NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. HAFTA 1 İST 418 EKONOMETRİ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. HAFTA 1 İST 418 EKONOMETRİ"

Transkript

1 NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. KULLANILAN ŞEKİLLERİN VE NOTLARIN TELİF HAKKI KİTABIN YAZARI VE BASIM EVİNE AİTTİR. HAFTA 1 İST 418 EKONOMETRİ Ekoometri: Sözcük alamıyla ekoometri, iktisadi ölçüm demektir. Samuelso ve Koopmas ı taımlaması ile ekoometri, kuramla gözlemleri birlikte gelişmesie dayaa iktisadi olguları, uygu çıkarsama yötemleriyle de ilişki kurarak icel çözümlemesidir. İktisadi istatistikçii işi iktisadi verileri derlemek, işlemek, çizelgeler ve çizimlerle sumaktır. Bua karşı ekoometricii işi ise toplaa ve derlee verileri kullaıp iktisat kuramlarıı sıamaktır. Kısaca ekoometrii aa hatları: 1. Kuramı ya da hipotezi ortaya koması. Kuramı matematiksel modelii ortaya koması 3. Kuramı ekoometrik modelii taımlaması 4. Verileri elde edilmesi 5. Ekoometrik modeli parametrelerii tahmii 6. Hipotezi (ösavı) test edilmesi 7. Kestirim deklemii elde edilmesi 8. Modeli kotrol ya da politika amacıyla kullaılması Ekoometri: a) Kuramsal ekoometri b) Uygulamalı ekoometri olmak üzere iki dalda iceleebilir. İki ya da ikide fazla değişke arasıdaki ilişkii istatistiki açıda icelemesi regresyo aalizi ile bulumaktadır. Değişkeler arasıdaki ilişki iceleirke kesi ya da istatistiksel bir ilişki edesellik (ösel ya da kuramsal) korelasyo (doğrusal ilişkii gücü, derecesi, yöü) koularıa dikkat etmektir. Veri Türleri: a) Zama serisi verileri: Bir değişkei değişik zamalarda gözlee değerler takımı Hisse seedi fiyatları gülük Merkez bakası para arzı haftalık İşsizlik oraı, tüketici fiyat ideksi aylık GSUÜ: gayrisafi ulusal ürü verisi 3 aylık Hükümet bütçeleri yıllık İmalat saayi aketleri 5 yıllık Nüfus sayımları 10 yıllık vs. veri çeşitleri. b) Kesit verileri: Zama içide belli bir oktada derlee veriler Nüfus sayımları Tüketici harcamaları Kamuoyu araştırmaları 1

2 vs. veriler. Veri Kayakları: Resmi kuruluşlarda (Ticaret Bakalığı), uluslararası kuruluşlarda (Merkez Bakası, IMF vs.), özel kurum ve kuruluşlarda (Stadard & Poor s Corporatio vs.) derleebilir. Verileri Doğruluk Derecesi: 1. Çoğu verii deeysel olmaya toplumsal bilim verisi olması. Deeysel verilerde bile yaklaşıklık ya da yuvarlatma edeiyle ölçme hatasıı olması 3. Aketle toplaa verilerde yaıt alamama 4. Veri derlemede kullaıla örekleme yötemlerii değişiklik göstermesi 5. İktisadi veriler geellikle toplulaştırılmış düzeyde buluması soucu çalışmaı asıl amacı olabile tekil ya da mikro birimlere ilişki bilgileri elde edilmemesi 6. Gizlilik edeiyle, bazı veriler acak yüksek toplulaştırma düzeyleride yayımlaabilir (öreği; vergi dairesi verileri). Bular ve bezeri başka sorular edeiyle araştırmacı, bulguları e çok verileri kalitesi kadar iyi olabileceğii hiçbir zama aklıda çıkarmamalıdır. Özet ve Souçlar: 1. Regresyo aalizideki temel düşüce bir açıklaa değişkei bir ya da birde fazla açıklayıcı değişkee istatistiksel bağımlılığıdır.. Amaç, açıklayıcı değişkei bilie ya da değişmeye değerlerie dayaarak bağımlı değişkei ortalama değerii kestirmektir. 3. Regresyo aalizii uygulamadaki başarısı uygu verii bulumasıa bağlıdır. 4. Her araştırmada kullaıla verileri kayakları, taımları, toplama yötemleri, verilerdeki eksiklikler gözde geçirilip meydaa gele değişiklikler belirtilmelidir. Öreği, resmi veriler sık sık gücelleip değiştirilir. 5. Verileri deetlemesi içi e zama e de güç ya da kayak olmayabilir. Bu yüzde araştırmacı verileri uygu biçimde derlediği ve hesaplamalardaki çözümleri doğru olduğu varsayımıa sahiptir. Hata terimii ortaya çıkış sebepleri: 1. Modele alımaya açıklayıcı değişkeler. İsa davraışlarıı belirsizliği İsalar ayı şartlar altıda farklı davraışlar gösterebilmektedir. Öreği, gelir, döviz kuru ve fiyatlar ayı kaldığı halde ithal malı talebi bir alık bir etkiyle değişebilir. 3. Matematiksel kalıbı yalış seçilmesi 4. Toplulaştırma yalışlıkları Farklı davraışlar içide bulua çeşitli iktisadi birimlere ait değerleri toplaarak tek bir veri olarak ifade edilmesi de hataya yol açar. 5. Ölçme yalışlıkları Değişkeler ait verileri yalış ölçülmesi, açıklaa değişkei gerçek değerleri ile tahmi değerleri arasıdaki farklara ede olur. E küçük kareler yötemi içi varsayımlar:

3 1. Hata terimi stokastik bir değişkedir. Hagi değer ve soucu alacağı öcede bilimeye, değeri şasa bağlı olarak rasgele bir şekilde ortaya çıka değişkee stokastik değişke deir. Stokastik değişke, değerii belli bir olasılık içide aldığı içi bu değişkee olasılıklı veya rasgele değişke de deir.. Hata terimii ortalaması sıfırdır. Açıklayıcı değişkei aldığı farklı değerler içi hata terimi de eksi, artı veya sıfır değerlerii almaktadır. Bu değerleri toplamı dolayısıyla ortalaması sıfırdır. 3. Hata terimi ormal dağılımlıdır. Hata terimii ormal dağılıma sahip olması beklee bir varsayımdır. Bu varsayım, parametre tahmilerii, bu parametrelere ilişki güve aralıklarıı bulmak ve (ormal dağılımlar içi gerekli ola t ve F) alamlılık testlerii yapmak içi gereklidir. 4. Hata terimi sabit varyaslıdır. Sabit varyas (homoscedasticity) varsayımıa göre hata terimi varyasları açıklayıcı değişkedeki değişmelere göre değişmeyip sabit kalmasıdır. 5. Hata terimleri arasıda ilişki (otokorelasyo) yoktur. Bu varsayıma göre hata terimleri birbiride bağımsız olup, birbirlerii etkilememektedir. Yai hata terimii belli bir döemdeki değeri başka bir döemdeki değeride bağımsızdır. 6. Açıklayıcı değişke ile hata terimi arasıda bir ilişki olmayıp açıklayıcı değişke sabit değerlidir. Açıklayıcı değişkei sabit değerli olması tekrarlaa örekler içi bu değerleri sabit kabul edilip, açıklaa değişkedeki değişmeleri kayağıı hata terimii oluşturmasıdır. 7. Açıklayıcı değişkeler arasıda bir ilişki yai çoklu doğrusal bağlatı yoktur. Bu varsayım çoklu regresyo modeli ile ilgili olup, açıklayıcı değişkeler arasıda hiçbir ilişki olmamasıı gerektirmez. Acak arzu edile güçlü ve tam bir doğrusal bağlatıı bulumamasıdır. 8. Açıklayıcı değişke stokastik olmayıp ölçme hataları yoktur. Burada açıklayıcı değişkei ölçülmeside bir yalışlık yapılmadığı, gerçek değerii ölçülebildiği kabul edilmektedir. 9. Modeli kurulması doğrudur. Modeli kurarke icelee iktisadi olayı açıklaya öemli değişkeleri modele alıdığı, matematiksel modeli ve deklem sayısıı doğru belirlediği varsayılmaktadır. Örek: Temel ruh bilimsel kural, isaları gelirleri arttıkça ortalama olarak tüketimlerii arttırmalarıdır diye Keyes i öerdiği tüketim foksiyou Y tüketim harcamaları x gelir olmak üzere Y x ; olarak taımlaır. Bu foksiyou açıklaması gelirdeki bir birimlik bir değişmeye karşılık gele tüketim artışı demektir. Burada tüketim artışı marjial tüketim eğilimi olup, sıfırda büyük ama 1 de küçük olduğuu öe süre Keyes tir. Buu göstermek amacıyla x haftalık aile geliri ($) 3

4 Y tüketim harcaması ($) Y x Özet istatistikleri Yi 110 Yi Yx i i xi 1700 xi , ( 1) SYx Yi xi Y x (11)(170) ( 1) S x x (170) x i Y 11 ( 1) SY Yi Y (11) 9160 Regresyo parametre tahmileri: ˆ SYx ve ˆ 0 Y ˆ 1x S (0.518)(170) x Kestirim deklemi: Yˆ x x 170 Kestirim doğrusu Regresyo doğrusu üzerideki her okta seçilmiş X x değerie karşılık gele i beklee ya da ortalama değerii tahmiii gösterir. Yai, Xi xi değeri içi Y ˆi, E( Yi X i xi ) beklee değerii tahmii değeridir. Doğruu eğimii göstere ˆ değeri haftalık aile geliride meydaa gele 1$ lık artışta ortalama tüketim harcamasıda tahmi edile değişimi yaklaşık 5 lik artış olacağıı göstermektedir. ˆ değeri ise bir ailei haftadaki miimum tüketim harcamasıı göstermektedir. Regresyo aalizide Y 4

5 bu tür yorumlar her zama alamlı olmayabilir. Acak, örekte belirtile hiçbir geliri olmaya bir ailei borç alarak ya da eski birikimlerii harcayarak e düşük tüketim harcaması düzeyii sürdürür. Regresyo aalizide sabit terimi (itercept) yorumlamasıda geellikle olayı yapısı göz öüe alımalıdır. Buu içi korelasyo katsayısıa bakılır. SXY r Corr( X, Y) S S (33000)(9160) X Y Tüketim harcamaları ile gelir arasıda pozitif yai ayı yölü güçlü doğrusal bir ilişki vardır. r ise tüketim harcamalarıda meydaa gele değişimi %96.73 gelirde kayaklamaktadır. 5

