesi (Örnek 7) 7.5 y y = f =

32 Örnek 8: 3 3 y f = = f = + = 3 1 ( reel kök yok) Ne maksimum nede minimum vardır.. 1 f ( ) = 6 1 = = = =1.67 de bir dönüm noktası vardır.

33 Şekil 4.1. Göreli G UçdeU değerlerin erlerin Belirlenmesi (Örnek 8) y 1 5 Dönüm Noktası

34 İktisadi Örnekler 34 Kâr r Maksimizasyonu Koşullar ulları, TR = TR Q TC = TC Q ( Q) TR( Q) TC( Q) π=π = 1. dπ dq =π = = ( Q) TR ( Q) TC ( Q) TR Q TC Q MR Q MC Q = =

35 35 d π. =π ( Q) = TR ( Q) TC ( Q) < dq TR Q TC Q MR Q MC Q < <

36 Şekil Tam Rekabette Kâr K r Maksimizasyonu 36 TR TC B TC TR A TFC * Q1 Q Q Q4 Q

37 Şekil Kâr K r Fonksiyonu ve Maksimizasyon 37 π * Q1 Q Q Q4 Q π ( Q)

38 Şekil Kâr K r Maksimizasyonu: MC=MR MR 38 P MC P = AR = MR E * E 1 MR * Q 1 Q Q

39 Kâr r Maksimizasyonuna Sayısal Örnek: Tekelci Piyasa 39 TR = TR Q = 1Q Q 3 TC TC Q Q Q Q ( Q) TR( Q) TC( Q) ( ) ( 3 Q 1Q Q Q 59Q 1315Q ) = = π=π = π = π Q = Q + Q Q

40 3 π Q = Q + 57Q 315Q 4 π Q = 3Q + 114Q 315 = Q = 3, Q = 35 π = 6Q+ 114 ( Q) ( Q ) * * 1 1 ( Q ) * * * * 1 π = 3 = 6Q = 96 > π = 35 = 6Q = 96 < Q ( Q ) = 35, π = 1395 'demaksimizasyon var. * *

41 Şekil 4.16a. Tekelde Kâr K r Maksimizasyonu 41 TR, TC 8 3 TC Q = Q 59Q Q = 1 TR Q Q Q A E E B Q

42 Şekil 4.16b. Tekelde Kâr K r Maksimizasyonu π E Q π Q = Q + 57Q 315Q

43 Şekil 4.16c. Tekelde Kâr K r Maksimizasyonu 43 P MC 15 1 E 1 * E MR Q

44 Satış Vergisi Hasılat latının n Maksimizasyonu 44 Bir tekelci piyasada devletin t ölçüsünde bir satış vergisi uyguladığını varsayalım. Verginin ölçüsü ne olmalıdır ki, devletin bu piyasadan toplayacağı satış hasılatı maksimize olsun? TR TR Q Q Q = =β α α β >,, TC TC Q aq bq c a b c = = + +,,, >

45 * * TC TC Q aq bq c tq = = * TC Q aq b t Q c = * Q TR Q TC ( Q) π=π = ( ) ( Q Q Q aq ( b t) Q c) π = α +β π Q = α+ a Q + β b t Q c

46 46 Q a Q b t Q * π = α+ + β = = β b t ( α+ a) π = α+ < ( Q) ( a) T * = = tq βt bt t ( α+ a) dt β b t * β b = = t = dt ( α+ a) dt dt 1 = < ( α+ a)

47 Kübik Toplam Maliyet Fonksiyonunun İncelenmesi 47 = = TC TC Q aq bq cq d d = TFC > Tüm Q değerleri için: = > ( U ) MC Q aq bq c biçimli eğri a > olmalıdır.

48 MC'nin minimum değeri: 48 dmc dq * b = 6aQ + b = Q = > 3a b < * ( *) b b MCmin = 3a Q + b Q + c = 3a b c 3a + + 3a 3ac b MCmin = > b > c > 3a 3ac acd, > b < ac b >,,, 3

49 Şekil Toplam Maliyet Fonksiyonu 49 TC 3 Q Q TC = TC Q = a + b + cq+ d a, cd, >, b<, 3ac b > TFC Q

50 Çeşitli Fonksiyonların İncelenmesi 5 Örnek 9: 1 y = f ( ) =, 1 f f = > ( ) ( ) ( 1 ) 8 = > ( 1 ) > < ve 1 < >

51 51 lim, lim = + + = 1 = 1 düşey asimptot lim = 1, lim = f = 1 yatay asimptot

52 Şekil Fonksiyon Analizi (Örnek( 9) y = f ( ) =

53 Örnek 1: 53 y = f = f = 6 3 f = > f = = = y = 3, 3, > f > ; < f < ( 3) ( 3 ) lim =, lim =

54 Şekil Fonksiyon Analizi (Örnek( 1) 54 y =

55 Örnek 11: 55 1 y = f ( ) =, 3 f = < 4 3, durgunluk değeri yok. f = 5 1 } > f > < f < 1 1 lim, lim 3 = = lim =, lim = 3 + 3

56 Şekil 4.. Fonksiyon Analizi (Örnek( 11) y = f ( ) =,

57 Kuvvet Serileri ve UçdeU değerin erin Belirlenmesi 57 f = a + a + a + a a f = a + a + a + a + + n a n n f = a + a + a + + n n a ( 1) 3 4 n n f = a + a + a + + n n n a ( )( 1) ( n ) = ( 3)( )( 1)( ) n n n 3 n f n n n n a n

58 Yukarıdaki çokterimliyi ve türevlerini, = için değerlendirelim: 58 f = = a f =! a f = = a f = 1! a 1 1 f = = a f =! a f = = 6a f = 3! a 3 3 ( 4 ) ( 4 ) f = = 4a f = 4! a ( n ) ( n ) f = = n 3 n n 1 n a f = na! n n

59 f =! a a = f = 1! a a = 1 1 f =! a a = f = 3! a a = ( ) f! f ( ) 1! f! f ( ) ( ) 3! 59 ( n ) f = n! a a = n n f ( n ) ( ) n!

