Communication Theory

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Communication Theory"

Transkript

1 Communcaton Theory ENFORMASYON TEORİSİ KODLAMA Doç. Dr. Hakan Doğan ENFORMASYON DEYİMİ NEDEN KULLANILMIŞ? Kaynaklarn, kanalların,alıcıların blg karakterstklern ncelemek. Blgnn letmn optmze etmek çn İletmn güvenrllğnn düzeltlmes Farzedelm X şehrnden Y şehrne günlük hava tahmn verlyor ve havanın güneşl, bulutlu,yağmurlu,ssl olableceğn farzedelm. Her hava belrtec br kaynak sembolu olarak kodlansın. Yan br Kaynak kodlamayıcımız olsun. source kodng günlük hava raporu verlsn. Rapor dzsnede mesaj denr message Blg tanımı : Alıcı gönderlen blgy aldığında onun hakkında k kalkan belrszlk mktarına denr. Hava sembolu İhtmal Güneşl.65 Bulutlu. Yagmurlu.1 Ssl.5 Tablodan görüleceğ üzere X şehrnn güneşl br havası var ve bz A şehr güneşl dedğmzde az br blg vermş oluruz dğer taraftan ssl dedğmzde bu şaşırtıcı olur yan oldukça büyük br blgdr. Örnek mesaj : güneşl,güneşl,güneşl,bulutlu,bulutlu,yagmurlu

2 Tablo 1 Tablo Hava Sembolü Kod Hava Sembolü Kod Güneşl Güneşl Bulutlu 1 Bulutlu 1 Yagmurlu 1 Yagmurlu 11 Ssl 11 Ssl 111 Mesaj ın yukardak şekle göre kodlaması Tablo 1 e göre = 1 bt Tablo e göre = 1 bt Sonuç ve yorum : daha kısa br mesaj letmnde kaynak kodlayıcı htmal yüksek olan mesajı daha br kod uzunluğuyla kodlar. Bu br bçmde de şıkıştırma algortması olarak düşünüleblr. Mesajın olasılığı Kod sözcüğünün uzunluğu Kod sözcüğünde htmal büyük olan mesajın kaybedleblmes göz önüne alınıyor. Kod sözcüğünün küçük olması kadar kod sözcükler arasındak farkında büyük olması gerekmektedr şeklndek gb Blg kaynakları hafızalı ve hafızasız olarak kye ayrılır. Hafızalı br kaynakta mevcut çıkış sembolü öncek sembole bağlıyken, hafızasız br kaynakta herbr çıkış öncek sembollerden bağımsız olarak letlr. Ayrık hafızasız kaynak çn bg çerğ (Informaton content of a Dscrete Memoryless Source (DMS)) Br olaydak blg çerğ olayın belrszlğ le yakından lgldr. Blg çerğne lteratürde kend blgs^de denr. (self nformaton ) X le gösterlen br DMS çn X n alableceğ değerler gösteren alfabe (alphabet), x1, x, x m ve Px ( ) de x nn gelme olasılığını göstermek üzere le gösterlr. 1 I( x) logb (1.1) Px ( ) b bt b 1 Hartley veya Dect b e nat ( natural unt)

3 Haberleşmede b durumunu kullanrak blg çerğn bt cnsnden fade edyoruz. In a log1 a Hatırlatma : log a In log 1 P() =.7 P(1) =.3 1.denkleme göre.51 bt 1.denkleme göre 1.74 bt P( A B) P( A). P( B) statksel bağmsız k olay çn A olayı açıklanınca I(A) brm belrszlk ortadan kalkar. B olayı açıklanınca I(B) brm belrszlk ortadan kalkar. Hem A hem B oluyorsa C A B bu olayın olaması durumunda I(C) brm belrszlk ortadan kalkar. I C = I C + I B.51 bze sıfır ı göndermek çn 1 btten daha az yarım bte htyacımız var dyor pek yarım bt varmı tabk yok bu bze blgnn etkl br bçmde effcent depolanablmes veya letleblmesn gösterr. Bazı Özellkler: P( x ) 1 I( x ) I( x ) P( x ) P( x ) I( x ) I( x ) j j Entrop (Ortalama Blg) : Pratk haberleşme sstemlernde blg kaynağından letlen uzun blg sembol dzler söz konusu olduğu çn kaynağın ürettğ tekbr sembolün blg çerğnden daha çok kaynağın ortlama blg çerğnden bahsedlr. X kaynağına at ortalama blg mktarı m H( X ) E[ I( x )] P( x ) I( x ) (1.) 1 1 m H( X ) P( x )log ( P( x )) bt / symbol (1.3) Sonuç: Br şaretn blg çerğ, o şaret tanımlamak çn gerekl bt sayısına eşttr. (kend blg formulü le bulunur.) Eğer mesaj dzs çnse bu kavram artık entrop dr. Örnek : X kaynağı veya 1 üreten br kaynak olmak üzere P()=.5, P(1)=.5 se H(X) nedr? H( X ) log log 1 bt / symbol (1.4)

4 Kaynağın entrops H( X ), m alfabedek toplam sembol sayısını göstermek üzere H( X ) log m le sınırlıdır. Blg Hızı (Informaton Rate) R r H( X ) b / s (1.5) Örnek : 4 KHz lk br bantsınırlı br şaret (ses) Nyqust hızında örneklenyor ve 64 düzeyl br şaret halne getrlyor yan kuantalanıyor. (quantzaton) (A) örnekleme hızını (fs) ve örnekleme aralığını T s bulunuz. (B) Sembol hızını (r) bulunuz. (C) Düzeylern gönderlme olasılıkları eşt se blg hızını bulunuz. A- B= 4 KHz ; Fs= B = 8K Hz, Ts = 1/fs = 1/ 8 = 1.5 e-4 B- Sembol hızı r =1/Ts = fs= 8 sembol/sn = 8ksembol/sn C- Blg çerğ H= log (64) = 6 bt/sembol (bt/aralık) Blg hızı = r*h = 48 kbps. AYRIK HAFIZASIZ KANAL (Dscrete Memoryless Channel (DMC)) Kanala grş ve çıkış değerler bell br alfabeden oluşan (ayrık) ve çıkış değerler sadece o andak grş değerne bağlıysa bu kanala DMC denr. Blg kanalı, grş alfabes x x x ve çıkış alfabes,, m 1 y1, y, y n şartlı olasılıklar kümes bütün m ve n ler çn P( y j / x ) lerden oluşur. Burada P( y j / x ), x sembolü gönderldğnde çıkış sembolü y j nn gelme olasığını göstermektedr. İhtmal etkleyen faktör letşm ortamının yapısı ve gürültü. P( y j / x ) : Geçş Olasılığı (Transton probablty) Kanal Matrs P( y1 x1 ) P( y x1 ) P( yn x1 ) P( y1 x) P( y x) P( yn x) P( Y X ) P ( y1 xm) P( y xm) P( yn xm) (1.6) Bütün değerler çn n P( y j x) 1 (1.7) j1

