MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev"

Transkript

1 MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev

2 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler

3 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni 6. İki Kümenin Farkı 7. İki Kümenin Simetrik Farkı 8. Sonlu ve sonsuz Küme Kavramları 9. Kümeler Ailesi 10. Alt Aile 11. Kümeler Ailesinin Birleşimi 12. Kümeler Ailesinin Kesişimi 13. Bir Kümenin Kuvvet Kümesi 14. Bir Kümenin Ayrımı 15. Bir Kümenin Örtüsü 16. Sıralı ikili 17. Kümelerin Kartezyen Çarpımı

4 1. Altküme 1.Tanım. A ve B herhanği iki küme olsun. A kümesinin her bir elemani B kümesinin de bir elemanı ise, a kümesi B kümesinin bir altkümesidir, denir. A kümesinin B nin bir altkümesi oluşu A B biçiminde gösterilir. «A B» ifadesi «A, B nin altkümesidir» diye okunur. «A B» bazan «B A» biçiminde yazılır ve «B kapsar A» diye okunur. A B [ x x A x B ] 1.Örnek: Sınıfımızdaki ögrencilerin kümesi, okulumuzdaki öğrenciler kümesinin bir altkümesidir. 2.Örnek: A={0,1,3,5}, B={-2,-1,0,1,2,3,4,5} A B 2.Tanım. A kümesi B kümesinin bir altkümesi ve A B ise, A kümesine B nin öz altkümesi denir. 3.Örnek: Alfabemezdeki sesli harfler kümesi, tüm harflerin kümesinin bir öz altkümesidir.

5 1. Altküme 1.Teorem: A, B ve C herhanği üç küme olduğuna göre, aşağıdaki önermelerden her biri doğrudur. a) Her A kümesi için A A dir (Yansıma özeliği), b) (A B ve B A) A=B (Ters simetri özeliği), c) (A B ve B C) A C (Geçişme özeliği). İspat: a) [ x x A x A ] önermesi doğrudur. Bu önermeye denk olan A A önermesi de doğrudur. b) (A B ve B A) [ x x A x B x x B x A ] İki yönlü koşullu önerme tanımına göre, [ x x A x B x x B x A ] x[x A x B] A = B c) (A B ve B C) x[ x A x B ve x B x C ] x A x C A C 2.Teorem: Boş küme her kümenin altkümesidir. İspat: A bir küme, boş küme olsun. «x, x» önermesi yanlış olduğuna göre, x x x A önermesi doğrudur. A

6 2. Evrensel Küme 1.Tanım: Belirli bir tartışma ya da incelemede sözü geçen tüm kümeleri alt küme olarak alan belirli bir kümeye evrensel küme denir. Evrensel kümeyi E ile göstereceğiz. 1:Örnek: Bir okulun birinci sınıfında bulunan öğrencileri ile ilgili bir araştırmada evrensel küme kaıtılı olan tüm öğrencilerin kümesidir. Doğal sayılarla ilgili özeliklerin incemesinde evrensel küme tüm doğal sayılar kümesidir.

7 3. Kümelerin Birleşimi 1.Tanım: A ve B herhanği iki küme olduğuna göre, A da B de bulunan tüm elemanların kümesine A ile B kümelerinin bireleşimi denir. A ve B kümelerinin birleşimi A B biçiminde gösterilir. «A B» ifadesi «A birleşim B» diye okurus. A B { x x A veya x B } 1.Örnek: A={a,b,c} ve B={c,d,e,f} oduğuna göre, A kümesi ile B kümesinin birleşimi nedir? Çözüm: A B = x x A veya x B = ={a,b, c,d,e,f} 1.Teorem: A,B ve C kümeler olduğuna göre, aşağıdaki önermeler doğrudur. a) A A = A b) A B= B A c) A B C = A B C d) A = A e) A A B ve B A B f) A B= (A = ve B= ) g) A B B= A B

8 3. Kümelerin Birleşimi İspat: a) A A = x x A veya x A} = x x A} = A b) A B= x x A veya x B} = x x B ve x A}= B A c) A B C = x x A veya x B C} = x x A veya (x B veya x C)} = x x (A veya x B) veya x C} = x x A B veya x C} = x A B C} = A B C d) A = x x A veya x } = x x A} = A e) x A x A veya x B x A B olduğundan, A A B dir. x B x A veya x B x A B olduğundan, B A B dir. f) A A B olduğundan, A B= ise, A. Oysa A olduğu teoremden bilinmektedir. A B= (A A ) A =. Yukarıda A yerine B ve B yerine A yazylsa A B= B = elde edilir. A B= (A = ve B= ). A = ve B= ise A B= olduğu açıktır.

9 İspat: 3. Kümelerin Birleşimi g) ( ) A B B= A B olduğunu gösterelin. x A B x A veya x B A B x x A x B önermelerinden, (A B x A B ) x B veya x B x B önermeleri elde edilir. Buna göre, A B A B B dir. Oysa B A B olduğunu biliyorus. Bunlardan, B= A B elde edilir. : B= A B A B olduğunu gösterelin. A A B olduğunu biliyorus. B= A B A B B olduğu göz önüne alınırsa, A A B ve A B B önermelerinden, A B =B A B elde edilir.

10 4. Kümelerin Kesişimi 1.Tanım: A ve B herhanği iki küme olduğuna göre, hem A da hem de B de bulunan (A ve B nin ortak olan) elemanlarının kümesine A ve B kümelerinin kesişimi veya arakesiti denir. A ve B kümelerinin kesişimi A B biçiminde gösterilir. «A B» ifadesi «A kesişim B» diye okurus. A B { x x A ve x B } 1.Örnek: A={a,b,c,d} ve B={c,d,e,f,g,h} oduğuna göre, A kümesi ile B kümesinin arakesiti nedir? Çözüm: A B = x x A ve x B = {c,d}. 2.Tanım: A ve B herhanği iki küme olduğuna göre, A B = ise A ve B cümlelerine ayrık kümeler denir. 2.Örnek: Bir sınıfdakı erkek öğrencilerinin kümesi ile kız ögrencilerinin kümesi ayrık iki kümedir.

