Tam Sayılarla Toplama ve Çıkarma işlemleri Yapalım. Etkinlik: Tam Sayılarla Toplama işlemi

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "+ + + + + + + + + + + + Tam Sayılarla Toplama ve Çıkarma işlemleri Yapalım. Etkinlik: Tam Sayılarla Toplama işlemi"

Transkript

1 Tam Sayılarla Toplama ve Çıkarma işlemleri Yapalım Doğal sayılarla; Toplama işlemi Çıkarma işlemi Bankaların müşterilerine verdiği hesap cüzdanlarını incelediniz mi? Bu cüzdanlarda yazan sayıların ve bu sayıların solundaki ve işaretlerinin çıkarma ve toplama işlemleri ile bir ilgisi var mıdır? Tartışınız. Tam sayılarla; Toplama işlemi Çıkarma işlemi Etkinlik: Tam Sayılarla Toplama işlemi Araç ve Gereç: sayma pulları. Sayma pulları ile () () işlemini yandaki gibi modelleyiniz. Benzer şekilde () () işlemini modelleyip sonucunu yazınız. Bir araya gelen ve pulları 0 (sıfır) kabul ederek 0 () (), () (), () () işlemlerini modelleyip sonucunu yazınız. Tam sayılarla toplama işleminin kurallarını açıklayınız. (0) (), (8) (), () (7) işlemlerinin sonuçlarını bulunuz. Hava sıcaklığının sıfırın altında C (altı derece selsiyus) iken C artması durumunda sıcaklığın kaç C olacağını bulalım: Bu problemi sayma pulları ile modelleyelim. Sıfırın altındaki sıcaklığı eksi iflaretli pullarla, artan hava sıcaklığını ise artı işaretli pullarla gösterelim. 0 Bu işlemin matematik cümlesini yazalım: ()()=() ve işaretli pulları ikişer ikişer eşleştirelim. Geriye kalan pullar, bize sonucu verir. Hava sıcaklığı C olup C azalmış olsaydı hava sıcaklığının kaç C olacağını bulalım: 0 Bu işlemin matematik cümlesini yazalım: ()()=() Yukarıdaki ve yandaki toplama işlemlerinin benzer ve farklı yönleri nelerdir? Bu iki işlem, size toplama işleminin hangi özelliğini hatırlatıyor?

2 Örnekler. Gizem, istediği kitapları alabilmek için her hafta haftalık harçlığının TL sini biriktiriyor. Bu hafta kitap almak için biriktirdiği paradan TL alıp bir sonraki hafta TL koymayı düflünüyor. Buna göre hafta sonunda Gizem in biriktirdiği paranın kaç TL artacağını bulalım: işlemini sayı doğrusunda gösterelim: 0 hafta sonunda Gizem in biriktirdiği para TL artar. Eğer Gizem biriktirdiği paraya ilk hafta TL koymuş, ikinci hafta ise bu paradan TL almış olsaydı Gizem in parasında iki hafta sonunda nasıl bir artış olurdu? ( ) işlemini sayı doğrusunda gösterelim: 0 iki hafta sonunda Gizem in parasında TL lik bir artış olurdu. () ve () işlemlerinin sonuçlarının aynı olması, tam sayılarla toplama işleminin değişme özelliğinin olmasındandır.. Aşağıda, iki sincabın topladıkları ve yedikleri fındıklar ile ilgili sorular sorulmuştur. Bu soruları, işlem- lerin matematik cümlelerini yazarak cevaplayalım: Soru :. sincap 8 fındık buldu, fındık yedi. Biraz uyudu ve sonra fındık daha yedi. Bu sincabın kaç fındığı kalır? (8 ( )) ( ) = ( ) () = Soru :. sincap 8 fındık buldu. Biraz uyudu. Sonra fındık yedi ve doymayıp fındık daha yedi. Bu sincabın kaç fındığı kalır? 8 (( ) ( )) = 8 () = Her iki soruda da aynı sayılarla aynı işlemler yapılmıştır. Sadece parantezlerin yeri değişmiştir. Ancak sonuç değişmemiştir. Bu tam sayılarla toplama işleminin birleşme özelliğinin olmasındandır.

3 . Betül dalgıçlık dersi almaya başladı. ilk dersi havuzda aldı. Betül kıyafetlerini giydikten sonra m derinliği olan havuzun dibine indi ve havuzun dibinde birkaç saniye kaldıktan sonra tekrar m yukarıya, yani havuzun yüzeyine çıktı. Biraz dinlendikten sonra m derine indi ve tekrar yukarı çıktı. Betül ün havuzda indiği ve çıktığı yerleri sayı doğrusu üzerinde göstererek toplamda ne kadar derine indiğini bulalım: 0 0 () = 0 () = 0 Yukarıdaki işlemlerde zıt işaretli tam sayılar toplanmıştır. Etkinlik: Tam Sayılarla Çıkarma işlemi Araç ve Gereç: sayma pulları. = () = =... 0 (7) =... Yandaki tabloda verilen işlemlerin sonuçlarını sayı doğrusu modelinden ve sayma pullarından yararlanarak bulunuz. Sonuçları aynı çıkan işlemlerin benzer ve farklı yönlerini açıklayınız. () (), 0 (7), ifllemlerini tablodaki ifllemler gibi topla- =... 8 =... () =... 8 () =... ma işlemine dönüfltürerek yapınız. 0 Can ın kantine TL borcu vardı. Can, dayısının verdiği TL yi kantine verdi. Can ın kantine kaç TL borcu kalmıştır? işlemin matematik cümlesini yazalım ve sayma pulları ile modelleyerek problemi çözelim: () () =? () () = () Bu işlemin matematik cümlesi aynı zamanda ( ) ( ) olarak da yazalabilir mi? Bu durumda iki işlemin sonucu birbirine eşit olur mu? () () =? () () = () Yukarıdaki işlemlere göre ( ) ( ) ile ( ) ( ) eşittir. a ve b birer tam sayı olmak üzere (a) (b) = (a) b'dir.