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

İSTATİSTİK TAHMİN TEORİSİ

İSTATİSTİK TAHMİN TEORİSİ İSTATİSTİK TAHMİN TEORİSİ Yrd. Doç. Dr. Bület İ. GONCALOĞLU Geellikle iki tür tahmide yararlaılmakta Nokta tahmii (Tek değer tahmii) Aa kitle parametreleri bilimediği hallerde öreklerde elde edilmiş değerlerde

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

İSTATİSTİKSEL TAHMİN. Prof. Dr. Levent ŞENYAY VIII - 1 İSTATİSTİK II

İSTATİSTİKSEL TAHMİN. Prof. Dr. Levent ŞENYAY VIII - 1 İSTATİSTİK II 8 İSTATİSTİKSEL TAHMİN 8.. İstatistiksel tahmileyiciler 8.. Tahmileyicileri Öellikleri 8... Sapmasılık 8... Miimum Varyaslılık 8..3. Etkilik 8.3. Aralık Tahmii 8.4. Tchebysheff teoremi Prof. Dr. Levet

Detaylı

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı) 3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda

Detaylı

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testlerine Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testlerine Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK İstatistiksel Tahmileme ve Hipotez Testlerie Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üiversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr

Detaylı

4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin

4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin 4/16/013 Ders 9: Kitle Ortalaması ve Varyası içi Tahmi Kitle ve Öreklem Öreklem Dağılımı Nokta Tahmii Tahmi Edicileri Özellikleri Kitle ortalaması içi Aralık Tahmii Kitle Stadart Sapması içi Aralık Tahmii

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

ÖRNEKLEME DAĞILIŞLARI

ÖRNEKLEME DAĞILIŞLARI 7 ÖRNEKLEME DAĞILIŞLARI 7.. Örekleme Dağılışları 7.. Örek Dağılışı 7.. Örekleme Dağılışlarıı Özellikleri 7...Sapmasızlık 7... Miimum Varyaslılık 7.4. Örek Oraıı Örekleme Dağılımı 7.5. Örek Varyasıı Örekleme

Detaylı

ˆp x p p(1 p)/n. Ancak anakütle oranı p bilinmediğinden bu ilişki doğrudan kullanılamaz.

ˆp x p p(1 p)/n. Ancak anakütle oranı p bilinmediğinden bu ilişki doğrudan kullanılamaz. YTÜ-İktisat İstatistik II Aralık Tahmii II 1 ANAKÜTLE ORANININ (p GÜVEN ARALIKLARI (BÜYÜK ÖRNEKLEMLERDE Her birii başarı olasılığı p ola birbiride bağımsız Beroulli deemeside öreklemdeki başarı oraıı ˆp

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise YTÜ-İktisat İstatistik II Örekleme ve Öreklem Dağılımları BASİT RASSAL ÖRNEKLEME N tae ese arasıda taelik bir öreklem seçilmesii istediğii düşüelim. eseli olaaklı her öreklemi seçilme şasıı eşit kıla seçim

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre

Detaylı

NİÇİN ÖRNEKLEME YAPILIR?

NİÇİN ÖRNEKLEME YAPILIR? İÇİ ÖREKEME YAPIIR? Zama Kısıdı Maliyeti Azaltma Hata Oraıı Azaltma Souca Ulaşma Hızı Doç.Dr. Ali Kemal ŞEHİRİOĞU Araş.Gör. Efe SARIBAY Örekleme Teorisi kousuu içide, Örekleme Tipleri populasyoda örek

Detaylı

Veri nedir? p Veri nedir? p Veri kalitesi p Veri önişleme. n Geometrik bir bakış açısı. n Olasılıksal bir bakış açısı

Veri nedir? p Veri nedir? p Veri kalitesi p Veri önişleme. n Geometrik bir bakış açısı. n Olasılıksal bir bakış açısı Veri edir? p Veri edir? Geometrik bir bakış açısı p Bezerlik Olasılıksal bir bakış açısı p Yoğuluk p Veri kalitesi p Veri öişleme Birleştirme Öreklem Veri küçültme p Temel bileşe aalizi (Pricipal Compoet

Detaylı

EME 3117 SİSTEM SIMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9

EME 3117 SİSTEM SIMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9 ..7 EME 37 Girdi Aalizi Prosedürü SİSTEM SIMÜLASYONU Modelleecek sistemi (prosesi) dokümate et Veri toplamak içi bir pla geliştir Veri topla Verileri grafiksel ve istatistiksel aalizii yap Girdi Aalizi-II

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi 3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2 LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ SABİT NOKTA İTERASYONU YÖNTEMİ Bu yötemde çözüme gitmek içi f( olarak verile deklem =g( şeklie getirilir. Bir başlagıç değeri seçilir ve g ( ardışık

Detaylı

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkaı : Yrd.Doç.Dr. İsmail YILDIZ ARAŞTIRMADA PLANLAMA VE ÇÖZÜMLEME (03-09 Ocak 014 Y.ÇELİK) Araştırma Süreci (The research

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

Tek Bir Sistem için Çıktı Analizi

Tek Bir Sistem için Çıktı Analizi Tek Bir Sistem içi Çıktı Aalizi Bezetim ile üretile verile icelemesie Çıktı Aalizi deir. Çıktı Aalizi, bir sistemi performasıı tahmi etmek veya iki veya daha fazla alteratif sistem tasarımıı karşılaştırmaktır.

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla.

7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. 7.Ders Bazı Ekonometrik Modeller Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. Kaynak: TÜĐK dönemler gayri safi yurt içi hasıla düzeyi 1987-1 8680793 1987-2 9929354 1987-3 13560135 1987-4

Detaylı

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler 3. Ders Parametre Tahmii Tahmi Edicilerde Araa Özellikler Gerçek düyada rasgelelik olgusu içere bir özellik ile ilgili ölçme işlemie karş l k gele X rasgele de¼gişkeii olas l k (yo¼guluk) foksiyou, F ff(;

Detaylı

İstatistik Nedir? Sistem-Model Kavramı

İstatistik Nedir? Sistem-Model Kavramı İstatistik Nedir? İstatistik rasgelelik içere olaylar, süreçler, sistemler hakkıda modeller kurmada, gözlemlere dayaarak bu modelleri geçerliğii sıamada ve bu modellerde souç çıkarmada gerekli bazı bilgi

Detaylı

AKT202 MATEMATİKSEL İSTATİSTİK II ÖDEV 2 ÇÖZÜMLERİ. için gerekli en küçük örneklem büyüklüğünü Neyman-Pearson teoremi yardımıyla saptayınız.

AKT202 MATEMATİKSEL İSTATİSTİK II ÖDEV 2 ÇÖZÜMLERİ. için gerekli en küçük örneklem büyüklüğünü Neyman-Pearson teoremi yardımıyla saptayınız. AKT0 MATEMATİKSEL İSTATİSTİK II ÖDEV ÇÖZÜMLERİ 1. σ = 4 varyası ile ormal dağılıma sahip bir kitlede büyüklüğüde bir rasgele öreklem seçilsi. H 0 : μ = 14 ve H s : μ = 16 hipotezleri içi 1. tür hata α

Detaylı

2016 YILI I.DÖNEM AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME. aşağıdaki seçeneklerden hangisinde verilmiştir? n exp 1.

2016 YILI I.DÖNEM AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME. aşağıdaki seçeneklerden hangisinde verilmiştir? n exp 1. 06 YILI I.DÖNEM AKTÜERLİK SINAVLARI Soru Toplam hasar miktarı S i olasılık ürete foksiyou X x i PS ( t) = E( t ) = exp λi( t ) ise P S(0) aşağıdaki seçeeklerde hagiside verilmiştir? A) 0 B) C) exp λ i

Detaylı

HAFTA 4 ÇOKLU DOĞRUSALLIK

HAFTA 4 ÇOKLU DOĞRUSALLIK Çolu doğrusallı yotur varsayımıa; HAFTA 4 ÇOKLU DOĞUSALLIK. Çolu doğrusallığı iteliği edir?. Çolu doğrusallı gerçete bir soru mudur? 3. Uygulamada doğurduğu souçlar elerdir? 4. Varlığı asıl alaşılır? 5.

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları

Detaylı

ASTROİSTATİSTİK 12. KONU

ASTROİSTATİSTİK 12. KONU ASTROİSTATİSTİK 12. KONU Hazırlaya: Doç. Dr. Tolgaha KILIÇOĞLU 12. KORELASYON Bir deeyi veya gözlemi soucuda elde edile iki değişke arasıda bir ilişki olup olmadığı ortaya komak isteebilir. Aşağıda birbirleri

Detaylı

Akdeniz Üniversitesi

Akdeniz Üniversitesi F. Ders Tanıtım Formu Dersin Adı Öğretim Dili EKONOMETRİ I Türkçe Dersin Verildiği Düzey Ön Lisans ( ) Lisans (x ) Yüksek Lisans( ) Doktora( ) Eğitim Öğretim Sistemi Örgün Öğretim (x ) İkinci Örgün Öğretim

Detaylı

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir.

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir. 203-204 Bahar REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyo Basit doğrusal regresyo modeli: y i = β 0 + β x i + ε i Modeli matris gösterimi, y i = [ x i ] β 0 β + ε i şeklidedir. x y 2 gözlem

Detaylı

Öğrenci Numarası İmzası: Not Adı ve Soyadı

Öğrenci Numarası İmzası: Not Adı ve Soyadı Öğreci Numarası İmzası: Not Adı ve Soyadı SORU 1. a) Ekoomii taımıı yapıız, amaçlarıı yazıız. Tam istihdam ile ekoomik büyüme arasıdaki ilişkiyi açıklayıız. b) Arz-talep kauu edir? Arz ve talep asıl artar

Detaylı

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY Süleyma Demirel Üiversitesi Vizyoer Dergisi Suleyma Demirel Uiversity The Joural of Visioary İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA ÖZET Yrd. Doç. Dr. Halil ÖZDAMAR 1 İstatistiksel kalite kotrol

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

HAFTA 12. gösterilebilir ise

HAFTA 12. gösterilebilir ise HAFTA 1 Asimoik ya da büyük öreklem sıaması: yeerice büyükse ˆ N,1 H : hioezii es edilmeside Örek: 3 ike ˆ.8844 H : eside göserilebilir. ˆ değeri red bölgeside ise hioez red edilir. H bulma olasılığı so

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

HAFTA 6 DEĞİŞEN VARYANS (HETEROSCEDASTICITY)

HAFTA 6 DEĞİŞEN VARYANS (HETEROSCEDASTICITY) HAFTA 6 DEĞİŞEN VARYANS (HETEROSCEDASTICITY) Klask doğrusal regresyo model öeml varsayımlarıda brs hata termler sabt varyaslı olduğudur. Bu varsayımı sağlamadığı durumda ler. Değşe varyası telğ edr?. Doğurduğu

Detaylı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı 5.Ders Döüşümler Bir Rasgele Değişkei Foksiyouu Olasılık Dağılımı Bu kısımda olasılık dağılımı bilie bir rasgele değişkei foksiyoları ola rasgele değişkeleri olasılık dağılımlarıı buluması ile ilgileeceğiz.

Detaylı

4/4/2013. Ders 8: Verilerin Düzenlenmesi ve Analizi. Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler

4/4/2013. Ders 8: Verilerin Düzenlenmesi ve Analizi. Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler Ders 8: Verileri Düzelemesi ve Aalizi Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler Bir kitlei tamamıı, ya da kitlede alıa bir öreklemi özetlemekle (betimlemekle)

Detaylı

Hipotez Testleri. Parametrik Testler

Hipotez Testleri. Parametrik Testler Hipotez Testleri Parametrik Testler Hipotez Testide Adımlar Bir araştırma sorusuu belirlemesi Araştırma sorusua dayaa istatistiki hipotezleri oluşturulması (H 0 ve H A ) Hedef populasyoda öreklemi elde

Detaylı

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer.

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer. SORU : AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI X raslat deikeii olas l k youluk foksiyou 8x, x f(x) = 0, ö.d olarak verilmitir. Bua göre 0< y içi Y = raslat deikeii X olaslk youluk

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

ASTROİSTATİSTİK 4. KONU

ASTROİSTATİSTİK 4. KONU ASTROİSTATİSTİK 4. KONU Hazırlaya: Doç. Dr. Tolgaha KILIÇOĞLU 4. VERİLERİN YAYILIMININ BELİRLENMESİ Bir veri taımlaırke orta değer (ortalama, medya veya mod) verilmesii yaıda verileri yayılımıa (saçılmasıa)

Detaylı

MEKANİK TESİSATTA EKONOMİK ANALİZ

MEKANİK TESİSATTA EKONOMİK ANALİZ MEKANİK TESİSATTA EKONOMİK ANALİZ Mustafa ÖZDEMİR İ. Cem PARMAKSIZOĞLU ÖZET Düya çapıda rekabeti ö plaa çıktığı bu gükü şartlarda, e gelişmiş ürüü, e kısa sürede, e ucuza üretmek veya ilk yatırım ve işletme

Detaylı

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

Enflasyon nedir? Eşdeğer hesaplamalarında enflasyon etkisini nasıl hesaba katarız? Mühendislik Ekonomisi. (Chapter 11) Enflasyon Nedir?

Enflasyon nedir? Eşdeğer hesaplamalarında enflasyon etkisini nasıl hesaba katarız? Mühendislik Ekonomisi. (Chapter 11) Enflasyon Nedir? Elasyo ve Nakit Akışlarıa Etkisi (Chapter 11) TOBB ETÜ Örek 2015 Yılıda Çocuğuuzu Üiversiteye Gödermei Maliyeti Ne Kadar Olacak? 2005 yılıda 1 yıllık üiversite masraı $17,800. Elasyo edeiyle üiversite

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme SAYISAL ÇÖZÜMLEME Saısal Çözümleme SAYISAL ÇÖZÜMLEME 8. Hafta İNTERPOLASYON Saısal Çözümleme 2 İÇİNDEKİLER Ara Değer Hesabı İterpolaso Doğrusal Ara Değer Hesabı MATLAB ta İterpolaso Komutuu Kullaımı Lagrace

Detaylı

DERS NOTLARI-II ISINMA. c wwww.sbelian.wordpress.com

DERS NOTLARI-II ISINMA. c wwww.sbelian.wordpress.com EŞİTSİZLİKLER DERS NOTLARI-II c wwww.sbelia.wordpress.com Bazı foksiyo eşitsizliklerii kaıtıı yaparke, foksiyouu belli aralıklardaki şeklide öemlidir. Bu ders otumuzda ele aldığımız eşitsizlikleri çözümleride

Detaylı

ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ EKO 303 EKONOMETRİ I ALIŞTIRMALAR

ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ EKO 303 EKONOMETRİ I ALIŞTIRMALAR ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ EKO 303 EKONOMETRİ I ALIŞTIRMALAR 1 2 3 4 5 6 1 7 8 9 10 10.1 11 10.2 2 12 13 14 15 16 17 3 18 19 20 21 22 23 4 24 25 26 27 28 5 29 30 31 32 33 34 6 35 36 37 37. 1 37. 2 37.

Detaylı

Burçin Gonca OKATAN YÜKSEK LİSANS TEZİ İSTATİSTİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AĞUSTOS 2007 ANKARA

Burçin Gonca OKATAN YÜKSEK LİSANS TEZİ İSTATİSTİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AĞUSTOS 2007 ANKARA UYUM İYİLİĞİ İÇİN AMICO TEK-ÖRNEK TESTİ VE İĞER UYUM İYİLİĞİ TESTLERİ İLE KARŞILAŞTIRILMASI Burçi Goca OKATAN YÜKSEK LİSANS TEZİ İSTATİSTİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AĞUSTOS 7 ANKARA TEZ

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

x 2$, X nın bir tahminidir. Bu durumda x ile X arasındaki farka bu örnek için örnekleme hatası x nın örnekleme hatasıdır. X = x - (örnekleme hatası)

x 2$, X nın bir tahminidir. Bu durumda x ile X arasındaki farka bu örnek için örnekleme hatası x nın örnekleme hatasıdır. X = x - (örnekleme hatası) 4 ÖRNEKLEME HATASI 4.1 Duyarlılık 4. Güveilirik 4.3 Örek hacmi ve uyarlılık arasıaki ilişki 4.4 Örek hacmi ve göreceli terimler ile uyarlılık arasıaki ilişki 4.5 Hata kareler ortalaması Örekte ele eile

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ 5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ Bir lieer deklemi geel çözümüü bulmak homoje kısmı temel çözümlerii belirlemesie bağlıdır. Sabit katsayılı diferasiyel deklemleri temel çözümlerii

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

TOPLAM KOLESTEROL, LDL, HDL VE TRİGLİSERİT SEVİYELERİNİN YAŞA GÖRE DEĞİŞİMİNİN DEĞİŞİK REGRESYON MODELLERİYLE İNCELENMESİ

TOPLAM KOLESTEROL, LDL, HDL VE TRİGLİSERİT SEVİYELERİNİN YAŞA GÖRE DEĞİŞİMİNİN DEĞİŞİK REGRESYON MODELLERİYLE İNCELENMESİ T.C. İNÖNÜ ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ TOPLAM KOLESTEROL, LDL, HDL VE TRİGLİSERİT SEVİYELERİNİN YAŞA GÖRE DEĞİŞİMİNİN DEĞİŞİK REGRESYON MODELLERİYLE İNCELENMESİ YÜKSEK LİSANS TEZİ EMRE DİRİCAN

Detaylı

Değişkenler: Bir problemin modeli kurulduktan sonra değeri hesaplanacak olan bilinmeyen simgelerdir.

Değişkenler: Bir problemin modeli kurulduktan sonra değeri hesaplanacak olan bilinmeyen simgelerdir. 2. DOĞRUSAL PROGRAMLAMA (DP) 2.1. DP i Taımı ve Bazı Temel Kavramlar Model: Bir sistemi değişe koşullar altıdaki davraışlarıı icelemek, kotrol etmek ve geleceği hakkıda varsayımlarda bulumak amacı ile

Detaylı

Öğretim Üyesi. Topoğrafya İnşaat Mühendisliği

Öğretim Üyesi. Topoğrafya İnşaat Mühendisliği Öğretim Üyesi Mehmet Zeki COŞKUN Y. Doç. Dr. İşaat Fak., Jeodezi ve Fotogrametri Müh. Ölçme Tekiği Aabilim Dalı (1) 85-6573 coskumeh@itu.edu.tr http://atlas.cc.itu.edu.tr/~cosku Adres Öğreci görüşme saatleri:

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

BİR ÇUBUĞUN MODAL ANALİZİ. A.Saide Sarıgül

BİR ÇUBUĞUN MODAL ANALİZİ. A.Saide Sarıgül BİR ÇUBUĞUN MODAL ANALİZİ A.Saide Sarıgül DENEYİN AMACI: Akastre bir çubuğu modal parametrelerii (doğal frekas, titreşim biçimi, iç söümü) elde edilmesi. TANIMLAMALAR: Modal aaliz: Titreşe bir sistemi

Detaylı

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI ÖRNEKLEME YÖNTEMLERİ Prof. Dr. Ergu Karaağaoğlu H.Ü. Tıp Fakültesi Biyoistatistik ABD ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI

Detaylı

Temel Kavramlar. Bağlanım Çözümlemesi. Temel Kavramlar. Ekonometri 1 Konu 6 Sürüm 2,0 (Ekim 2011)

Temel Kavramlar. Bağlanım Çözümlemesi. Temel Kavramlar. Ekonometri 1 Konu 6 Sürüm 2,0 (Ekim 2011) Bağlanım Çözümlemesi Temel Kavramlar Ekonometri 1 Konu 6 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

Detaylı

Ekonometrinin Konusu ve Yöntembilimi. Ekonometri Nedir? Ekonometrinin Konusu ve Yöntembilimi. Ekonometri 1 Konu 4 Sürüm 2,0 (Ekim 2011)

Ekonometrinin Konusu ve Yöntembilimi. Ekonometri Nedir? Ekonometrinin Konusu ve Yöntembilimi. Ekonometri 1 Konu 4 Sürüm 2,0 (Ekim 2011) Ekonometri Nedir? ve Yöntembilimi Ekonometri 1 Konu 4 Sürüm 2,0 (Ekim 2011) Ders Planı ve Yöntembilimi 1 ve Yöntembilimi Sözcük Anlamı ile Ekonometri Ekonometri Sözcük anlamı ile ekonometri, ekonomik ölçüm

Detaylı

Tahmin teorisinde amaç örneklem (sample) bilgisine dayanarak anakütleye. (population) ilişkin çıkarsamalar yapmaktır. Bu çıkarsamalar örneklem

Tahmin teorisinde amaç örneklem (sample) bilgisine dayanarak anakütleye. (population) ilişkin çıkarsamalar yapmaktır. Bu çıkarsamalar örneklem YTÜ-İktisat İstatistik II Nokta Tahmii 1 Tahmi teoriside amaç öreklem (sample) bilgisie dayaarak aakütleye (populatio) ilişki çıkarsamalar yapmaktır. Bu çıkarsamalar aakütlei dağılımıı belirleye bilimeye

Detaylı

TUTGA ve C Dereceli Nokta Koordinatlarının Gri Sistem ile Tahmin Edilmesi

TUTGA ve C Dereceli Nokta Koordinatlarının Gri Sistem ile Tahmin Edilmesi TMMOB Harita ve Kadastro Mühedisleri Odası, 5. Türkiye Harita Bilimsel ve Tekik Kurultayı, 5 8 Mart 5, Akara. TUTGA ve C Dereceli Nokta Koordiatlarıı Gri istem ile Tahmi Edilmesi Kürşat Kaya *, Levet Taşcı,

Detaylı

İstatistik Ders Notları 2018 Cenap Erdemir BÖLÜM 5 ÖRNEKLME DAĞILIMLARI. 5.1 Giriş

İstatistik Ders Notları 2018 Cenap Erdemir BÖLÜM 5 ÖRNEKLME DAĞILIMLARI. 5.1 Giriş İstatistik Ders Notları 08 Ceap Erdemir BÖLÜM 5 ÖRNEKLME DAĞILIMLARI 5. Giriş Öreklem istatistikleri kullaılarak kitle parametreleri hakkıda çıkarsamalar yapmak istatistik yötemleri öemli bir bölümüü oluşturur.gülük

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

BOX-LJUNG ve NONPARAMETRĐK REGRESYON YÖNTEMLERĐNĐN ETKĐNLĐKLERĐNĐN KARŞILAŞTIRILMASI: ĐMKB-100 ENDEKSĐNE YÖNELĐK BĐR UYGULAMA

BOX-LJUNG ve NONPARAMETRĐK REGRESYON YÖNTEMLERĐNĐN ETKĐNLĐKLERĐNĐN KARŞILAŞTIRILMASI: ĐMKB-100 ENDEKSĐNE YÖNELĐK BĐR UYGULAMA Ekoometri ve Đstatistik Sayı:0 00 - ĐSTANBUL ÜNĐVERSĐTESĐ ĐKTĐSAT FAKÜLTESĐ EKONOMETRĐ VE ĐSTATĐSTĐK DERGĐSĐ BOX-LJUNG ve NONPARAMETRĐK REGRESYON YÖNTEMLERĐNĐN ETKĐNLĐKLERĐNĐN KARŞILAŞTIRILMASI: ĐMKB-00

Detaylı

Tüm formülleri ve işlemlerinizi açıkça gösteriniz.

Tüm formülleri ve işlemlerinizi açıkça gösteriniz. A.Ü. SBF, IV Maliye EKONOMETRİ I ARA SINAVI 4..006 Süre 90 dakikadır..,. ve 3. sorular 0 ar, 4. ve 5. sorular 30 ar pua, ödev 0 pua değeridedir. Tüm formülleri ve işlemleriizi açıkça gösteriiz. ) Y = Xβ

Detaylı

ASTROİSTATİSTİK 3. KONU

ASTROİSTATİSTİK 3. KONU ASTROİSTATİSTİK. KONU Hazırlaya: Doç. Dr. Tolgaha KILIÇOĞLU. VERİLERDE ORTA DEĞER BULMA Bir veriyi tek bir değerle temsil etmeiz isteirse aklııza hagi değer gelir? Böyle bir temsil yapılabilmesi içi elbette

Detaylı

Bir kitlenin karakteristiği, kitlenin her üyesi için ölçülebilir olan değişkendir.

Bir kitlenin karakteristiği, kitlenin her üyesi için ölçülebilir olan değişkendir. BÖLÜM 1. ÖRNEKLEM (ÖRNEK) SEÇİMİ Bir araştırmada taım çerçeveside yer ala tüm birimleri oluşturduğu kümeye kitle (aa kütleye) deir. Araştırmalarda geel amaç tüm kitle içi bilgi sahibi olmaktır. Buu içi

Detaylı

SU KAYNAKLARI EKONOMİSİ TEMEL KAVRAMLARI Su kaynakları geliştirmesinin planlanmasında çeşitli alternatif projelerin ekonomik yönden birbirleriyle

SU KAYNAKLARI EKONOMİSİ TEMEL KAVRAMLARI Su kaynakları geliştirmesinin planlanmasında çeşitli alternatif projelerin ekonomik yönden birbirleriyle SU KYNKLRI EKONOMİSİ TEMEL KVRMLRI Su kayakları geliştirmesii plalamasıda çeşitli alteratif projeleri ekoomik yöde birbirleriyle karşılaştırılmaları esastır. Mühedis öerdiği projei tekik yöde tutarlı olduğu

Detaylı

Bankacılık Sektöründe Verilerde Ölçüm Hatası Olması Durumunda Regresyon Modellerinin Tahmin Edilmesi (*)

Bankacılık Sektöründe Verilerde Ölçüm Hatası Olması Durumunda Regresyon Modellerinin Tahmin Edilmesi (*) Atatürk Üiversitesi Sosyal Bilimler Estitüsü Dergisi Mart 019 3(1): 1-0 Bakacılık Sektörüde Verilerde Ölçüm Hatası Olması Durumuda Regresyo Modellerii Tahmi Edilmesi (*) Taer ERSÖZ (**) Öz: Bu çalışmada,

Detaylı

SPEARMAN SIRA KORELASYONU KATSAYISINDA TEKRARLANAN DEGERLER VE BİR UYGULAMA

SPEARMAN SIRA KORELASYONU KATSAYISINDA TEKRARLANAN DEGERLER VE BİR UYGULAMA SPEARMAN SIRA KORELASYONU KATSAYISINDA TEKRARLANAN DEGERLER VE BİR UYGULAMA Doç. Dr. SelAhattl GÜRİŞ ( ) Değişkeler arasıdaki ilişkii derecesii ölçülmeside farklı istatiksel yötemlerde yararlaılabilir.