11 4. Kümelerin Kesişimi 1.Teorem: A,B ve C kümeler olduğuna göre, aşağıdaki önermeler doğrudur. a) A A = A b) A B= B A c) A B C = A B C d) A B A ve A B B e) A = f) A B A B=A İspat: a) A A = x x A ve x A} = x x A} = A b) A B= x x A ve x B} = x x B ve x A}= B A c) A B C = x x A ve x B C} = x x A ve (x B ve x C)} = x x A ve x B ve x C} = x x A B ve x C} = x A B C} = A B C d) x A B (x A ve x B) x A olduğundan, A B A dır. x A B (x A ve x B) x B olduğundan, A B B dir. e) A B B. B yerine yazılırsa, A. Öte yandan, A biliyorus. Buna göre, A = önermesi doğrudur.

12 İspat: 4. Kümelerin Kesişimi g) ( ) A B A B=A olduğunu gösterelin. x A B x A ve x B A B x x A x B önermelerinden, (A B ve x A ) x A ve x B x A B önermeleri elde edilir. Buna göre, A B A A B önermesi doğrudur. Oysa A B A olduğunu biliyorus. Buna göre, (A A B ve A B A) A B=A elde edilir. : A= A B A A B dir. A B B olduğunu göz önüne alınırsa, (A A B ve A B B) A B elde edilir.

13 4. Kümelerin Kesişimi 2.Teorem: A,B ve C kümeler olduğuna göre, aşağıdaki önermeler doğrudur. a) A B C = A B (A C) b) A B C = A B (A C) İspat: a) A B C = x x A x B C} = = x x A (x B x C)} = x (x A x B) (x A x C)} = x x A B x A C} = A B (A C) b) A B C = x x A x B C} = = x x A (x B x C)} = x (x A x B) (x A x C)} = x x A B x A C} = A B (A C)

14 5. Bir Kümenin Tümleyeni 1.Tanım: E evrensel küme A E olsun. E nin A da bulunmayan elemanlarının kümesine A nın tümleyeni denir. A kümesinin tümleyeni A ile gösterilir. A = x x E ve x A} 1.Örnek: Afabemizdeki tüm harflerin kümesi, sessiz harflerin kümesi A olduğuna göre A nin E ye göre tümleyeni nedir? Çözüm: Sesli harflerin kümesi. 1. Teorem: E evrensel kümesinin iki alt kümeleri A ve B olduğuna göre, aşağıdaki önermeler doğrudur. a) A E = E, b)a E = A, c)a A =E d) x A x A e) A A = f) (A B) = A B g) (A B) = A B h) ı) E = i) =E j) A B B A

15 5. Bir Kümenin Tümleyeni İspat: a) A B A B = B oldugunu önceki teoremlerden biliyorus. Bu önermede B yerine E yazılırsa, A E = E önermesinin doğru olduğu sonucuna varılır. b)a B A B = A olduğunu biliyorus. B yerine E alınırsa, A E = A elde edilir. c) x E (x A veya x A ) x A A önermelerinden, E A A elde edilir. A A E olduğuna göre, A A =E önermesi doğru olur. d) x A ((x A)) (x A) (x A ) x A e) A A olduğunu biliyorus. Öte yandan, x A A (x A ve x A ) (x A ve x A) x olduğundan, A A dir. Buna göre, A A = elde edilir. f) x A B x A B (x A x B) (x A x B) x A B. g) x A B x A B (x A x B) (x A x B) x A B. h) x A x A x A olduğundan, (A ) = A bulunur. ı) x E x E x olduğundan E = elde edilir. i)x x x E olduğundan = E elde edilir. j) A B x (x A x B) x (x B x A) x (x B x A ) B A

16 6. İki Kümenin Farkı 1.Tanım: A ve B herhanği iki küme olduğuna göre, A kümesinin B de bulunmayan elemanlarının kümesine A ile B nin farkı veya B nin A dan farkı denir. B nin A dan farkı A B ya da A/B ile gösterilir. «A B» ifadesi «A eksi B» diye okurus. A B = x x A x B} dir. 1.Teorem: A ve B iki küme olduğuna göre, A B = A B dır. İspat: A B = x x A x B} = x x A x B } = A B dır.

17 7. İki Kümenin Simetrik Farkı 1.Tanım: A ve B herhanği iki küme olduğuna göre, A B kümesinin A B de bulunmayan elemanlarının kümesine A küme ile B kümenin simetrik farkı denir. A küme ile B kümenin simetrik farkı A B ile gösterilir. «A B» ifadesi «A simetrik fark B» diye okurus. A B = x x A B x A B} dir. 1.Örnek: A={a,b,c,d} ve B={d,e,f} olduğuna göre, A B nedir? Çözüm: A B = x x A B x A B} ={a,b,c,e,f} 1.Teorem: A ve B herhanği iki küme olduğuna göre,a B = B A dir. İspat: A B = x x A B x A B} = x x B A x B A} = B A

18 7. İki Kümenin Simetrik Farkı 1.Teorem:A B = (A B) (B A) dir. İspat: A B = x x A B x A B} = x x A x B ve x A x B } = x x A x B x A x B } = x [ x A x B x A ] [ x A x B x B ]} Buna göre, A B = x [(x A x A ) (x B x A ] [x A x B ] [x B x B ]} = x (x x A B) (x A B x )} = x (x A B) (x A B )} = (B A) (A B)= (A B) (B A)

19 8. Sonlu ve sonsuz Küme Kavramları Herhanği bir kümenin elemanlarını sayarak bu kümenin kaç elemanı olduğu soylenibiliyorsa bu kümenin sonlu bir küme olduğunu düşüneceğiz. Sonlu olmayan bir kümeye de sonsuz küme diyeceğiz. Sonlu bir kümenin elemanlarının sayısı değişik simgelerde gösterilir. Herhanği bir sonlu A küme için bu kümenin elemanlarının sayısı n(a), s(a) veya A simgelerinden biri ile gösterilir. 1. Teorem: A ve B sonlu iki küme olduğuna göre, n A B = n A + n B n(a B) olduğu açıktır. İspat: A ve B kümeleri ayrık iki küme iseler yani, A B = ise n A B = n A + n(b) olduğu açıktır. A B olsun. Bu durumda A B A B = A ve A B A B = B eşitliklerinin doğru olduğu kolayca gösterilebilir. Öte yandan, A B ve A B kümeleri ayrık olduklarından, n(a B) + n A B olduğundan, = n A yazılabilir. Benzer biçimde, A B ve A B kümeleri ayrık n A B + n A B = n B yazılabilir. Öyleyse, n A B + n A B + n A B + n A B = n A + n B veya n A B + n A B + n A B = n A + n B -n A B elde edilir. A B, A B ve A B kümeleri ikişer ikişer ayrık we birleşimleri A B olduğundan bu eşitliğin birinci yani n(a B) ye eşitdir.