4 Örnekler. Bora, orijinal film CD leri satan bir dükkândan film CD si kiralamıştır. Ertesi gün, kiraladığı filmlerden tanesini dükkâna iade etmifltir. Bora nın elinde kaç film CD si kaldığın iki farklı işlem yaparak bulal m: = () =. Aşağıda verilen tablodaki çıkarma işlemlerinin sonuçlarını bulalım: a. 7 = b. 0 () = c. (8) = d. 8 = a. 7 = ( 7 ) = b. 0 ( ) = 0 ( ) = c. ( 8) = ( 8 ) = 7 ç. 8 = 8 ( ) =. Aşağıdaki işlemleri inceleyelim: a. (8) (8) = 0 b. = 0 Toplamları 0 (sıfır) olan iki tamsayı toplama işlemine göre birbirlerinin tersidir. Buna göre 8 sayısının toplama işlemine göre tersi 8, sayısının toplama işlemine göre tersi sayısıdır.. Aşağıdaki problemlerin matematik cümlelerini yazıp işlemleri sayma pulları ile modelleyerek çözünüz. a. Bir asansörün, giriş katının kat altından kat üstüne çıkması için kaç kat hareket etmesi gerekir? b.hava sıcaklığı 0 C tan C a düşmüştür. Sıcaklık kaç C azalmıştır?. Aşağıdaki işlemlerin doğruluğunu sayma pulları kullanarak gösteriniz. a. () () = () () c. ( ) () = () () b. ( ) () = () () ç. [( ) ( )] (7) = ( ) [( ) (7)]. 9 veya 9 () işlemleriyle çözülebilecek bir problem kurunuz. Bu problemleri önce sayma pulları ile daha sonra sayı doğrusu üzerinde modelleyiniz.. Hesap makinenizi kullanarak aşağıdaki eşitliklerin doğruluğunu gösteriniz. a. ( ) = ( ) ( ) b. () = () ( ) c. (90) (7) = 90 7

5 . Yandaki Tablo., Elif in ailesinin aylık bütçesini gösteriyor. Bu tabloda gelirler pozitif (), giderler negatif () tam sayılarla gösterilmiştir. a. Gelir ve gider kavramlarının anlamlarını açıklayınız. b. Bütçe yapmanın aile ekonomisinde yaratacağı olumlu etkileri anlatan bir kompozisyon yazınız. Tabloya göre aşağıdaki soruları cevaplayıp istenenleri yapınız. c. Elif in ailesinin gelirleri mi yoksa giderleri mi daha fazladır? ç. Bu bütçeye göre ay sonunda Elif in ailesi para artırabilir mi? Tablo.: Aile Bütçesi Maafl (TL) 000 Yiyecek masrafları Giyim masrafşarı 00 Elif'e harçlık 0 Yol masrafları 00 Kira 00 Yakıt 7 Su 0 Elektrik 0 Telefon 0 d. Elif in ailesinin gelirleriyle giderlerinin ay sonunda eşit olabilmesi için bazı giderlerinin kısılması gerekiyor. Bu nedenle Elif in aile bütçesindeki bazı giderleri kısarak gelirler ve giderleri denk hâle getiriniz. Hangi giderleri neden kıstığınızı açıklayınız. e. Tablo. deki bütçeye benzer şekilde kendi ailenizin bütçesini yapınız.. Aşağdaki sayı doğruısu ile gösterilen işlemin matematik cümlesini yazınız Aşağıdaki tam sayıların toplama işlemine göre terslerini bulup bulduklarınızı sayıların altlarına yazınız. a. 9 b. c. 7 ç. 00 d. 7 e Aşağıdaki işlemlerin sonucunu bulunuz. a. () () b. () () c. (7) () ç. () ( ) d. 9 e. 9 f. ( 7) ( ) g. () ( ) 9. Aşağıdaki işlemleri sayı doğrusu üzerinde modelleyiniz. a. () ( ) = () ç. () ( ) = ( ) b. ( ) ( ) = ( ) d. () () = () c. () () = ( ) e. () ( ) = ( ) 0. Aşağıdaki toplama işlemlerini çıkarma işlemine çeviriniz. işlemleri nasıl yaptığınızı açıklayınız. a. ( ) ( ) b. 0 c. 9

6

TAM SAYILARI TANIYALIM

TAM SAYILARI TANIYALIM O.S 6.SINIF MATEMATİK 6 TAM SAYILARI TANIYALIM Kazanım: Tam sayıları yorumlar ve sayı doğrusunda gösterir ÇALIŞMA KAĞIDI Günlük yaşantımızda karşılaştığımız olayları ifade etmek için, doğal sayılar yetersiz

Detaylı

ECEM ERDURU GAMZE SERİN ZEHRA SABUR EMİNE ÖLMEZ. o TAMSAYILAR KONUSU ANLATILMAKTADIR

ECEM ERDURU GAMZE SERİN ZEHRA SABUR EMİNE ÖLMEZ. o TAMSAYILAR KONUSU ANLATILMAKTADIR ECEM ERDURU GAMZE SERİN ZEHRA SABUR EMİNE ÖLMEZ o TAMSAYILAR KONUSU ANLATILMAKTADIR Sıfırın sağındaki sayılar pozitif tam sayılar, sıfırın solundaki sayılar negatif tam sayılardır. Pozitif tam sayılar,

Detaylı

TEST. Tam Sayılar 1. ( 36) : (+12).( 3) : ( 2) 3 + [( 6) ( 2)] işleminin sonucu kaçtır? işleminin sonucu kaçtır? A) 9 B) 1 C) 1 D) 9

TEST. Tam Sayılar 1. ( 36) : (+12).( 3) : ( 2) 3 + [( 6) ( 2)] işleminin sonucu kaçtır? işleminin sonucu kaçtır? A) 9 B) 1 C) 1 D) 9 Tam Sayılar 1. ( 6) : (+12).( ) 7. Sınıf Matematik Soru Bankası 5. 4 2 : () + [( 6) ()] TEST 1 A) 9 B) C) 1 D) 9 A) B) 4 C) D) 2. 6. Yukarıdaki sayı doğrusu üzerinde modellenen işlem aşağıdakilerden (

Detaylı

TAM SAYILARLA İŞLEMLER

TAM SAYILARLA İŞLEMLER TAM SAYILARLA İŞLEMLER 5 4 3 2 1 1 TAM SAYILARLA TOPLAMA İŞLEMİ Devlet Meteoroloji İşleri Genel Müdürlüğü, bilimsel ve teknolojik gelişmeler ışığında meteorolojik gözlemler, hava tahminleri ve iklim değişiklikleri

Detaylı

ÇIKARMA İŞLEMİ. A) Aşağıda modellenmiş olan çıkarma işlemlerini yapalım. B) Aşağıda modellenmiş olan çıkarma işlemlerini yapalım. ... c) eksilen ...