5 Notasyon farkı : P(y j /x ) = P j P11 P1 P31 P1 P P3 P13 P3 P33 gb P 11 a 1 b 1 a b a 3 b 3 İKİLİ SİMETRİK KANAL : Bnary symmetrc channel BSC q q p 1 p 1 p q q p İKİLİ SİLEN KANAL : Bnary erasure channel BEC p q S q 1 1 p p q q p Grş olasılıkları P(X) ve çıkış olasılıkları P(Y) [ P( X )] [ P( x ), P( x ), P( x )] 1 [ P( Y)] [ P( y ), P( y ), P( y )] 1 m n (1.8) gb satır matrs le gösterlrse, olarak yazılablr. [ P( Y)] [ P( X )][ P( Y X )] (1.9)

6 Eğer PX ( ) daygonal matrs olarak gösterlrse; [ PX ( )] d Px ( 1) Px ( ) Px ( m) (1.1) [ P( X, Y)] [ P( X )] [ P( Y X )] (1.11) d Hatırlatma: P( A, B) P( A, B) P( B A) P( A) P( A B), P( B A), P( A B) P( B) P( A) P( B) Örnek:

7 Kanal çn Etrop Hesaplamaları H(X,Y) = Kanalın tümündek ortalama belrsklk mktarı ( Jont etrop ) H(X) = Kanalın grşndek ortalama belrszlk mktarı H(Y) = Kanalın çıkışındak ortalama belrszlk mktarı H(X/Y) = Kanalın çıkışı gözlendkten sonra kanal grş hakkında kalan ortalama belrszlk mktarı. H(Y/X) = X letldğnde kanalın çıkışındak ortalama belrszlk mktarı H(X) H(Y) H(X/Y) I(X,Y) H(Y/X) H(X,Y) Mutual Informaton I(X;Y) = H(X) H(X/Y) = Kanalın çıkışı gözlemlendkten sonra kanal grş hakkındak çözümlenen kısmı gösterr. I(X;Y) = H(Y) H(Y/X) n H( Y) P( y )log ( P( y )) (1.1) j1 1 j j m H( X ) P( x )log ( P( x )) (1.13) j1 1 n m H( X Y) P( x, y )log ( P( x y )) (1.14) j1 1 j j n m H( Y X ) P( x, y )log ( P( y x )) (1.15) j1 1 j j n m H( Y, X ) P( x, y )log ( P( y, x )) (1.16) j j P( x y j) I( X; Y) (, )log ( ) (1.17) ( ) n m P x y j j1 1 Px

8

9 KANAL KAPASİTESİ C le gösterlen br kanalın kanal sığası letebldğ maksmum ortalama enformasyon mktarı olarak tanımlanır. DMC br kanal çn sembol başına kanal kapastes C max( I( X, Y)) (1.18) Sayyede r adet sembol gönderlyorsa s P( x ) C rc b / s (1.19) s Gürültüsüz kanal : Tüm grş dağılımları çn H(X/Y) = gürültüsüzdür. H(Y/X) = se kanal x 1 y 1 x y x 3 y Buna göre gürültüsüz kanal çn Gürültülü kanal çn I(X,Y) = H(X) I(X;Y) = H(X)- H(X/Y) Kanal çıkışı gözlemlendkten sonra kanal grşndek kalkan belrszlk yoksa I(X,Y) =

10 Toplamsal beyaz gürültülü kanal (AWGN : Addtve Whte Gaussan Nose Channel) AWGN kanalda, X kanal grş, n toplamsal band sınırlı beyaz sıfır ortalamalı varyanslı gauss gürültüsü olmak üzere kanal çıkışı Y Y X n (1.) Olarak yazılırsa bu kanalda örnek başına kapaste S/N snyal gürültü oranını göstermek üzere s C max I A;B bt / sample (1.1) şeklnde yazılablr. Kanalın bandgenşlğ B Hz olarak sabtlenrse çıkışta bandsınırlı olur ve Nyqust hızı B olacak şeklde örnekler alınırsa bu durumda kanal kapastes olur. C.B. C bt / sn (1.) s P C Blog 1 NB 1 Örnek : 4 KHz bandgenşlğne sahp ve güç yoğunluk spektrumu / 1 W / olan br toplamsal beyaz gürültülü kanal çn alıcıda alınması gerekl olan snyaln gücü.1 mw. Kanalın kapastesn hesaplayınız. B= 4 Hz P =.1 (1-3 ) W N= NB = = W SNR = 1.5 * denkleme göre C= * 1 3 b/s R< C çn letm sağlanablr. 336 b/s model çalışabr. Hz Shannon Teorem : C.E Shannon a dek haberleşme teorcler gürültülü br kanal üzernden enformasyon letm şlemnde yapılan hata olasılığı küçültmek çn yegane yolun şaret/gürültü oranının büyütülmes ve/veya letm hızının düşürülmes gerektğn düşünmekteydler. 194 Shanon gürültülü kodlama teorem le letlmes gereken ortalama enformasyon mktarı R, C kanal sığası den küçük olduğu sürece uygun kodlama teknklernden yararlanarak enformasyon letm şlemnn hatasız olarak gerçekleşebleceğn göstermştr.