20 8. Sonlu ve sonsuz Küme Kavramları 2.Teorem: Sonlu n elemanlı bir A kümeyin 2 n tane altkümesi vardır.

21 9. Kümeler Ailesi 1.Tanım: Herhangi bir İ kümesi verilmişn olsun. İ nin her bir elemanı için bir A i kümesi varsa, İ kümesine indisleyen küme, bu kümenin her bir i elemanına bir indis, A i kümelerinden her birine indislenmiş küme denir. 2.Tanım: İ indisler kümesi olmak üzere, her bir i için bir A i kümesi varsa, {A i i İ} kümesine kümeler ailesi denir. 1.Örnek: I={1,2,3,4}, A 1 ={a,d}, A 2 = a, b, c, A 3 = e, f, g, A 4 = c, b, d. {A 1, A 2, A 3, A 4 } bir kümeler ailesidir. 3.Tanım: A = {A i i } olduğuna göre, A ailesine boş aile denir.

22 10. Alt Aile 1.Tanım: A = {A i i İ} ve B = {B j j J} olmak üzere ve B aileleri verilmişn olsun. Eğer, J İ ise, B ailesine A ailesinin bir alt ailesi denir. B ailesi A ailesinin bir alt ailesi olduğu B A biçiminde gösterilir. 1.Örnek: {A 1, A 2, A 3 } ailesi {A 1, A 2, A 3, A 4, A 5 } ailesinin alt ailesidir.

23 11. Kümeler Ailesinin Birleşimi 1.Tanım: A = {A i i İ} olduğuna göre, {x k İ, x A k } kümesine A ailesinin birleşimi denir. A ailesinin birleşimi i İ A i, A, ya da A Ai i, biçiminde gösterilir. A 1.Örnek: I={1,2,3,4,5}, A 1 = {a, b}, A 2 ={b,c,d}, A 3 = {e, d, f}, A 4 = {c, d} ve A 5 = {h, d, b} olduğuna göre, i İ A i nedir? Çözüm: i İ A i = {a, b, c, d, f, h, e} 1.Teorem: Boş ailenin birleşimi boş kümeye eşitdir. İspat: A = {A i i } A i= {x k, x A k } i k, x A k önermesi yanlış olduğundan, A i kümesinin elemanı i yoktur. Buna göre, A i =. i

24 12. Kümeler Ailesinin Kesişimi 1.Tanım: A = {A i i İ} olduğuna göre, {x k İ, x A k } kümesine A ailesinin arakesiti denir. A ailesinin arakesiti i İ A i, A, ya da A Ai i, biçimlerinden biri ile A gösterilir. x i İ A i i (i İ x A i ) 1.Örnek: I={1,2,3}, A 1 ={b,c,d,e}, A 2 = {e, d, f}, A 3 = {h, d, b} olduğuna göre, i İ A i nedir? Çözüm: i İ A i ={x k İ, x A k } = {d} 1.Teorem: Boş ailenin arakesiti evrensal kümesine eşitdir. İspat: A = {A i i } A i= {x k, x A k } i Buna göre, A i = E. i

25 13.Bir Kümenin Kuvvet Kümesi 1.Tanım: Herhangi bir A kümesinin bütün alt kümelerinin ailesine A nin kuvvet kümesi denir. A nin kuvvet kümesi P(A) ile gösterilir. 1.Örnek: A={a,b,c} olduğuna göre,p(a)nedir? Çözüm: P(A)={, a, b, c, a, b, a, c, b, c, a,b,c }

26 14.Bir Kümenin Ayrımı 1.Tanım: Boş olmayan bir A kümesinin alt kümelerinden oluşmuş bir A ailesi aşağıdaki özelikleri sağlarsa bu aileye A kümesinin bir ayrımı denir. A = {A i i İ} olmak üzere, a) A, b) k, t İ,(k t A k A t = ), c) A = i İ A i dır. 1.Örnek: Ç={0,2,4,, 2n, },T={1,3,5,, 2n+1,.} {Ç,T} doğal sayılar kümesinin bir aırımıdır.

27 15. Bir Kümenin Örtüsü 1.Tanım: A = {A i i İ} olmak üzere A ailesinin birleşimi A kümesini kapsıyorsa, yani A kümesi oluşmuş bir A ailesinin birleşiminin alt kümesi ise, A ailesinine A kümesinin bir örtüsüdür denir. 3.Örnek: A = 1,2,3, 0,2,5, 3,4 ve A= 0,1,2 olduğuna göre, A ailesini A kümesinin bşr örtüsü olur mu? Çözüm: A = 0,1,2,3,4,5 dir. A A olduğundan A ailesini A kümesinin bir örtüsüdür.

28 16. Sıralı ikili 1.Tanım: Herhangi iki a ve b elemanları sıra önemli olmak üzere, (a,b) biçiminde yazılırsa, (a,b) yeni bir eleman olur. Bu elemana sıralı ikili denir. a ya sıralı ikilinin birinci bileşeni, b ye sıralı ikilinin ikinci bileşeni denir. Herhangi iki (a,b) ve (c,d) sıralı ikililerinin eşit olması için a=b ve c=d olması gerektir ve yeter.

29 17. Kümelerin Kartezyen Çarpımı 1.Tanım: A ve B herhangi iki küme olduğuna göre, x, y x A ve y B kümesine A kümesi ile B kümesinin kartezyen çarpımı denir. A kümesi ile B kümesinin kartezyen çarpımı AxB ile gösterilir. AxB = x, y x A ve y B AxA kısaca A 2 ile gösterilir. 2.Tanım: AxA kümesinin (x,x) biçimindaki elemanlarının kümesine AxA nin köşegeni denir.