ÇIKARMA İŞLEMİ. A) Aşağıda modellenmiş olan çıkarma işlemlerini yapalım. B) Aşağıda modellenmiş olan çıkarma işlemlerini yapalım. ... c) eksilen ... ÇIKARMA İŞLEMİ A) Aşağıda modellenmiş olan çıkarma işlemlerini yapalım. B) Aşağıda modellenmiş olan çıkarma işlemlerini yapalım. a) b) c) d) 4 1 3 a) eksilen çıkan fark 3 1 b) eksilen çıkan fark c) eksilen

Detaylı

YAZILIYA HAZIRLIK SETİ. 7. Sınıf MATEMATİK

YAZILIYA HAZIRLIK SETİ. 7. Sınıf MATEMATİK YAZILIYA HAZIRLIK SETİ 7. Sınıf MATEMATİK 1. Fasikül İÇİNDEKİLER 3 Tam Sayılarda Çarpma İşlemi 7 Tam Sayılarda Bölme İşlemi 12 Tam Sayılarla İlgili Problemler 19 Üslü Nicelikler 26 Rasyonel Sayılar 28

Detaylı

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 1 16 soruluk bir testte 5 ve 10 puanlık sorular bulunmaktadır. Soruların tamamı doğru cevaplandığında 100 puan alındığına göre testte

Detaylı

Ar tık Matematiği Çok Seveceksiniz!

Ar tık Matematiği Çok Seveceksiniz! Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

Ali 8 yaşındadır. Ali den 1 yaş büyük olan Oya. Can ın 5 kalemi vardır. Ayla nın kalemleri Can ın kalemlerinden 3 fazladır. Ayla nın kalemi vardır.

Ali 8 yaşındadır. Ali den 1 yaş büyük olan Oya. Can ın 5 kalemi vardır. Ayla nın kalemleri Can ın kalemlerinden 3 fazladır. Ayla nın kalemi vardır. Zihinden toplayalım. 1. artı 8 eder.. 3 ten büyük olan sayı 5 tir. 3. 5 e eklersek olur. 4. 5.. 5 e 1 ilave edersek olur. 7 den sonra gelen sayı 5, 3 daha eder. olur. 7. yi 1 artırırsak olur. 8. 9. 9 ile

Detaylı

1 ÜNİTE SAYILAR VE İŞLEMLER

1 ÜNİTE SAYILAR VE İŞLEMLER 1 ÜNİTE SAYILAR VE İŞLEMLER TAM SAYILARLA ÇARPMA VE BÖLME İŞLEMLERİ 7.1.1.1. Tam sayılarla çarpma ve bölme işlemlerini yapar. 7.1.1.2. Tam sayılarla işlemler yapmayı gerektiren problemleri çözer. 7.1.1.3.

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

SAYILARIN ÇÖZÜMLENMESİ ÇÖZÜMLÜ SORULARI. 1) 1000a 10b ifadesi aşağıdaki sayılardan hangisinin. ÇÖZÜM: 1000a 10b 1000.a b 1.

SAYILARIN ÇÖZÜMLENMESİ ÇÖZÜMLÜ SORULARI. 1) 1000a 10b ifadesi aşağıdaki sayılardan hangisinin. ÇÖZÜM: 1000a 10b 1000.a b 1. SAYILARIN ÇÖZÜMLENMESİ ÇÖZÜMLÜ SORULARI 1) 1000a 10b ifadesi aşağıdaki sayılardan hangisinin çözümlenmiş biçimidir? A) ab B) a0b C) a0b0 D) ab0 E) ab00 1000a 10b 1000.a 100.0 10.b 1.0 a0b0 Doğru Cevap:

Detaylı

Negatif tam sayılar, sıfır (0) ve pozitif tam sayıların birleşimine tam sayılar denir.

Negatif tam sayılar, sıfır (0) ve pozitif tam sayıların birleşimine tam sayılar denir. Sıfırın altındaki hava sıcaklıklarını belirten, giriş katın altındaki bir katın altındaki düğmesini asansörde gösterirken, deniz seviyesinin altındaki bir yeri ifade ederken, kar-zarar durumlarında doğal

Detaylı

1. Her şeklin diğer yarısını aynı renge boyayalım.

1. Her şeklin diğer yarısını aynı renge boyayalım. 1. Her şeklin diğer yarısını aynı renge boyayalım. 54 1. Aşağıdakilerden hangisi yarımdır? a) b) c) 2 Aşağıdakilerden hangisi bütündür? a) b) c) 3. Meyvelerin diğer yarısını bulup eşleştirelim ve boyayalım.

Detaylı

ÜNİTE: RASYONEL SAYILAR KONU: Rasyonel Sayılar Kümesinde Çıkarma İşlemi

ÜNİTE: RASYONEL SAYILAR KONU: Rasyonel Sayılar Kümesinde Çıkarma İşlemi ÜNTE: RASYONEL SAYILAR ONU: Rasyonel Sayılar ümesinde Çıkarma şlemi ÖRNE SORULAR VE ÇÖZÜMLER. işleminin sonucu B) D) ki rasyonel sayının farkını bulmak için çıkan terimin toplama işlemine göre tersi alınarak

Detaylı

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi ÜNE: AM AYIAR N: am ayılar ümesinde Çıkarma şlemi ÖRNE RAR VE ÇÖZÜMER 1. [(+17) (+25)] + [( 12) (+21)] işleminin sonucu A) 41 B) 25 C) 25 D) 41 Çıkarma işlemi yapılırken çıkanın işareti değişir ve eksilen

Detaylı

MATEMATİK. Değerlendirme 1. Doğal Sayılar. Yukarıdaki kelebekler bir desteden ne kadar azdır? A. 3 B. 7 C. 10

MATEMATİK. Değerlendirme 1. Doğal Sayılar. Yukarıdaki kelebekler bir desteden ne kadar azdır? A. 3 B. 7 C. 10 MATEMATİK Değerlendirme 1 MATEMATİK Doğal Sayılar Ad :... Soyad :... Sınıf/Nu. :... /... 1. Yapbozlarımla n sayısının modelini oluşturdum. 5. Konuşma balonundaki n yerine aşağıdakilerden hangisi yazılmalıdır?