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

Türk Dilinin Biçimbilim Yapısından Yararlanarak Türkçe Metinlerin Farklı İmgelere Ayrılarak Kodlanması ve Sıkıştırılması

Türk Dilinin Biçimbilim Yapısından Yararlanarak Türkçe Metinlerin Farklı İmgelere Ayrılarak Kodlanması ve Sıkıştırılması Türk Dlnn Bçmblm Yapısından Yararlanarak Türkçe Metnlern Farklı İmgelere Ayrılarak Kodlanması ve Sıkıştırılması Banu DİRİ, M.Yahya KARSLIGİL Yıldız Teknk Ünverstes Elektrk Elektronk Fakültes - Blgsayar

Detaylı

BÖLÜM 1 TEMEL KAVRAMLAR

BÖLÜM 1 TEMEL KAVRAMLAR BÖLÜM 1 TEMEL KAVRAMLAR Bölümün Amacı Öğrenci, Analog haberleşmeye kıyasla sayısal iletişimin temel ilkelerini ve sayısal haberleşmede geçen temel kavramları öğrenecek ve örnekleme teoremini anlayabilecektir.

Detaylı

KABLOSUZ İLETİŞİM

KABLOSUZ İLETİŞİM KABLOSUZ İLETİŞİM 805540 MODÜLASYON TEKNİKLERİ SAYISAL MODÜLASYON İçerik 3 Sayısal modülasyon Sayısal modülasyon çeşitleri Sayısal modülasyon başarımı Sayısal Modülasyon 4 Analog yerine sayısal modülasyon

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI OLASILIĞA GİRİŞ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Ünverstes Tıp Fakültes Byostatstk Anablm Dalı uerkorkmaz@sakarya.edu.tr OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI Br olayındoğal koşullar altında toplumda

Detaylı

6. NORMAL ALT GRUPLAR

6. NORMAL ALT GRUPLAR 6. ORMAL ALT GRUPLAR G br grup ve olsun. 5. Bölümden çn eştlğnn her zaman doğru olamayacağını blyoruz. Fakat bu özellğ sağlayan gruplar, grup teorsnde öneml rol oynamaktadır. Bu bölümde bu tür grupları

Detaylı

KABLOSUZ İLETİŞİM

KABLOSUZ İLETİŞİM KABLOSUZ İLETİŞİM 805540 DENKLEŞTİRME, ÇEŞİTLEME VE KANAL KODLAMASI İçerik 3 Denkleştirme Çeşitleme Kanal kodlaması Giriş 4 Denkleştirme Semboller arası girişim etkilerini azaltmak için Çeşitleme Sönümleme

Detaylı

ELK 318 İLETİŞİM KURAMI-II

ELK 318 İLETİŞİM KURAMI-II ELK 318 İLETİŞİM KURAMI-II Nihat KABAOĞLU Kısım 4 DERSİN İÇERİĞİ Sayısal Haberleşmeye Giriş Giriş Sayısal Haberleşmenin Temelleri Temel Ödünleşimler Örnekleme ve Darbe Modülasyonu Örnekleme İşlemi İdeal

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Blgsayarla Görüye Grş Ders 8 Görüntü Eşleme Alp Ertürk alp.erturk@kocael.edu.tr Panorama Oluşturma Görüntüler eşlememz / çakıştırmamız gerekmektedr Panorama Oluşturma İk görüntüden özntelkler çıkar Panorama

Detaylı

Metin Madenciliği ile Soru Cevaplama Sistemi

Metin Madenciliği ile Soru Cevaplama Sistemi Metn Madenclğ le Soru Cevaplama Sstem Sevnç İlhan 1, Nevchan Duru 2, Şenol Karagöz 3, Merve Sağır 4 1 Mühendslk Fakültes Blgsayar Mühendslğ Bölümü Kocael Ünverstes slhan@kocael.edu.tr, nduru@kocael.edu.tr,

Detaylı

KARMAŞIK SAYILAR. Derse giriş için tıklayın...

KARMAŞIK SAYILAR. Derse giriş için tıklayın... KARMAŞIK SAYILAR Derse grş çn tıklayın A Tanım B nn Kuvvetler C İk Karmaşık Sayının Eştlğ D Br Karmaşık Sayının Eşlenğ E Karmaşık Sayılarda Dört İşlem Toplama - Çıkarma Çarpma Bölme F Karmaşık Dülem ve

Detaylı

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi Fumonc 3 rado net kablosuz duman dedektörü Kracılar ve mülk sahpler çn blg Tebrk ederz! Darenze akıllı fumonc 3 rado net duman dedektörler monte edlmştr. Bu şeklde ev sahbnz yasal donanım yükümlülüğünü

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

ELK 318 İLETİŞİM KURAMI-II

ELK 318 İLETİŞİM KURAMI-II ELK 318 İLETİŞİM KURAMI-II Nihat KABAOĞLU Kısım 5 DERSİN İÇERİĞİ Sayısal Haberleşmeye Giriş Giriş Sayısal Haberleşmenin Temelleri Temel Ödünleşimler Örnekleme ve Darbe Modülasyonu Örnekleme İşlemi İdeal

Detaylı

Shannon Bilgi Kuramı

Shannon Bilgi Kuramı Shannon Bilgi Kuramı Çağatay Yücel Yaşar Üniversitesi Bilgisayar Mühendisliği 08.03.2012 / Shannon Bilgi Kuramı Çağatay Yücel (Yaşar Üniversitesi) Shannon Bilgi Kuramı 08.03.2012 / Shannon Bilgi Kuramı

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 2007

RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 2007 RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 007 1 Tekdüze Dağılım Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk

Detaylı

VEKTÖRLER VE VEKTÖREL IŞLEMLER

VEKTÖRLER VE VEKTÖREL IŞLEMLER VEKTÖRLER VE VEKTÖREL IŞLEMLER 1 2.1 Tanımlar Skaler büyüklük: Sadece şddet bulunan büyüklükler (örn: uzunluk, zaman, kütle, hacm, enerj, yoğunluk) Br harf le sembolze edleblr. (örn: kütle: m) Şddet :

Detaylı

Sakarya Üniversitesi Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar Mühendisliği Bölümü