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c 0. Küme Cebri Bu bölümde verilen keyfikümeler üzerinde birleşim, kesişim, fark, tümleyen,...gibi özellikleri sağlayan eşitliklerle ilgilenceğiz. İlk olarak De Morgan kurallarıdiye bilinen bir Teoremi ifade

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde

Detaylı

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 206 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 1 Kümeler Yük. Müh. Köksal GÜNDOĞDU 2 Kümeler Kümeler Ayrık Matematiğin en temel konularından biridir Sayma problemleri için önemli Programlama dillerinin

Detaylı

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir. BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

( 2x+1, 3y 1. Örnek...4 : A = {1, 2, 3} ve B = {a, b} kümeleri için, AxB ve BxA kümelerini liste biçimde yazınız.

( 2x+1, 3y 1. Örnek...4 : A = {1, 2, 3} ve B = {a, b} kümeleri için, AxB ve BxA kümelerini liste biçimde yazınız. SIRALI İKİLİ a ve b'nin (a,b) biçiminde tek bir eleman olarak yazılmasına sıralı ikili ya da kısaca ikili denir. Burada a' ya ikilinin birinci bileşeni, b' ye ise ikinci bileşeni denir. Örneğin ; (4, 3)

Detaylı

KÜMELER. İyi tanımlanmış nesneler topluluğuna küme denir. Bir küme, birbirinden farklı nesnelerden oluşur. Bu nesneler somut veya soyut olabilir.

KÜMELER. İyi tanımlanmış nesneler topluluğuna küme denir. Bir küme, birbirinden farklı nesnelerden oluşur. Bu nesneler somut veya soyut olabilir. 1 KÜMELER İyi tanımlanmış nesneler topluluğuna küme denir. ir küme, birbirinden farklı nesnelerden oluşur. u nesneler somut veya soyut olabilir. Kümeyi oluşturan nesnelerin her birine eleman(öğe) denir.

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 1.KONU Sembolik Mantık; Önermeler, Niceyiciler, Olumsuzluk, İspat yöntemleri KAYNAKLAR 1. Akkaş, S., Hacısalihoğlu, H.H., Özel, Z., Sabuncuoğlu, A.,

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

Küme Temel Kavramları

Küme Temel Kavramları Kümeler Kümeler Küme, matematiksel anlamda tanımsız bir kavramdır. Bu kavram "nesneler topluluğu veya yığını" olarak yorumlanabilir. Bu tanımdaki "nesne" soyut ya da somut bir şeydir; fakat her ne olursa

Detaylı

Örnek...1 : Örnek...2 : A = { a, {a}, b, c, {b, d}, d }, B = { {a}, {c, d}, c, d, x, Δ } k ümeleri için s( AUB) kaçtır?

Örnek...1 : Örnek...2 : A = { a, {a}, b, c, {b, d}, d }, B = { {a}, {c, d}, c, d, x, Δ } k ümeleri için s( AUB) kaçtır? KÜMELER 2 İKİ KÜMENİN BİRLEŞİMİ A ve B gibi iki kümeden, A' ya veya B' ye ait olan elemanlardan oluşan yeni kümeye A ile B' nin birleşimi denir ve AUB ile gösterilir. Bu gösterim A birleşim B di ye okunur.

Detaylı

1 BAĞINTILAR VE FONKSİYONLAR

1 BAĞINTILAR VE FONKSİYONLAR 1 BAĞINTILAR VE FONKSİYONLAR Bu bölümde ilk olarak Matematikte çok önemli bir yere sahip olan Bağıntı kavramnı verip daha sonra ise Fonksiyon tanımı verip genel özelliklerini inceleyeceğiz. Tanım 1 A B

Detaylı

Cebir Notları. Kümeler. Gökhan DEMĐR, KÜME KAVRAMI

Cebir Notları. Kümeler. Gökhan DEMĐR, KÜME KAVRAMI , 2006 MC Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Kümeler KÜME KVRMI Kümenin tanım yoktur. undan dolayı kümeyi tanıtmaya çalışalım. Küme kavramında bir topluluk, bir kolleksiyon ifadesi vardır.

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48 İÇİNDEKİLER Önsöz...2 Önermeler ve İspat Yöntemleri...3 Küme Teorisi...16 Bağıntı...26 Fonksiyon...38 İşlem...48 Sayılabilir - Sonlu ve Sonsuz Kümeler...56 Genel Tarama Sınavı...58 Önermeler ve İspat Yöntemleri

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 4.KONU Latisler, Boole Cebri 1. Kısmi sıralı kümeler 2. Hasse Diyagramı 3. Infimum, Supremum 4. Latis (Kafes Lattice) 5. Latis (Kafes) Yapıları ve Özellikleri

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

SONUÇ YAYINLARI. 9. Sınıf Kümeler

SONUÇ YAYINLARI. 9. Sınıf Kümeler 9. SINIF SONUÇ YYINLRI 9. Sınıf Kümeler Bu kitabın tamamının ya da bir kısmının, kitabı yayımlayan şirketin önceden izni olmaksızın elektronik, mekanik, fotokopi ya da herhangi bir kayıt sistemiyle çoğaltılması,

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

10. DİREKT ÇARPIMLAR

10. DİREKT ÇARPIMLAR 10. DİREKT ÇARPIMLAR Teorem 10.1. H 1,H 2,, H n bir G grubunun alt gruplarının bir ailesi ve H = H 1 H 2 H n olsun. Aşağıdaki ifadeler denktir. a ) dönüşümü altında dır. b) ve olmak üzere her yi tek türlü

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

TEMEL SAYMA KURALLARI

TEMEL SAYMA KURALLARI TEMEL SAYMA KURALLARI SAYMA Toplama Yoluyla Sayma A ve B sonlu ve ayrık kümeler olmak üzere, bu iki kümenin birleşiminin eleman sayısı; s(a,b) = s(a) + s(b) dir. Sonlu ve ayrık iki kümenin birleşiminin

Detaylı

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE ÖZEL EGE LİSESİ GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE HAZIRLAYAN ÖĞRENCİ: Berk KORKUT DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI 3.33 2. GİRİŞ... 3 3. YÖNTEM 3 4.

Detaylı

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir.

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir. BÖLÜM 1 KÜMELER CEBİRİ Küme, iyi tanımlanmış ve farklı olan nesneler topluluğudur. Yani küme, belli bir kurala göre verilmiş nesnelerin listesidir. Nesneler reel veya kavramsal olabilir. Kümede bulunan

Detaylı

Örnek...4 : A = { a, b, c, d, {a}, {b,c}} kümesi veriliyor. Aşağıdakilerin doğru mu yanlış mı olduğunu yazınız.