Detaylı

Ar tık Matematiği Çok Seveceksiniz! Artık. Artık matematiği ezberlemiyorum. matematik. sorularını çözüyorum. MateMito AKILLI MATEMATİK ÖDEVİ ...

Ar tık Matematiği Çok Seveceksiniz! Artık. Artık matematiği ezberlemiyorum. matematik. sorularını çözüyorum. MateMito AKILLI MATEMATİK ÖDEVİ ... Ar tık Matematiği Çok Seveceksiniz! 7 MateMito AKILLI MATEMATİK DEFTERİ matematikten korkmuyorum. matematik dersinde eğleniyorum. matematiği çok seviyorum. az yazarak çok soru çözüyorum. matematiği ezberlemiyorum.

Detaylı

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere, Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

LİSE 1 MANTIK KONU ANLATIM FASİKÜLÜ

LİSE 1 MANTIK KONU ANLATIM FASİKÜLÜ LİSE 1 MANTIK KONU ANLATIM FASİKÜLÜ 1 ÖNERMELER Kesin olarak doğru ya da yanlış hüküm bildiren ifadelere önerme denir. Önermeler p ve q gibi harflerle ifade edilirler.bir önerme doğru ise, doğruluk değeri

Detaylı

Sayı sistemleri-hesaplamalar. Sakarya Üniversitesi

Sayı sistemleri-hesaplamalar. Sakarya Üniversitesi Sayı sistemleri-hesaplamalar Sakarya Üniversitesi Sayı Sistemleri - Hesaplamalar Tüm sayı sistemlerinde sayılarda işaret kullanılabilir. Yani pozitif ve negatif sayılarla hesaplama yapılabilir. Bu gerçek

Detaylı

Sıfırın sağındaki sayılar pozitif tam sayılar, sıfırın solundaki sayılar negatif

Sıfırın sağındaki sayılar pozitif tam sayılar, sıfırın solundaki sayılar negatif TAM SAYILAR NEDİR? Sıfırın sağındaki sayılar pozitif tam sayılar, sıfırın solundaki sayılar negatif tam sayılardır.pozitif tam sayılar,negatif tam sayılar ve sıfır sayısının birleşmesi sonucu tam sayılar

Detaylı

AKILLI. sınıf. Musa BOR

AKILLI. sınıf. Musa BOR AKILLI sınıf. Musa BOR AFG Matbaa Yayıncılık Kağ. İnş. Ltd. Şti. Buca OSB, BEGOS. Bölge / Sk. No: Buca-İZMİR Tel:.. - Faks: 6 6 Bu kitabın tüm hakları AFG Matbaa Yay. Kağ. İnş. Teks. Paz. İm. San. ve Tic.

Detaylı

Yeryüzünün en sıcak yeri Afrika da El-Ezize bölgesidir. (Gölgede 58 derece)

Yeryüzünün en sıcak yeri Afrika da El-Ezize bölgesidir. (Gölgede 58 derece) ilkokul1.com ilkokul1.com ilkokul1.com ilkokul1.com ilkokul1.com ilkokul1.com ilkokul1.com ilkokul1.com ilkok 9. GÜN Bunu biliyor musun? Yeryüzünün en sıcak yeri Afrika da El-Ezize bölgesidir. (Gölgede

Detaylı

Rasyonel Sayılarla İşlemler. takip edilir.

Rasyonel Sayılarla İşlemler. takip edilir. Matematik Bir Bakışta Matematik Kazanım Defteri Rasyonel Sayılarla İşlemler Özet bilgi alanları... RASYONEL SAYILARLA ÇOK ADIMLI İŞLEMLER Çok adımlı işlemlerde şu sıra takip edilir : Parantez içindeki

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

Şimdi Okullu Olduk İlkokul 1. Sınıf

Şimdi Okullu Olduk İlkokul 1. Sınıf Yrd. Doç. Dr. Özgül Polat Şimdi Okullu Olduk İlkokul 1. Sınıf 10 Adım ve Soyadım İnceleyelim. Tabloyu yorumlayalım. Çizelim. Bu detay Matrakçı Nasuh un bir minyatüründen alınma. Minyatür sanatı nedir biliyor

Detaylı

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER YILLAR 00 00 00 00 00 00 007 008 009 00 ÖSS-YGS - - - - - - - - BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER a,b R ve a 0 olmak üzere ab=0 şeklindeki denklemlere Birinci dereceden bir bilinmeyenli denklemler

Detaylı

Şimdi Okullu Olduk İlkokul 1. Sınıf

Şimdi Okullu Olduk İlkokul 1. Sınıf Yrd. Doç. Dr. Özgül Polat Şimdi Okullu Olduk İlkokul 1. Sınıf 11 Adım ve Soyadım Eşleştirme yapalım. A Cümlelerin ilk harflerinin her zaman büyük olması gerektiğini biliyor muydunuz? e T t E l e E L L

Detaylı

ÝÇÝNDEKÝLER. 1. ÜNÝTE Tam Sayýlardan Rasyonel Sayýlara

ÝÇÝNDEKÝLER. 1. ÜNÝTE Tam Sayýlardan Rasyonel Sayýlara ÝÇÝNDEKÝLER 1. ÜNÝTE Tam Sayýlardan Rasyonel Sayýlara TAM SAYILARLA TOPLAMA ÝÞLEMÝ... 13 Ölçme ve Deðerlendirme... 18 Kazaným Deðerlendirme Testi - 1... 19 Kazaným Deðerlendirme Testi - 2... 21 Kazaným

Detaylı

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :.