60 6 f = a + a + a + a a n n f ( ) f ( ) f ( ) f ( ) = + +! 1!! ( n f f ) ( ) ! n! 3 n... Rn Maclaurin Serisi (ya da = etrafında Taylor kuvvet serisi açılımı)

61 Bir Çokterimlinin Taylor Serisi 61 f = a + a + a + a a n n f ( ) f f f = + + +! 1!! ( n f ) 3 f n R 3! n! n

62 Örnek 1: 6 Aşağıdaki fonksiyonun =1 noktasında n=4 açılımını yapalım. 1 1 f ( ) = f ( = 1) = + 1 ( 1 ) ( 1) f = + f = = ( 1) f = + f = = ( 1) f = + f = = 3 8 ( 4 ) 5 ( 4 4( 1 ) ) ( 1) f = + f = = 3 4

63 f 1!! = + ( ) + ( ) R 3! 4! f = R

64 Şekil 4.1. Kuvvet Serisi AçılımlarA mları (Örnek 1) 64 =1 de açılım f = f ( ) 1 =

65 Örnek 13: 65 Aşağıdaki fonksiyonun = noktasında n=4 açılımını yapalım. 1 f ( ) = f ( ) = = f = 1+ f = = 1 3 f = 1+ f = = 4 f = 61+ f = = 6 ( 4 ) 5 ( 4 ) f = f = = 4

66 f = R f = R4

67 Şekil 4.1. Kuvvet Serisi AçılımlarA mları (Örnek 13) 67 = de açılım 1 f ( ) 1 = = f

68 Taylor Serisi ve Göreli G UçdeU değerin erin Belirlenmesi 68 f ( ) f = f + f + +! f f ( n ) ( ) 3! n! n f ( ) f f = f + +! f f ( n ) ( ) 3! n! n

69 Şekil 4.. Kuvvet Serileri ve UçdeU değerin erin Belirlenmesi 69 y f ( 1 ) f ( ) f ( ) y y = f ( ) f ( ) y = f ( ) f ( 1 ) f ( ) 1 1 ( a ) ( b)

70 7 1 f f > 1 < <, Maksimum f f > 1 f f < 1 < <, Minimum f f < 1 f f > 1 < <, Dönüm Noktası f f < 1 f f < 1 < <, Dönüm Noktası f f >

71 71 1. Durum: f ( ) f ( ) f ( ) = f > + + f ( ) f ( ) = f < + f ( ) f ( ) = f < + f ( ) f ( ) = f >

72 . Durum: 7 f =, f 1 f f = f > f f = f > f f = f < + 1 f f = f < + Minimum Maksimum

73 4. Durum: 73 f = f =... = f =, f ( n 1 ) ( n ) 1 ( n ) f f = f! > n ntek ( n ) n sayı ise f f = f n! < + 1 ( n ) f f = f! < n ntek + 1 ( n ) n sayı ise f f = f n! > n n Dönüm Noktası Dönüm Noktası

74 4. Durum (Devamı): 1 ( n ) f f = f! > n n çift + + sayı ise 1 ( n ) n f f = f! > n + + n Minimum 74 1 ( n ) f f = f! < n n çift + sayı ise 1 ( n ) n f f = f! < n + n Maksimum

75 Örnek 14: 75 ( 7 ) y = f = f = 4 7 = = f = 4 7 f 7 = f = 1 7 f 7 = f = 4 7 f 7 = ( 4 ) ( 4 ) f = 4 f = 4 > = 7, y = noktasında minimum var.

76 Şekil 4.3. Kuvvet Serileri ve UçdeU değerin erin Belirlenmesi (Örnek( 14) 76 4 ( 7 ) 4 y = f =

77 Örnek 15: 77 = = + 5 = 6 = = 6 5 y f f f = 6 f = 5 f = 3 f = 4 f = 1 f = 3 ( 4 ) ( 4 ) f = 36 f = ( 5 ) ( 5 ) f = 7 f = ( 6 ) ( 6 ) f = 7 f = 7 > =, y = 5 noktasında minimum var.

78 Şekil 4.4. Kuvvet Serileri ve UçdeU değerin erin Belirlenmesi (Örnek( 15) y = f =

79 İki Seçim Değişkenli Durumda Taylor Serisi 79 ( ) z = f, y = a + a + a y + a + a y+ a y ( 1 a n n n ) n a( n 1),1 y any İlk olarak bu iki seçim değişkenli n. dereceden polinomun (,) noktası için Taylor açılımını yapalım. Tüm türevlerin (,) noktasında değerlendirileceğine dikkat edelim.

80 8 f (,) = a f f = a + a + a y+... = a f y f = a + a + a y+... = a y Benzer biçimde diğer türevleri de bulup sıfır noktasında değerlendirirsek, aşağıdaki terimleri yazabiliriz.

81 81 1 f f 1 f a =, a =, a =! y! 11 y Diğer tüm terimleri de (a katsayılarını) aynı yöntemle belirledikten sonra, bu katsayıları polinomdaki yerlerine yazıp düzenlersek, (,) noktasındaki Taylor açılımını elde etmiş oluruz.

82 8 f f f (, y) = f (,) + + y y 1 f f f + + +! y y y y 1 f f f f ! y 3 y y 3 3 y y y +...

83 83 Bu açılımı (,) noktası dışındaki herhangi bir noktada da yapabiliriz. Şimdi açılımı (, y ) gibi rasgele bir nokta için de yazalım. Tüm türevlerin (, y ) noktasında değerlendirildiğine dikkat edelim.

84 84 f f f y f y y y y (, ) = (, ) + ( ) + ( ) 1 f f f + + +! y y ( ) ( )( y y ) ( y y ) + 1 3! 3 3 f f y f f y y 3 ( ) + 3 ( ) ( y y ) ( )( y y ) ( y y )

85 Örnek 16: 85 z = y fonksiyonunun (1,1) noktasındaki Taylor açılımını yapalım. z = y, z = ln, z = y y 1 y 1 y y y z = + y ln, z = ln y y 1 y 1 y yy y = y Örneğin, 1.3 y z = = = 1.41

86 86 CES Üretim Fonksiyonunun Doğrusalla rusallaştırılması ya da Birinci Sıra S Taylor AçılımıA ρ Q = A δ K + ( 1 δ) L ρ µ ρ µ ρ lnq ln A ln K ( 1 ) ρ = δ + δ L ρ f ( ρ) f ρ ρ= yapalım. teriminin etrafındaki birinci sıra Taylor açılımını

87 87 ( ) ( ) f ρ = f + f ρ f = ( L' Hopital Kuralını Kullanalım) µ ρ ρ lim ln δ K + ( 1 δ ) L = µ δ ln K + ( 1 δ) ln L ρ ρ f ρ = ( ln ( 1) ln (( 1) )) ln ( 1 ) ρ ρ ( δ 1) K δl ρ µ δρl K δ ρk L δ K δl δ K + δ L ρ ρ ρ ρ ρ ρ