Sakarya Üniversitesi Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar Mühendisliği Bölümü Sakarya Üniversitesi Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar Mühendisliği Bölümü KABLOSUZ AĞ TEKNOLOJİLERİ VE UYGULAMALARI LABORATUAR FÖYÜ Analog Haberleşme Uygulamaları Doç. Dr. Cüneyt BAYILMIŞ

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu Eylül Deneme Sınavı (Prof.Dr.Ventsslav Dmtrov) Konu: Elektrk Devrelernde İndüktans Soru. Şekldek gösterlen devrede lk anda K ve K anahtarları açıktır. K anahtarı kapatılıyor ve kondansatörün gerlm U ε/

Detaylı

TEKNOLOJİ BAĞIMLI YAŞAMIN MATEMATİKSEL DESENLERİ-I

TEKNOLOJİ BAĞIMLI YAŞAMIN MATEMATİKSEL DESENLERİ-I TEKNOLOJİ BAĞIMLI YAŞAMIN MATEMATİKSEL DESENLERİ-I Fevz ÜNLÜ *, Esra DALAN YILDIRIM **,Şule AYAR *** ÖZET: Evren her an nano-önces, nano, mkro, normal, makro ve makro-ötes gözler le gözlemlermze açıktır.

Detaylı

Enformasyon Teorisinin Esasları

Enformasyon Teorisinin Esasları UDk: 621.&İ Enformasyon Teorisinin Esasları GiRiŞ: Enformasyon kelime olarak bilgi, malumat demektir. Malûmatın bir kaynaktan (canlı veya herhangi bir sistem) belirli bir gaye için muayyen bir vasıta yoluyla

Detaylı

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011)

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011) SEK Tahmnclernn Arzulanan Özellkler İk Değşkenl Bağlanım Model SEK Tahmnclernn Arzulanan Özellkler Ekonometr 1 Konu 9 Sürüm 2,0 (Ekm 2011) http://www.ackders.org.tr SEK Tahmnclernn Arzulanan Özellkler

Detaylı

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular Güvenl Stoları Tedar Zncrlernde Belrszl Yönetm: Güvenl Stoları Güvenl Stoğu: Herhang br dönemde, talebn tahmn edlen mtarın üzernde gerçeleşen mtarını arşılama çn elde bulundurulan sto mtarıdır Q Çevrm

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3 Yıldız Teknk Ünverstes Elektrk Mühendslğ Bölümü Deneyn Amacı İşlemsel kuvvetlendrcnn çalışma prensbnn anlaşılması le çeştl OP AMP devrelernn uygulanması ve ncelenmes. Özet ve Motvasyon.. Operasyonel Amplfkatör

Detaylı

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ Dersin Öğretim Elemanı: Yrd. Doç. Dr. Yasin KABALCI Ders Görüşme

Detaylı

PORTFÖY OPTİMİZASYONU. Doç.Dr.Aydın ULUCAN

PORTFÖY OPTİMİZASYONU. Doç.Dr.Aydın ULUCAN PORTFÖY OPTİMİZASYOU Doç.Dr.Aydın ULUCA KARAR VERME Karar verme, ş dünyasının çalışmasını sağlayan temel unsurlardandır. Tüm yönetcler, bulundukları faalyet alanı ve kademelernden bağımsız olarak stratejk

Detaylı

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007 Yrd. Doç. Dr. Atlla EVİN Afyon Kocatepe Ünverstes 007 ENERJİ Maddenn fzksel ve kmyasal hal değşm m le brlkte dama enerj değşm m de söz s z konusudur. Enerj değşmler mler lke olarak Termodnamğn Brnc Yasasına

Detaylı

2 MANYETİZMA. 7. Etki ile mıknatıslanmada mıknatısın 5. K L M F F S N S N S N

2 MANYETİZMA. 7. Etki ile mıknatıslanmada mıknatısın 5. K L M F F S N S N S N 3 Manyetzma Test Çözümler 1 Test 1'n Çözümler 3. 1 2 3 4 5 6 1. X Şekl I M 1 2 Y 3 4 Mıknatıs kutupları Şekl I dek gb se 4 ve 5 numaralı kutuplar zıt şaretl olur. Manyetk alan çzgler kutup şddet le doğru

Detaylı

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim.

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim. SM de yer alacak fermyonlar Standart Model (SM) agrange Yoğunluğu u s t d c b u, d, c, s, t, b e e e,, Şmdlk nötrnoları kütlesz Kabul edeceğz. Kuark çftlern gösterelm. u, c ve t y u (=1,,) olarak gösterelm.

Detaylı

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit Karadez Te Üverstes Blgsayar Mühedslğ Bölümü 5-6 Güz Yarıyılı Sayısal Çözümleme Ara Sıav Soruları Tarh: Kasım 5 Perşembe Süre: daa. f ( ( + a e fosyouu sabt otası olmadığı bldğe göre, a 'ı alableceğ e

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

ELEKTRİK DEVRE TEMELLERİ

ELEKTRİK DEVRE TEMELLERİ ELEKTRİK DEVRE TEMELLERİ Öğretm üyes: Doç. Dr. S. Özoğuz Tel: 85 36 9 e-posta: serdar@ehb.tu.edu.tr Ders saat: Pazartes,.-3. / D-4 İçndekler. Dere teors, toplu parametrel dereler, Krchhoff un gerlm e akım

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu TAP Fzk Olmpyat Okulu Eylül Deneme Sınavı (Prof.Dr.Ventsslav Dmtrov Konu: Elektrk Devrelernde İndüktans Soru. Şekldek gösterlen devrede lk anda K ve K anahtarları açıktır. K anahtarı kapatılıyor ve kondansatörün

Detaylı

ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR.

ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR. ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR Ebubekr İNAN DANIŞMAN Yrd. Doç. Dr. Mehmet Al ÖZTÜRK ADIYAMAN 2011 Her

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

04.10.2012 SU İHTİYAÇLARININ BELİRLENMESİ. Suİhtiyacı. Proje Süresi. Birim Su Sarfiyatı. Proje Süresi Sonundaki Nüfus

04.10.2012 SU İHTİYAÇLARININ BELİRLENMESİ. Suİhtiyacı. Proje Süresi. Birim Su Sarfiyatı. Proje Süresi Sonundaki Nüfus SU İHTİYAÇLARII BELİRLEMESİ Suİhtyacı Proje Süres Brm Su Sarfyatı Proje Süres Sonundak üfus Su ayrım çzs İsale Hattı Su Tasfye Tess Terf Merkez, Pompa İstasyonu Baraj Gölü (Hazne) Kaptaj Su Alma Yapısı

Detaylı

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir.