Detaylı

5. Ders Yeterlilik. f(x 1 ; x 2 ; :::; x n ; ) = g (T (x 1 ; x 2 ; :::; x n ); ) h(x 1 ; x 2 ; :::; x n )

5. Ders Yeterlilik. f(x 1 ; x 2 ; :::; x n ; ) = g (T (x 1 ; x 2 ; :::; x n ); ) h(x 1 ; x 2 ; :::; x n ) 5. Ders Yeterlilik Yeterlilik Ilkesi: Bir T(X ; X ; :::; X ) istatisti¼gi, hakk da yeterli bir istatistik olacaksa hakk da herhagi bir souç ç kar m T arac l ¼g ile (X ; X,...,X ) öreklemie ba¼gl olmal

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

Yatırım Analizi ve Portföy Yönetimi 4. Hafta. Dr. Mevlüt CAMGÖZ

Yatırım Analizi ve Portföy Yönetimi 4. Hafta. Dr. Mevlüt CAMGÖZ Yatırım Aalizi ve Portföy Yöetimi 4. Hafta Dr. Mevlüt CAMGÖZ İçerik Çeşitledirme Riski Kayakları ve Risk Türleri Portföyü Risk ve Getirisi Riskli Varlık Portföyüü Belirlemesi Markowitz Portföy Teorisi

Detaylı

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 )

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 ) 4. SUNUM 1 Gözlem ya da deneme sonucu elde edilmiş sonuçların, rastlantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HİPOTEZ TESTLERİ denir. Sonuçların rastlantıya bağlı

Detaylı

DENEY 4 Birinci Dereceden Sistem

DENEY 4 Birinci Dereceden Sistem DENEY 4 Birici Derecede Sistem DENEYİN AMACI. Birici derecede sistemi geçici tepkesii icelemek.. Birici derecede sistemi karakteristiklerii icelemek. 3. Birici derecede sistemi zama sabitii ve kararlı-durum

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

GÜMRÜK TARİFE UYGULAMALARI. İstanbul Gümrük ve Ticaret Bölge Müdürlüğü

GÜMRÜK TARİFE UYGULAMALARI. İstanbul Gümrük ve Ticaret Bölge Müdürlüğü GÜMRÜK TARİFE UYGULAMALARI İstabul Gümrük ve Ticaret Bölge Müdürlüğü SINIFLANDIRMA Sııfladırma Türk Gümrük Tarife Cetvelide eşyaı yer aldığı Gümrük Tarife İstatistik Pozisyouu tespit edilme işlemi olarak

Detaylı

14 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi GİRİŞ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri I: Giriş - H. Taştan 1 Ekonometri

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI

ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI TMMOB Harita ve Kadastro Mühedisleri Odası 13. Türkiye Harita Bilimsel ve Tekik Kurultayı 18 22 Nisa 2011, Akara ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

Koşullu Öngörümleme. Bu nedenle koşullu öngörümleme gerçekleştirilmelidir.

Koşullu Öngörümleme. Bu nedenle koşullu öngörümleme gerçekleştirilmelidir. Koşullu Öngörümleme Ex - ante (tasarlanan - umulan) öngörümleme söz konusu iken açıklayıcı değişkenlerin hatasız bir şekilde bilindiği varsayımı gerçekçi olmayan bir varsayımdır. Çünkü bazı açıklayıcı

Detaylı

İÇİNDEKİLER 1. GİRİŞ...

İÇİNDEKİLER 1. GİRİŞ... İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel

Detaylı

ÖZET Doktora Tezi KISITLI DURUM KALMAN FİLTRESİ VE BAZI UYGULAMALARI Esi KÖKSAL BABACAN Akara Üiversitesi Fe Bilimleri Estitüsü İstatistik Aabilim Dal

ÖZET Doktora Tezi KISITLI DURUM KALMAN FİLTRESİ VE BAZI UYGULAMALARI Esi KÖKSAL BABACAN Akara Üiversitesi Fe Bilimleri Estitüsü İstatistik Aabilim Dal ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ KISITLI DURUM KALMAN FİLTRESİ VE BAZI UYGULAMALARI Esi KÖKSAL BABACAN İSTATİSTİK ANABİLİM DALI ANKARA 2009 Her hakkı saklıdır ÖZET Doktora Tezi

Detaylı

Ekonometri I VARSAYIMLARI

Ekonometri I VARSAYIMLARI Ekonometri I ÇOK DEĞİŞKENLİ REGRESYON MODELİNİN VARSAYIMLARI Hüseyin Taştan Temmuz 23, 2006 İçindekiler 1 Varsayım MLR.1: Parametrelerde Doğrusallık 1 2 Varsayım MLR.2: Rassal Örnekleme 1 3 Varsayım MLR.3:

Detaylı

18.06 Professor Strang FİNAL 16 Mayıs 2005

18.06 Professor Strang FİNAL 16 Mayıs 2005 8.6 Professor Strag FİNAL 6 Mayıs 25 ( Pua) P,..., P R deki oktalar olsu. ( ai, ai2,..., a i) P i i koordiatlarıdır. Bütü P i oktasıı içere bir cx +... + cx = hiperdüzlemi bulmak istiyoruz. a) Bu hiperdüzlemi

Detaylı