88 88 f ρ = (( 1) ln ln (( 1) )) ln ( 1 ) ρ ρ ( δ 1) K δl ρ µ δ ρk L δρ L K + δ K δl δ K + δ L ρ ρ ρ ρ ρ ρ f ( ) = ( L' Hopital Kuralını Kullanalım) 1 lim 1 ln ln ρ ( f ( ρ )) = ( δ) δµ ( K L)

89 89 ( ) ( ) f ρ = f + f ρ ( ) 1 f ρ = ln K 1 ln L µ δ + δ + ( 1 δ) δµ ( ln K ln L) ρ 1 ( ) lnq ln A= f ρ = ln K 1 ln L µ δ + δ + ( 1 δ) δµ ( ln K ln L) ρ 1 lnq = ln A+µδ ln K +µ 1 δ ln L 1 δ δµρ ln K ln L

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

TAM REKABET PİYASASI

TAM REKABET PİYASASI TAM REKABET PİYASASI 2 Bu bölümde, tam rekabet piyasasında çalışan firmaların fiyatlarını nasıl oluşturduklarını, ne kadar üreteceklerine nasıl karar verdiklerini ve piyasadaki fiyat ile miktarın nasıl

Detaylı

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2 OPTIMIZASYON.... Bir Değişkenli Fonksiyonların Maksimizasyonu.... Türev...3.. Bir noktadaki türevin değeri...4.. Maksimum için Birinci Derece Koşulu...4.3. İkinci Derece Koşulu...5.4. Türev Kuralları...5

Detaylı

Üretim Girdilerinin lması

Üretim Girdilerinin lması Üretim Girdilerinin Fiyatlandırılmas lması 2 Tam Rekabet Piyasasında Girdi Talebi Tek Değişken Girdi Durumu İlk olarak firmanın tek girdisinin işgücü () olduğu durumu inceleyelim. Değişken üretim girdisi

Detaylı

9. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

9. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 9. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.8. TAM REKABET PİYASALARI A.8.1. Temel Varsayımları Atomisite Koşulu: Piyasada alıcı ve satıcılar,

Detaylı

10. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

10. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 10. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.9. TEKEL (MONOPOL) Piyasada bir satıcı ve çok sayıda alıcının bulunmasıdır. Piyasaya başka

Detaylı

BİRDEN ÇOK DEĞİŞ ĞİŞKEN DURUMUNDA

BİRDEN ÇOK DEĞİŞ ĞİŞKEN DURUMUNDA BİRDEN ÇOK DEĞİŞ ĞİŞKEN DURUMUNDA OPTİMİZASYON Şekil.1 i dikkate alalım. Maksimum nokta olan A ve minimum nokta olan B de z=f(x) fonksiyonunun bir durgunluk değeri vardır. Bir başka ifadeyle, z nin bir

Detaylı

Monopol. (Tekel) Piyasası

Monopol. (Tekel) Piyasası Monopol (Tekel) Piyasası Sonsuz sayıda alıcı karşısında tek satıcının olduğu piyasa yapısına tekel diyoruz. Tekelci firmanın sattığı malın ikamesi yoktur ya da tanım gereği piyasaya giriş engellenmiştir.

Detaylı

SORU SETİ 10 MALİYET TEORİSİ - UZUN DÖNEM MALİYETLER VE TAM REKABET PİYASASINDA ÇIKTI KARARLARI - TEKEL

SORU SETİ 10 MALİYET TEORİSİ - UZUN DÖNEM MALİYETLER VE TAM REKABET PİYASASINDA ÇIKTI KARARLARI - TEKEL SORU SETİ 10 MALİYET TEORİSİ - UZUN DÖNEM MALİYETLER VE TAM REKABET PİYASASINDA ÇIKTI KARARLARI - TEKEL Problem 1 (KMS-2001) Bir endüstride iktisadi kârın varlığı, aşağıdakilerden hangisini gösterir? A)

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

İNTEGRAL İŞLEMLER LEMLERİ

İNTEGRAL İŞLEMLER LEMLERİ İKTİSADİ DİNAMİKLİK K VE İNTEGRAL İŞLEMLER LEMLERİ 2 İktisat biliminde dinamiklik kavramı, değişkenlerin değişim süreçlerini, dengeye geliş ya da uzaklaşmalarını içeren bir analiz tipidir. Daha önce karşılaştırmalı

Detaylı

TAM REKABET PİYASASINDA

TAM REKABET PİYASASINDA TAM REKABET PİYASASINDA MALİYE POLİTİKASI 1. GötürüG Usulde Vergilerin Firma Üzerine Etkileri 2 Bu tür vergi, firmanın kâr, satış geliri ve üretim miktarı gibi değişkenlerinden bağımsızdır. Kısa Dönemde

Detaylı

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.5. Doğrusal olmayan fonksiyonların eğimi Doğrusal fonksiyonlarda eğim her noktada sabittir

Detaylı

MATRİS İŞLEMLER LEMLERİ

MATRİS İŞLEMLER LEMLERİ MTRİS İŞLEMLER LEMLERİ Temel matris işlemlerinin doğrudan matematik açılımını 2 yapmadan önce, bir eşanlı denklem sisteminin matris işlemleri kullanılarak nasıl daha kolay ve sistematik bir çözüm verdiğini,

Detaylı

Artan-Azalan Fonksiyonlar Ekstremumlar. Yard. Doç. Dr. Mustafa Akkol

Artan-Azalan Fonksiyonlar Ekstremumlar. Yard. Doç. Dr. Mustafa Akkol Artan-Azalan Fonksiyonlar Ekstremumlar Yard. Doç. Dr. Mustaa Akkol Artan ve Azalan Fonksiyonlar Tanım: a,b aralığında tanımlı bir onksiyonu verilsin., a,b ve için, ise onksiyonu a,b aralığında artan, ise

Detaylı

1. Kısa Dönemde Maliyetler

1. Kısa Dönemde Maliyetler DERS NOTU 05 MALİYET TEORİSİ: KISA VE UZUN DÖNEM Bugünki dersin işleniş planı: 1. Kısa Dönemde Maliyetler... 1 2. Kâr Maksimizasyonu (Bütün Piyasalar İçin)... 9 3. Kâr Maksimizasyonu (Tam Rekabet Piyasası

Detaylı

1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir? A) ** B) C) D) E)

1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir? A) ** B) C) D) E) İktisadi ve İdari Bilimler Fakültesi MAT 152 Genel Matematik II Final Sorularının Çözümleri: 1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir?