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir. Bölüm 2 Matrsler aım 2.1 F br csm, m, brer doğal sayı olsu. a F ( 1,.., m; j 1,..., ) olmak üzere, a11... a1 fadese m satır sütuda oluşa (veya m tpde) br F matrs der. am 1... a m Böyle br matrs daha sade

Detaylı

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller UYGULAMA 2 Bağımlı Kukla Değşkenl Modeller Br araştırmacı Amerka da yüksek lsans ve doktora programlarını kabul ednlmey etkleyen faktörler ncelemek stemektedr. Bu doğrultuda aşağıdak değşkenler ele almaktadır.

Detaylı

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık ölüm 4 Olasılık OLSILIK opulasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp heps mutlaka br hata payı taşımaktadır. u hata payının ortaya çıkmasının sebeb

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA YÖNETİM VE EKONOMİ Yıl:2006 Clt:3 Sayı: Celal Bayar Ünverstes İ.İ.B.F. MANİSA Bulanık Araç Rotalama Problemlerne Br Model Öners ve Br Uygulama Doç. Dr. İbrahm GÜNGÖR Süleyman Demrel Ünverstes, İ.İ.B.F.,

Detaylı

Deprem Tepkisinin Sayısal Metotlar ile Değerlendirilmesi (Newmark-Beta Metodu) Deprem Mühendisliğine Giriş Dersi Doç. Dr.

Deprem Tepkisinin Sayısal Metotlar ile Değerlendirilmesi (Newmark-Beta Metodu) Deprem Mühendisliğine Giriş Dersi Doç. Dr. Deprem Tepksnn Sayısal Metotlar le Değerlendrlmes (Newmark-Beta Metodu) Sunum Anahat Grş Sayısal Metotlar Motvasyon Tahrk Fonksyonunun Parçalı Lneer Interpolasyonu (Pecewse Lnear Interpolaton of Exctaton

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI Yönetm, Yl 9, Say 28, Ekm - 1997,5.20-25 TRANSPORT PROBLEMI ÇIN GELIsTIRILMIs VAM YÖNTEMI Dr. Erhan ÖZDEMIR I.Ü. Teknk Blmler M.Y.O. L.GIRIs V AM transport problemlerne en düsük malyetl baslangç çözüm

Detaylı

11. z = 1 2i karmaşık sayısının çarpmaya göre tersinin eşleniğinin sanal kısmı kaçtır? 14. eşitliğini sağlayan z karmaşık sayısı kaçtır? 15.

11. z = 1 2i karmaşık sayısının çarpmaya göre tersinin eşleniğinin sanal kısmı kaçtır? 14. eşitliğini sağlayan z karmaşık sayısı kaçtır? 15. GD. + se Re() + Im()? www.gkhandemr.rg, 007 Cebr Ntları Gökhan DEMĐR, gdemr@yah.cm.tr Karmaşık sayılar 9. + + sayısı kaça eşttr? 7 890. ( x y) + + ( x + y) se x + y tplamı kaçtır?. x + y ( x) ve se y kaçtır?.

Detaylı

Açık Poligon Dizisinde Koordinat Hesabı

Açık Poligon Dizisinde Koordinat Hesabı Açık Polon Dzsnde Koordnat Hesabı Problem ve numaralı noktalar arasında açılacak tüneln doğrultusunu belrlemek amacıyla,,3,4, noktalarını çeren açık polon dzs tess edlmş ve şu ölçme değerler elde edlmştr.

Detaylı

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 5-7 Kasım 5 ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN

Detaylı

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain *

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain * BİR ESAS İDEAL BÖLGESİ ÜZERİNDEKİ SONLU DOĞURULMUŞ BİR MODÜLÜN DİREK PARÇALANIŞI * Drec Decompoon of A Fnely-Generaed Module Over a Prncpal Ideal Doman * Zeynep YAPTI Fen Blmler Enüü Maemak Anablm Dalı

Detaylı

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Ünsal M.; Varol, A.: Soğutma Kulelernn Boyutlandırılması İçn Br Kuramsal 8 Mayıs 990, S: 8-85, Adana 4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Asaf Varol Fırat Ünverstes, Teknk Eğtm Fakültes,

Detaylı

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI Fırat Ünverstes-Elazığ MİTRAL KAPAK İŞARETİ ÜZERİNDEKİ ANATOMİK VE ELEKTRONİK GÜRÜLTÜLERİN ABC ALGORİTMASI İLE TASARLANAN IIR SÜZGEÇLERLE SÜZÜLMESİ N. Karaboğa 1, E. Uzunhsarcıklı, F.Latfoğlu 3, T. Koza

Detaylı

Veride etiket bilgisi yok Denetimsiz öğrenme (unsupervised learning) Neden gereklidir?

Veride etiket bilgisi yok Denetimsiz öğrenme (unsupervised learning) Neden gereklidir? MEH535 Örünü Tanıma 7. Kümeleme (Cluserng) Doç.Dr. M. Kemal GÜLLÜ Elekronk ve Haberleşme Mühendslğ Bölümü web: hp://akademkpersonel.kocael.edu.r/kemalg/ E-posa: kemalg@kocael.edu.r Verde eke blgs yok Denemsz

Detaylı

Data Communications. Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü. 3. Veri ve Sinyaller

Data Communications. Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü. 3. Veri ve Sinyaller Veri İletişimi Data Communications Suat ÖZDEMİR Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü 3. Veri ve Sinyaller Analog ve sayısal sinyal Fiziksel katmanın önemli işlevlerinden ş birisi iletim ortamında

Detaylı

Akköse, Ateş, Adanur. Matris Yöntemleri ile dış etkilerden meydana gelen uç kuvvetlerinin ve uç yerdeğiştirmelerinin belirlenmesinde;