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. SAYILAR BASAMAK KAVRAMI İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. Üç basamaklı rakamları farklı en küçük sayı :. SORU 5 MATEMATİK KAF03 TEMEL KAVRAM 01 Üç basamaklı birbirinden

Detaylı

Aşağıdaki resmin içinde yandaki eşyalar gizlenmiş. Onları bulalım ve boyayalım. -16-

Aşağıdaki resmin içinde yandaki eşyalar gizlenmiş. Onları bulalım ve boyayalım. -16- Aşağıdaki resmin içinde yandaki eşyalar gizlenmiş. Onları bulalım ve boyayalım. -16-24 - 28 NİSAN 2017 Gül, papatya, karanfil, lale - salkım söğüt, kavak, çam, elma ağacı isimlerini doğru görselin altına

Detaylı

TAM SAYILARDA ÇARPMA BÖLME İŞLEMLERİ ESRA ÇAKIR

TAM SAYILARDA ÇARPMA BÖLME İŞLEMLERİ ESRA ÇAKIR Kazanım: Tam sayılarla çarpma ve bölme işlemleri yapar. Tam sayılarla işlemler yapmayı gerektiren problemleri çözer. HATIRLATMA :TAM SAYILARDA TOPLAMA İŞLEMİ Aynı işaretli tam sayılar toplanırken işaretleri

Detaylı

SAYILAR SAYI KÜMELERİ

SAYILAR SAYI KÜMELERİ SAYILAR SAYI KÜMELERİ 1.Sayma Sayıları Kümesi: S=N =1,2,3,... 2. Doğal Sayılar Kümesi : N=0,1,2,... 3. Tamsayılar Kümesi : Z=..., 2, 1,0,1,2,... Sıfırın sağında bulunan 1,2,3,. tamsayılarına pozitif tamsayılar

Detaylı

10. SINIF MATEMATİK FONKSİYONLARDA İŞLEMLER-2

10. SINIF MATEMATİK FONKSİYONLARDA İŞLEMLER-2 . SINIF MTEMTİK FONKSİYONLRD İŞLEMLER- ÇKEY NDOLU LİSESİ MTEMTİK ÖLÜMÜ . ÜNİTE.. FONKSİYONLRD DÖRT İŞLEM Neler öğreneceksiniz? Fonksiyonlarda dört işlem yani toplama çıkarma, çarpma ve bölmeyi öğreneceksiniz.

Detaylı

2. SINIF MATEMATİK 1. KİTAP

2. SINIF MATEMATİK 1. KİTAP 2. SINIF MATEMATİK 1. KİTAP Bu kitabın bütün hakları Hacer KÜÇÜKAYDIN a aittir. Yazarın yazılı izni olmaksızın kısmen veya tamamen alıntı yapılamaz ve çoğaltılamaz. Copyright 2015 YAZAR Ahmet KÜÇÜKAYDIN

Detaylı

SAYILAR SAYI KÜMELERİ

SAYILAR SAYI KÜMELERİ 1 SAYILAR SAYI KÜMELERİ 1.Sayma Sayıları Kümesi: S=N =1,2,3,... 2. Doğal Sayılar Kümesi : N=0,1,2,... 3. Tamsayılar Kümesi : Z=..., 2, 1,0,1,2,... Sıfırın sağında bulunan 1,2,3,. tamsayılarına pozitif

Detaylı

7.SINIF. Tam Sayılarda Çarpma ve Bölme Islemleri. Tam Sayılarla Çarpma İşlemi

7.SINIF. Tam Sayılarda Çarpma ve Bölme Islemleri. Tam Sayılarla Çarpma İşlemi Tam Sayılarda Çarpma ve Bölme Islemleri Tamsayılarla çarpma ve bölme islemlerini yapar. 2 Tam Sayılarla Çarpma İşlemi Yanda verilmiş sayma pullarını 2 şerli gruplandırdığımızda 6 tane grup oluşur. Bir

Detaylı

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler DÖRDÜNCÜ BÖLÜM 4.1. Aritmetik işlemler Bu bölümde öğrencilerin lisede bildikleri aritmetik işlemleri hatırlatacağız. Bütün öğrencilerin en azından tamsayıların toplama, çıkarma, çarpma ve bölme işlemlerini

Detaylı

İki Bilinmeyenli Denklem Sistemleri

İki Bilinmeyenli Denklem Sistemleri 8 www.matematikportali.com Konu Özetleri İki Bilinmeyenli Denklem Sistemleri Birinci Dereceden İ ki Bilinmeyenli Denklem Sistemleri İki Bilinmeyenli Denklemler (Doğrusal denklem sistemleri) a, b, c R ve

Detaylı

TEMEL KAVRAMLAR Test -1

TEMEL KAVRAMLAR Test -1 TEMEL KAVRAMLAR Test -1 1. 6 ( ) 4 A) B) 3 C) 4 D) 5 E) 6 5. 4 [1 ( 3). ( 8)] A) 4 B) C) 0 D) E) 4. 48: 8 5 A) 1 B) 6 C) 8 D) 1 E) 16 6. 4 7 36:9 18 : 3 A) 1 B) 8 C) D) 4 E) 8 3. (4: 3 + 1):4 A) 3 B) 5

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

8.SINIF CEBirsel ifadeler

8.SINIF CEBirsel ifadeler KAZANIM : 8.2.1.1. Basit cebirsel ifadeleri anlar ve farklı biçimlerde yazar. Hatırlatma 2 + 4y - 5 ifadesi bir cebirsel ifadedir ve değişkenler ve y dir. Cebirsel İfade: İçinde bir veya birden fazla bilinmeyen

Detaylı

1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir? A) ** B) C) D) E)

1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir? A) ** B) C) D) E) İktisadi ve İdari Bilimler Fakültesi MAT 152 Genel Matematik II Final Sorularının Çözümleri: 1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir?

Detaylı

Belli tarihlerde yatırılan taksitlerle, belli bir süre sonunda meydana gelecek kapital, taksitlerin baliğleri toplamına eşit olur.