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

Çözümlü Limit ve Süreklilik Problemleri

Çözümlü Limit ve Süreklilik Problemleri Bölüm 5 Çözümlü Limit Süreklilik Problemleri. 2 fonksiyonunun tanım bölgesini = noktasındaki itini bulunuz. Paydanın 0 değerini aldığı = noktasında fonksiyon tanımlı değldir. Tanım bölgesini T (f ) ile

Detaylı

OPTİMİZASYON TEKNİKLERİ-2. Hafta

OPTİMİZASYON TEKNİKLERİ-2. Hafta GİRİŞ OPTİMİZASYON TEKNİKLERİ-2. Hafta Mühendislik açısından bir işin tasarlanıp, gerçekleştirilmesi yeterli değildir. İşin en iyi çözüm yöntemiyle en verimli bir şekilde yapılması bir anlam ifade eder.

Detaylı

KARŞILAŞTIRMALI DURAĞANLIK VE TÜREV

KARŞILAŞTIRMALI DURAĞANLIK VE TÜREV KARŞILA ILAŞTIRMALI DURAĞANLIK ANLIK VE TÜREV Karşılaştırmalı durağanlık, dışsal değişkenlerin ya da parametrelerin farklı değerler alması durumunda oluşabilecek farklı denge değerlerini karşılaştırılarak

Detaylı

İKT 207: Mikro iktisat. Faktör Piyasaları

İKT 207: Mikro iktisat. Faktör Piyasaları İKT 207: Mikro iktisat Faktör Piyasaları Tartışılacak Konular Tam Rekabetçi Faktör Piyasaları Tam Rekabetçi Faktör Piyasalarında Denge Monopson Gücünün Olduğu Faktör Piyasaları Monopol Gücünün Olduğu Faktör

Detaylı

ÖSS MATEMATİK TÜREV FASİKÜLÜ

ÖSS MATEMATİK TÜREV FASİKÜLÜ ÖSS MATEMATİK TÜREV FASİKÜLÜ GRAFİK ÇİZİMİ Bir fonksiyonun denklemi verilip grafiği istendiğinde aşağıdaki yolu izlemeliyiz. ) Fonksiyonun en geniş tanım kümesi bulunur. ) ± için fonksiyonun limiti bulunur.

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

IKTI 101 Aralık 2011 Gazi Üniversitesi İktisat Bölümü DERS NOTU 07 MALİYET TEORİSİ

IKTI 101 Aralık 2011 Gazi Üniversitesi İktisat Bölümü DERS NOTU 07 MALİYET TEORİSİ DERS NOTU 07 MALİYET TEORİSİ Bugünki dersin işleniş planı: I. Kısa Dönemde Maliyetler... 1 II. Kâr Maksimizasyonu (Bütün Piyasalar İçin)... 14 III. Kâr Maksimizasyonu (Tam Rekabet Piyasası İçin)... 15

Detaylı

değiştirdiğini gösterir. Marjinal Hasıla Bir malın satışından elde edilen toplam hasıla (TR), malın fiyatı (P) ile satılan mal miktarının (Q) çarpımına eşittir: Toplam hasıla fonksiyonu monopol piyasasında

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

Tekelci Rekabet Piyasası

Tekelci Rekabet Piyasası Tekelci Rekabet iyasası 1900 lü yılların başlarında, ürünlerin homojen olmaması, reklamın giderek 2 artan önemi, azalan maliyet durumlarının yaşanması tam rekabet piyasasına karşı yapılan tartışmaları

Detaylı

Kısıtsız Optimizasyon OPTİMİZASYON Kısıtsız Optimizasyon

Kısıtsız Optimizasyon OPTİMİZASYON Kısıtsız Optimizasyon OPTİMİZASYON Bu bölümde çok değişkenli kısıtsız optimizasyon problemlerinin çözüm yöntemleri incelenecektir. Bu bölümde anlatılacak yöntemler, kısıtlı optimizasyon problemlerini de çözebilmektedir. Bunun

Detaylı

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır? 017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin

Detaylı

Optimizasyon İçin Kök(Generic) Model (Doğrusal-Olmayan Programlama Modeli)

Optimizasyon İçin Kök(Generic) Model (Doğrusal-Olmayan Programlama Modeli) ISLE 403 YÖNEYLEM ARAŞTIRMASI I DERS 2 NOTLAR Optimizasyon İçin Kök(Generic) Model (Doğrusal-Olmayan Programlama Modeli) X, karar değişkenlerinin bir vektörü olsun. z, g 1, g 2,...,g m fonksiyonlardır.

Detaylı

K ve L arasında ikame yoktur. Bu üretim fonksiyonu Şekil

K ve L arasında ikame yoktur. Bu üretim fonksiyonu Şekil MALİYET TEORİSİ 2 Maliyet fonksiyonunun biçimi, üretim fonksiyonunun biçimine bağlıdır. Bir an için reçel üreticisinin, bir birim kavanoz ve bir birim meyve toplayıcısı ile bir birim çıktı elde ettiği

Detaylı

EM302 Yöneylem Araştırması 2 Çok değişkenli DOP ların çözümü. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Çok değişkenli DOP ların çözümü. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Çok değişkenli DOP ların çözümü Dr. Özgür Kabak Doğrusal olmayan programlama Tek değişkenli DOP ların çözümü Uç noktaların analizi Altın kesit Araması Çok değişkenli DOP ların

Detaylı

Adı Soyadı: No: 05.04.2010 Saat: 08:30

Adı Soyadı: No: 05.04.2010 Saat: 08:30 Adı Soyadı: No: 05.04.2010 Saat: 08:30 ID: Z Mikro 2 Ara 2010 Çoktan Seçmeli Sorular Cümleyi en iyi biçimde tamamlayan veya sorunun yanıtı olan seçeneği yanıt anahtarına işaretleyiniz. 1. Çapraz satış

Detaylı

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY)

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) 1 DOĞRUSAL PROGRAMLAMADA İKİLİK (DUALİTE-DUALITY) Doğrusal programlama modelleri olarak adlandırılır. Aynı modelin değişik bir düzende oluşturulmasıyla Dual (İkilik)

Detaylı

PROBLEM SET I ARALIK 2009

PROBLEM SET I ARALIK 2009 PROBLEM SET I - 5 09 ARALIK 009 Soru 1 (Besanko ve Braeutigam (00), sayfa 405): Aşa¼g da tam rekabet piyasas nda faaliyet gösteren bir rman n k sa dönem toplam maliyet fonksiyonu verilmiştir: Piyasa denge