Akköse, Ateş, Adanur. Matris Yöntemleri ile dış etkilerden meydana gelen uç kuvvetlerinin ve uç yerdeğiştirmelerinin belirlenmesinde; MATRİS ÖNTEMER 1. GİRİŞ Matrs öntemler; gerçek sürekl apının erne, matrs bçmnde ade edleblen blnen atalet (elemslk) ve elastklk öellklerne sahp sonl büüklüktek apısal elemanlardan olşan matematksel br

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

Fizik 101: Ders 15 Ajanda

Fizik 101: Ders 15 Ajanda zk 101: Ders 15 Ajanda İk boyutta elastk çarpışma Örnekler (nükleer saçılma, blardo) Impulse ve ortalama kuvvet İk boyutta csmn elastk çarpışması Önces Sonrası m 1 v 1, m 1 v 1, KM KM V KM V KM m v, m

Detaylı

İMGE İŞLEME Ders-9. İmge Sıkıştırma. Dersin web sayfası: (Yrd. Doç. Dr. M.

İMGE İŞLEME Ders-9. İmge Sıkıştırma. Dersin web sayfası:  (Yrd. Doç. Dr. M. İMGE İŞLEME Ders-9 İmge Sıkıştırma (Yrd. Doç. Dr. M. Kemal GÜLLÜ) Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm Hazırlayan: M. Kemal GÜLLÜ İmge Sıkıştırma Veri sıkıştırmanın

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

3. Telin kesit alanı, 4. lsıtılan telin diren ci, R = R o. 5. Devreden geçen proton sayısı, q = (N e. 6. X ve Y ilet ken le ri nin di renç le ri,

3. Telin kesit alanı, 4. lsıtılan telin diren ci, R = R o. 5. Devreden geçen proton sayısı, q = (N e. 6. X ve Y ilet ken le ri nin di renç le ri, . ÖÜ EETİ ODE SOU - DEİ SOUN ÇÖZÜEİ. Teln kest alanı, 400 mm 4.0 4 m. a a a a n boyu,, a n kest alanı, a.a a a a Teln drenc se, ρ., 500 4.0 6. 4 5 Ω dur. 40. Telden geçen akım, ohm kanunundan, 40 48 amper

Detaylı

Elektrik Enerjisi ve Elektriksel Güç Testlerinin Çözümleri

Elektrik Enerjisi ve Elektriksel Güç Testlerinin Çözümleri Elektrk Enerjs ve Elektrksel Güç Testlernn Çözümler Test 1 n Çözümü 1. Her brnn gerlm 1,5 volt olan 4 tane pl brbrne ser bağlı olduğundan devrenn toplam gerlm 6 volt olur. est S, uzunluğu / olan demr çubuğun

Detaylı

ELK 318 İLETİŞİM KURAMI-II

ELK 318 İLETİŞİM KURAMI-II ELK 318 İLETİŞİM KURAMI-II Nihat KABAOĞLU Kısım 3 DERSİN İÇERİĞİ Sayısal Haberleşmeye Giriş Giriş Sayısal Haberleşmenin Temelleri Temel Ödünleşimler Örnekleme ve Darbe Modülasyonu Örnekleme İşlemi İdeal

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesr Ünverstes İnşaat Mühendslğ Bölüü uutokkan@balkesr.edu.tr İSTATİSTİK DERS OTLARI Yrd. Doç. Dr. Uut OKKA Hdrolk Anabl Dalı Balıkesr Ünverstes Balıkesr Ünverstes İnşaat Mühendslğ Bölüü İnşaat Mühendslğ

Detaylı

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul Ercan Kaha 1 Hdrolk. B.M. Sümer, İ.Ünsal, M. Baazıt, Brsen Yaınev, 2007, İstanbul BÖLÜM 12 AÇIK KANALLARDA AKIM: ÜNİFORM OLMAYAN AKIMLAR 12.1 GİRİŞ - --- --.;! Baraj sonrak su üze öncek su üze.. Vnfom

Detaylı

Doç. Dr. İbrahim Altunbaş 11.01.2007 Araş. Gör. Hacı İlhan TEL 351 ANALOG HABERLEŞME Final Sınavı

Doç. Dr. İbrahim Altunbaş 11.01.2007 Araş. Gör. Hacı İlhan TEL 351 ANALOG HABERLEŞME Final Sınavı Doç. Dr. İbrahim Altunbaş 11.01.2007 Araş. Gör. Hacı İlhan TEL 351 ANALOG HABERLEŞME Final Sınavı 1) a) Aşağıdaki işaretlerin Fourier serisi katsayılarını yazınız. i) cos2π 0 t ii) sin2π 0 t iii) cos2π

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Taımlayıcı İstatstkler br değerler dzs statstksel olarak geel özellkler taımlaya ölçülerdr Taımlayıcı İstatstkler Yer Göstere Ölçüler Yaygılık Ölçüler Yer Göstere Ölçüler Br dağılımı

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüneyt BAYILMIŞ Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz SAYISAL ANALİZ SAYISAL TÜREV Numercal Derentaton Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz İÇİNDEKİLER Sayısal Türev Ger Farklar

Detaylı

Bölüm 3. Veri İletişiminin Temelleri (Basics of Data Transmission)

Bölüm 3. Veri İletişiminin Temelleri (Basics of Data Transmission) Bölüm 3 Veri İletişiminin Temelleri (Basics of Data Transmission) Yrd. Doç. Dr. B. Demir Öner 1 İletişim Sisteminin Bileşenleri (1) Bir iletişim sisteminin amacı, bilgiyi kaynaktan varışa iletmektir. Giriş

Detaylı

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

TEMEL DEVRE KAVRAMLARI VE KANUNLARI

TEMEL DEVRE KAVRAMLARI VE KANUNLARI TDK Temel Devre Kavramları ve Kanunları /0 TEMEL DEVRE KAVRAMLARI VE KANUNLARI GĐRĐŞ: Devre analz gerçek hayatta var olan fzksel elemanların matematksel olarak modellenerek gerçekte olması gereken sonuçların

Detaylı

T.C. ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KONUŞMACI TANIMA YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ. Cemal HANİLÇİ