Belli tarihlerde yatırılan taksitlerle, belli bir süre sonunda meydana gelecek kapital, taksitlerin baliğleri toplamına eşit olur. 1 KAPİTAL OLUŞTURULMASI Kapital oluşturulması, bir kredi kurumuna belli tarihlerde, belli miktarlarda yatırılan paralarla, belli bir süre sonunda belli büyüklükte bir para meydana getirme işlemidir. Küçük

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30 İçindekiler 1. ÜNİTE Bölüm 1 : Üslü Sayılar... 8 Bölüm 2 : Doğal Sayılar... 18 Bölüm 3 : Doğal Sayı Problemleri... 30 Bölüm 4 :- Çarpanlar ve Katlar, Bölünebilme... 40 Bölüm 5 : Asal Sayılar, Ortak Bölenler,

Detaylı

The MATHEMATICAL ASSOCIATION OF AMERICA American Mathematics Competitions (AMC - 8) AMERİKA MATEMATİK YARIŞMASI - 8

The MATHEMATICAL ASSOCIATION OF AMERICA American Mathematics Competitions (AMC - 8) AMERİKA MATEMATİK YARIŞMASI - 8 2008 The MATHEMATICAL ASSOCIATION OF AMERICA American Mathematics Competitions (AMC - 8) AMERİKA MATEMATİK YARIŞMASI - 8 18.10.2008 1. Suzan a babası bayramda harcaması için 50 lira vermiştir. 12 lirası

Detaylı

4.2.1 Sayma Sistemleri

4.2.1 Sayma Sistemleri . Taban Aritmetiği.. Sayma Sistemleri a. 9 Etkinlik. a. gün; kaç yıl, kaç ay, kaç hafta, kaç gündür? ( yıl gün, ay 0 gün sayılacaktır.) b. 7 saniye; kaç saat, kaç dakika, kaç saniyedir? c. 7 kg fındık

Detaylı

SAYILARA GİRİŞ. Her şeyden önce temel kavramları bilmeliyiz. Nedir temel kavramlar? Matematik dilinin abc'si olarak tanımlayabiliriz.

SAYILARA GİRİŞ. Her şeyden önce temel kavramları bilmeliyiz. Nedir temel kavramlar? Matematik dilinin abc'si olarak tanımlayabiliriz. SAYILARA GİRİŞ Her şeyden önce temel kavramları bilmeliyiz. Nedir temel kavramlar? Matematik dilinin abc'si olarak tanımlayabiliriz. Rakamlar {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} On tane rakam bulunmaktadır.

Detaylı

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 1. ve y aralarında asal iki doğal sayıdır. 7 y 11 olduğuna göre, y farkı 5. 364 sayısının en büyük asal böleni A) 3 B) 7 C) 11 D) 13 E) 17 A) B) 3 C) 4

Detaylı

7) 30 kişilik bir sınıfta her öğrenciye ait 5 ödev verilmiştir. Ödevlerden 3 tanesini doğru yapan

7) 30 kişilik bir sınıfta her öğrenciye ait 5 ödev verilmiştir. Ödevlerden 3 tanesini doğru yapan 1) Bir laboratuarda belirsiz sayıda deney yapılıyor. Okutulan deney no ve sonuç verilerine göre (3 çeşit deney var.) a) Her bir deneyden kaç tane yapılmıştır. b) Yapılan toplam deney sayısı ne kadardır.

Detaylı

KESİRLER BİRİM KESİRLERİ SIRALAMA. Birim kesirlerde paydası büyük olan kesir daha küçüktür.

KESİRLER BİRİM KESİRLERİ SIRALAMA. Birim kesirlerde paydası büyük olan kesir daha küçüktür. BİRİM KESİRLERİ SIRALAMA Bir bütünün eş parçalarından her birine kesir denir. Payı olan kesirlere birim kesir denir. Birim kesirlerde paydası büyük olan kesir daha küçüktür.,, 8 kesirlerini sıralayınız.

Detaylı

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir.

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir. TABAN ARĠTMETĠĞĠ Kullandığımız 10 luk sayma sisteminde sayılar {0,1,2,3,4,5,6,7,8,9} kümesinin elemanları (Rakam) kullanılarak yazılır. En büyük elemanı 9 olan, 10 elemanlı bir kümedir. Onluk sistemde;

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR 2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR KONULAR 1. RASYONEL SAYILAR 2. Kesir Çeşitleri 3. Kesirlerin Sadeleştirilmesi 4. Rasyonel Sayılarda Sıralama 5. Rasyonel Sayılarda İşlemler 6. ÜSLÜ İFADE 7. Üssün

Detaylı

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler ORGANİZASYON ŞEMASI 1. BÖLÜM Mantık... 7. BÖLÜM Sayılar... 13 3. BÖLÜM Rasyonel Sayılar... 93 4. BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler... 103 5. BÖLÜM Mutlak Değer... 113 6. BÖLÜM Çarpanlara Ayırma...

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu 016-017 Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları 1) 3. [15 3(8: )] 9 =? a) 16 b) 14 c) 0 d) 14 e) 16 6)

Detaylı

SIRA SENDE DÖRT İŞLEM, İŞLEM ÖNCELİĞİ BİLGİ. = 1 2 ile 3 zıt işaretli olduğundan 3 ten 2 yi çıkarıp 1 bulduk ve büyük olan 3 ün işaretini ( ) 1 in

SIRA SENDE DÖRT İŞLEM, İŞLEM ÖNCELİĞİ BİLGİ. = 1 2 ile 3 zıt işaretli olduğundan 3 ten 2 yi çıkarıp 1 bulduk ve büyük olan 3 ün işaretini ( ) 1 in ÖRT ŞLM, ŞLM ÖCLĞ SORU 0 3 04 + 0 ) B) 0 C) ) ) = ile 3 zıt işaretli olduğundan 3 ten yi çıkarıp bulduk ve büyük olan 3 ün işaretini ( ) in önüne koyduk. SR S C BLG Tam sayılarda aynı işaretli sayılar

Detaylı

0 dan matematik. Bora Arslantürk. çalışma kitabı

0 dan matematik. Bora Arslantürk. çalışma kitabı 0 dan matematik 0 dan matematik çalışma kitabı Sıfırdan başlanarak matematik ile ilgili sıkıntı yaşayan herkese hitap etmesi, Akıllı renklendirme ile göz yoran değil ayrım yapmayı, istenileni bulmayı kolaylaştıran

Detaylı

Ar tık Matematiği Çok Seveceksiniz!