Örnek...4 : A = { a, b, c, d, {a}, {b,c}} kümesi veriliyor. Aşağıdakilerin doğru mu yanlış mı olduğunu yazınız. KÜME KAVRAMI Küme matematiğin tanımsız bir kavramıdır. Ancak kümeyi, iyi tanımlanmış kavram veya nesneler topluluğu diye tarif edebiliriz. Kümeler A, B, X, K,... gibi büyük harflerle gösterilir. Bir kümeyi

Detaylı

KÜMELER Test -1. 5. A a,b,c, 1,2, 5. 1. A a,b,c,d 2. A,1,2,3, 1. 7. s(a) = 10 ve s(b) = 7. 4. B x:0 x 40 ve x 5k, k. 8. s(a) = 9 ve s(b) = 4

KÜMELER Test -1. 5. A a,b,c, 1,2, 5. 1. A a,b,c,d 2. A,1,2,3, 1. 7. s(a) = 10 ve s(b) = 7. 4. B x:0 x 40 ve x 5k, k. 8. s(a) = 9 ve s(b) = 4 KÜMELER Test -1 1. A a,b,c,d kümesi için aşağıdakilerden hangisi yanlıştır? A) A B) a A C) d A D) {a, c} A E) {a} A 5. A a,b,c, 1,2, 5 kümesi için aşağıdakilerden hangisi doğrudur? A) s(a) = 6 B) b A C)

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 Denklik Bağıntıları 5 Bibliography 13 1 Denklik Bağıntıları 1 1denklik 1.1 Eşitlik Günlük

Detaylı

Matematik A A ile B nin Kartezyen Çarpımı: A Kümesinden B nin Farkı: A Kümesinden B ye Fonksiyon: Açı: Açık Önerme: Açıortay: Açısal Bölge: Aksiyom:

Matematik A A ile B nin Kartezyen Çarpımı: A Kümesinden B nin Farkı: A Kümesinden B ye Fonksiyon: Açı: Açık Önerme: Açıortay: Açısal Bölge: Aksiyom: Matematik A A ile B nin Kartezyen Çarpımı: Birinci bileşeni A dan, ikinci bileşeni B den alınarak elde edilen ikililerin kümesidir. A Kümesinden B nin Farkı: A kümesinin B kümesi ile ortak olmayan elemanlarından

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

İÇİNDEKİLER. Mantık Kurallarının Elektrik Devrelerine Uygulanması... 14

İÇİNDEKİLER. Mantık Kurallarının Elektrik Devrelerine Uygulanması... 14 İÇİNDEKİLER 1. BÖLÜM MANTIK Giriş... 1 Genel Olarak Mantık... 1 Mantığın Tarihçesi ve Modern Mantığın Doğuşu... 1 Mantık Öğretimin Önemi ve Amacı... 2 Önerme... 3 VE İşlemi (Birlikte Evetleme, Mantıksal

Detaylı

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK İÇİNDEKİLER Kümeler 5 44 Fonksiyonlar 1 45 88 Fonksiyonlar 2 89 124 Sayma Kuralları 125 140 Faktöriyel

Detaylı

A = i IA i = i I A = A = i IA i = {x α((α I) (x A α ))} (7.7) A = (α,β I) (α β) A α A β = (7.8) A A

A = i IA i = i I A = A = i IA i = {x α((α I) (x A α ))} (7.7) A = (α,β I) (α β) A α A β = (7.8) A A Bölüm 7 KÜME A LELER 7.1 DAMGALANMI KÜMELER E er inceledi imiz kümelerin says, alfabenin harerinden daha çok de ilse, onlara,b,...,w gibi harerle temsil edebiliriz. E er elimizde albenin harerinden daha

Detaylı

Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz.

Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz. 1 BİR İŞLEMLİ SİSTEMLER Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz. 1.1 İŞLEMLER Bir kümeden kendisine tanımlı olan her fonksiyona birli işlem denir. Örneğin Z

Detaylı

7. BAZI MATEMATİKSEL TEMELLER:

7. BAZI MATEMATİKSEL TEMELLER: 7. BAZI MATEMATİKSEL TEMELLER: Bilindiği üzere, matematikte ortaya konan her yeni kavram, kendinden önceki tanımlanmış kavramlar cinsinden, herhangi bir tereddüt veya muğlâklığa mahal bırakmayacak resmî

Detaylı

TEMEL SAYMA. Bill Gates

TEMEL SAYMA. Bill Gates Bölüm 1 TEMEL SAYMA YÖNTEMLERİ Firmamızın sahip olduğu tek şey insan düş gücüdür. Bill Gates Bu bölümde fazla kuramsal bilgi gerektirmeyen sayma problemleri üzerinde duracağız. Bu tür problemlerde sayma;

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

14.Konu Reel sayılarının topolojisi. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir.

14.Konu Reel sayılarının topolojisi. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir. 14.Konu Reel sayılarının topolojisi 1.Teorem: cismi tamdır. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir. 2.Tanım: ve verilsin. nın her komşuluğunda

Detaylı

DERS 2 : BULANIK KÜMELER

DERS 2 : BULANIK KÜMELER DERS 2 : BULNIK KÜMELER 2.1 Gİriş Klasik bir küme, kesin sınırlamalarla verilen bir kümedir. Örneğin, klasik bir küme aşağıdaki gibi belirtilebilir: = { x x > 6 }, Kapalı sınır noktası burada 6 dır.burada

Detaylı

Leyla Bugay Doktora Nisan, 2011

Leyla Bugay Doktora Nisan, 2011 ltanguler@cu.edu.tr Çukurova Üniversitesi, Matematik Bölümü Doktora 2010913070 Nisan, 2011 Yarıgrup Teorisi Nedir? Yarıgrup teorisi cebirin en temel dallarından biridir. Yarıgrup terimi ilk olarak 1904

Detaylı

Kafes Yapıları. Hatırlatma

Kafes Yapıları. Hatırlatma Kafes Yapıları Ders 7 8-1 Hatırlatma Daha önce anlatılan sıra bağıntısını hatırlayalım. A kümesinde bir R bağıntsı verilmiş olsun. R bağıntısı; a. Yansıma (Tüm a A için, sadece ve sadece ara ise yansıyandır(reflexive)).