T.C. ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KONUŞMACI TANIMA YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ. Cemal HANİLÇİ T.C. ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KONUŞMACI TANIMA YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ Cemal HANİLÇİ YÜKSEK LİSANS TEZİ ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI BURSA-2007 T.C. ULUDAĞ ÜNİVERSİTESİ

Detaylı

Makine Öğrenmesi 3. hafta

Makine Öğrenmesi 3. hafta Makine Öğrenmesi 3. hafta Entropi Karar Ağaçları (Desicion Trees) ID3 C4.5 Sınıflandırma ve Regresyon Ağaçları (CART) Karar Ağacı Nedir? Temel fikir, giriş verisinin bir kümeleme algoritması yardımıyla

Detaylı

ELK 318 İLETİŞİM KURAMI-II

ELK 318 İLETİŞİM KURAMI-II ELK 318 İLETİŞİM KURAMI-II Nihat KABAOĞLU Kısım 2 DERSİN İÇERİĞİ Sayısal Haberleşmeye Giriş Giriş Sayısal Haberleşmenin Temelleri Temel Ödünleşimler Örnekleme ve Darbe Modülasyonu Örnekleme İşlemi İdeal

Detaylı

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi VERİLERİN SUNUMU GM-0 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Br çalışadan elde edlen verler ha ver ntelğndedr. Ha verlerden blg ednek zor ve zaan alıcıdır. Ha verler çok karaşık durudadır. Verlern düzenlenes

Detaylı

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR Ölçme, her deeysel blm temel oluşturur. Fzk blmde de teorler sıaması ç çeştl deeyler tasarlaır ve bu deeyler sırasıda çok çeştl ölçümler yapılır. Br fzksel celğ

Detaylı

Zaman Bölüşümlü Çoklu Erişim (TDMA)

Zaman Bölüşümlü Çoklu Erişim (TDMA) Zaman Bölüşümlü Çoklu Erişim (TDMA) Sayısal işaretlerin örnekleri arasındaki zaman aralığının diğer işaretlerin örneklerinin iletilmesi için değerlendirilmesi sayesinde TDMA gerçeklenir. Çerçeve Çerçeve

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A) KOCELİ ÜNİVERSİTESİ Mühendslk akültes Makna Mühendslğ Bölümü Mukavemet I Vze Sınavı () dı Soyadı : 18 Kasım 013 Sınıfı : No : SORU 1: Şeklde verlen levhalar aralarında açısı 10 o la 0 o arasında olacak

Detaylı

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Türkye İnşaat Mühendslğ, XVII. Teknk Kongre, İstanbul, 2004 İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Nur MERZİ 1, Metn NOHUTCU, Evren YILDIZ 1 Orta Doğu Teknk Ünverstes, İnşaat Mühendslğ Bölümü, 06531 Ankara

Detaylı

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 1 ÇOKLU ISI DEĞİŞTİRİCİSİ DENEYİ

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 1 ÇOKLU ISI DEĞİŞTİRİCİSİ DENEYİ T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER ÇOKLU ISI DEĞİŞTİRİCİSİ DENEYİ ÖĞRENCİ NO: ADI SOYADI: DENEY SORUMLUSU: YRD. DOÇ. DR. BİROL ŞAHİN

Detaylı

2. STEGANOGRAFİ 1. GİRİŞ

2. STEGANOGRAFİ 1. GİRİŞ 1. GİRİŞ Bu çalışmada, steganograf sstemnn FPGA üzernde tasarımı ve gerçeklenmes sağlanmıştır. Esk Yunancada gzlenmş yazı anlamına gelen steganograf, blgnn görünürlüğünü gzleme blmne verlen smdr. Günümüzde

Detaylı

Güç Spektral Yoğunluk (PSD) Fonksiyonu

Güç Spektral Yoğunluk (PSD) Fonksiyonu 1 Güç Spektral Yoğunluk (PSD) Fonksiyonu Otokorelasyon fonksiyonunun Fourier dönüşümü j f ( ) FR ((τ) ) = R ( (τ ) ) e j π f τ S f R R e d dτ S ( f ) = F j ( f )e j π f ( ) ( ) f τ R S f e df R (τ ) =

Detaylı

ANALOG İLETİŞİM SİSTEMLERİNDE İLETİM KAYIPLARI

ANALOG İLETİŞİM SİSTEMLERİNDE İLETİM KAYIPLARI BÖLÜM 6 1 Bu bölümde, işaretin kanal boyunca iletimi esnasında görülen toplanır Isıl/termal gürültünün etkilerini ve zayıflamanın (attenuation) etkisini ele alacağız. ANALOG İLETİŞİM SİSTEMLERİNDE İLETİM

Detaylı

TELEFON HATLARI ÜZERĐNDE VERĐ HABERLEŞMESĐ

TELEFON HATLARI ÜZERĐNDE VERĐ HABERLEŞMESĐ TELEFON HATLARI ÜZERĐNDE VERĐ HABERLEŞMESĐ Đki bilgisayarın ofis içindeki haberleşmesinde doğrudan bağlantı çözüm olacaktır. Ancak ofis dışındaki yada çok uzak noktalardaki bilgisayarlarla haberleşmede

Detaylı

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... 1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar

Detaylı

Kullanım Kitapçığı. Ürün: tempmate. -M1 Veri Toplayıcısı Kapsam: İşlem Talimatları. tempmate. -M1 için Çok Kullanımlı PDF Sıcaklık Veri Toplayıcısı

Kullanım Kitapçığı. Ürün: tempmate. -M1 Veri Toplayıcısı Kapsam: İşlem Talimatları. tempmate. -M1 için Çok Kullanımlı PDF Sıcaklık Veri Toplayıcısı Kullanım Ktapçığı tempmate. -M1 çn Çok Kullanımlı PDF Sıcaklık Ver Toplayıcısı Ürün: tempmate. -M1 Ver Toplayıcısı Kapsam: İşlem Talmatları Özet Tema Sayfa 01. Teknk Ver 2 02. Chaz İşlem Talmatı 2 03.

Detaylı

TESADÜFİ DEĞİŞKENLERLE İLGİLİ BAZI YAKINSAKLIK ÇEŞİTLERİNİN KARŞILAŞTIRILMASI

TESADÜFİ DEĞİŞKENLERLE İLGİLİ BAZI YAKINSAKLIK ÇEŞİTLERİNİN KARŞILAŞTIRILMASI ISSN:1306-3111 e-journal of New Worl Scences Acaemy 2008, Volume: 3, Number: 4 Artcle Number: A0108 NATURAL AND APPLIED SCIENCES MATHEMATICS APPLIED MATHEMATICS Receve: March 2008 Accepte: September 2008

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -III- Çok değişkenli doğrusal olmayan karar modelinin çözümü

DOĞRUSAL OLMAYAN PROGRAMLAMA -III- Çok değişkenli doğrusal olmayan karar modelinin çözümü DOĞRUSAL OLMAYAN PROGRAMLAMA -III- Çok değşkenl doğrusal olmayan karar modelnn çözümü Hazırlayan Doç. Dr. Nl ARAS Anadolu Ünverstes, Endüstr Mühendslğ Bölümü İST8 Yöneylem Araştırması Ders - Öğretm Yılı

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE BAÜ Fen Bl. Enst. Dergs (6).8. YAYII YÜK İE YÜKENİŞ YAPI KİRİŞERİNDE GÖÇE YÜKÜ HESABI Perhan (Karakulak) EFE Balıkesr Ünverstes ühendslk marlık Fakültes İnşaat üh. Bölümü Balıkesr, TÜRKİYE ÖZET Yapılar

Detaylı

ANE-AEGON EMEKLİLİK VE HAYAT A.Ş.DENGELİ EYF

ANE-AEGON EMEKLİLİK VE HAYAT A.Ş.DENGELİ EYF AEGON EMEKLĐLĐK VE HAYAT A.Ş. DENGELĐ EMEKLĐLĐK YATIRIM FONU FON KURULU ÜÇÜNCÜ 3 AYLIK FAALĐYET RAPORU Bu rapor Aegon Emekllk ve Hayat A.Ş Dengel Emekllk Yatırım Fonu nun 01.07.2009 30.09.2009 dönemne

Detaylı

Bölüm V Darbe Kod Modülasyonu

Bölüm V Darbe Kod Modülasyonu - Güz Bölüm V Dare Kod Modülasyonu emel Bilgiler Bi nerjisi Gürülü Gücü İlinisel lıcı Uygun Süzgeçli lıcı Bi Haa Olasılığı Semoller rası Girişim DKM ve Ha Kodlama DC veya Bilgisayardan sayısal daa k Semol

Detaylı

Sürekli Dalga (cw) ve frekans modülasyonlu sürekli dalga (FM-CW) radarları

Sürekli Dalga (cw) ve frekans modülasyonlu sürekli dalga (FM-CW) radarları Sürekli Dalga (cw) ve frekans modülasyonlu sürekli dalga (FM-CW) radarları Basit CW Radar Blok Diyagramı Vericiden f 0 frekanslı sürekli dalga gönderilir. Hedefe çarpıp saçılan sinyalin bir kısmı tekrar

Detaylı

3. Parçaları Arasında Aralık Bulunan Çok Parçalı Basınç Çubukları

3. Parçaları Arasında Aralık Bulunan Çok Parçalı Basınç Çubukları 3. Parçaları Arasında Aralık Bulunan Çok Parçalı Basınç Çubukları Basınç çubukları brden fazla profl kullanılarak, bu profller arasında plan düzlemnde bell br mesafe bulunacak şeklde düzenleneblr. Bu teşklde,

Detaylı

OFDM Sisteminin AWGN Kanallardaki Performansının İncelenmesi

OFDM Sisteminin AWGN Kanallardaki Performansının İncelenmesi Akademik Bilişim 09 - XI. Akademik Bilişim Konferansı Bildirileri 11-13 Şubat 2009 Harran Üniversitesi, Şanlıurfa OFDM Sisteminin AWGN Kanallardaki Performansının İncelenmesi Karadeniz Teknik Üniversitesi,

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8 BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8 FARKLI YÜZEY ÖZELLİKLERİNE SAHİP PLAKALARIN ISIL IŞINIM YAYMA ORANLARININ HESAPLANMASI BAŞKENT ÜNİVERSİTESİ

Detaylı

TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI OYUN KURAMININ EKONOMİDE UYGULANMASI

TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI OYUN KURAMININ EKONOMİDE UYGULANMASI TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI OYUN KURAMININ EKONOMİDE UYGULANMASI Hall İbrahm KESKİN YÜKSEK LİSANS TEZİ ADANA 009 TÜRKİYE CUMHURİYETİ ÇUKUROVA

Detaylı

RF MİKROELEKTRONİK GÜRÜLTÜ

RF MİKROELEKTRONİK GÜRÜLTÜ RF MİKROELEKTRONİK GÜRÜLTÜ RASTGELE BİR SİNYAL Gürültü rastgele bir sinyal olduğu için herhangi bir zamandaki değerini tahmin etmek imkansızdır. Bu sebeple tekrarlayan sinyallerde de kullandığımız ortalama

Detaylı

ELEKTR K AKIMI BÖLÜM 19

ELEKTR K AKIMI BÖLÜM 19 EET II BÖÜ 9 ODE SOU DE SOUIN ÇÖZÜE ODE SOU DE SOUIN ÇÖZÜE. letken tel Teln kestnden geçen yük mktarı; q N elektron.q elektron T. - gra fğ nn eğ m y ve rr. T Bu na gö re;. ara lık ta, sa bt. ara lık ta,

Detaylı

Bağımsız Model Blok Dengeleme için Model Oluşturma ve Ön Sayısal Bilgi İşlemleri

Bağımsız Model Blok Dengeleme için Model Oluşturma ve Ön Sayısal Bilgi İşlemleri Bağımsız Model Blok Dengeleme çn Model Oluşturma ve Ön Sayısal Blg İşlemler Emnnur AYHAN* 1. Grş Fotogrametrk nreng çeştl ölçütlere göre sınıflandırılablr. Bu ölçütler dengelemede kullanılan brm, ver toplamada

Detaylı