Detaylı

1. Hafta Uygulama Soruları

1. Hafta Uygulama Soruları . Hafta Uygulama Soruları ) x ekseni, x = doğrusu, y = x ve y = x + eğrileri arasında kalan alan nedir? ) y = x 3 ve y = 4 x 3 parabolleri arasında kalan alan nedir? 3) y = x, x y = 4 eğrileri arasında

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

Ders Çözümler: 9.2 Alıştırmalar Prof.Dr.Haydar Eş. 2. Prof.Dr.Timur Karaçay /1a: Kritik noktalar:

Ders Çözümler: 9.2 Alıştırmalar Prof.Dr.Haydar Eş. 2. Prof.Dr.Timur Karaçay /1a: Kritik noktalar: 100 Bölüm 9 Ders 09 9.1 Çözümler: 1. Prof.Dr.Haydar Eş 2. Prof.Dr.Timur Karaçay 9.2 Alıştırmalar 9 1. 215 /1a: Kritik noktalar: f (x) = 3x 2 + 6x = 0 = x 1 = 0, x 2 = 2 Yerel max değer: ( 2,1) Yerel min

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

Kübik Spline lar/cubic Splines

Kübik Spline lar/cubic Splines Kübik spline lar önceki metodların aksine bütün data noktalarına tek bir fonksiyon/eğri uydurmaz. Bunun yerine her çift nokta için ayrı ayrı üçüncü dereceden polinomlar uydurur. x i noktasından geçen soldaki

Detaylı

Türev Uygulamaları. 9.1 Ortalama Değer teoremi

Türev Uygulamaları. 9.1 Ortalama Değer teoremi 1 2 Bölüm 9 Türev Uygulamaları 9.1 Ortalama Değer teoremi Türevin çok farklı uygulamaları vardır. Bunlar arasında çok önemli olan bazılarını ele alacağız. Ortalama Değer Teoremi ni daha önce görmüştük.

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

Tartışılacak Konular. Tekel. Tekel Gücü (Monopoly Power) Tekel Gücünün Kaynakları. Tekel Gücünün Sosyal Maliyeti. Bölüm 10Chapter 10 Slide 2

Tartışılacak Konular. Tekel. Tekel Gücü (Monopoly Power) Tekel Gücünün Kaynakları. Tekel Gücünün Sosyal Maliyeti. Bölüm 10Chapter 10 Slide 2 Monopol ve Monopson Tartışılacak Konular Tekel Tekel Gücü (Monopoly Power) Tekel Gücünün Kaynakları Tekel Gücünün Sosyal Maliyeti Bölüm 10Chapter 10 Slide 2 Tartışılacak Konular Monopson (Monopsony) Monopson

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR Kısıtlı ve kısıtsız fonksiyonlar için maksimum veya minimum (ekstremum) noktalarının belirlenmesinde diferansiyel hesabı kullanarak çeşitli

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

İKTİSADA GİRİŞ-I ÇALIŞMA SORULARI-11 MONOPOL

İKTİSADA GİRİŞ-I ÇALIŞMA SORULARI-11 MONOPOL İKTİSADA GİRİŞ-I ÇALIŞMA SORULARI-11 MONOPOL 1. Monopolist için fiyat marjinal hasılanın üzerindedir. Çünkü, A) Ortalama ve marjinal hasıla eğrileri birbirine eşittir B) Azalan verimler kanunu geçerli

Detaylı

Soru 1. Soru 5. Soru 2. Soru 6. Soru 3. Soru 7.

Soru 1. Soru 5. Soru 2. Soru 6. Soru 3. Soru 7. İstanbul Kültür Üniversitesi Matematik -Bilgisayar Bölümü MB00 Analiz I 3 Aralık 03 Final Sınavı Öğrenci Numarası: Adı Soyadı: - Taatlar: Sınav süresi 0 dakikadır. İlk 30 dakika sınav salonunu terk etmeyiniz.

Detaylı

KISITLI OPTİMİZASYON

KISITLI OPTİMİZASYON KISITLI OPTİMİZASYON SİMPLEKS YÖNTEMİ Simpleks Yöntemi Simpleks yöntemi iteratif bir prosedürü gerektirir. Bu iterasyonlar ile gerçekçi çözümlerin olduğu bölgenin (S) bir köşesinden başlayarak amaç fonksiyonunun

Detaylı

TÜREVİN UYGULAMALARI. Maksimum ve Minimum Değerler. Tanım : f bir fonksiyon ve D, f nin tanım kümesi olsun.

TÜREVİN UYGULAMALARI. Maksimum ve Minimum Değerler. Tanım : f bir fonksiyon ve D, f nin tanım kümesi olsun. Maksimum ve Minimum Değerler Tanım : f bir fonksiyon ve D, f nin tanım kümesi olsun. TÜREVİN UYGULAMALARI D içindeki her x elemanı için f(c) f(x) ise f fonksiyonunun c noktasında mutlak maksimumumu vardır.

Detaylı

MATEMATİK-II dersi. Bankacılık ve Finans, İşletme, Uluslararası Ticaret. Bölümleri için FİNAL Çalışma Soruları

MATEMATİK-II dersi. Bankacılık ve Finans, İşletme, Uluslararası Ticaret. Bölümleri için FİNAL Çalışma Soruları MATEMATİK-II dersi Bankacılık ve Finans, İşletme, Uluslararası Ticaret Bölümleri için FİNAL Çalışma Soruları ] e d =? = u d= du du d= udu u u e d= e d= e = edu= e + c= e + c ] e d =? = + = e + c e d e

Detaylı

İçindekiler 3. Türev... 3.1 Türev kavramı.. 001 3.2 Bir fonksiyonun bir noktadaki türevi. 003. Alıştırmalar 3 1...