Detaylı

KÜMELER 05/12/2011 0

KÜMELER 05/12/2011 0 KÜMELER 05/12/2011 0 KÜME NEDİR?... 2 KÜMELERİN ÖZELLİKLERİ... 2 KÜMELERİN GÖSTERİLİŞİ... 2 EŞİT KÜME, DENK KÜME... 3 EŞİT OLMAYAN (FARKLI) KÜMELER... 3 BOŞ KÜME... 3 ALT KÜME - ÖZALT KÜME... 4 KÜMELERDE

Detaylı

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ OLASILIĞA GİRİŞ DOÇ. DR. NİHAL ERGİNEL OLASILIĞA GİRİŞ - Bugün yağmur yağma olasılığı % 75 dir. - X marka bilgisayarın hiç servis gerektirmeden 100000 saat çalışması

Detaylı

Kümeler ve Küme İşlemleri

Kümeler ve Küme İşlemleri Kümeler ve Küme İşlemleri ÜNİTE 2 Amaçlar Bu üniteyi çalıştıktan sonra; küme kavramını, küme işlemlerini, küme işlemlerinin özelliklerini ve kullanılan simgeleri tanıyacaksınız. küme ailelerini, kümelerin

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI Reel sayılar kümesinin "küçük ya da eşit", bağıntısı ile sıralanmış olduğunu biliyoruz. Bu bağıntı herhangi bir X kümesine aşağıdaki şekilde genelleştirilebilir. Bir X kümesi üzerinde aşağıdaki yansıma,

Detaylı

KÜMELER. Küme nesneler topluluğudur. Bu bölümde kümelerle kurulan matematiksel yapıyı tanıtacağız.

KÜMELER. Küme nesneler topluluğudur. Bu bölümde kümelerle kurulan matematiksel yapıyı tanıtacağız. KÜMELER Küme nesneler topluluğudur. u bölümde kümelerle kurulan matematiksel yapıyı tanıtacağız. Küme kavramı matematiğe girmeden önce matematik denilince akla sayılar ve şekiller gelirdi. Kümeler kuramının

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

1.3. Normal Uzaylar. Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak. baz temel özellikleri incelenecektir.

1.3. Normal Uzaylar. Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak. baz temel özellikleri incelenecektir. 1.3. Normal Uzaylar Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak baz temel özellikleri incelenecektir. Tan m 1.3.1. (X; ) bir Hausdor uzay olsun. E¼ger, 8F; K 2 F; F \ K = ;

Detaylı

İlter TÜRKMEN, Tolga TANIŞ, Simay AYDIN,

İlter TÜRKMEN, Tolga TANIŞ, Simay AYDIN, YAYIN KURULU Hazırlayanlar İlter TÜRKMEN, Tolga TANIŞ, Simay AYDIN, YAYINA HAZIRLAYANLAR KURULU Kurumsal Yayınlar Yönetmeni Saime YILDIRIM Kurumsal Yayınlar Birimi Dizgi & Grafik Mustafa Burak SANK & Ezgi

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

12.Konu Rasyonel sayılar

12.Konu Rasyonel sayılar 12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama

Detaylı

MATE 409 SAYILAR TEORİSİ BÖLÜM: 8. Muazzez Sofuoğlu Nebil Tamcoşar

MATE 409 SAYILAR TEORİSİ BÖLÜM: 8. Muazzez Sofuoğlu Nebil Tamcoşar MATE 409 SAYILAR TEORİSİ BÖLÜM: 8 LİNEER KONGRÜANSLAR Muazzez Sofuoğlu 067787 Nebil Tamcoşar 8.1. Bir Değişkenli Lineer Kongrüanslar a,b ve m/a olmak üzere; Z ax b(modm) şeklindeki bir kongrüansa, birinci

Detaylı

1. KÜMELER TEORİSİ 1. Giriş. Modern matematiğin en önemli kullanım araçlarından birisi kümeler teorisidir. Kümeler teorisi çalışmaları matematiğin temelinde kullanılışı 20. yüzyılın başlangıcında Frege,

Detaylı

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84 N 0,1,,... Sayı kümesine doğal sayı kümesi denir...., 3,, 1,0,1,,3,... sayı kümesine tamsayılar kümesi denir. 1,,3,... saı kümesine sayma sayıları denir.pozitif tamsayılar kümesidir. 15 y z x 3 5 Eşitliğinde

Detaylı

15. Bağıntılara Devam:

15. Bağıntılara Devam: 15. Bağıntılara Devam: Yerel Bağıntılardan Örnekler: Doğal sayılar kümesi üzerinde bir küçüğüdür (< 1 ) bağıntısı: < 1 {(x, x+1) x N} {(0,1), (1, 2), } a< 1 b yazıldığında, a doğal sayılarda bir küçüktür

Detaylı

1. BÖLÜM: KÜMELERDE TEMEL KAVRAMLAR, KÜMELERDE İŞLEMLER BÖLÜM: KARTEZYEN ÇARPIM, KÜME PROBLEMLERİ BÖLÜM: GERÇEK SAYILAR...

1. BÖLÜM: KÜMELERDE TEMEL KAVRAMLAR, KÜMELERDE İŞLEMLER BÖLÜM: KARTEZYEN ÇARPIM, KÜME PROBLEMLERİ BÖLÜM: GERÇEK SAYILAR... İçindekiler 1. BÖLÜM: KÜMELERDE TEMEL KVRMLR, KÜMELERDE İŞLEMLER... 10. KÜMELERDE TEMEL KVRMLR... 10 B. SONLU, SONSUZ VE BOŞ KÜME... 12 C. KÜMELERİN EŞİTLİĞİ... 14 D. LT KÜME, ÖZ LT KÜME... 14 E. KÜMELERDE

Detaylı

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 206 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 1 Fonksiyonlar Yük. Müh. Köksal GÜNDOĞDU 2 Fonksiyonlar Tanım: A ve B boş olmayan kümeler. A dan B ye bir f fonksiyonu f: A B ile gösterilir ve A nın her

Detaylı

KÜMELER. a. Doğal sayılar b. Elimdeki parmaklar c. Yaşayan dahi insanlar d. Üç ayaklı hayvanlar e.