Ar tık Matematiği Çok Seveceksiniz! Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

Tanım: (1. Tip Üretken Fonksiyonlar) (a r ) = (a 1, a 2, a 3,,a r, ) sayı dizisi olmak üzere, (a r ) dizisinin 1. Tip üretken fonksiyonu

Tanım: (1. Tip Üretken Fonksiyonlar) (a r ) = (a 1, a 2, a 3,,a r, ) sayı dizisi olmak üzere, (a r ) dizisinin 1. Tip üretken fonksiyonu Üretken Fonksiyonlar Ali İlker Bağrıaçık Üretken fonksiyonlar sayma problemlerinin çözümünde kullanılan önemli yöntemlerden biridir. Üretken fonksiyonların temeli Moivre nin 1720 yıllarındaki çalışmalarına

Detaylı

.com. Faydalı Olması Dileğiyle... Emrah& Elvan PEKŞEN

.com. Faydalı Olması Dileğiyle... Emrah& Elvan PEKŞEN .com Faydalı Olması Dileğiyle... Emrah& Elvan PEKŞEN ilkok Adı-Soyadı:... Yukarıdaki resmi inceleyelim. Sonrasında aşağıdaki yönergelere göre, çocukları numaralandıralım ve soruları cevaplayalım. Deniz

Detaylı

* Neden sıfır kalır? Sihirli Sayılar Oyunu

* Neden sıfır kalır? Sihirli Sayılar Oyunu Sihirli Sayılar Oyunu Birinci Bölüm İkinci Bölüm Üçüncü Bölüm Dördüncü Bölüm 1 3 5 7 9 1 1 1 3 1 5 2 3 6 7 1 0 1 1 14 1 5 4 5 6 7 1 2 1 3 1 4 1 5 8 9 1 0 1 1 1 2 1 3 1 4 1 5 * 1'den 15'e kadar aklından

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 18 Kasım 2007 Matematik Soruları ve Çözümleri 1. Bir sayının 0,02 ile çarpılmasıyla elde edilen sonuç, aynı sayının aşağıdakilerden

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 18 Kasım 2007 Matematik Soruları ve Çözümleri 1. Bir sayının 0,02 ile çarpılmasıyla elde edilen sonuç, aynı sayının aşağıdakilerden

Detaylı

Ar tık Matematiği Çok Seveceksiniz!

Ar tık Matematiği Çok Seveceksiniz! Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı

MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13 TANIM Z tam sayılar kümesinde tanımlı ={(x,y): x ile y nin farkı n ile tam bölünür} = {(x,y): n x-y, n N + } bağıntısı bir denklik bağıntısıdır. (x,y) ise x y (mod

Detaylı

1981 ÖSS olduğuna göre, aşağıdakilerden c hangisi kesinlikle doğrudur? A) a>0 B) c<0 C) a+c=0 D) a 0 E) c>0 A) 12 B) 2 9 C) 10 D) 5 E) 11

1981 ÖSS olduğuna göre, aşağıdakilerden c hangisi kesinlikle doğrudur? A) a>0 B) c<0 C) a+c=0 D) a 0 E) c>0 A) 12 B) 2 9 C) 10 D) 5 E) 11 98 ÖSS. >0 olmak koşulu ile 2+, 3+, 4+ sayıları bir dik üçgenin kenar uzunluklarını göstermektedir. Bu üçgenin hipotenüs uzunluğu kaç birimdir? A) 2 B) 2 9 C) 0 D) 5 E) 2a c 6. 0 olduğuna göre, aşağıdakilerden

Detaylı

MATEMATİK SORU BANKASI. ezberbozan serisi GEOMETRİ 30. KPSS tamamı çözümlü. eğitimde

MATEMATİK SORU BANKASI. ezberbozan serisi GEOMETRİ 30. KPSS tamamı çözümlü. eğitimde ezberbozan serisi MATEMATİK GEOMETRİ KPSS 2017 SORU BANKASI eğitimde tamamı çözümlü 30. Kerem Köker Kenan Osmanoğlu Levent Şahin Uğur Özçelik Ahmet Tümer Yılmaz Ceylan KOMİSYON KPSS EZBERBOZAN MATEMATİK

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

MODÜLER ARİTMETİK. Örnek:

MODÜLER ARİTMETİK. Örnek: MODÜLER ARİTMETİK Bir doğal sayının ile bölünmesinden elde edilen kalanlar kümesi { 0,, } dir. ile bölünmesinden elde edilen kalanlar kümesi { 0,,, } tür. Tam sayılar kümesi üzerinde tanımlanan {( x, y)

Detaylı

Kazanım :Tamsayıların kendileri ile tekrarlı çarpımını üslü nicelik olarak ifade eder.

Kazanım :Tamsayıların kendileri ile tekrarlı çarpımını üslü nicelik olarak ifade eder. . Bir sayının kendisi ile tekrarlı çarpımına o sayının kuvveti denir. Yapılan bu tekrarlı çarpma işleminin sonucunu bulmaya ise kuvvet alma işlemi denir. -3 ile (-3) üslü niceliklerinin değerlerini bulalım;

Detaylı

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan SAYILAR RAKAM VE DOĞAL SAYI KAVRAMI MATEMATİK KAF01 TEMEL KAVRAM 01 Sayıları ifade etmeye yarayan { 0,1,, 3, i i i,9} kümesindeki semollere onluk sayma düzeninde rakam denir. N =... kümesinin elemanlarına

Detaylı

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon İçindekiler Cebir 1. Fonksiyonlar....... 1.1 Fonksiyonların Tanım, Değer ve Görüntü Kümesi...... 1.1.1 Fonksiyon.. 1.1. Görüntü Kümesi... 1.1.3 Eşit Fonksiyonlar. 1.1.4 Fonksiyonun Gösterimi. 1.1.4.1 Liste

Detaylı

SORULAR. 2. Noktaları adlandırılmamış 6 noktalı kaç ağaç vardır? Çizerek cevaplayınız.

SORULAR. 2. Noktaları adlandırılmamış 6 noktalı kaç ağaç vardır? Çizerek cevaplayınız. MAT3 AYRIK MATEMATİK DERSİ DÖNEM SONU SINAVI 4.0.0 Numarası :..................................... Adı Soyadı :..................................... SORULAR. Prüfer kodu ( 3 3 ) olan ağacı çiziniz.. Noktaları

Detaylı

6BÖLÜM ONDALIK SAYILAR

6BÖLÜM ONDALIK SAYILAR 6BÖLÜM ONDALIK SAYILAR ONDALIK SAYILAR TEST ) Aşağıdaki kesirleri ondalık sayıya çeviriniz. a) 3 b) 2 c) 9 d) 4 5 25 20 2) Aşağıdaki ondalık sayıların basamaklarındaki rakamların sayı ve basamak değerlerini

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

12.Konu Rasyonel sayılar

12.Konu Rasyonel sayılar 12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama

Detaylı

SU DALGALARINDA GİRİŞİM

SU DALGALARINDA GİRİŞİM SU DALGALARINDA GİRİŞİM Yukarıda iki kaynağın oluşturduğu dairesel su dalgalarının meydana getirdiği girişim deseni gösterilmiştir Burada kesikli çizgiler dalga çukurlarını, düz çizgiler dalga tepelerini

Detaylı

DENKLEM SİSTEMLERİ. ifadesinde a sayısı bilinmeyenin katsayısı ve b ise sabit sayıdır.

DENKLEM SİSTEMLERİ. ifadesinde a sayısı bilinmeyenin katsayısı ve b ise sabit sayıdır. DENKLEM SİSTEMLERİ 1) BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER: a,bϵ R ve olmak üzere; şeklindeki denklemlere birinci dereceden bir bilinmeyenli denklem denir. Bu tür denklemlerde sadece bir bilinmeyen

Detaylı

Ar tık Matematiği Çok Seveceksiniz!

Ar tık Matematiği Çok Seveceksiniz! Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

1995 ÖSS. 6. Toplamları 621 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 16, kalan ise 9 dur. Buna göre, büyük sayı kaçtır?

1995 ÖSS. 6. Toplamları 621 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 16, kalan ise 9 dur. Buna göre, büyük sayı kaçtır? 99 ÖSS.. 0, 0, 0,44. işleminin sonucu A) 0, B) 0,4 C) D) 4 E) 0 6. Toplamları 6 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 6, kalan ise 9 dur. Buna göre, büyük sayı A) 70 B) 7 C) 80

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

.com. Faydalı Olması Dileğiyle... Emrah& Elvan PEKŞEN

.com. Faydalı Olması Dileğiyle... Emrah& Elvan PEKŞEN .com Faydalı Olması Dileğiyle... Emrah& Elvan PEKŞEN ilkok Adı-Soyadı:... Yukarıdaki resmi inceleyelim. Sonrasında aşağıdaki yönergelere göre, çocukları numaralandıralım ve soruları cevaplayalım. Deniz

Detaylı

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi...

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi... İÇİNDEKİLER HARFLİ İFADELER Harfli İfadeler ve Elemanları... 1 Benzer Terim... Harfli İfadenin Terimlerini Toplayıp Çıkarma... Harfli İfadelerin Terimlerini Çarpma... Harfli İfadelerde Parantez Açma...

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK

EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK Amaç: 1 den n ye kadar olan tamsayı ağırlıkları, toplamları n olan en az sayıda ağırlığı kullanarak tartmak. Giriş: Bu araştırmanın temelini Ulusal Bilgisayar

Detaylı

EŞĐTSĐZLĐKLER MATEMATĐK ĐM. Eşitsizlikler YILLAR /LYS. 14) Özel olarak. x >x ÖZELLĐKLER.

EŞĐTSĐZLĐKLER MATEMATĐK ĐM. Eşitsizlikler YILLAR /LYS. 14) Özel olarak. x >x ÖZELLĐKLER. YILLAR 00 00 00 00 006 007 008 009 00 0 ÖSS-YGS - - - - - / - /LYS EŞĐTSĐZLĐKLER =y,,, y,,, < y y,,, > y,,, y (tarif et ) ÖZELLĐKLER ) > veya < 0

Detaylı

Mikrobilgisayarda Aritmetik

Mikrobilgisayarda Aritmetik 14 Mikrobilgisayarda Aritmetik SAYITLAMA DİZGELERİ Sayıları göstermek (temsil etmek) için tarih boyunca türlü simgeler kullanılmıştır. Konumuz bu tarihi gelişimi incelemek değildir. Kullanılan sayıtlama

Detaylı

Microsoft Excel Formül Yazma Kuralları: 1. Formül yazmak için Formül Araç Çubuğu kullanılır, ya da hücre içerisine çift tıklanarak formül yazılır.

Microsoft Excel Formül Yazma Kuralları: 1. Formül yazmak için Formül Araç Çubuğu kullanılır, ya da hücre içerisine çift tıklanarak formül yazılır. Microsoft Excel Formül Yazma Kuralları: 1. Formül yazmak için Formül Araç Çubuğu kullanılır, ya da hücre içerisine çift tıklanarak formül yazılır. 2. Formüller = eşittir işareti ile başlar. 3. Formüllerde

Detaylı

Sihirli Kareler (II) Ali Nesin

Sihirli Kareler (II) Ali Nesin Sihirli Kareler (II) Ali Nesin ir önceki yazıda n bir tek tamsayı olduğunda n n sihirli karelerin nasıl yapılacağını öğrenmiştik. Bu yazıda n nin çift olduğu n n boyutlu sihirli kareleri ele alacağız.

Detaylı

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER MATEMATİK Taşkın, Çetin, Abdullayeva BÖLÜM. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER. ÖZDEŞLİKLER İki cebirsel ifade içerdikleri değişkenlerin (veya bilinmeyenlerin) her değeri içinbirbirine eşit oluyorsa,

Detaylı

3 VEKTÖRLER. Pilot uçağın kokpit inden havaalanını nasıl bulur?

3 VEKTÖRLER. Pilot uçağın kokpit inden havaalanını nasıl bulur? 3.1 Koordinat sistemleri 3.2 Kartezyen koordinatlar 3.3 Vektörler 3.4 Vektörlerin bileşenleri 3.5 Vektörlerin toplanması 3.6 Vektörlerin çıkarılması 37Bii 3.7 Birim vektör 3 VEKTÖRLER Pilot uçağın kokpit

Detaylı

1. SINIF MATEMATİK KİTABI 2

1. SINIF MATEMATİK KİTABI 2 . SINIF MATEMATİK KİTABI Adı - Soyadı :...... Sınıfı :... Okulu :... K K T C MİLLİ EĞİTİM VE KÜLTÜR BAKANLIĞI YAYINIDIR. Milli Eğitim ve Kültür Bakanlığı Talim Terbiye Dairesi, bu kitabın ilkokul. sınıflarda

Detaylı