İçindekiler 3. Türev... 3.1 Türev kavramı.. 001 3.2 Bir fonksiyonun bir noktadaki türevi. 003. Alıştırmalar 3 1... İçindekiler. Türev......... Türev kavramı.. 00. Bir fonksiyonun bir noktadaki türevi. 00. Alıştırmalar.... 005. Bir fonksiyonun bir noktadaki soldan ve sağdan türevi..... 006.4 Bir fonksiyonun bir noktadaki

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -II- Tek değişkenli doğrusal olmayan karar modelinin çözümü

DOĞRUSAL OLMAYAN PROGRAMLAMA -II- Tek değişkenli doğrusal olmayan karar modelinin çözümü DOĞRUSAL OLMAYAN PROGRAMLAMA -II- Tek değişkenli doğrusal olmayan karar modelinin çözümü Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST8 Yöneylem Araştırması Dersi

Detaylı

Bölüm 12: Yapı, Yönetim, Performans, ve Piyasa Analizi 1. Sağlık Ekonomisi

Bölüm 12: Yapı, Yönetim, Performans, ve Piyasa Analizi 1. Sağlık Ekonomisi Bölüm 12: Yapı, Yönetim, Performans, ve Piyasa Analizi 1 Sağlık Ekonomisi 1 Tam rekabetçi piyasanın tanımı Piyasa dengesi. Karşılaştırmalı Statik Analiz. Uygulamalar. 2 Tüketiciler ürünün ful fiyatını

Detaylı

Mikroiktisat Final Sorularý

Mikroiktisat Final Sorularý Mikroiktisat Final Sorularý MERSĐN ÜNĐVERSĐTESĐ ĐKTĐSADĐ VE ĐDARĐ BĐLĐMLER FAKÜLTESĐ MALĐYE VE ĐŞLETME BÖLÜMLERĐ MĐKROĐKTĐSAT FĐNAL SINAVI 10.01.2011 Saat: 13:00 Çoktan Seçmeli Sorular: Sorunun Yanıtı

Detaylı

4.3. Türev ile İlgili Teoremler

4.3. Türev ile İlgili Teoremler 4.. Türev ile İlgili Teoremler Bu kesimde ortalama değer teoremini vereceğiz. Ortalama değer teoremini ispatlarken kullanılacak olan Fermat teoremini ve diğer bazı teoremleri ispat edeceğiz. 4...Teorem

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Hessien Matris-Quadratik Form Mutlak ve Bölgesel Maksimum-Minimum Noktalar Giriş Kısıtlı ve kısıtsız fonksiyonlar için

Detaylı

Doğrusal Programlama (DP) Yrd. Doç. Dr. KENAN GENÇOL Hitit Üniversitesi

Doğrusal Programlama (DP) Yrd. Doç. Dr. KENAN GENÇOL Hitit Üniversitesi Doğrusal Programlama (DP) Yrd. Doç. Dr. KENAN GENÇOL Hitit Üniversitesi Doğrusal Programlama Doğrusal programlama yaklaşımı, doğrusal yapıdaki kısıtları ihmal etmeden, doğrusal formdaki amaç fonksiyonunu

Detaylı

Analiz II Çalışma Soruları-3

Analiz II Çalışma Soruları-3 Analiz II Çalışma Soruları- Son güncelleme: 44 (I)( A ) Aşağıdaki fonksiyon için verilen noktaların ektremum nokta olup olmadıklarının gözlemini yapınız y y f ( ) a b c d e k r s ( B) Aşağıdaki fonksiyonların

Detaylı

Karar değişkenlere ilişkin fonksiyonların ve bu fonksiyonlara ilişkin sınırlamaların tanımlanması

Karar değişkenlere ilişkin fonksiyonların ve bu fonksiyonlara ilişkin sınırlamaların tanımlanması İNŞAAT PROJELERİNİN PROGRAMLAMA, TASARIM VE YAPIM SÜRECİNDE OPTİMİZASYON Doğrusal Optimizasyon Optimizasyon Kuramı (Eniyileme Süreci) Doğrusal Olmayan Optimizasyon Optimizasyon en iyi çözümü bulma sürecidir.

Detaylı

0.1 Zarf Teoremi (Envelope Teorem)

0.1 Zarf Teoremi (Envelope Teorem) Ankara Üniversitesi, Siyasal Bilgiler Fakültesi Prof. Dr. Hasan Şahin 0.1 Zarf Teoremi (Envelope Teorem) Bu kısımda zarf teoremini ve iktisatta nasıl kullanıldığını ele alacağız. bu bölüm Chiang 13.5 üzerine

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI A R, a A ve f de A da tanımlı bir fonksiyon olsun. Eğer f(x) f(a) lim x a x a limiti veya x=a+h koymakla elde edilen f(a+h) f(a) lim h 0 h Bu türev f (a), df dx limiti varsa f fonksiyonu

Detaylı

Ekonomi I FĐRMA TEORĐSĐ. Piyasa Çeşitleri. Tam Rekabet Piyasası. Piyasa yapılarının çeşitli türleri; Bir uçta tam rekabet piyasası (fiyat alıcı),

Ekonomi I FĐRMA TEORĐSĐ. Piyasa Çeşitleri. Tam Rekabet Piyasası. Piyasa yapılarının çeşitli türleri; Bir uçta tam rekabet piyasası (fiyat alıcı), Ekonomi I Tam Rekabet Piyasası FĐRMA TEORĐSĐ Bu bölümü bitirdiğinizde şunları öğrenmiş olacaksınız: Hasılat, maliyet ve kar kavramları ne demektir? Tam rekabet ne anlama gelir? Tam rekabet piyasasında

Detaylı

ÜRETİM ve MALİYETLER. Üretim Fonksiyonu 14.12.2011. Kısa Dönemde Üretim Fonksiyonu. Doç.Dr. Erdal Gümüş

ÜRETİM ve MALİYETLER. Üretim Fonksiyonu 14.12.2011. Kısa Dönemde Üretim Fonksiyonu. Doç.Dr. Erdal Gümüş .. Üretim Fonksiyonu ÜRETİM ve MALİYETLER Doç.Dr. Erdal Gümüş Üretim fonksiyonu: Üretim girdileri ile çıktı ilişkisini ifade eden bir fonksiyondur. Başka bir tanım: teknoloji veri iken belirli miktarlardaki

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 06 IS/LM EĞRİLERİ VE BAZI ESNEKLİKLER PARA VE MALİYE POLİTİKALARININ ETKİNLİKLERİ TOPLAM TALEP (AD) Bugünki dersin içeriği: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 2. LM EĞRİSİ VE PARA TALEBİNİN

Detaylı

7 TAYLOR SER I GÖSTER IMLER I

7 TAYLOR SER I GÖSTER IMLER I 7 TAYLOR SER I GÖSTER IMLER I Bir f fonksiyonu analitiklik bölgesi içinde f () X a n ( 0 ) n şeklinde bir kuvvet serisi gösterimine sahiptir. E¼ger a n f (n) ( 0 ) seçilirse bu kuvvet serisi Taylor serisi

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR ÖZEL BÜYÜKÇEKMECE ÇINAR KOLEJİ 19 Mayıs Mah. Bülent Ecevit Cad. Tüyap Yokuşu

Detaylı

Talep teorisi, talebi etkileyen çeşitli faktörlerin. Talep, çok çeşitli faktörlerce eş anlı olarak belirlenir :

Talep teorisi, talebi etkileyen çeşitli faktörlerin. Talep, çok çeşitli faktörlerce eş anlı olarak belirlenir : TALEP TEORİSİ 2 Talep teorisi, talebi etkileyen çeşitli faktörlerin belirlenmesini amaçlar. Talep, çok çeşitli faktörlerce eş anlı olarak belirlenir : Malın kendi fiyatı Tüketici geliri Diğer malların

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 7- SAYISAL TÜREV Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ İntegral işlemi gibi türev işlemi de mühendislikte çok fazla kullanılan bir işlemdir. Basit olarak bir fonksiyonun bir noktadaki

Detaylı

Sonsuz Diziler ve Seriler

Sonsuz Diziler ve Seriler Sonsuz Diziler ve Seriler İki veya birden çok sonlu sayıdaki sayının nasıl toplanacağını herkes bilir. Peki sonsuz tane sayıyı nasıl toplarız? Bu sorunun cevabını bu bölümde vermeye çalışacağız. Diziler

Detaylı

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2 1. 1 =? Lys 1 7. x + y = (6k) (x k) + y = (k 5) olduğuna göre x y =?. 6 a.b = ise a + 1 b. b 1 a =? 1k 8. x ve y birbirinden farklı pozitif gerçel sayılar olmak üzere, x y y x. x.y = (x y) ise x y =?.

Detaylı

2015 2016 BAHAR YARIYILI İKTİSADİ MATEMATİK VİZE SORU VE CEVAPLARI 1) Bir mala ait arz ve talep fonksiyonları aşağıdaki gibidir:

2015 2016 BAHAR YARIYILI İKTİSADİ MATEMATİK VİZE SORU VE CEVAPLARI 1) Bir mala ait arz ve talep fonksiyonları aşağıdaki gibidir: 2015 2016 BAHAR YARIYILI İKTİSADİ MATEMATİK VİZE SORU VE CEVAPLARI 1) Bir mala ait arz ve talep fonksiyonları aşağıdaki gibidir: a) Bu malın arz ve talep denklemlerinin grafiklerini çiziniz (5 puan) (DÖÇ.1-).

Detaylı

OLİGOPOL PİYASALAR: OYUN TEORİK YAKLAŞIM MATEMATİKSEL İKTİSAT DERSİ ÖĞRETİM YILI GÜZ DÖNEMİ

OLİGOPOL PİYASALAR: OYUN TEORİK YAKLAŞIM MATEMATİKSEL İKTİSAT DERSİ ÖĞRETİM YILI GÜZ DÖNEMİ OLİGOPOL PİYASALAR: OYUN TEORİK YAKLAŞIM MATEMATİKSEL İKTİSAT DERSİ 2010-2011 ÖĞRETİM YILI GÜZ DÖNEMİ İÇERİK Oligopol Piyasasının Tanımı ve Çeşitleri Saf Oligopol Piyasası Rekabet Çözümü Cournot Çözümü

Detaylı

1. Yatırımın Faiz Esnekliği

1. Yatırımın Faiz Esnekliği DERS NOTU 08 YATIRIMIN FAİZ ESNEKLİĞİ, PARA VE MALİYE POLİTİKALARININ ETKİNLİKLERİ, TOPLAM TALEP (AD) EĞRİSİNİN ELDE EDİLİŞİ Bugünki dersin içeriği: 1. YATIRIMIN FAİZ ESNEKLİĞİ... 1 2. PARA VE MALİYE POLİTİKALARININ

Detaylı

2009 S 4200-1. Değeri zamanın belirli bir anında ölçülen değişkene ne ad verilir? ) Stok değişken B) içsel değişken C) kım değişken D) Dışsal değişken E) Fonksiyonel değişken iktist TEORisi 5. Yatay eksende

Detaylı

Temelleri. Doç.Dr.Ali Argun Karacabey

Temelleri. Doç.Dr.Ali Argun Karacabey Doğrusal Programlamanın Temelleri Doç.Dr.Ali Argun Karacabey Doğrusal Programlama Nedir? Bir Doğrusal Programlama Modeli doğrusal kısıtlar altında bir doğrusal ğ fonksiyonun değerini ğ maksimize yada minimize

Detaylı

Bölüm 13: Yapı, Yönetim, Performans, ve Piyasa Analizi 2. Sağlık Ekonomisi

Bölüm 13: Yapı, Yönetim, Performans, ve Piyasa Analizi 2. Sağlık Ekonomisi Bölüm 13: Yapı, Yönetim, Performans, ve Piyasa Analizi 2 Sağlık Ekonomisi 1 Tam rekabetçi piyasa özelliklerini kısaca hatırlayalım: Çok sayıda alıcı/satıcı. Homojen ürün. Giriş ve çıkışlar serbest. Tam

Detaylı

4. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

4. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 4. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 B.3.2. Taban Fiyat Uygulaması Devletin bir malın piyasasında oluşan denge fiyatına müdahalesi,

Detaylı

Mat Matematik II / Calculus II

Mat Matematik II / Calculus II Mat - Matematik II / Calculus II Çalışma Soruları Çok Değişkenli Fonksiyonlar: Seviye eğri ve yüzeyler, Limit ve süreklilik wolframalpha.com uygulamasında bir fonksiyonun tanım kümesini bulmak için: x

Detaylı

Doğrusal Programlamada Grafik Çözüm

Doğrusal Programlamada Grafik Çözüm Doğrusal Programlamada Grafik Çözüm doğrusal programlama PROBLEMİN ÇÖZÜLMESİ (OPTİMUM ÇÖZÜM) Farklı yöntemlerle çözülebilir Grafik çözüm (değişken sayısı 2 veya 3 olabilir) Simpleks çözüm Bilgisayar yazılımlarıyla

Detaylı

5. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

5. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 5. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 BÖLÜM 3 DOĞRUSAL OLMAYAN FONKSĠYONLAR VE ĠKTĠSADĠ UYGULAMALARI Bu bölümde öğrencilere ekonomi

Detaylı

BİRİNCİ SEVİYE ÖRNEK SORULARI EKONOMİ

BİRİNCİ SEVİYE ÖRNEK SORULARI EKONOMİ BİRİNCİ SEVİYE ÖRNEK SORULARI EKONOMİ SORU 1: Tam rekabet ortamında faaliyet gösteren bir firmanın kısa dönem toplam maliyet fonksiyonu; STC = 5Q 2 + 5Q + 10 dur. Bu firma tarafından piyasaya sürülen ürünün

Detaylı

MAT MATEMATİK I DERSİ

MAT MATEMATİK I DERSİ MATEMATİK BÖLÜMÜ MAT 0 - MATEMATİK I DERSİ ÇALIŞMA SORULARI Bölüm : Fonksiyonlar. Tanım Kümesi ) f() = ln fonksiyonu verilsin. Tanım kümesini bulunuz. ((0, )\{}) Bölüm : Limit ve Süreklilik.. Limit L Hospital

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

Final sınavı konularına aşağıdaki sorular dahil değildir: 1, 2, 3, 4, 5, 6, 7, 19, 20, 21, 25, 27, 28, 29, 30, 33-b.

Final sınavı konularına aşağıdaki sorular dahil değildir: 1, 2, 3, 4, 5, 6, 7, 19, 20, 21, 25, 27, 28, 29, 30, 33-b. Final sınavı konularına aşağıdaki sorular dahil değildir:,,,, 5, 6, 7, 9,,, 5, 7, 8, 9,, -b. MAT -MATEMATİK (- GÜZ DÖNEMİ) FİNAL ÇALIŞMA SORULARI. Tabanı a büyük eksenli, b küçük eksenli elips ile sınırlanan

Detaylı

MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK (10+10 p.) 2. (15 p.) 3. (7+8 p.) 4. (15+10 p.) 5. (15+10 p.) TOPLAM

MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK (10+10 p.) 2. (15 p.) 3. (7+8 p.) 4. (15+10 p.) 5. (15+10 p.) TOPLAM TOBB-ETÜ, MATEMATİK BÖLÜMÜ, GÜZ DÖNEMİ 2014-2015 MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK 2014 Adı Soyadı: No: İMZA: 1. 10+10 p.) 2. 15 p.) 3. 7+8 p.) 4. 15+10 p.) 5. 15+10 p.) TOPLAM 1. a) NOT: Tam

Detaylı

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir.

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir. TÜREV y= f(x) fonksiyonu [a,b] aralığında tanımlı olsun. Bu aralıktaki bağımsız x değişkenini h kadar arttırdığımızda fonksiyon değeri de buna bağlı olarak değişecektir. Fonksiyondaki artma miktarını değişkendeki

Detaylı

Başlangıç Temel Programının Bilinmemesi Durumu

Başlangıç Temel Programının Bilinmemesi Durumu aşlangıç Temel Programının ilinmemesi Durumu İlgili kısıtlarda şartlar ( ) ise bunlara gevşek (slack) değişkenler eklenerek eşitliklere dönüştürülmektedir. Ancak sınırlayıcı şartlar ( ) veya ( = ) olduğu

Detaylı

TÜREVİN ANLAMI Bu Konumuzda türevin fiziksel, geometrik anlamını ve Ekstremum olayını anlatacağız. İyi Çalışmalar... A. TÜREVİN FİZİKSEL ANLAMI Bir hareketlinin t saatte kaç km yol aldığı, fonksiyonu ile

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-I

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-I HEDEFLER İÇİNDEKİLER TÜREV UYGULAMALARI-I Artan ve Azalan Fonksiyonlar Fonksiyonların Maksimum ve Minimumu Birinci Türev Testi İkinci Türev Testi Türevin Geometrik Yorumu Türevin Fiziksel Yorumu MATEMATİK-1

Detaylı

4.1. Gölge Fiyat Kavramı

4.1. Gölge Fiyat Kavramı 4. Gölge Fiyat Kavramı 4.1. Gölge Fiyat Kavramı Gölge fiyatlar doğrusal programlama modellerinde kısıtlarla açıklanan kaynakların bizim için ne kadar değerli olduklarını gösterirler. Şimdi bir örnek üzerinde

Detaylı

Öğr. Gör. Barış Alpaslan

Öğr. Gör. Barış Alpaslan Dersin Adı DERS ÖĞRETİM PLANI Matematik I Dersin Kodu ECO 05/04 Dersin Türü (Zorunlu, Seçmeli) Dersin Seviyesi (Ön Lisans, Lisans, Yüksek Lisans, Doktora) Dersin AKTS Kredisi 5 Haftalık Ders Saati 3 Haftalık

Detaylı

M IKRO IKT ISAT 2. V IZE SINAVI 19 ARALIK 2009

M IKRO IKT ISAT 2. V IZE SINAVI 19 ARALIK 2009 M IKRO IKT ISAT 2. V IZE SINAVI 19 ARALIK 2009 Soru 1: Aşa¼g daki gibi bir üretim fonksiyonu verilsin: = L 1=3 K 2=3 Eme¼gin yat w = ve sermayenin yat r = 1 olsun. a- Firma kadar ç kt üretmek istemektedir.

Detaylı

Türev Uygulamaları. 4.1 Bağımlı Hız

Türev Uygulamaları. 4.1 Bağımlı Hız Bölüm 4 Türev Uygulamaları 4.1 Bağımlı Hız Eğer bir balonun içine hava pompalarsak, balonun hem yarıçapı hem de hacmi artar ve artış hızları birbirine bağımlıdır. Fakat, hacmin artış hızını doğrudan ölçmek

Detaylı

Karşılaştırmalı Durağan Analiz ve Türev kavramı. 6. Bölüm :Alpha Chiang,Matematiksel İktisadın Temel Yöntemleri

Karşılaştırmalı Durağan Analiz ve Türev kavramı. 6. Bölüm :Alpha Chiang,Matematiksel İktisadın Temel Yöntemleri Karşılaştırmalı Durağan Analiz ve Türev kavramı 6. Bölüm :Alpha Chiang,Matematiksel İktisadın Temel Yöntemleri 1 Karşılaştırmalı durağan analiz 6. Karşılaştırmalı Durağanlıklar ve Türev Kavramı 6.1 doğası

Detaylı

FİRMA DENGESİ VE KAR MAKSİMİZASYONU KOŞULU

FİRMA DENGESİ VE KAR MAKSİMİZASYONU KOŞULU FİRMA DENGESİ VE KAR MAKSİMİZASYONU KOŞULU 1. FİRMA DENGESİNDE AMAÇ Satış miktarını en yüksek düzeye çıkarma, ortaklarına yeterli gelir sağlama, piyasada isim yapma, firmayı mümkün olduğu kadar büyütme,

Detaylı

7. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

7. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 7. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.7. MALİYET TEORİSİ: YENİDEN Sabit Maliyetler (FC): Üretim miktarından bağımsız olan maliyetleri

Detaylı