KÜMELER. a. Doğal sayılar b. Elimdeki parmaklar c. Yaşayan dahi insanlar d. Üç ayaklı hayvanlar e. 1 KÜMELER KÜME KVRMI Modern matematiğin en önemli ve temel öğelerinden biri küme kavramıdır. Kümeler teorisinin dili ve teknikleri matematiğe ve bilimin diğer birçok branşına temel teşkil eder. Kümenin,

Detaylı

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir.

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. 1 DENKLEMLER: Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. Bir denklemde eşitliği sağlayan(doğrulayan) değerlere; verilen denklemin kökleri veya

Detaylı

Bulanık Küme Kavramı BULANIK KÜME. Sonlu ve Sonsuz Bulanık Kümeler. Sonlu ve Sonsuz Bulanık Kümeler

Bulanık Küme Kavramı BULANIK KÜME. Sonlu ve Sonsuz Bulanık Kümeler. Sonlu ve Sonsuz Bulanık Kümeler ULNIK KÜME ulanık Küme Kavramı Elemanları x olan bir X evrensel (universal küme düșünelim. u elemanların ÌX alt kümesine aitliği, yani bu altkümelerin elemanı olup olmadığı X in {0,1} de olan karakteristik

Detaylı

PERMÜTASYON DERS NOTLARI. Sayma Yöntemleri. TEMEL SAYMA KURALLARI Toplama yoluyla sayma. Çarpma yoluyla sayma

PERMÜTASYON DERS NOTLARI. Sayma Yöntemleri. TEMEL SAYMA KURALLARI Toplama yoluyla sayma. Çarpma yoluyla sayma TEMEL SAYMA KURALLARI Toplama yoluyla sayma A ve B ayrık iki küme olsun. Bu iki kümenin birleşimlerinin eleman sayısı, bu kümelerin eleman sayılarının toplamına eşittir. Bu sayma yöntemine toplama yoluyla

Detaylı

Örnek...2 : Örnek...3 : Örnek...1 : MANTIK 1. p: Bir yıl 265 gün 6 saattir. w w w. m a t b a z. c o m ÖNERMELER- BİLEŞİK ÖNERMELER

Örnek...2 : Örnek...3 : Örnek...1 : MANTIK 1. p: Bir yıl 265 gün 6 saattir. w w w. m a t b a z. c o m ÖNERMELER- BİLEŞİK ÖNERMELER Terim: Bir bilim dalı içerisinde konuşma dilinden farklı anlamı olan sözcüklerden her birine o bilim dalının bir terimi denir. Önermeler belirtilirler. p,q,r,s gibi harflerle Örneğin açı bir geometri terimi,

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

DÜZGÜN ÖLÇÜM. Ali DÖNMEZ Doğuş Üniversitesi, Fen Bilimleri Bölümü. Halit ORHAN Atatürk Üniversitesi, Matematik Bölümü

DÜZGÜN ÖLÇÜM. Ali DÖNMEZ Doğuş Üniversitesi, Fen Bilimleri Bölümü. Halit ORHAN Atatürk Üniversitesi, Matematik Bölümü DÜZGÜN ÖLÇÜM Ali DÖNMEZ Doğuş Ünirsitesi, Fen Bilimleri Bölümü Halit ORHAN Atatürk Ünirsitesi, Matematik Bölümü Özet: Düzgün ölçüm üzerine bazı teoremler ispatlandı. Anahtar sözcükler: Ölçüm, düzgün ölçüm,

Detaylı

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir.

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir. SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon Tanım 2: Bir grubun kendi üzerine izomorfizmine otomorfizm, grubun kendi üzerine homomorfizmine endomorfizm Sadece birebir olan

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Bibliography 11 CONTENTS 5 0.1 Kartezyen Çarpım 0.2 Sıralı İkililer Şimdiye kadar sıra ya da

Detaylı

SINIFLARA GÖRE ALGILARININ KARŞILAŞTIRILMASI

SINIFLARA GÖRE ALGILARININ KARŞILAŞTIRILMASI ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI 2014-DP-002- ORTA ÖĞRETİMDE CEBİRSEL SOYUT KAVRAMLARIN GELİŞİMİ VE ÖĞRENCİLER TARAFINDAN SINIFLARA GÖRE ALGILARININ KARŞILAŞTIRILMASI

Detaylı

TOPOLOJİK ROUGH KÜMELERİ ÜZERİNE. Hatice Kübra SARI

TOPOLOJİK ROUGH KÜMELERİ ÜZERİNE. Hatice Kübra SARI TOPOLOJİK ROUGH KÜMELERİ ÜZERİNE Hatice Kübra SARI Yüksek Lisans Tezi Matematik Anabilim Dalı Topoloji Bilim Dalı Prof. Dr. Abdullah KOPUZLU 2014 Her hakkı saklıdır ATATÜRK ÜNİVERİSTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Detaylı

İçindekiler. 3. Sonlu ve Sonsuz Kümeler Denk ve Eşit Kümeler Kümelerde Birleşim ve Kesişim

İçindekiler. 3. Sonlu ve Sonsuz Kümeler Denk ve Eşit Kümeler Kümelerde Birleşim ve Kesişim İçindekiler 1. Küme Kavramı...6-7 2. Kümelerin Gösterimi...8-15 3. Sonlu ve Sonsuz Kümeler... 16-17 4. lt Küme Kavramı... 18-27 5. Denk ve şit Kümeler... 28-29 6. Kümelerde irleşim ve Kesişim... 31-41

Detaylı

Çözümlü Yüksek Matematik Problemleri. Yrd. Doç. Dr. Erhan Pişkin

Çözümlü Yüksek Matematik Problemleri. Yrd. Doç. Dr. Erhan Pişkin Çözümlü Yüksek Matematik Problemleri Yrd. Doç. Dr. Erhan Pişkin 1 Yrd. Doç. Dr. Erhan PİŞKİN ÇÖZÜMLÜ YÜKSEK MATEMATİK PROBLEMLERİ 1 ISBN 978-605-318-249-8 Kitap içeriğinin tüm sorumluluğu yazarına aittir.

Detaylı

9.Konu Lineer bağımsızlık, taban, boyut Germe. 9.1.Tanım: V vektör uzayının her bir elemanı

9.Konu Lineer bağımsızlık, taban, boyut Germe. 9.1.Tanım: V vektör uzayının her bir elemanı 9.Konu Lineer bağımsızlık, taban, boyut 9.1. Germe 9.1.Tanım: V vektör uzayının her bir elemanı vektörlerin lineer birleşimi olarak ifade ediliyorsa vektörleri V yi geriyor ya da V yi gerer denir. Üstelik,

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 Operatörler 5 Bibliography 19 Index 23 1 Operatörler İşlemler 1.1 Operatör Nedir? İlkokulden

Detaylı

ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri

ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri ÇÖZÜMLER p q r q q p r q q. p r q q p r 5. p q q r r r, p q q r, r p, q q r q, q p q. p q p q p q p q p q q p p 6. p p q p p q p q p p p q

Detaylı

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1 SOYUT CEBÝR ( Genel Tekrar Testi-1) 1. A = { k k Z, < k 4 } 4. N tam sayılar kümesinde i N için, k 1 B = { k Z, 1 k < 1 } k 1 A = 1 i,i 1 i ( ] kümeleri verildiğine göre, aşağıdakilerden hangisi doğrudur?

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 İyi Sıralama 5 Bibliography 13 1 İyi Sıralama Well Ordering İyi sıralama kavramı, doğal sayıların

Detaylı

( a, b ) BAĞINTI, FONSİYON, İŞLEM SIRALI İKİLİ :

( a, b ) BAĞINTI, FONSİYON, İŞLEM SIRALI İKİLİ : BAĞINTI, FONSİYON, İŞLEM SIRALI İKİLİ : a ve b elemanlarının belirttiği ( a, b ) şeklindeki ikiliye sıralı ikili denir. Sıralı ikili denilmesindeki sebep bileşenlerin yeri değiştiğinde ikilinin değişmesindendir.

Detaylı

Her türlü görüş, öneri ve eleştirilerinize açık olduğumu bilmenizi ister çalışmalarınızda ve sınavlarınızda başarılar dilerim.

Her türlü görüş, öneri ve eleştirilerinize açık olduğumu bilmenizi ister çalışmalarınızda ve sınavlarınızda başarılar dilerim. Önsöz Değerli Öğrenciler, u fasikül ortaöğretimde başarınızı yükseltmeye, üniversite giriş sınavlarında yüksek puan almanıza yardımcı olmak için özenle hazırlanmıştır. Konular anlamlı bir bütün oluşturacak

Detaylı

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde 1. Aşağıdaki kümelerden hangisi sonsuz küme belirtir? A) A = { x 4 < x < 36,x N} B) B = { x 19 < x,x asal sayı} C) C = { x x = 5k,0 < x < 100,k Z} D) D = { x x = 5, x Z} E) E = { x x < 19,x N}. A, B ve

Detaylı

KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR

KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR 2012-2013 Karakter Dizgisi Karakter Dizgisi Üzerine İşlemler Altdizgi Tanım 3.1.1: Bir X kümesi üzerinde bir karakter dizgisi (string)

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SOFT TOPOLOJİK UZAYLAR ÜZERİNE Uğur ÇOŞKUN YÜKSEK LİSANS Matematik Anabilim Dalı HAZİRAN-2014 KONYA Her Hakkı Saklıdır TEZ BİLDİRİMİ Bu tezdeki bütün bilgilerin

Detaylı

B A. A = B [(A B) (B A)] (2)

B A. A = B [(A B) (B A)] (2) Bölüm 5 KÜMELER CEB R Do a olaylarnn ya da sosyal olaylarn açklanmas için, bazan, matematiksel modelleme yaplr. Bunu yapmak demek, incelenecek olaya etki eden etmenleri içine alan matematiksel formülleri

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere, Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9 OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 015 01 1 Eylül 18 Eylül Kümelerde Temel Kavramlar 1. Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler.

Detaylı

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü Olasılık Kavramı Mühendislikte İstatistik Metotlar Çukurova Üniversitesi İnşaat Mühendisliği ölümü OLSILIK KVRMI KÜME KVRMI irlikte ele alınan belirli nesneler topluluğuna küme, Kümede içerilen nesnelere

Detaylı

MATEMAT K 1 ÜN TE II KÜMELER

MATEMAT K 1 ÜN TE II KÜMELER ÜN TE II KÜMELER 1. TANIM 2. KÜMELER N GÖSTER M a) Liste yöntemi ile gösterimi b) Venn flemas ile gösterimi c) Ortak özelik yöntemi ile gösterimi 3. KÜMELER N KARfiILAfiTIRILMASI a) Kümenin elaman say

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

1.DERECEDEN DENKLEMLER. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

1.DERECEDEN DENKLEMLER.  (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) .DERECEDEN DENKLEMLER Rüstem YILMAZ 546 550 86 48 destek@sinavdestek.com www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları 8 Ağustos 07 0. Bir Bilinmeyenli

Detaylı

Starboard dosya aç dosyayı seçerek Andropi teach menu içe aktar dosyayı seçiyoruz nesne olarak seç

Starboard dosya aç dosyayı seçerek Andropi teach menu içe aktar dosyayı seçiyoruz nesne olarak seç Not: Starboard programında dosya aç kısmından dosyayı seçerek açabilirsiniz. Yazı karakterlerinde bozulma oluyorsa program kapatılıp tekrar açıldığında yazı düzelecektir. Ben yaptığımda düzelmişti. Andropi

Detaylı

İndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı

İndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı İndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı Meral SÜER * ve Sedat İLHAN * Batman Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü,7060 Batman, Türkiye Dicle Üniversitesi,

Detaylı

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Kümeler Kümeler ve küme işlemleri olasılığın temellerini oluşturmak için çok önemlidir Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Sonlu sayıda, sonsuz sayıda, kesikli

Detaylı

Normal Alt Gruplar ve Bölüm Grupları...37

Normal Alt Gruplar ve Bölüm Grupları...37 İÇİNDEKİLER Ön Söz...2 Gruplar...3 Alt Gruplar...9 Simetrik Gruplar...13 Devirli Alt Gruplar...23 Sol ve Sağ Yan Kümeler (Kosetler)...32 Normal Alt Gruplar ve Bölüm Grupları...37 Grup Homomorfizmaları...41

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı